The thermal structure and the location of the snow line in the protosolar nebula: Axisymmetric models with full 3-D radiative transfer
► We compute the thermal- and condensation structure of the early Solar nebula. ► The snow line location depends on the accretion rate and the dust properties. ► The increase in solid matter by ice is substantially lower than currently assumed. ► There is a hot inner region with a thermostat at the...
Saved in:
Published in | Icarus (New York, N.Y. 1962) Vol. 212; no. 1; pp. 416 - 426 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.03.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0019-1035 1090-2643 |
DOI | 10.1016/j.icarus.2010.12.002 |
Cover
Loading…
Abstract | ► We compute the thermal- and condensation structure of the early Solar nebula. ► The snow line location depends on the accretion rate and the dust properties. ► The increase in solid matter by ice is substantially lower than currently assumed. ► There is a hot inner region with a thermostat at the dust evaporation temperature. ► In this region, sintering of materials will strongly influence grain growth.
The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3AU, subject to brightness variations of the young Sun. However, in its first 5–10myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1+1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed. |
---|---|
AbstractList | ► We compute the thermal- and condensation structure of the early Solar nebula. ► The snow line location depends on the accretion rate and the dust properties. ► The increase in solid matter by ice is substantially lower than currently assumed. ► There is a hot inner region with a thermostat at the dust evaporation temperature. ► In this region, sintering of materials will strongly influence grain growth.
The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3AU, subject to brightness variations of the young Sun. However, in its first 5–10myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1+1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed. The precise location of the water ice condensation front ('snow line') in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher 'stickiness' in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3AU, subject to brightness variations of the young Sun. However, in its first 5-10myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1+1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed. |
Author | Dominik, C. Min, M. Dullemond, C.P. Kama, M. |
Author_xml | – sequence: 1 givenname: M. surname: Min fullname: Min, M. email: M.Min@uu.nl organization: Astronomical institute Utrecht, Utrecht University, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands – sequence: 2 givenname: C.P. surname: Dullemond fullname: Dullemond, C.P. organization: Max Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany – sequence: 3 givenname: M. surname: Kama fullname: Kama, M. organization: Astronomical Institute ‘Anton Pannekoek’, Science Park 904, NL-1098 XH Amsterdam, The Netherlands – sequence: 4 givenname: C. surname: Dominik fullname: Dominik, C. organization: Astronomical Institute ‘Anton Pannekoek’, Science Park 904, NL-1098 XH Amsterdam, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23943475$$DView record in Pascal Francis |
BookMark | eNqFUctuFDEQtFCQ2AT-gIMviNMsfs3sOgekKDylSFzC2fJ42lqvPHZwexLyA3w33t2IAwc4tbpUVd2qOidnKScg5DVna8748G6_Ds6WBdeCHSCxZkw8IyvONOvEoOQZWTHGdceZ7F-Qc8Q9Y6zfarkiv253QOsOymwjxVoWV5cC1KbpgNKYna0hJ5r9cceUH2gMCWhIR-Cu5JoxR1tognGJ9pJe_Qz4OM9QS3B0zhNEpA-h7qhfYqSy-0CLnUKzvW-Xi03oobwkz72NCK-e5gX5_unj7fWX7ubb56_XVzedU1zVbsM5cAnDOPV64NOorbZjz7bCjQN3PVfOCue52wL0WnnhezWC4mKz8bYXSssL8vbk2_7-sQBWMwd0EKNNkBc020HpQeqBNeabJ6ZFZ6Nvj7qA5q6E2ZZHI6RWUm36xlMnnisZsYD_Q-HMHNoxe3NqxxzaMVyY1k6TXf4lc6Eeo26RhPg_8fuTuEUL9wGKQRcgOZhCAVfNlMO_DX4DVB2xpg |
CODEN | ICRSA5 |
