Data assimilation method for quantifying controlled methane releases using a drone and ground-sensors

This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalE...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric Environment: X Vol. 17; p. 100210
Main Authors Darynova, Zhuldyz, Blanco, Benoit, Juery, Catherine, Donnat, Ludovic, Duclaux, Olivier
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Elsevier
Online AccessGet full text
ISSN2590-1621
2590-1621
DOI10.1016/j.aeaoa.2023.100210

Cover

Loading…
Abstract This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalEnergies Anomaly Detection Initiative). The leaks ranged from 0.01 to 5 g CH4 s-1 over 24–71 min. A methane-detecting drone and five ground-sensors recorded the methane concentration simultaneously. The accuracy of the air contaminant dispersion estimations, based on Gaussian model, is improved by applying a data assimilation method using a particle filter. Diffusion coefficients and release rate are considered as state parameters in the data-driven modeling. A particle filter is then applied to update these parameters during each computation step. We assessed various frameworks for assimilating air data in order to monitor CH4 emissions from industrial sites and infrastructures. For most releases, the assimilations consistently give precise rate estimates, whether considering fixed or mobile data and any of the particular assimilation setups. The average relative errors in the estimated CH4 release rates typically range from approximately 35%–84% for the 2020 campaign, and from 29% to 72% for the 2021 campaign. The inversion results using the stationary measurements have an average relative error of about 72%, while the use of drone measurements yields a more accurate emission rate estimate of around 51%. The hybrid approach, which simultaneously evaluated both drone and stationary measurements using a particle filter, achieved the highest coefficient of determination and the lowest relative error between the reported and model estimated flow rates (R2 = 0.97 and 29%, respectively). •Using ground-sensors and drones in inversion simultaneously achieves better results.•Low and high wind conditions have comparable relative error result.•Inversion with particle filtering increases the accuracy of the model estimation.
AbstractList This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalEnergies Anomaly Detection Initiative). The leaks ranged from 0.01 to 5 g CH4 s-1 over 24–71 min. A methane-detecting drone and five ground-sensors recorded the methane concentration simultaneously. The accuracy of the air contaminant dispersion estimations, based on Gaussian model, is improved by applying a data assimilation method using a particle filter. Diffusion coefficients and release rate are considered as state parameters in the data-driven modeling. A particle filter is then applied to update these parameters during each computation step. We assessed various frameworks for assimilating air data in order to monitor CH4 emissions from industrial sites and infrastructures. For most releases, the assimilations consistently give precise rate estimates, whether considering fixed or mobile data and any of the particular assimilation setups. The average relative errors in the estimated CH4 release rates typically range from approximately 35%–84% for the 2020 campaign, and from 29% to 72% for the 2021 campaign. The inversion results using the stationary measurements have an average relative error of about 72%, while the use of drone measurements yields a more accurate emission rate estimate of around 51%. The hybrid approach, which simultaneously evaluated both drone and stationary measurements using a particle filter, achieved the highest coefficient of determination and the lowest relative error between the reported and model estimated flow rates (R2 = 0.97 and 29%, respectively).
This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted over 3–4 days in Fall 2020 and 2021. Several controlled methane releases took place on a 40 m × 50 m platform in France, called TADI (TotalEnergies Anomaly Detection Initiative). The leaks ranged from 0.01 to 5 g CH4 s-1 over 24–71 min. A methane-detecting drone and five ground-sensors recorded the methane concentration simultaneously. The accuracy of the air contaminant dispersion estimations, based on Gaussian model, is improved by applying a data assimilation method using a particle filter. Diffusion coefficients and release rate are considered as state parameters in the data-driven modeling. A particle filter is then applied to update these parameters during each computation step. We assessed various frameworks for assimilating air data in order to monitor CH4 emissions from industrial sites and infrastructures. For most releases, the assimilations consistently give precise rate estimates, whether considering fixed or mobile data and any of the particular assimilation setups. The average relative errors in the estimated CH4 release rates typically range from approximately 35%–84% for the 2020 campaign, and from 29% to 72% for the 2021 campaign. The inversion results using the stationary measurements have an average relative error of about 72%, while the use of drone measurements yields a more accurate emission rate estimate of around 51%. The hybrid approach, which simultaneously evaluated both drone and stationary measurements using a particle filter, achieved the highest coefficient of determination and the lowest relative error between the reported and model estimated flow rates (R2 = 0.97 and 29%, respectively). •Using ground-sensors and drones in inversion simultaneously achieves better results.•Low and high wind conditions have comparable relative error result.•Inversion with particle filtering increases the accuracy of the model estimation.
