Data assimilation method for quantifying controlled methane releases using a drone and ground-sensors
This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalE...
Saved in:
Published in | Atmospheric Environment: X Vol. 17; p. 100210 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
Elsevier |
Online Access | Get full text |
ISSN | 2590-1621 2590-1621 |
DOI | 10.1016/j.aeaoa.2023.100210 |
Cover
Loading…
Abstract | This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalEnergies Anomaly Detection Initiative). The leaks ranged from 0.01 to 5 g CH4 s-1 over 24–71 min. A methane-detecting drone and five ground-sensors recorded the methane concentration simultaneously. The accuracy of the air contaminant dispersion estimations, based on Gaussian model, is improved by applying a data assimilation method using a particle filter. Diffusion coefficients and release rate are considered as state parameters in the data-driven modeling. A particle filter is then applied to update these parameters during each computation step. We assessed various frameworks for assimilating air data in order to monitor CH4 emissions from industrial sites and infrastructures. For most releases, the assimilations consistently give precise rate estimates, whether considering fixed or mobile data and any of the particular assimilation setups. The average relative errors in the estimated CH4 release rates typically range from approximately 35%–84% for the 2020 campaign, and from 29% to 72% for the 2021 campaign. The inversion results using the stationary measurements have an average relative error of about 72%, while the use of drone measurements yields a more accurate emission rate estimate of around 51%. The hybrid approach, which simultaneously evaluated both drone and stationary measurements using a particle filter, achieved the highest coefficient of determination and the lowest relative error between the reported and model estimated flow rates (R2 = 0.97 and 29%, respectively).
•Using ground-sensors and drones in inversion simultaneously achieves better results.•Low and high wind conditions have comparable relative error result.•Inversion with particle filtering increases the accuracy of the model estimation. |
---|---|
AbstractList | This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalEnergies Anomaly Detection Initiative). The leaks ranged from 0.01 to 5 g CH4 s-1 over 24–71 min. A methane-detecting drone and five ground-sensors recorded the methane concentration simultaneously. The accuracy of the air contaminant dispersion estimations, based on Gaussian model, is improved by applying a data assimilation method using a particle filter. Diffusion coefficients and release rate are considered as state parameters in the data-driven modeling. A particle filter is then applied to update these parameters during each computation step. We assessed various frameworks for assimilating air data in order to monitor CH4 emissions from industrial sites and infrastructures. For most releases, the assimilations consistently give precise rate estimates, whether considering fixed or mobile data and any of the particular assimilation setups. The average relative errors in the estimated CH4 release rates typically range from approximately 35%–84% for the 2020 campaign, and from 29% to 72% for the 2021 campaign. The inversion results using the stationary measurements have an average relative error of about 72%, while the use of drone measurements yields a more accurate emission rate estimate of around 51%. The hybrid