CitedBy_id | crossref_primary_10_1016_j_gca_2022_10_036 crossref_primary_10_1051_0004_6361_201322915 crossref_primary_10_1093_mnras_stae1957 crossref_primary_10_1029_2021AV000486 crossref_primary_10_1051_0004_6361_201527820 crossref_primary_10_3847_1538_4365_acf932 crossref_primary_10_3847_1538_4357_ad769e crossref_primary_10_1051_0004_6361_201425487 crossref_primary_10_1051_0004_6361_201731302 crossref_primary_10_1088_0004_637X_760_2_117 crossref_primary_10_3847_0004_637X_818_2_200 crossref_primary_10_3847_1538_4357_aac6d3 crossref_primary_10_1051_0004_6361_201424954 crossref_primary_10_1093_mnrasl_slac144 crossref_primary_10_3847_0004_637X_827_2_113 crossref_primary_10_1051_0004_6361_201526048 crossref_primary_10_1051_0004_6361_201833719 crossref_primary_10_3847_1538_4365_aad95f crossref_primary_10_3847_1538_4357_ab05d9 crossref_primary_10_1016_j_epsl_2018_09_030 crossref_primary_10_1051_0004_6361_202451070 crossref_primary_10_3847_1538_3881_ab0a56 crossref_primary_10_1051_0004_6361_201118493 crossref_primary_10_1016_j_epsl_2023_118172 crossref_primary_10_1051_0004_6361_201936576 crossref_primary_10_1093_mnras_stad2057 crossref_primary_10_1098_rspa_2023_0434 crossref_primary_10_3847_1538_4357_833_2_285 crossref_primary_10_3847_1538_3881_ac9fd1 crossref_primary_10_1051_0004_6361_201527533 crossref_primary_10_1111_j_1365_2966_2011_19338_x crossref_primary_10_1093_mnras_staa1309 crossref_primary_10_1016_j_epsl_2017_04_035 crossref_primary_10_3847_0004_637X_832_1_83 crossref_primary_10_1093_mnras_stx278 crossref_primary_10_1051_0004_6361_201527131 crossref_primary_10_1051_0004_6361_201117333 crossref_primary_10_3847_1538_4357_ab3b0a crossref_primary_10_1051_0004_6361_201118147 crossref_primary_10_3847_2041_8213_aab6ac crossref_primary_10_1051_0004_6361_201424809 crossref_primary_10_1093_mnras_staf057 crossref_primary_10_1051_0004_6361_202347535 crossref_primary_10_3847_1538_3881_acb34b crossref_primary_10_1093_mnrasl_slw051 crossref_primary_10_1051_0004_6361_201833873 crossref_primary_10_3847_1538_4357_aa9f1e crossref_primary_10_3847_2515_5172_aadfe7 crossref_primary_10_1111_j_1365_2966_2011_19834_x crossref_primary_10_3847_1538_4357_aa8037 crossref_primary_10_1088_1538_3873_ab3b19 crossref_primary_10_1093_mnras_stt1051 crossref_primary_10_1051_0004_6361_201321690 crossref_primary_10_1051_0004_6361_202039930 crossref_primary_10_1051_0004_6361_201526787 crossref_primary_10_1093_mnras_stz2762 crossref_primary_10_3847_1538_4357_836_1_118 crossref_primary_10_3847_1538_4357_ab0e6c crossref_primary_10_1088_0004_637X_815_2_109 crossref_primary_10_3847_1538_4357_ab5a7e crossref_primary_10_1051_0004_6361_202142738 crossref_primary_10_3390_galaxies8030052 crossref_primary_10_1051_0004_6361_202039087 crossref_primary_10_3847_1538_4357_abacbf crossref_primary_10_1051_0004_6361_201834556 crossref_primary_10_3390_geosciences8100365 crossref_primary_10_3847_1538_4357_aa6544 crossref_primary_10_1098_rsta_2011_0301 crossref_primary_10_1088_0004_637X_768_1_25 crossref_primary_10_3847_0004_637X_818_1_45 crossref_primary_10_1051_0004_6361_201117350 crossref_primary_10_1088_0004_637X_778_1_78 crossref_primary_10_1051_0004_6361_201527069 crossref_primary_10_1051_0004_6361_201525966 crossref_primary_10_1051_0004_6361_201526538 crossref_primary_10_3847_PSJ_ace716 crossref_primary_10_1093_mnras_stad1159 crossref_primary_10_1093_mnras_stad3734 crossref_primary_10_1051_0004_6361_201732313 crossref_primary_10_1016_j_newar_2023_101674 crossref_primary_10_1093_mnras_stz662 crossref_primary_10_3847_1538_4357_ac1f8c crossref_primary_10_3847_1538_4357_ab45f0 crossref_primary_10_1051_0004_6361_201117762 crossref_primary_10_1016_j_gsf_2012_11_001 crossref_primary_10_1146_annurev_astro_082812_141042 crossref_primary_10_1051_0004_6361_201936014 crossref_primary_10_1093_mnras_stae1923 crossref_primary_10_3847_0004_637X_823_2_108 crossref_primary_10_1007_s11214_020_00718_2 crossref_primary_10_1111_maps_12302 crossref_primary_10_3847_1538_4357_834_2_152 crossref_primary_10_1007_s11214_019_0625_7 crossref_primary_10_1088_0004_637X_784_1_39 crossref_primary_10_1021_cr400128p crossref_primary_10_1051_0004_6361_201321125 crossref_primary_10_1051_0004_6361_201219039 crossref_primary_10_3847_0004_637X_832_1_41 crossref_primary_10_1093_mnrasl_slaa030 crossref_primary_10_3847_1538_3881_ab46a8 crossref_primary_10_1088_0004_637X_802_1_58 crossref_primary_10_1093_mnras_stw2360 crossref_primary_10_1051_0004_6361_201118464 crossref_primary_10_1111_j_1745_3933_2012_01290_x crossref_primary_10_1051_0004_6361_202141455 crossref_primary_10_1088_0004_637X_798_2_112 crossref_primary_10_1051_0004_6361_201118581 crossref_primary_10_1051_0004_6361_202244092 crossref_primary_10_2138_gselements_18_3_149 crossref_primary_10_1051_0004_6361_201322218 crossref_primary_10_1051_0004_6361_201526999 crossref_primary_10_3847_1538_4357_ac6500 crossref_primary_10_1051_0004_6361_201219522 crossref_primary_10_1016_j_gca_2018_02_040 crossref_primary_10_3847_1538_4357_abfe0b crossref_primary_10_1051_0004_6361_201833715 crossref_primary_10_1093_mnras_stac772 crossref_primary_10_1093_mnras_stu2267 crossref_primary_10_1111_j_1365_2966_2011_19140_x crossref_primary_10_1093_mnras_staf369 