ArticleNumber 100210
Author Darynova, Zhuldyz
Donnat, Ludovic
Juery, Catherine
Duclaux, Olivier
Blanco, Benoit
Author_xml – sequence: 1
  givenname: Zhuldyz
  surname: Darynova
  fullname: Darynova, Zhuldyz
  email: zhuldyz.darynova@external.totalenergies.com
  organization: TotalEnergies, R&D, DEMETER Remote Sensing Team, Pau, France
– sequence: 2
  givenname: Benoit
  surname: Blanco
  fullname: Blanco, Benoit
  organization: TotalEnergies, R&D, DEMETER Remote Sensing Team, Pau, France
– sequence: 3
  givenname: Catherine
  surname: Juery
  fullname: Juery, Catherine
  organization: TotalEnergies, R&D, Air Quality Laboratory, Solaize, France
– sequence: 4
  givenname: Ludovic
  surname: Donnat
  fullname: Donnat, Ludovic
  organization: TotalEnergies, R&D, Air Quality Laboratory, Solaize, France
– sequence: 5
  givenname: Olivier
  surname: Duclaux
  fullname: Duclaux, Olivier
  organization: TotalEnergies, R&D, Air Quality Laboratory, Solaize, France
BookMark eNqFkM1OZCEQRonRxN8ncMML3B7gArdZuJioM5qYuNE1qYa6LZ3bMAO0iW8v3T2ZGBe6olL5zpfinJLDmCIScsnZjDOuf6xmgJBgJpjo24YJzg7IiVCGdVwLfvhhPiYXpaxYywgpNeMnBG-gAoVSwjpMUEOKdI31JXk6pkz_biDWML6FuKQuxZrTNKHfJSAizTghFCx0U7YJoD630yhET5c5baLvCsaScjknRyNMBS_-vWfk-dft0_Vd9_D4-_7650PnJJe1GwauDUq_ADTI9EIy3-Z2vFLDwByTvQLBXT8fFOoB1Vx5zjUb0JleCs36M3K_7_UJVvZPDmvIbzZBsLtFyksLuQY3oZXGqRFQLoyZyyYImBFKgAbPmx0tW1e_73I5lZJx_N_Hmd2Ktyu7E2-34u1efKPMJ8qFuvNaM4TpG_Zqz2JT9Bow2-ICRoc-ZHS1_SF8yb8DhK2hAA
CitedBy_id crossref_primary_10_5194_amt_17_863_2024
crossref_primary_10_5194_amt_17_4471_2024
Cites_doi 10.1016/j.ijggc.2017.11.018
10.1115/1.3662552
10.1016/j.rse.2011.09.027
10.1016/S0304-3800(03)00230-8
10.3390/atmos8090170
10.1016/j.atmosenv.2011.08.024
10.1007/s10236-003-0036-9
10.5194/amt-14-2127-2021
10.1088/1748-9326/ab0cc3
10.1002/qj.4283
10.1007/BF00864921
10.1016/j.atmosenv.2006.06.043
10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2
10.5194/essd-12-1561-2020
10.5194/acp-15-1029-2015
10.1016/j.atmosenv.2019.116981
10.1002/2018GL077259
10.1016/j.atmosenv.2014.06.009
10.3390/ijerph15081640
10.1109/78.978374
10.1016/j.jenvrad.2005.04.011
10.1002/2014JD021880
10.1145/2379810.2379816
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aeaoa.2023.100210
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-1621
ExternalDocumentID oai_doaj_org_article_49c5fae4b9984259a09252a6ad102264
10_1016_j_aeaoa_2023_100210
S2590162123000102
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
0R~
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-77169e4dbae9e06b40ddba59055770c0435a21c3875e67e585d11607ec9342603
IEDL.DBID DOA
ISSN 2590-1621
IngestDate Wed Aug 27 00:40:26 EDT 2025
Thu Apr 24 23:07:09 EDT 2025
Tue Jul 01 04:16:25 EDT 2025