approach, which simultaneously evaluated both drone and stationary measurements using a particle filter, achieved the highest coefficient of determination and the lowest relative error between the reported and model estimated flow rates (R2 = 0.97 and 29%, respectively). This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalEnergies Anomaly Detection Initiative). The leaks ranged from 0.01 to 5 g CH4 s-1 over 24–71 min. A methane-detecting drone and five ground-sensors recorded the methane concentration simultaneously. The accuracy of the air contaminant dispersion estimations, based on Gaussian model, is improved by applying a data assimilation method using a particle filter. Diffusion coefficients and release rate are considered as state parameters in the data-driven modeling. A particle filter is then applied to update these parameters during each computation step. We assessed various frameworks for assimilating air data in order to monitor CH4 emissions from industrial sites and infrastructures. For most releases, the assimilations consistently give precise rate estimates, whether considering fixed or mobile data and any of the particular assimilation setups. The average relative errors in the estimated CH4 release rates typically range from approximately 35%–84% for the 2020 campaign, and from 29% to 72% for the 2021 campaign. The inversion results using the stationary measurements have an average relative error of about 72%, while the use of drone measurements yields a more accurate emission rate estimate of around 51%. The hybrid approach, which simultaneously evaluated both drone and stationary measurements using a particle filter, achieved the highest coefficient of determination and the lowest relative error between the reported and model estimated flow rates (R2 = 0.97 and 29%, respectively). •Using ground-sensors and drones in inversion simultaneously achieves better results.•Low and high wind conditions have comparable relative error result.•Inversion with particle filtering increases the accuracy of the model estimation. |
ArticleNumber | 100210 |
Author | Darynova, Zhuldyz Donnat, Ludovic Juery, Catherine Duclaux, Olivier Blanco, Benoit |
Author_xml | – sequence: 1 givenname: Zhuldyz surname: Darynova fullname: Darynova, Zhuldyz email: zhuldyz.darynova@external.totalenergies.com organization: TotalEnergies, R&D, DEMETER Remote Sensing Team, Pau, France – sequence: 2 givenname: Benoit surname: Blanco fullname: Blanco, Benoit organization: TotalEnergies, R&D, DEMETER Remote Sensing Team, Pau, France – sequence: 3 givenname: Catherine surname: Juery fullname: Juery, Catherine organization: TotalEnergies, R&D, Air Quality Laboratory, Solaize, France – sequence: 4 givenname: Ludovic surname: Donnat fullname: Donnat, Ludovic organization: TotalEnergies, R&D, Air Quality Laboratory, Solaize, France – sequence: 5 givenname: Olivier surname: Duclaux fullname: Duclaux, Olivier organization: TotalEnergies, R&D, Air Quality Laboratory, Solaize, France |
BookMark | eNqFkM1OZCEQRonRxN8ncMML3B7gArdZuJioM5qYuNE1qYa6LZ3bMAO0iW8v3T2ZGBe6olL5zpfinJLDmCIScsnZjDOuf6xmgJBgJpjo24YJzg7IiVCGdVwLfvhhPiYXpaxYywgpNeMnBG-gAoVSwjpMUEOKdI31JXk6pkz_biDWML6FuKQuxZrTNKHfJSAizTghFCx0U7YJoD630yhET5c5baLvCsaScjknRyNMBS_-vWfk-dft0_Vd9_D4-_7650PnJJe1GwauDUq_ADTI9EIy3-Z2vFLDwByTvQLBXT8fFOoB1Vx5zjUb0JleCs36M3K_7_UJVvZPDmvIbzZBsLtFyksLuQY3oZXGqRFQLoyZyyYImBFKgAbPmx0tW1e_73I5lZJx_N_Hmd2Ktyu7E2-34u1efKPMJ8qFuvNaM4TpG_Zqz2JT9Bow2-ICRoc-ZHS1_SF8yb8DhK2hAA |
CitedBy_id | crossref_primary_10_5194_amt_17_863_2024 crossref_primary_10_5194_amt_17_4471_2024 |