crossref_primary_10_1093_mnras_stad461 crossref_primary_10_1017_S1743921319009153 crossref_primary_10_3847_1538_4357_ad2c07 crossref_primary_10_1038_ncomms8444 crossref_primary_10_1051_0004_6361_202347347 crossref_primary_10_1088_0004_637X_775_1_42 crossref_primary_10_1051_0004_6361_201220241 crossref_primary_10_1051_0004_6361_202450289 crossref_primary_10_3847_1538_3881_aa9f27 crossref_primary_10_1051_0004_6361_201425432 crossref_primary_10_1088_0004_637X_807_1_9 crossref_primary_10_1093_mnras_sty024 crossref_primary_10_1080_0144235X_2021_1918498 crossref_primary_10_3847_1538_3881_ab141b crossref_primary_10_1016_j_icarus_2011_08_001 crossref_primary_10_3847_1538_4357_aafc36 crossref_primary_10_1093_mnras_stt2471 |
Cites_doi | 10.1086/590401 10.1006/icar.1996.0190 10.1088/0004-637X/698/1/606 10.1051/0004-6361:20077493 10.1086/173677 10.1086/321336 10.1051/0004-6361/200912068 10.1051/0004-6361:20041920 10.1086/427073 10.1086/155591 10.1086/168501 10.1086/500287 10.1051/0004-6361/200811470 10.1051/0004-6361/200810301 10.1086/522825 10.1086/509041 10.1051/0004-6361:20077759 10.1086/321355 10.1051/0004-6361:200809534 10.1016/S0019-1035(03)00137-4 10.1086/304869 10.1086/305702 10.1016/j.icarus.2008.11.023 10.1023/A:1005161325181 10.1364/AO.23.001206 10.1086/187238 10.1086/505788 10.1007/978-94-009-8477-6_21 10.1086/432464 10.1007/BF00642464 10.1088/0004-637X/690/2/1539 10.1086/164559 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW 7TG KL. |
DOI | 10.1016/j.icarus.2010.12.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1090-2643 |
EndPage | 426 |
ExternalDocumentID | 23943475 10_1016_j_icarus_2010_12_002 S0019103510004574 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNCT ACNNM ACRLP ACSBN ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMA HME HVGLF HZ~ IHE IMUCA J1W KOM LG5 LY3 LZ4 M41 MO0 MVM N9A O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. PVJ Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SEP SES SEW SHN SPC SPCBC SSE SSQ SSZ T5K TAE UQL VOH WUQ XJT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TG KL. |
ID | FETCH-LOGICAL-c414t-711e13e6bd5961db9a9ab5082cb61c514ca2cf1c8ee594f2f54be41277fa52493 |
IEDL.DBID | .~1 |
ISSN | 0019-1035 |
IngestDate | Fri Jul 11 06:46:15 EDT 2025 Mon Jul 21 09:09:57 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 00:28:40 EDT 2025 Fri Feb 23 02:29:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Radiative transfer Accretion Solar nebula Planetary formation Density of states Sublimation Accretion rate Coagulation Vapor condensation Ice Sun Planetesimals Solar abundance Planetary cosmogony Dust grain Planets Sunlight Models Opacity Solar system |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-711e13e6bd5961db9a9ab5082cb61c514ca2cf1c8ee594f2f54be41277fa52493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0019103510004574 |
PQID | 864963960 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_864963960 pascalfrancis_primary_23943475 crossref_primary_10_1016_j_icarus_2010_12_002 crossref_citationtrail_10_1016_j_icarus_2010_12_002 elsevier_sciencedirect_doi_10_1016_j_icarus_2010_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Icarus (New York, N.Y. 1962) |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Mathis, Rumpl, Nordsieck (b0145) 1977; 217 Begemann, Dorschner, Henning, Mutschke, Thamm (b0005) 1994; 423 Desch (b0045) 2007; 671 Warren (b0205) 1984; 23 Ida, Lin (b0125) 2008; 685 Hersant, Gautier, Huré (b0110) 2001; 554 Grevesse, Sauval (b0090) 1998; 85 Brauer, Dullemond, Henning (b0015) 2008; 480 Chiang, Goldreich (b0020) 1997; 490 Weidenschilling (b0210) 1977; 51 Ishimaru, A., 1978. Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory, vol. I. Research supported by the US Air Force, NSF, and NIH. Academic Press, Inc., New York Davis (b0035) 2005; 620 Ruden, Lin (b0190) 1986; 308 Dodson-Robinson, Willacy, Bodenheimer, Turner, Beichman (b0050) 2009; 200 Hartmann, D’Alessio, Calvet, Muzerolle (b0095) 2006; 648 Min, Dullemond, Dominik, de Koter, Hovenier (b0160) 2009; 497 Garaud, Lin (b0075) 2007; 654 Gorti, Hollenbach (b0085) 2009; 690 Pollack, Hubickyj, Bodenheimer, Lissauer, Podolak, Greenzweig (b0175) 1996; 124 Geiss (b0080) 1987; 187 Min, Hovenier, de Koter (b0150) 2005; 432 Dominik, Dullemond (b0055) 2008; 491 Henning, Stognienko (b0105) 1996; 311 Dorschner, Begemann, Henning, Jäger, Mutschke (b0060) 1995; 300 Dullemond, Hollenbach, Kamp, D’Alessio (b0065) 2007; V Fabian, Jäger, Henning, Dorschner, Mutschke (b0070) 2000; 364 Hayashi, C., 1981. Formation