Tue Jul 25 20:54:38 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-77169e4dbae9e06b40ddba59055770c0435a21c3875e67e585d11607ec9342603
OpenAccessLink https://doaj.org/article/49c5fae4b9984259a09252a6ad102264
ParticipantIDs doaj_primary_oai_doaj_org_article_49c5fae4b9984259a09252a6ad102264
crossref_primary_10_1016_j_aeaoa_2023_100210
crossref_citationtrail_10_1016_j_aeaoa_2023_100210
elsevier_sciencedirect_doi_10_1016_j_aeaoa_2023_100210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Atmospheric Environment: X
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yan, Gu, Hu, Guo (bib30) 2009; vols. 13–16
Jervis, McKeever, Durak, Sloan, Gains, Varon, Ramier, Strupler, Tarrant (bib13) 2021; 14
Gibbs (bib37) 2011
Briggs (bib3) 1973; 83
Quélo, Sportisse, Isnard (bib38) 2005; 84
Feitz, Schroder, Phillips, Coates, Negandhi, Day, Luhar, Bhatia, Edwards, Hrabar, Hernandez, Wood, Naylor, Kennedy, Hamilton, Hatch, Malos, Kochanek, Reid, Griffith (bib7) 2018; 70
Katata, Chino, Kobayashi, Terada, Ota, Nagai, Kajino, Draxler, Hort, Malo (bib15) 2015; 15
Krysta, Bocquet, Sportisse, Isnard (bib16) 2006; 40
Veefkind, Aben, McMullan, Förster, de Vries, Otter, Claas, Eskes, de Haan, Kleipool, van Weele, Hasekamp, Hoogeveen, Landgraf, Snel, Tol, Ingmann, Voors, Kruizinga, Vink, Visser, Levelt (bib27) 2012; 120
Fox, Barchyn, Risk, Ravikumar, Hugenholtz (bib8) 2019; 14
Zhou, Montazeri, Albertson (bib31) 2019; 218
Luhar, Etheridge, Leuning, Loh, Jenkins, Yee (bib18) 2014; 119
Gordon, Salmond, Smith (bib10) 1993; 140
Hiemstra, Karssenberg, van Dijk (bib35) 2011; 45
Xue, Gu, Hu (bib29) 2012; 22
Arulampalam, Maskell, Gordon, Clapp (bib39) 2002; 50
Wang, Chen, Qiu, Zhu, Qiu (bib28) 2017; 8
Kalman (bib14) 1960; 82
Bonne, Donnat, Albora, Burgalat, Chauvin, Combaz, Cousin, Decarpenterie, Duclaux, Dumelié, Galas, Juery, Parent, Pineau, Maunoury, Ventre, Bénassy, Joly (bib33) 2023
Carrascal, Puigcerver, Puig (bib4) 1993; 48
Pasquill (bib20) 1961; 90
Evensen (bib6) 2003; 53
Hu, Landgraf, Detmers, Borsdorff, Aan de Brugh, Aben, Butz, Hasekamp (bib11) 2018; 45
Saunois, Stavert, Poulter, Bousquet, Canadell, Jackson, Raymond, Dlugokencky, Houweling, Patra, Ciais, Arora, Bastviken, Bergamaschi, Blake, Brailsford, Bruhwiler, Carlson, Carrol, Zhuang (bib25) 2020; 12
Pastres, Ciavatta, Solidoro (bib21) 2003; 170
Marzo (bib19) 2014; 94
Zhu, Qiu, Chen, Wang, Qiu (bib36) 2018; 15
Reddy, Cheng, Singh, Scott (bib23) 2007; vol. 2007
Bouttier, Courtier (bib2) 1999
Zhang, Gautam, Pandey, Omara, Maasakkers, Sadavarte, Lyon, Nesser, Sulprizio, Varon, Zhang, Houweling, Zavala-Araiza, Alvarez, Lorente, Hamburg, Aben, Jacob (bib32) 2020; 6