Cites_doi | 10.1016/j.ijggc.2017.11.018 10.1115/1.3662552 10.1016/j.rse.2011.09.027 10.1016/S0304-3800(03)00230-8 10.3390/atmos8090170 10.1016/j.atmosenv.2011.08.024 10.1007/s10236-003-0036-9 10.5194/amt-14-2127-2021 10.1088/1748-9326/ab0cc3 10.1002/qj.4283 10.1007/BF00864921 10.1016/j.atmosenv.2006.06.043 10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2 10.5194/essd-12-1561-2020 10.5194/acp-15-1029-2015 10.1016/j.atmosenv.2019.116981 10.1002/2018GL077259 10.1016/j.atmosenv.2014.06.009 10.3390/ijerph15081640 10.1109/78.978374 10.1016/j.jenvrad.2005.04.011 10.1002/2014JD021880 10.1145/2379810.2379816 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.aeaoa.2023.100210 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-1621 |
ExternalDocumentID | oai_doaj_org_article_49c5fae4b9984259a09252a6ad102264 10_1016_j_aeaoa_2023_100210 S2590162123000102 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M41 NCXOZ OK1 ROL SSZ 0R~ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-77169e4dbae9e06b40ddba59055770c0435a21c3875e67e585d11607ec9342603 |
IEDL.DBID | DOA |
ISSN | 2590-1621 |
IngestDate | Wed Aug 27 00:40:26 EDT 2025 Thu Apr 24 23:07:09 EDT 2025 Tue Jul 01 04:16:25 EDT 2025 Tue Jul 25 20:54:38 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-77169e4dbae9e06b40ddba59055770c0435a21c3875e67e585d11607ec9342603 |
OpenAccessLink | https://doaj.org/article/49c5fae4b9984259a09252a6ad102264 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_49c5fae4b9984259a09252a6ad102264 crossref_primary_10_1016_j_aeaoa_2023_100210 crossref_citationtrail_10_1016_j_aeaoa_2023_100210 elsevier_sciencedirect_doi_10_1016_j_aeaoa_2023_100210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Atmospheric Environment: X |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Yan, Gu, Hu, Guo (bib30) 2009; vols. 13–16 Jervis, McKeever, Durak, Sloan, Gains, Varon, Ramier, Strupler, Tarrant (bib13) 2021; 14 Gibbs (bib37) 2011 Briggs (bib3) 1973; 83 Quélo, Sportisse, Isnard (bib38) 2005; 84 Feitz, Schroder, Phillips, Coates, Negandhi, Day, Luhar, Bhatia, Edwards, Hrabar, Hernandez, Wood, Naylor, Kennedy, Hamilton, Hatch, Malos, Kochanek, Reid, Griffith (bib7) 2018; 70 Katata, Chino, Kobayashi, Terada, Ota, Nagai, Kajino, Draxler, Hort, Malo (bib15) 2015; 15 Krysta, Bocquet, Sportisse, Isnard (bib16) 2006; 40 Veefkind, Aben, McMullan, Förster, de Vries, Otter, Claas, Eskes, de Haan, Kleipool, van Weele, Hasekamp, Hoogeveen, Landgraf, Snel, Tol, Ingmann, Voors, Kruizinga, Vink, Visser, Levelt (bib27) 2012; 120 Fox, Barchyn, Risk, Ravikumar, Hugenholtz (bib8) 2019; 14 Zhou, Montazeri, Albertson (bib31) 2019; 218 Luhar, Etheridge, Leuning, Loh, Jenkins, Yee (bib18) 2014; 119 Gordon, Salmond, Smith (bib10) 1993; 140 Hiemstra, Karssenberg, van Dijk (bib35) 2011; 45 Xue, Gu, Hu (bib29) 2012; 22 Arulampalam, Maskell, Gordon, Clapp (bib39) 2002; 50 Wang, Chen, Qiu, Zhu, Qiu (bib28) 2017; 8 Kalman (bib14) 1960; 82 Bonne, Donnat, Albora, Burgalat, Chauvin, Combaz, Cousin, Decarpenterie, Duclaux, Dumelié, Galas, Juery, Parent, Pineau, Maunoury, Ventre, Bénassy, Joly (bib33) 2023 Carrascal, Puigcerver, Puig (bib4) 1993; 48 Pasquill (bib20) 1961; 90 Evensen (bib6) 2003; 53 Hu, Landgraf, Detmers, Borsdorff, Aan de Brugh, Aben, Butz, Hasekamp (bib11) 2018; 45 Saunois, Stavert, Poulter, Bousquet, Canadell, Jackson, Raymond, Dlugokencky, Houweling, Patra, Ciais, Arora, Bastviken, Bergamaschi, Blake, Brailsford, Bruhwiler, Carlson, Carrol, Zhuang (bib25) 2020; 12 Pastres, Ciavatta, Solidoro (bib21) 