of the planets. In: Sugimoto, D., Lamb, D.Q., Schramm D.N. (Eds.), Fundamental Problems in the Theory of Stellar Evolution. IAU Symposium, vol. 93, pp. 113–126. Davis (b0040) 2005; 627 Poppe (b0180) 2003; 164 Mordasini, Alibert, Benz (b0165) 2009; 501 Pollack, Hollenbach, Beckwith, Simonelli, Roush, Fong (b0170) 1994; 421 Crida (b0025) 2009; 698 Thommes, Duncan (b0200) 2006 Huré (b0120) 2000; 358 Min, Hovenier, Waters, de Koter (b0155) 2008; 489 Kama, Min, Dominik (b0135) 2009; 506 Shakura, Sunyaev (b0195) 1973; 24 Bjorkman, Wood (b0010) 2001; 554 Lecar, Podolak, Sasselov, Chiang (b0140) 2006; 640 D’Alessio, Canto, Calvet, Lizano (b0030) 1998; 500 Hubeny (b0115) 1990; 351 Preibisch, Ossenkopf, Yorke, Henning (b0185) 1993; 279 Desch (10.1016/j.icarus.2010.12.002_b0045) 2007; 671 Dullemond (10.1016/j.icarus.2010.12.002_b0065) 2007; V D’Alessio (10.1016/j.icarus.2010.12.002_b0030) 1998; 500 Min (10.1016/j.icarus.2010.12.002_b0155) 2008; 489 Ida (10.1016/j.icarus.2010.12.002_b0125) 2008; 685 Warren (10.1016/j.icarus.2010.12.002_b0205) 1984; 23 10.1016/j.icarus.2010.12.002_b0100 Dodson-Robinson (10.1016/j.icarus.2010.12.002_b0050) 2009; 200 Kama (10.1016/j.icarus.2010.12.002_b0135) 2009; 506 Lecar (10.1016/j.icarus.2010.12.002_b0140) 2006; 640 Min (10.1016/j.icarus.2010.12.002_b0150) 2005; 432 Hersant (10.1016/j.icarus.2010.12.002_b0110) 2001; 554 Davis (10.1016/j.icarus.2010.12.002_b0035) 2005; 620 Davis (10.1016/j.icarus.2010.12.002_b0040) 2005; 627 Shakura (10.1016/j.icarus.2010.12.002_b0195) 1973; 24 Thommes (10.1016/j.icarus.2010.12.002_b0200) 2006 Gorti (10.1016/j.icarus.2010.12.002_b0085) 2009; 690 Dominik (10.1016/j.icarus.2010.12.002_b0055) 2008; 491 Grevesse (10.1016/j.icarus.2010.12.002_b0090) 1998; 85 Brauer (10.1016/j.icarus.2010.12.002_b0015) 2008; 480 Huré (10.1016/j.icarus.2010.12.002_b0120) 2000; 358 Mathis (10.1016/j.icarus.2010.12.002_b0145) 1977; 217 Begemann (10.1016/j.icarus.2010.12.002_b0005) 1994; 423 Pollack (10.1016/j.icarus.2010.12.002_b0175) 1996; 124 Preibisch (10.1016/j.icarus.2010.12.002_b0185) 1993; 279 Ruden (10.1016/j.icarus.2010.12.002_b0190) 1986; 308 Fabian (10.1016/j.icarus.2010.12.002_b0070) 2000; 364 Crida (10.1016/j.icarus.2010.12.002_b0025) 2009; 698 Min (10.1016/j.icarus.2010.12.002_b0160) 2009; 497 Mordasini (10.1016/j.icarus.2010.12.002_b0165) 2009; 501 Henning (10.1016/j.icarus.2010.12.002_b0105) 1996; 311 Dorschner (10.1016/j.icarus.2010.12.002_b0060) 1995; 300 Geiss (10.1016/j.icarus.2010.12.002_b0080) 1987; 187 Hubeny (10.1016/j.icarus.2010.12.002_b0115) 1990; 351 Chiang (10.1016/j.icarus.2010.12.002_b0020) 1997; 490 Bjorkman (10.1016/j.icarus.2010.12.002_b0010) 2001; 554 10.1016/j.icarus.2010.12.002_b0130 Garaud (10.1016/j.icarus.2010.12.002_b0075) 2007; 654 Pollack (10.1016/j.icarus.2010.12.002_b0170) 1994; 421 Poppe (10.1016/j.icarus.2010.12.002_b0180) 2003; 164 Weidenschilling (10.1016/j.icarus.2010.12.002_b0210) 1977; 51 Hartmann (10.1016/j.icarus.2010.12.002_b0095) 2006; 648 |
References_xml | – volume: 308 start-page: 883 year: 1986 end-page: 901 ident: b0190 article-title: The global evolution of the primordial solar nebula publication-title: Astrophys. J. – volume: 501 start-page: 1139 year: 2009 end-page: 1160 ident: b0165 article-title: Extrasolar planet population synthesis. I. Method, formation tracks, and mass–distance distribution publication-title: Astron. Astrophys. – volume: 85 start-page: 161 year: 1998 end-page: 174 ident: b0090 article-title: Standard solar composition publication-title: Space Sci. Rev. – volume: 51 start-page: 153 year: 1977 end-page: 158 ident: b0210 article-title: The distribution of mass in the planetary system and solar nebula publication-title: Astrophys. Space Sci. – volume: 421 start-page: 615 year: 1994 end-page: 639 ident: b0170 article-title: Composition and radiative properties of grains in molecular clouds and accretion disks publication-title: Astrophys. J. – volume: 490 start-page: 368 year: 1997 end-page: 376 ident: b0020 article-title: Spectral energy distributions of T Tauri stars with passive circumstellar disks publication-title: Astrophys. J. – volume: 164 start-page: 139 year: 2003 end-page: 148 ident: b0180 article-title: Sintering of highly porous silica-particle samples: Analogues of early Solar-System aggregates publication-title: Icarus – reference: Hayashi, C., 1981. Formation of the planets. In: Sugimoto, D., Lamb, D.Q., Schramm D.N. (Eds.), Fundamental Problems in the Theory of Stellar Evolution. IAU Symposium, vol. 93, pp. 113–126. – volume: 