Portner, Roberts, Tignor, Poloczanska, Mintenbeck, Alegría, Craig, Langsdorf, Löschke, Möller, Okem, Rama (bib22) 2022
Gifford (bib9) 1961; 2
Turner (bib26) 1964; 3
Kumar, Broquet, Caldow, Laurent, Gichuki, Cropley (bib17) 2022; 148
Rohrschneider, Wofsy, Franklin, Benmergui, Soto, Davis (bib24) 2021
Bonne (10.1016/j.aeaoa.2023.100210_bib33) 2023
Bouttier (10.1016/j.aeaoa.2023.100210_bib2) 1999
Pastres (10.1016/j.aeaoa.2023.100210_bib21) 2003; 170
Evensen (10.1016/j.aeaoa.2023.100210_bib6) 2003; 53
Rohrschneider (10.1016/j.aeaoa.2023.100210_bib24) 2021
Luhar (10.1016/j.aeaoa.2023.100210_bib18) 2014; 119
Fox (10.1016/j.aeaoa.2023.100210_bib8) 2019; 14
Feitz (10.1016/j.aeaoa.2023.100210_bib7) 2018; 70
Xue (10.1016/j.aeaoa.2023.100210_bib29) 2012; 22
Wang (10.1016/j.aeaoa.2023.100210_bib28) 2017; 8
Jervis (10.1016/j.aeaoa.2023.100210_bib13) 2021; 14
Quélo (10.1016/j.aeaoa.2023.100210_bib38) 2005; 84
Veefkind (10.1016/j.aeaoa.2023.100210_bib27) 2012; 120
Yan (10.1016/j.aeaoa.2023.100210_bib30) 2009; vols. 13–16
Kalman (10.1016/j.aeaoa.2023.100210_bib14) 1960; 82
Gibbs (10.1016/j.aeaoa.2023.100210_bib37) 2011
Gordon (10.1016/j.aeaoa.2023.100210_bib10) 1993; 140
Reddy (10.1016/j.aeaoa.2023.100210_bib23) 2007; vol. 2007
Carrascal (10.1016/j.aeaoa.2023.100210_bib4) 1993; 48
Katata (10.1016/j.aeaoa.2023.100210_bib15) 2015; 15
Arulampalam (10.1016/j.aeaoa.2023.100210_bib39) 2002; 50
Hiemstra (10.1016/j.aeaoa.2023.100210_bib35) 2011; 45
Gifford (10.1016/j.aeaoa.2023.100210_bib9) 1961; 2
Briggs (10.1016/j.aeaoa.2023.100210_bib3) 1973; 83
Zhang (10.1016/j.aeaoa.2023.100210_bib32) 2020; 6
Marzo (10.1016/j.aeaoa.2023.100210_bib19) 2014; 94
Turner (10.1016/j.aeaoa.2023.100210_bib26) 1964; 3
Kumar (10.1016/j.aeaoa.2023.100210_bib17) 2022; 148
Portner (10.1016/j.aeaoa.2023.100210_bib22) 2022
Krysta (10.1016/j.aeaoa.2023.100210_bib16) 2006; 40
Pasquill (10.1016/j.aeaoa.2023.100210_bib20) 1961; 90
Hu (10.1016/j.aeaoa.2023.100210_bib11) 2018; 45
Zhou (10.1016/j.aeaoa.2023.100210_bib31) 2019; 218
Zhu (10.1016/j.aeaoa.2023.100210_bib36) 2018; 15
Saunois (10.1016/j.aeaoa.2023.100210_bib25) 2020; 12
References_xml – volume: 8
  start-page: 170
  year: 2017
  ident: bib28
  article-title: Data assimilation in air contaminant dispersion using a particle filter and expectation-maximization algorithm
  publication-title: Atmosphere
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: bib14
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
– volume: 15
  start-page: 1029
  year: 2015
  end-page: 1070
  ident: bib15
  article-title: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 2127
  year: 2021
  end-page: 2140
  ident: bib13
  article-title: The GHGSat-D imaging spectrometer, Atmos
  publication-title: Meas. Tech.