2003; 170 Marzo (bib19) 2014; 94 Zhu, Qiu, Chen, Wang, Qiu (bib36) 2018; 15 Reddy, Cheng, Singh, Scott (bib23) 2007; vol. 2007 Bouttier, Courtier (bib2) 1999 Zhang, Gautam, Pandey, Omara, Maasakkers, Sadavarte, Lyon, Nesser, Sulprizio, Varon, Zhang, Houweling, Zavala-Araiza, Alvarez, Lorente, Hamburg, Aben, Jacob (bib32) 2020; 6 Portner, Roberts, Tignor, Poloczanska, Mintenbeck, Alegría, Craig, Langsdorf, Löschke, Möller, Okem, Rama (bib22) 2022 Gifford (bib9) 1961; 2 Turner (bib26) 1964; 3 Kumar, Broquet, Caldow, Laurent, Gichuki, Cropley (bib17) 2022; 148 Rohrschneider, Wofsy, Franklin, Benmergui, Soto, Davis (bib24) 2021 Bonne (10.1016/j.aeaoa.2023.100210_bib33) 2023 Bouttier (10.1016/j.aeaoa.2023.100210_bib2) 1999 Pastres (10.1016/j.aeaoa.2023.100210_bib21) 2003; 170 Evensen (10.1016/j.aeaoa.2023.100210_bib6) 2003; 53 Rohrschneider (10.1016/j.aeaoa.2023.100210_bib24) 2021 Luhar (10.1016/j.aeaoa.2023.100210_bib18) 2014; 119 Fox (10.1016/j.aeaoa.2023.100210_bib8) 2019; 14 Feitz (10.1016/j.aeaoa.2023.100210_bib7) 2018; 70 Xue (10.1016/j.aeaoa.2023.100210_bib29) 2012; 22 Wang (10.1016/j.aeaoa.2023.100210_bib28) 2017; 8 Jervis (10.1016/j.aeaoa.2023.100210_bib13) 2021; 14 Quélo (10.1016/j.aeaoa.2023.100210_bib38) 2005; 84 Veefkind (10.1016/j.aeaoa.2023.100210_bib27) 2012; 120 Yan (10.1016/j.aeaoa.2023.100210_bib30) 2009; vols. 13–16 Kalman (10.1016/j.aeaoa.2023.100210_bib14) 1960; 82 Gibbs (10.1016/j.aeaoa.2023.100210_bib37) 2011 Gordon (10.1016/j.aeaoa.2023.100210_bib10) 1993; 140 Reddy (10.1016/j.aeaoa.2023.100210_bib23) 2007; vol. 2007 Carrascal (10.1016/j.aeaoa.2023.100210_bib4) 1993; 48 Katata (10.1016/j.aeaoa.2023.100210_bib15) 2015; 15 Arulampalam (10.1016/j.aeaoa.2023.100210_bib39) 2002; 50 Hiemstra (10.1016/j.aeaoa.2023.100210_bib35) 2011; 45 Gifford (10.1016/j.aeaoa.2023.100210_bib9) 1961; 2 Briggs (10.1016/j.aeaoa.2023.100210_bib3) 1973; 83 Zhang (10.1016/j.aeaoa.2023.100210_bib32) 2020; 6 Marzo (10.1016/j.aeaoa.2023.100210_bib19) 2014; 94 Turner (10.1016/j.aeaoa.2023.100210_bib26) 1964; 3 Kumar (10.1016/j.aeaoa.2023.100210_bib17) 2022; 148 Portner (10.1016/j.aeaoa.2023.100210_bib22) 2022 Krysta (10.1016/j.aeaoa.2023.100210_bib16) 2006; 40 Pasquill (10.1016/j.aeaoa.2023.100210_bib20) 1961; 90 Hu (10.1016/j.aeaoa.2023.100210_bib11) 2018; 45 Zhou (10.1016/j.aeaoa.2023.100210_bib31) 2019; 218 Zhu (10.1016/j.aeaoa.2023.100210_bib36) 2018; 15 Saunois (10.1016/j.aeaoa.2023.100210_bib25) 2020; 12 |
References_xml | – volume: 8 start-page: 170 year: 2017 ident: bib28 article-title: Data assimilation in air contaminant dispersion using a particle filter and expectation-maximization algorithm publication-title: Atmosphere – volume: 82 start-page: 35 year: 1960 end-page: 45 ident: bib14 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. – volume: 15 start-page: 1029 year: 2015 end-page: 1070 ident: bib15 article-title: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model publication-title: Atmos. Chem. Phys. – volume: 14 start-page: 2127 year: 2021 end-page: 2140 ident: bib13 article-title: The GHGSat-D imaging spectrometer, Atmos publication-title: Meas. Tech. – year: 2021 ident: bib24 article-title: The MethaneSAT Mission. 