217 start-page: 425 year: 1977 end-page: 433 ident: b0145 article-title: The size distribution of interstellar grains publication-title: Astrophys. J. – volume: 23 start-page: 1206 year: 1984 end-page: 1225 ident: b0205 article-title: Optical constants of ice from the ultraviolet to the microwave publication-title: Appl. Opt. – volume: 497 start-page: 155 year: 2009 end-page: 166 ident: b0160 article-title: Radiative transfer in very optically thick circumstellar disks publication-title: Astron. Astrophys. – volume: 671 start-page: 878 year: 2007 end-page: 893 ident: b0045 article-title: Mass distribution and planet formation in the solar nebula publication-title: Astrophys. J. – volume: 480 start-page: 859 year: 2008 end-page: 877 ident: b0015 article-title: Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks publication-title: Astron. Astrophys. – volume: 124 start-page: 62 year: 1996 end-page: 85 ident: b0175 article-title: Formation of the giant planets by concurrent accretion of solids and gas publication-title: Icarus – volume: 279 start-page: 577 year: 1993 end-page: 588 ident: b0185 article-title: The influence of ice-coated grains on protostellar spectra publication-title: Astron. Astrophys. – volume: 648 start-page: 484 year: 2006 end-page: 490 ident: b0095 article-title: Why do T Tauri disks accrete? publication-title: Astrophys. J. – volume: 200 start-page: 672 year: 2009 end-page: 693 ident: b0050 article-title: Ice lines, planetesimal composition and solid surface density in the solar nebula publication-title: Icarus – volume: 554 start-page: 391 year: 2001 end-page: 407 ident: b0110 article-title: A two-dimensional model for the primordial nebula constrained by D/H measurements in the Solar System: Implications for the formation of giant planets publication-title: Astrophys. J. – volume: 554 start-page: 615 year: 2001 end-page: 623 ident: b0010 article-title: Radiative equilibrium and temperature correction in Monte Carlo radiation transfer publication-title: Astrophys. J. – volume: 24 start-page: 337 year: 1973 end-page: 355 ident: b0195 article-title: Black holes in binary systems. Observational appearance publication-title: Astron. Astrophys. – volume: 491 start-page: 663 year: 2008 end-page: 670 ident: b0055 article-title: Coagulation of small grains in disks: The influence of residual infall and initial small-grain content publication-title: Astron. Astrophys. – volume: 690 start-page: 1539 year: 2009 end-page: 1552 ident: b0085 article-title: Photoevaporation of circumstellar disks by far-ultraviolet, extreme-ultraviolet and X-ray radiation from the central star publication-title: Astrophys. J. – volume: 620 start-page: 994 year: 2005 end-page: 1001 ident: b0035 article-title: Condensation front migration in a protoplanetary nebula publication-title: Astrophys. J. – volume: 300 start-page: 503 year: 1995 end-page: 520 ident: b0060 article-title: Steps toward interstellar silicate mineralogy. II. Study of Mg–Fe-silicate glasses of variable composition publication-title: Astron. Astrophys. – volume: 654 start-page: 606 year: 2007 end-page: 624 ident: b0075 article-title: The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars publication-title: Astrophys. J. – volume: 423 start-page: L71 year: 1994 end-page: L74 ident: b0005 article-title: A laboratory approach to the interstellar sulfide dust problem publication-title: Astrophys. J. – volume: 489 start-page: 135 year: 2008 end-page: 141 ident: b0155 article-title: The infrared emission spectra of compositionally inhomogeneous aggregates composed of irregularly shaped constituents publication-title: Astron. Astrophys. – volume: 698 start-page: 606 year: 2009 end-page: 614 ident: b0025 article-title: Minimum mass solar nebulae and planetary migration publication-title: Astrophys. J. – volume: V start-page: 555 year: 2007 end-page: 572 ident: b0065 article-title: Models of the structure and evolution of protoplanetary disks publication-title: Protostars Planets – year: 2006 ident: b0200 article-title: The Accretion of Giant-Planet Cores – volume: 351 start-page: 632 year: 1990 end-page: 641 ident: b0115 article-title: Vertical structure of accretion disks – A simplified analytical model publication-title: Astrophys. J. – volume: 432 start-page: 909 year: 2005 end-page: 920 ident: b0150 article-title: Modeling optical properties of cosmic dust grains using a distribution of hollow spheres publication-title: Astron. Astrophys. – volume: 364 start-page: 282 year: 2000 end-page: 