– year: 2021
  ident: bib24
  article-title: The MethaneSAT Mission. 35th Annual Small Satellite Conference
– volume: 12
  start-page: 1561
  year: 2020
  end-page: 1623
  ident: bib25
  article-title: The global methane budget 2000–2017
  publication-title: Earth Syst. Sci. Data
– year: 1999
  ident: bib2
  article-title: Data assimilation concepts and methods
  publication-title: ECMWF Meteorological Training Course Letter Series
– volume: 22
  start-page: 1
  year: 2012
  end-page: 25
  ident: bib29
  article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation
  publication-title: ACM TOMACS
– volume: 119
  start-page: 10959
  year: 2014
  end-page: 10979
  ident: bib18
  article-title: Locating and quantifying greenhouse gas emissions at a geological CO2 storage site using atmospheric modeling and measurements
  publication-title: J. Geophys. Res. Atmos.
– volume: 6
  year: 2020
  ident: bib32
  article-title: Quantifying methane emissions from the largest oil-producing basin in the United States from space
  publication-title: Sci. Adv.
– volume: 40
  start-page: 7267
  year: 2006
  end-page: 7279
  ident: bib16
  article-title: Data assimilation for short-range dispersion of radionuclides: an application to wind tunnel data
  publication-title: Atmos. Environ.
– volume: 94
  start-page: 709
  year: 2014
  end-page: 722
  ident: bib19
  article-title: Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-Chi accident and resulting effective dose
  publication-title: Atmos. Environ.
– volume: vols. 13–16
  start-page: 3121
  year: 2009
  end-page: 3128
  ident: bib30
  article-title: A dynamic data driven application system for wildfire spread simulation
  publication-title: Proceedings of the Winter Simulation Conference
– volume: 140
  start-page: 107
  year: 1993
  end-page: 113
  ident: bib10
  article-title: Novel approach to nonlinear/non-Gaussian bayesian state estimation
  publication-title: IEE Proceedings F (Radar and Signal Processing)
– volume: 84
  start-page: 393
  year: 2005
  end-page: 408
  ident: bib38
  article-title: Data assimilation for short range atmospheric dispersion of radionuclides: a case study of second-order sensitivity
  publication-title: J. Environ. Radioact.
– volume: 148
  start-page: 1886
  year: 2022
  end-page: 1912
  ident: bib17
  article-title: Near-field atmospheric inversions for the localization and quantification of controlled methane releases using stationary and mobile measurements
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 48
  start-page: 147
  year: 1993
  end-page: 157
  ident: bib4
  article-title: Sensitivity of Gaussian plume model to dispersion specifications
  publication-title: Theor. Appl. Climatol.
– volume: 70
  start-page: 202
  year: 2018
  end-page: 224
  ident: bib7
  article-title: The Ginninderra CH
  publication-title: Int. J. Greenh. Gas Control
– start-page: 3056
  year: 2022
  ident: bib22
  article-title: Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 53
  start-page: 343
  year: 2003
  end-page: 367
  ident: bib6
  article-title: The ensemble kalman filter: theoretical formulation and practical implementation
  publication-title: Ocean Dynam.
– volume: 14
  year: 2019
  ident: bib8
  article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas
  publication-title: Environ. Res. Lett.
– volume: 170
  start-page: 227
  year: 2003
  end-page: 235
  ident: bib21
  article-title: The extended kalman filter (ekf) as a tool for the assimilation of high frequency water quality data
  publication-title: Ecol. Model.
– volume: 218
  year: 2019
  ident: bib31
  article-title: Mobile sensing of point-source gas emissions using Bayesian inference: an empirical examination of the likelihood function
  publication-title: Atmos. Environ.
– volume: 3
  start-page: 83
  year: 1964
  end-page: 91
  ident: bib26
  article-title: A diffusion model for an urban area
  publication-title: J. Appl. Meteorol.