35th Annual Small Satellite Conference – volume: 12 start-page: 1561 year: 2020 end-page: 1623 ident: bib25 article-title: The global methane budget 2000–2017 publication-title: Earth Syst. Sci. Data – year: 1999 ident: bib2 article-title: Data assimilation concepts and methods publication-title: ECMWF Meteorological Training Course Letter Series – volume: 22 start-page: 1 year: 2012 end-page: 25 ident: bib29 article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation publication-title: ACM TOMACS – volume: 119 start-page: 10959 year: 2014 end-page: 10979 ident: bib18 article-title: Locating and quantifying greenhouse gas emissions at a geological CO2 storage site using atmospheric modeling and measurements publication-title: J. Geophys. Res. Atmos. – volume: 6 year: 2020 ident: bib32 article-title: Quantifying methane emissions from the largest oil-producing basin in the United States from space publication-title: Sci. Adv. – volume: 40 start-page: 7267 year: 2006 end-page: 7279 ident: bib16 article-title: Data assimilation for short-range dispersion of radionuclides: an application to wind tunnel data publication-title: Atmos. Environ. – volume: 94 start-page: 709 year: 2014 end-page: 722 ident: bib19 article-title: Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-Chi accident and resulting effective dose publication-title: Atmos. Environ. – volume: vols. 13–16 start-page: 3121 year: 2009 end-page: 3128 ident: bib30 article-title: A dynamic data driven application system for wildfire spread simulation publication-title: Proceedings of the Winter Simulation Conference – volume: 140 start-page: 107 year: 1993 end-page: 113 ident: bib10 article-title: Novel approach to nonlinear/non-Gaussian bayesian state estimation publication-title: IEE Proceedings F (Radar and Signal Processing) – volume: 84 start-page: 393 year: 2005 end-page: 408 ident: bib38 article-title: Data assimilation for short range atmospheric dispersion of radionuclides: a case study of second-order sensitivity publication-title: J. Environ. Radioact. – volume: 148 start-page: 1886 year: 2022 end-page: 1912 ident: bib17 article-title: Near-field atmospheric inversions for the localization and quantification of controlled methane releases using stationary and mobile measurements publication-title: Q. J. R. Meteorol. Soc. – volume: 48 start-page: 147 year: 1993 end-page: 157 ident: bib4 article-title: Sensitivity of Gaussian plume model to dispersion specifications publication-title: Theor. Appl. Climatol. – volume: 70 start-page: 202 year: 2018 end-page: 224 ident: bib7 article-title: The Ginninderra CH publication-title: Int. J. Greenh. Gas Control – start-page: 3056 year: 2022 ident: bib22 article-title: Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 53 start-page: 343 year: 2003 end-page: 367 ident: bib6 article-title: The ensemble kalman filter: theoretical formulation and practical implementation publication-title: Ocean Dynam. – volume: 14 year: 2019 ident: bib8 article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas publication-title: Environ. Res. Lett. – volume: 170 start-page: 227 year: 2003 end-page: 235 ident: bib21 article-title: The extended kalman filter (ekf) as a tool for the assimilation of high frequency water quality data publication-title: Ecol. Model. – volume: 218 year: 2019 ident: bib31 article-title: Mobile sensing of point-source gas emissions using Bayesian inference: an empirical examination of the likelihood function publication-title: Atmos. Environ. – volume: 3 start-page: 83 year: 1964 end-page: 91 ident: bib26 article-title: A diffusion model for an urban area publication-title: J. Appl. Meteorol. – volume: 120 start-page: 70 year: 2012 end-page: 83 ident: bib27 article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications publication-title: Rem. Sens. Environ. – volume: 45 start-page: 3682 year: 2018 end-page: 3689 ident: bib11 article-title: Toward global mapping of methane with TROPOMI: first results and Intersatellite comparison to GOSAT publication-title: Geophys. Res. Lett. – volume: 50 start-page: 174 year: 2002 end-page: 188 ident: bib39 article-title: A tutorial on particle filters for online nonlinear/ non-gaussian bayesian tracking publication-title: IEEE Trans. Signal Process. – year: 2023 ident: bib33 article-title: A simultaneous CH publication-title: Atmos. Meas. Tech. Discuss. – volume: 2 start-page: 47 year: 1961 end-page: 51 ident: bib9 article-title: Use of routine meteorological observations for estimating atmospheric dispersion publication-title: Nucl. Saf. – volume: 90 start-page: 33 year: 1961 end-page: 49 ident: bib20 article-title: The estimation of the dispersion of windborne material publication-title: Aust. Meteorol. Mag. – volume: 45 start-page: 6149 year: 2011 end-page: 6157 ident: bib35 article-title: Assimilation of observations of radiation level into an atmospheric transport model: a case study with the particle filter and the ETEX tracer dataset publication-title: Atmos. Environ. – volume: vol. 2007 start-page: 1 year: 2007 end-page: 8 ident: bib23 article-title: Data assimilation in variable dimension dispersion models using particle filters publication-title: 10th International Conference On Information Fusion – volume: 15 start-page: 1640 year: 2018 ident: bib36 article-title: Data-driven hazardous gas dispersion modeling using the integration of particle filtering and error propagation detection publication-title: Int. J. Environ. Res. Publ. Health – volume: 83 year: 1973 ident: bib3 article-title: Diffusion estimation for small emissions publication-title: Atmos. Turbul. Diffus. Lab. – year: 2011 ident: bib37 publication-title: Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook – volume: 70 start-page: 202 year: 2018 ident: 10.1016/j.aeaoa.2023.100210_bib7 article-title: The Ginninderra CH4 and CO2 release experiment: an evaluation of gas detection and quantification techniques publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2017.11.018 – volume: 82 start-page: 35 year: 1960 ident: 10.1016/j.aeaoa.2023.100210_bib14 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 120 start-page: 70 year: 2012 ident: 10.1016/j.aeaoa.2023.100210_bib27 article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2011.09.027 – volume: 170 start-page: 227 year: 2003 ident: 10.1016/j.aeaoa.2023.100210_bib21 article-title: The extended kalman filter (ekf) as a tool for the assimilation of high frequency water quality data publication-title: Ecol. Model. doi: 10.1016/S0304-3800(03)00230-8 – volume: 83 year: 1973 ident: 10.1016/j.aeaoa.2023.100210_bib3 article-title: Diffusion estimation for small emissions publication-title: Atmos. Turbul. Diffus. Lab. – volume: 2 start-page: 47 year: 1961 ident: 10.1016/j.aeaoa.2023.100210_bib9 article-title: Use of routine meteorological observations for estimating atmospheric dispersion publication-title: Nucl. Saf. – volume: vol. 2007 start-page: 1 year: 2007 ident: 10.1016/j.aeaoa.2023.100210_bib23 article-title: Data assimilation in variable dimension dispersion models using particle filters – volume: 8 start-page: 170 year: 2017 ident: 10.1016/j.aeaoa.2023.100210_bib28 article-title: Data assimilation in air contaminant dispersion using a particle filter and expectation-maximization algorithm publication-title: Atmosphere doi: 10.3390/atmos8090170 – year: 2021 ident: 10.1016/j.aeaoa.2023.100210_bib24 – volume: 45 start-page: 6149 issue: 34 