292 ident: b0070 article-title: Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica publication-title: Astron. Astrophys. – volume: 500 start-page: 411 year: 1998 end-page: 427 ident: b0030 article-title: Accretion disks around young objects. I. The detailed vertical structure publication-title: Astrophys. J. – volume: 358 start-page: 378 year: 2000 end-page: 394 ident: b0120 article-title: On the transition to self-gravity in low mass AGN and YSO accretion discs publication-title: Astron. Astrophys. – volume: 627 start-page: L153 year: 2005 end-page: L155 ident: b0040 article-title: The surface density distribution in the solar nebula publication-title: Astrophys. J. – volume: 187 start-page: 859 year: 1987 end-page: 866 ident: b0080 article-title: Composition measurements and the history of cometary matter publication-title: Astron. Astrophys. – volume: 506 start-page: 1199 year: 2009 end-page: 1213 ident: b0135 article-title: The inner rim structures of protoplanetary discs publication-title: Astron. Astrophys. – reference: Ishimaru, A., 1978. Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory, vol. I. Research supported by the US Air Force, NSF, and NIH. Academic Press, Inc., New York – volume: 640 start-page: 1115 year: 2006 end-page: 1118 ident: b0140 article-title: On the location of the snow line in a protoplanetary disk publication-title: Astrophys. J. – volume: 685 start-page: 584 year: 2008 end-page: 595 ident: b0125 article-title: Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths publication-title: Astrophys. J. – volume: 311 start-page: 291 year: 1996 end-page: 303 ident: b0105 article-title: Dust opacities for protoplanetary accretion disks: Influence of dust aggregates publication-title: Astron. Astrophys. – volume: 685 start-page: 584 year: 2008 ident: 10.1016/j.icarus.2010.12.002_b0125 article-title: Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths publication-title: Astrophys. J. doi: 10.1086/590401 – volume: 124 start-page: 62 year: 1996 ident: 10.1016/j.icarus.2010.12.002_b0175 article-title: Formation of the giant planets by concurrent accretion of solids and gas publication-title: Icarus doi: 10.1006/icar.1996.0190 – volume: 187 start-page: 859 year: 1987 ident: 10.1016/j.icarus.2010.12.002_b0080 article-title: Composition measurements and the history of cometary matter publication-title: Astron. Astrophys. – volume: 698 start-page: 606 year: 2009 ident: 10.1016/j.icarus.2010.12.002_b0025 article-title: Minimum mass solar nebulae and planetary migration publication-title: Astrophys. J. doi: 10.1088/0004-637X/698/1/606 – volume: 491 start-page: 663 year: 2008 ident: 10.1016/j.icarus.2010.12.002_b0055 article-title: Coagulation of small grains in disks: The influence of residual infall and initial small-grain content publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20077493 – volume: 421 start-page: 615 year: 1994 ident: 10.1016/j.icarus.2010.12.002_b0170 article-title: Composition and radiative properties of grains in molecular clouds and accretion disks publication-title: Astrophys. J. doi: 10.1086/173677 – volume: 358 start-page: 378 year: 2000 ident: 10.1016/j.icarus.2010.12.002_b0120 article-title: On the transition to self-gravity in low mass AGN and YSO accretion discs publication-title: Astron. Astrophys. – volume: 554 start-page: 615 year: 2001 ident: 10.1016/j.icarus.2010.12.002_b0010 article-title: Radiative equilibrium and temperature correction in Monte Carlo radiation transfer publication-title: Astrophys. J. doi: 10.1086/321336 – volume: 506 start-page: 1199 year: 2009 ident: 10.1016/j.icarus.2010.12.002_b0135 article-title: The inner rim structures of protoplanetary discs publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/200912068 – volume: 432 start-page: 909 year: 2005 ident: 10.1016/j.icarus.2010.12.002_b0150 article-title: Modeling optical properties of cosmic dust grains using a distribution of hollow spheres publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20041920 – volume: 620 start-page: 994 year: 2005 ident: 10.1016/j.icarus.2010.12.002_b0035 article-title: Condensation front migration in a protoplanetary nebula publication-title: Astrophys. J. doi: 10.1086/427073 – volume: 217 start-page: 425 year: 1977 ident: 10.1016/j.icarus.2010.12.002_b0145 article-title: The size distribution of interstellar grains publication-title: Astrophys. J. doi: 10.1086/155591 – volume: 351 start-page: 632 year: 1990 ident: 10.1016/j.icarus.2010.12.002_b0115 article-title: Vertical