– volume: 120
  start-page: 70
  year: 2012
  end-page: 83
  ident: bib27
  article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications
  publication-title: Rem. Sens. Environ.
– volume: 45
  start-page: 3682
  year: 2018
  end-page: 3689
  ident: bib11
  article-title: Toward global mapping of methane with TROPOMI: first results and Intersatellite comparison to GOSAT
  publication-title: Geophys. Res. Lett.
– volume: 50
  start-page: 174
  year: 2002
  end-page: 188
  ident: bib39
  article-title: A tutorial on particle filters for online nonlinear/ non-gaussian bayesian tracking
  publication-title: IEEE Trans. Signal Process.
– year: 2023
  ident: bib33
  article-title: A simultaneous CH
  publication-title: Atmos. Meas. Tech. Discuss.
– volume: 2
  start-page: 47
  year: 1961
  end-page: 51
  ident: bib9
  article-title: Use of routine meteorological observations for estimating atmospheric dispersion
  publication-title: Nucl. Saf.
– volume: 90
  start-page: 33
  year: 1961
  end-page: 49
  ident: bib20
  article-title: The estimation of the dispersion of windborne material
  publication-title: Aust. Meteorol. Mag.
– volume: 45
  start-page: 6149
  year: 2011
  end-page: 6157
  ident: bib35
  article-title: Assimilation of observations of radiation level into an atmospheric transport model: a case study with the particle filter and the ETEX tracer dataset
  publication-title: Atmos. Environ.
– volume: vol. 2007
  start-page: 1
  year: 2007
  end-page: 8
  ident: bib23
  article-title: Data assimilation in variable dimension dispersion models using particle filters
  publication-title: 10th International Conference On Information Fusion
– volume: 15
  start-page: 1640
  year: 2018
  ident: bib36
  article-title: Data-driven hazardous gas dispersion modeling using the integration of particle filtering and error propagation detection
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 83
  year: 1973
  ident: bib3
  article-title: Diffusion estimation for small emissions
  publication-title: Atmos. Turbul. Diffus. Lab.
– year: 2011
  ident: bib37
  publication-title: Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook
– volume: 70
  start-page: 202
  year: 2018
  ident: 10.1016/j.aeaoa.2023.100210_bib7
  article-title: The Ginninderra CH4 and CO2 release experiment: an evaluation of gas detection and quantification techniques
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2017.11.018
– volume: 82
  start-page: 35
  year: 1960
  ident: 10.1016/j.aeaoa.2023.100210_bib14
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume: 120
  start-page: 70
  year: 2012
  ident: 10.1016/j.aeaoa.2023.100210_bib27
  article-title: TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2011.09.027
– volume: 170
  start-page: 227
  year: 2003
  ident: 10.1016/j.aeaoa.2023.100210_bib21
  article-title: The extended kalman filter (ekf) as a tool for the assimilation of high frequency water quality data
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(03)00230-8
– volume: 83
  year: 1973
  ident: 10.1016/j.aeaoa.2023.100210_bib3
  article-title: Diffusion estimation for small emissions
  publication-title: Atmos. Turbul. Diffus. Lab.
– volume: 2
  start-page: 47
  year: 1961
  ident: 10.1016/j.aeaoa.2023.100210_bib9
  article-title: Use of routine meteorological observations for estimating atmospheric dispersion
  publication-title: Nucl. Saf.
– volume: vol. 2007
  start-page: 1
  year: 2007
  ident: 10.1016/j.aeaoa.2023.100210_bib23
  article-title: Data assimilation in variable dimension dispersion models using particle filters
– volume: 8
  start-page: 170
  year: 2017
  ident: 10.1016/j.aeaoa.2023.100210_bib28
  article-title: Data assimilation in air contaminant dispersion using a particle filter and expectation-maximization algorithm
  publication-title: Atmosphere
  doi: 10.3390/atmos8090170
– year: 2021
  ident: 10.1016/j.aeaoa.2023.100210_bib24
– volume: 45
  start-page: 6149
  issue: 34
  year: 2011
  ident: 10.1016/j.aeaoa.2023.100210_bib35
  article-title: Assimilation of observations of radiation level into an atmospheric transport model: a case study with the particle filter and the ETEX tracer dataset
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.08.024
– volume: 53
  start-page: 343
  year: 2003
  ident: 10.1016/j.aeaoa.2023.100210_bib6
  article-title: The ensemble kalman filter: theoretical formulation and practical implementation
  publication-title: Ocean Dynam.