year: 2011 ident: 10.1016/j.aeaoa.2023.100210_bib35 article-title: Assimilation of observations of radiation level into an atmospheric transport model: a case study with the particle filter and the ETEX tracer dataset publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.08.024 – volume: 53 start-page: 343 year: 2003 ident: 10.1016/j.aeaoa.2023.100210_bib6 article-title: The ensemble kalman filter: theoretical formulation and practical implementation publication-title: Ocean Dynam. doi: 10.1007/s10236-003-0036-9 – volume: 14 start-page: 2127 year: 2021 ident: 10.1016/j.aeaoa.2023.100210_bib13 article-title: The GHGSat-D imaging spectrometer, Atmos publication-title: Meas. Tech. doi: 10.5194/amt-14-2127-2021 – volume: 6 year: 2020 ident: 10.1016/j.aeaoa.2023.100210_bib32 article-title: Quantifying methane emissions from the largest oil-producing basin in the United States from space publication-title: Sci. Adv. – volume: 14 issue: 5 year: 2019 ident: 10.1016/j.aeaoa.2023.100210_bib8 article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab0cc3 – volume: 148 start-page: 1886 issue: 745 year: 2022 ident: 10.1016/j.aeaoa.2023.100210_bib17 article-title: Near-field atmospheric inversions for the localization and quantification of controlled methane releases using stationary and mobile measurements publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.4283 – volume: 48 start-page: 147 year: 1993 ident: 10.1016/j.aeaoa.2023.100210_bib4 article-title: Sensitivity of Gaussian plume model to dispersion specifications publication-title: Theor. Appl. Climatol. doi: 10.1007/BF00864921 – volume: 40 start-page: 7267 year: 2006 ident: 10.1016/j.aeaoa.2023.100210_bib16 article-title: Data assimilation for short-range dispersion of radionuclides: an application to wind tunnel data publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.06.043 – volume: 3 start-page: 83 year: 1964 ident: 10.1016/j.aeaoa.2023.100210_bib26 article-title: A diffusion model for an urban area publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2 – volume: 12 start-page: 1561 issue: 3 year: 2020 ident: 10.1016/j.aeaoa.2023.100210_bib25 article-title: The global methane budget 2000–2017 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1561-2020 – volume: 15 start-page: 1029 year: 2015 ident: 10.1016/j.aeaoa.2023.100210_bib15 article-title: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-1029-2015 – year: 2023 ident: 10.1016/j.aeaoa.2023.100210_bib33 article-title: A simultaneous CH4 and CO2 flux quantification method for industrial site emissions from in-situ concentration measurements on-board an Unmanned Aircraft Vehicle publication-title: Atmos. Meas. Tech. Discuss. – start-page: 3056 year: 2022 ident: 10.1016/j.aeaoa.2023.100210_bib22 – volume: 218 year: 2019 ident: 10.1016/j.aeaoa.2023.100210_bib31 article-title: Mobile sensing of point-source gas emissions using Bayesian inference: an empirical examination of the likelihood function publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.116981 – volume: 45 start-page: 3682 year: 2018 ident: 10.1016/j.aeaoa.2023.100210_bib11 article-title: Toward global mapping of methane with TROPOMI: first results and Intersatellite comparison to GOSAT publication-title: Geophys. Res. Lett. doi: 10.1002/2018GL077259 – volume: 94 start-page: 709 year: 2014 ident: 10.1016/j.aeaoa.2023.100210_bib19 article-title: Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-Chi accident and resulting effective dose publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.06.009 – volume: 140 start-page: 107 year: 1993 ident: 10.1016/j.aeaoa.2023.100210_bib10 article-title: Novel approach to nonlinear/non-Gaussian bayesian state estimation – volume: vols. 13–16 start-page: 3121 year: 2009 ident: 10.1016/j.aeaoa.2023.100210_bib30 article-title: A dynamic data driven application system for wildfire spread simulation – volume: 15 start-page: 1640 issue: 8 year: 2018 ident: 10.1016/j.aeaoa.2023.100210_bib36 article-title: Data-driven hazardous gas dispersion modeling using the integration of particle filtering and error propagation detection publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph15081640 – year: 1999 ident: 10.1016/j.aeaoa.2023.100210_bib2 article-title: Data assimilation concepts and methods – volume: 50 start-page: 174 year: 2002 ident: 10.1016/j.aeaoa.2023.100210_bib39 article-title: A tutorial on particle filters for online nonlinear/ non-gaussian bayesian tracking publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.978374 – volume: 84 start-page: 393 year: 2005 ident: 10.1016/j.aeaoa.2023.100210_bib38 article-title: Data assimilation for short range atmospheric dispersion of radionuclides: a case study of second-order sensitivity publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2005.04.011 – volume: 119 start-page: 10959 issue: 18 year: 2014 ident: 10.1016/j.aeaoa.2023.100210_bib18 article-title: Locating and quantifying greenhouse gas emissions at a geological CO2 storage site using atmospheric modeling and measurements publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014JD021880 – volume: 22 start-page: 1 year: 2012 ident: 10.1016/j.aeaoa.2023.100210_bib29 article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation publication-title: ACM TOMACS doi: 10.1145/2379810.2379816 – year: 2011 ident: 10.1016/j.aeaoa.2023.100210_bib37 – volume: 90 start-page: 33 year: 1961 ident: 10.1016/j.aeaoa.2023.100210_bib20 article-title: The estimation of the dispersion of windborne material publication-title: Aust. Meteorol. Mag. |
SSID | ssj0002244601 |
Score | 2.2835202 |
Snippet | This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100210 |
Title | Data assimilation method for quantifying controlled methane releases using a drone and ground-sensors |
URI | https://dx.doi.org/10.1016/j.aeaoa.2023.100210 https://doaj.org/article/49c5fae4b9984259a09252a6ad102264 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMjFnYeTjPyqiokmKjUzfIrqFVJoU3_P3d2gjKVhS2K_EjOJ933JXffEXKTJw6ighHMAbZmmfWOaZd7Vo0sBN_RyJahyvX1TU6m2cssn_VafWFOWJQHjoa7y0qbV9pnBngB-FepeZnkiZbaIVeRQQmUl7xHphZB1AVoTuh9DFM4EzIRneRQSO7SXq9QdShJgwYp1s_2wlJQ7-9Fp17EGR-SgxYq0vv4iEdkz9fHxD_pRlNAvPPPeUxjo7EJNAX0Sb-3GpN_sHSJtknoS-_CCF17ig1SIGptKGa7f1BN3XoFt3XtKFZ31I5tgNWu1psTMh0_vz9OWNsqgdlMZA1gZCFLnzmjfem5NBl3cA2vnudFwS0HUKQTYVNgJ14WHjiCEygt522ZokZ9ekoGNex4Rij-7a2qRBgjAZuYylRceClgVTw4UwxJ0llK2VZHHNtZLFWXMLZQwbwKzauieYfk9nfSV5TR2D38AY_gdyhqYIcb4Bmq9Qz1l2cMiewOULVwIsIEWGq-a_fz_9j9guzjkvFrzSUZNOutvwL80pjr4Ko_tnnpqA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+assimilation+method+for+quantifying+controlled+methane+releases+using+a+drone+and+ground-sensors&rft.jtitle=Atmospheric+Environment%3A+X&rft.au=Darynova%2C+Zhuldyz&rft.au=Blanco%2C+Benoit&rft.au=Juery%2C+Catherine&rft.au=Donnat%2C+Ludovic&rft.date=2023-01-01&rft.issn=2590-1621&rft.eissn=2590-1621&rft.volume=17&rft.spage=100210&rft_id=info:doi/10.1016%2Fj.aeaoa.2023.100210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aeaoa_2023_100210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1621&client=summon |