structure of accretion disks – A simplified analytical model publication-title: Astrophys. J. doi: 10.1086/168501 – volume: 640 start-page: 1115 year: 2006 ident: 10.1016/j.icarus.2010.12.002_b0140 article-title: On the location of the snow line in a protoplanetary disk publication-title: Astrophys. J. doi: 10.1086/500287 – volume: 497 start-page: 155 year: 2009 ident: 10.1016/j.icarus.2010.12.002_b0160 article-title: Radiative transfer in very optically thick circumstellar disks publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/200811470 – volume: 501 start-page: 1139 year: 2009 ident: 10.1016/j.icarus.2010.12.002_b0165 article-title: Extrasolar planet population synthesis. I. Method, formation tracks, and mass–distance distribution publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/200810301 – ident: 10.1016/j.icarus.2010.12.002_b0130 – volume: 671 start-page: 878 year: 2007 ident: 10.1016/j.icarus.2010.12.002_b0045 article-title: Mass distribution and planet formation in the solar nebula publication-title: Astrophys. J. doi: 10.1086/522825 – volume: 654 start-page: 606 year: 2007 ident: 10.1016/j.icarus.2010.12.002_b0075 article-title: The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars publication-title: Astrophys. J. doi: 10.1086/509041 – volume: 480 start-page: 859 year: 2008 ident: 10.1016/j.icarus.2010.12.002_b0015 article-title: Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20077759 – volume: 554 start-page: 391 year: 2001 ident: 10.1016/j.icarus.2010.12.002_b0110 article-title: A two-dimensional model for the primordial nebula constrained by D/H measurements in the Solar System: Implications for the formation of giant planets publication-title: Astrophys. J. doi: 10.1086/321355 – volume: 489 start-page: 135 year: 2008 ident: 10.1016/j.icarus.2010.12.002_b0155 article-title: The infrared emission spectra of compositionally inhomogeneous aggregates composed of irregularly shaped constituents publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:200809534 – volume: 164 start-page: 139 year: 2003 ident: 10.1016/j.icarus.2010.12.002_b0180 article-title: Sintering of highly porous silica-particle samples: Analogues of early Solar-System aggregates publication-title: Icarus doi: 10.1016/S0019-1035(03)00137-4 – volume: 24 start-page: 337 year: 1973 ident: 10.1016/j.icarus.2010.12.002_b0195 article-title: Black holes in binary systems. Observational appearance publication-title: Astron. Astrophys. – volume: 490 start-page: 368 year: 1997 ident: 10.1016/j.icarus.2010.12.002_b0020 article-title: Spectral energy distributions of T Tauri stars with passive circumstellar disks publication-title: Astrophys. J. doi: 10.1086/304869 – volume: 500 start-page: 411 year: 1998 ident: 10.1016/j.icarus.2010.12.002_b0030 article-title: Accretion disks around young objects. I. The detailed vertical structure publication-title: Astrophys. J. doi: 10.1086/305702 – volume: 200 start-page: 672 year: 2009 ident: 10.1016/j.icarus.2010.12.002_b0050 article-title: Ice lines, planetesimal composition and solid surface density in the solar nebula publication-title: Icarus doi: 10.1016/j.icarus.2008.11.023 – volume: 85 start-page: 161 year: 1998 ident: 10.1016/j.icarus.2010.12.002_b0090 article-title: Standard solar composition publication-title: Space Sci. Rev. doi: 10.1023/A:1005161325181 – volume: 23 start-page: 1206 year: 1984 ident: 10.1016/j.icarus.2010.12.002_b0205 article-title: Optical constants of ice from the ultraviolet to the microwave publication-title: Appl. Opt. doi: 10.1364/AO.23.001206 – volume: 423 start-page: L71 year: 1994 ident: 10.1016/j.icarus.2010.12.002_b0005 article-title: A laboratory approach to the interstellar sulfide dust problem publication-title: Astrophys. J. doi: 10.1086/187238 – volume: 300 start-page: 503 year: 1995 ident: 10.1016/j.icarus.2010.12.002_b0060 article-title: Steps toward interstellar silicate mineralogy. II. Study of Mg–Fe-silicate glasses of variable composition publication-title: Astron. Astrophys. – volume: 648 start-page: 484 year: 2006 ident: 10.1016/j.icarus.2010.12.002_b0095 article-title: Why do T Tauri disks accrete? publication-title: Astrophys. J. doi: 10.1086/505788 – year: 2006 ident: 10.1016/j.icarus.2010.12.002_b0200 – volume: 279 start-page: 577 year: 1993 ident: 10.1016/j.icarus.2010.12.002_b0185 article-title: The influence of ice-coated grains on protostellar spectra publication-title: Astron. Astrophys. – ident: 10.1016/j.icarus.2010.12.002_b0100 doi: 10.1007/978-94-009-8477-6_21 – volume: 311 start-page: 291 year: 1996 ident: 10.1016/j.icarus.2010.12.002_b0105 article-title: Dust opacities for protoplanetary accretion disks: Influence of dust aggregates publication-title: Astron. Astrophys. – volume: 627 start-page: L153 year: 2005 ident: 10.1016/j.icarus.2010.12.002_b0040 article-title: The surface density distribution in the solar nebula publication-title: Astrophys. J. doi: 10.1086/432464 – volume: V start-page: 555 year: 2007 ident: 10.1016/j.icarus.2010.12.002_b0065 article-title: Models of the structure and evolution of protoplanetary disks publication-title: Protostars Planets – volume: 364 start-page: 282 year: 2000 ident: 10.1016/j.icarus.2010.12.002_b0070 article-title: Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica publication-title: Astron. Astrophys. – volume: 51 start-page: 153 year: 1977 ident: 10.1016/j.icarus.2010.12.002_b0210 article-title: The distribution of mass in the planetary system and solar nebula publication-title: Astrophys. Space Sci. doi: 10.1007/BF00642464 – volume: 690 start-page: 1539 year: 2009 ident: 10.1016/j.icarus.2010.12.002_b0085 article-title: Photoevaporation of circumstellar disks by far-ultraviolet, extreme-ultraviolet and X-ray radiation from the central star publication-title: Astrophys. J. doi: 10.1088/0004-637X/690/2/1539 – volume: 308 start-page: 883 year: 1986 ident: 10.1016/j.icarus.2010.12.002_b0190 article-title: The global evolution of the primordial solar nebula publication-title: Astrophys. J. doi: 10.1086/164559 |
SSID | ssj0005893 |
Score | 2.4326878 |
Snippet | ► We compute the thermal- and condensation structure of the early Solar nebula. ► The snow line location depends on the accretion rate and the dust properties.... The precise location of the water ice condensation front ('snow line') in the protosolar nebula has been a debate for a long time. Its importance stems from... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 416 |
SubjectTerms | Accretion Astronomy Earth, ocean, space Exact sciences and technology Planetary formation Radiative transfer Solar nebula Solar system |
Title | The thermal structure and the location of the snow line in the protosolar nebula: Axisymmetric models with full 3-D radiative transfer |
URI | https://dx.doi.org/10.1016/j.icarus.2010.12.002 https://www.proquest.com/docview/864963960 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvQRKaZuWbNoucyi5qUGW_OptSRu2LckpgdyEJEuwJWsv612SXHrs7-6MZIeGFAK92UKyzcx49M1oHox9LExWWG8k98p4rkzV8LqRijsncx8sQuhA2chn58X8Un2_yq922MmYC0NhlYPuTzo9auth5Hig5vFqsaAcX7Q16CAs4pKSaoIqVZKUf_r1V5hHNRTeFTWn2WP6XIzxQjqst30K8CKn4OBc-cf29HxleiRaSN0uHinuuBudvmQvBhgJs_Slr9iOb1-zg1lPju1ueQdHEK-T36LfZ79RHICw3hJXpZqx27UH0zY0CrSjEYegC_G-b7sbIAAKizYOUDmHriczGFpvt9fmM8xuF_3dckkduRzEhjo9kFcXyKMPkn-BNdU9IHUKmwiP_foNuzz9enEy50MLBu6UUBteCuGF9IVt8roQja1NbSxiuszZQjgEW85kLghXeZ_XKmQhV9YrkZVlMDladvIt22271h8wUL5qTLCIR51SzoXaoXFEmbuyzCrbhAmTI-W1G-qTU5uMaz0Gov3UiV-a-KVFppFfE8bvV61SfY4n5pcjU_UDOdO4hTyxcvpABu5fR83lpSrzCYNRKDT-o3TwYlrf4VOqQqGeQ1vx8L_f_o7tJW82Rb-9Z7soKP4DwqGNnUZ5n7Jns28_5ud_ALrvDjM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBCCH2STdp0DqU3EWTJr9yWtGHTJHtKIDchyRJsydrLepc2fyC_OzOWnRJaCPRmC8syM-PRN6N5MPYlM0lmvZHcK-O5MkXFy0oq7pxMfbAIoQNlI1_Osum1-nGT3myxkyEXhsIqe90fdXqnrfuRo56aR8v5nHJ80dagg7AOl-TqBdum6lTpiG1Pzs6nsz-RHkVfe1eUnCYMGXRdmBeSYrVpY4wX-QV7_8o_dqidpWmRbiE2vPhLd3cb0ulrttsjSZjEj33Dtnz9lu1NWvJtN4s7-ArddXRdtO_YPUoEENxb4KxYNnaz8mDqikaBNjViEjShu2_r5hcQBoV53Q1QRYemJUsYam83t-YYJr_n7d1iQU25HHQ9dVogxy6QUx8k_wYrKn1AGhXWHUL2q_fs-vT71cmU910YuFNCrXkuhBfSZ7ZKy0xUtjSlsQjrEmcz4RBvOZO4IFzhfVqqkIRUWa9EkufBpGjcyQ9sVDe132OgfFGZYBGSOqWcC6VD-4iSd2WeFLYKYyYHymvXlyinThm3eohF-6kjvzTxS4tEI7_GjD_OWsYSHc88nw9M1U9ETeMu8szMwycy8Lgc9ZeXKHpjBoNQaPxN6ezF1L7BtxSZQlWH5uL-f6_-mb2cXl1e6Iuz2fkBexWd2xQM95GNUGj8J0RHa3vYS_8D6fYQ5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+thermal+structure+and+the+location+of+the+snow+line+in+the+protosolar+nebula%3A+Axisymmetric+models+with+full+3-D+radiative+transfer&rft.jtitle=Icarus+%28New+York%2C+N.Y.+1962%29&rft.au=MIN%2C+M&rft.au=DULLEMOND%2C+C.+P&rft.au=KAMA%2C+M&rft.au=DOMINIK%2C+C&rft.date=2011-03-01&rft.pub=Elsevier&rft.issn=0019-1035&rft.volume=212&rft.issue=1&rft.spage=416&rft.epage=426&rft_id=info:doi/10.1016%2Fj.icarus.2010.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=23943475 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-1035&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-1035&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-1035&client=summon |