  doi: 10.1007/s10236-003-0036-9
– volume: 14
  start-page: 2127
  year: 2021
  ident: 10.1016/j.aeaoa.2023.100210_bib13
  article-title: The GHGSat-D imaging spectrometer, Atmos
  publication-title: Meas. Tech.
  doi: 10.5194/amt-14-2127-2021
– volume: 6
  year: 2020
  ident: 10.1016/j.aeaoa.2023.100210_bib32
  article-title: Quantifying methane emissions from the largest oil-producing basin in the United States from space
  publication-title: Sci. Adv.
– volume: 14
  issue: 5
  year: 2019
  ident: 10.1016/j.aeaoa.2023.100210_bib8
  article-title: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab0cc3
– volume: 148
  start-page: 1886
  issue: 745
  year: 2022
  ident: 10.1016/j.aeaoa.2023.100210_bib17
  article-title: Near-field atmospheric inversions for the localization and quantification of controlled methane releases using stationary and mobile measurements
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.4283
– volume: 48
  start-page: 147
  year: 1993
  ident: 10.1016/j.aeaoa.2023.100210_bib4
  article-title: Sensitivity of Gaussian plume model to dispersion specifications
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/BF00864921
– volume: 40
  start-page: 7267
  year: 2006
  ident: 10.1016/j.aeaoa.2023.100210_bib16
  article-title: Data assimilation for short-range dispersion of radionuclides: an application to wind tunnel data
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.06.043
– volume: 3
  start-page: 83
  year: 1964
  ident: 10.1016/j.aeaoa.2023.100210_bib26
  article-title: A diffusion model for an urban area
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2
– volume: 12
  start-page: 1561
  issue: 3
  year: 2020
  ident: 10.1016/j.aeaoa.2023.100210_bib25
  article-title: The global methane budget 2000–2017
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1561-2020
– volume: 15
  start-page: 1029
  year: 2015
  ident: 10.1016/j.aeaoa.2023.100210_bib15
  article-title: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-1029-2015
– year: 2023
  ident: 10.1016/j.aeaoa.2023.100210_bib33
  article-title: A simultaneous CH4 and CO2 flux quantification method for industrial site emissions from in-situ concentration measurements on-board an Unmanned Aircraft Vehicle
  publication-title: Atmos. Meas. Tech. Discuss.
– start-page: 3056
  year: 2022
  ident: 10.1016/j.aeaoa.2023.100210_bib22
– volume: 218
  year: 2019
  ident: 10.1016/j.aeaoa.2023.100210_bib31
  article-title: Mobile sensing of point-source gas emissions using Bayesian inference: an empirical examination of the likelihood function
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.116981
– volume: 45
  start-page: 3682
  year: 2018
  ident: 10.1016/j.aeaoa.2023.100210_bib11
  article-title: Toward global mapping of methane with TROPOMI: first results and Intersatellite comparison to GOSAT
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2018GL077259
– volume: 94
  start-page: 709
  year: 2014
  ident: 10.1016/j.aeaoa.2023.100210_bib19
  article-title: Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-Chi accident and resulting effective dose
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.06.009
– volume: 140
  start-page: 107
  year: 1993
  ident: 10.1016/j.aeaoa.2023.100210_bib10
  article-title: Novel approach to nonlinear/non-Gaussian bayesian state estimation
– volume: vols. 13–16
  start-page: 3121
  year: 2009
  ident: 10.1016/j.aeaoa.2023.100210_bib30
  article-title: A dynamic data driven application system for wildfire spread simulation
– volume: 15
  start-page: 1640
  issue: 8
  year: 2018
  ident: 10.1016/j.aeaoa.2023.100210_bib36
  article-title: Data-driven hazardous gas dispersion modeling using the integration of particle filtering and error propagation detection
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph15081640
– year: 1999
  ident: 10.1016/j.aeaoa.2023.100210_bib2
  article-title: Data assimilation concepts and methods
– volume: 50
  start-page: 174
  year: 2002
  ident: 10.1016/j.aeaoa.2023.100210_bib39
  article-title: A tutorial on particle filters for online nonlinear/ non-gaussian bayesian tracking
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.978374
– volume: 84
  start-page: 393
  year: 2005
  ident: 10.1016/j.aeaoa.2023.100210_bib38
  article-title: Data assimilation for short range atmospheric dispersion of radionuclides: a case study of second-order sensitivity
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2005.04.011
– volume: 119
  start-page: 10959
  issue: 18
  year: 2014
  ident: 10.1016/j.aeaoa.2023.100210_bib18
  article-title: Locating and quantifying greenhouse gas emissions at a geological CO2 storage site using atmospheric modeling and measurements
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014JD021880
– volume: 22
  start-page: 1
  year: 2012
  ident: 10.1016/j.aeaoa.2023.100210_bib29
  article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation
  publication-title: ACM TOMACS
  doi: 10.1145/2379810.2379816
– year: 2011
  ident: 10.1016/j.aeaoa.2023.100210_bib37
– volume: 90
  start-page: 33
  year: 1961
  ident: 10.1016/j.aeaoa.2023.100210_bib20
  article-title: The estimation of the dispersion of windborne material
  publication-title: Aust. Meteorol. Mag.
SSID ssj0002244601
Score 2.2835202
Snippet This work assesses the particle filter data-assimilation technique for estimating the methane emission rate during CH4 controlled-release experiments conducted...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100210
Title Data assimilation method for quantifying controlled methane releases using a drone and ground-sensors
URI https://dx.doi.org/10.1016/j.aeaoa.2023.100210
https://doaj.org/article/49c5fae4b9984259a09252a6ad102264
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMjFnYeTjPyqiokmKjUzfIrqFVJoU3_P3d2gjKVhS2K_EjOJ933JXffEXKTJw6ighHMAbZmmfWOaZd7Vo0sBN_RyJahyvX1TU6m2cssn_VafWFOWJQHjoa7y0qbV9pnBngB-FepeZnkiZbaIVeRQQmUl7xHphZB1AVoTuh9DFM4EzIRneRQSO7SXq9QdShJgwYp1s_2wlJQ7-9Fp17EGR-SgxYq0vv4iEdkz9fHxD_pRlNAvPPPeUxjo7EJNAX0Sb-3GpN_sHSJtknoS-_CCF17ig1SIGptKGa7f1BN3XoFt3XtKFZ31I5tgNWu1psTMh0_vz9OWNsqgdlMZA1gZCFLnzmjfem5NBl3cA2vnudFwS0HUKQTYVNgJ14WHjiCEygt522ZokZ9ekoGNex4Rij-7a2qRBgjAZuYylRceClgVTw4UwxJ0llK2VZHHNtZLFWXMLZQwbwKzauieYfk9nfSV5TR2D38AY_gdyhqYIcb4Bmq9Qz1l2cMiewOULVwIsIEWGq-a_fz_9j9guzjkvFrzSUZNOutvwL80pjr4Ko_tnnpqA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+assimilation+method+for+quantifying+controlled+methane+releases+using+a+drone+and+ground-sensors&rft.jtitle=Atmospheric+Environment%3A+X&rft.au=Darynova%2C+Zhuldyz&rft.au=Blanco%2C+Benoit&rft.au=Juery%2C+Catherine&rft.au=Donnat%2C+Ludovic&rft.date=2023-01-01&rft.issn=2590-1621&rft.eissn=2590-1621&rft.volume=17&rft.spage=100210&rft_id=info:doi/10.1016%2Fj.aeaoa.2023.100210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aeaoa_2023_100210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1621&client=summon