FCCDN: Feature constraint network for VHR image change detection

Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep convolutional neural network (CNN)-based methods have been shown in the field of change detection. However, there is still a lack of effective superv...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 187; pp. 101 - 119
Main Authors Chen, Pan, Zhang, Bing, Hong, Danfeng, Chen, Zhengchao, Yang, Xuan, Li, Baipeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2022.02.021

Cover

Loading…
Abstract Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep convolutional neural network (CNN)-based methods have been shown in the field of change detection. However, there is still a lack of effective supervision for change feature learning. In this work, a feature constraint change detection network (FCCDN) is proposed. We constrain features both in bitemporal feature extraction and feature fusion. More specifically, we propose a dual encoder-decoder network backbone for the change detection task. At the center of the backbone, we design a nonlocal feature pyramid network to extract and fuse multiscale features. To fuse bitemporal features in a robust way, we build a dense connection-based feature fusion module. Moreover, a self-supervised learning-based strategy is proposed to constrain feature learning. Based on FCCDN, we achieve state-of-the-art performance on three change detection datasets (LEVIR-CD, WHU, and SECOND). The experimental results show that FCCDN outperforms all benchmark methods. Moreover, for the first time, the acquisition of accurate bitemporal semantic segmentation results is achieved without using semantic segmentation labels. This is vital for the application of change detection because it saves the cost of labeling. The code of this work can be found on https://github.com/chenpan0615/FCCDN_pytorch.
AbstractList Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep convolutional neural network (CNN)-based methods have been shown in the field of change detection. However, there is still a lack of effective supervision for change feature learning. In this work, a feature constraint change detection network (FCCDN) is proposed. We constrain features both in bitemporal feature extraction and feature fusion. More specifically, we propose a dual encoder-decoder network backbone for the change detection task. At the center of the backbone, we design a nonlocal feature pyramid network to extract and fuse multiscale features. To fuse bitemporal features in a robust way, we build a dense connection-based feature fusion module. Moreover, a self-supervised learning-based strategy is proposed to constrain feature learning. Based on FCCDN, we achieve state-of-the-art performance on three change detection datasets (LEVIR-CD, WHU, and SECOND). The experimental results show that FCCDN outperforms all benchmark methods. Moreover, for the first time, the acquisition of accurate bitemporal semantic segmentation results is achieved without using semantic segmentation labels. This is vital for the application of change detection because it saves the cost of labeling. The code of this work can be found on https://github.com/chenpan0615/FCCDN_pytorch.
Author Chen, Pan
Hong, Danfeng
Yang, Xuan
Zhang, Bing
Li, Baipeng
Chen, Zhengchao
Author_xml – sequence: 1
  givenname: Pan
  surname: Chen
  fullname: Chen, Pan
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 2
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
  email: zb@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 3
  givenname: Danfeng
  surname: Hong
  fullname: Hong, Danfeng
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 4
  givenname: Zhengchao
  surname: Chen
  fullname: Chen, Zhengchao
  organization: Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 5
  givenname: Xuan
  surname: Yang
  fullname: Yang, Xuan
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 6
  givenname: Baipeng
  surname: Li
  fullname: Li, Baipeng
  organization: Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
BookMark eNqNkFFLwzAUhYNMcJv-BvvoS2uStmkqCI7qnDAURH0NWXqrqV0yk0zx39sy8cEXhXs5L-cc7v0maGSsAYSOCU4IJuy0TbTfON_2m1BMaYKHIXtoTHhBY07TfITGuKRZTAvCDtDE-xZjTHLGx-hiXlWXt2fRHGTYOoiUNT44qU2IDIQP616jxrroaXEf6bV87g0v0vRSQwAVtDWHaL-RnYejb52ix_nVQ7WIl3fXN9VsGauMZCFmcsVKwus6rynmPAPSKMJWDFKarrhiBCQhNMsLXpY5LWTKszQrqAQOOJcS0ik62fVunH3bgg9irb2CrpMG7NYLyoo85ykvWW8tdlblrPcOGrFx_fHuUxAsBmaiFT_MxMBM4GFInzz_lVQ6yOHNgUn3j_xsl4eexLsGJ7zSYBTU2vW4RG31nx1floOPYg
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3335287
crossref_primary_10_1016_j_jag_2024_103767
crossref_primary_10_1016_j_eswa_2024_123731
crossref_primary_10_1109_TGRS_2022_3233849
crossref_primary_10_1109_TGRS_2023_3328966
crossref_primary_10_1080_01431161_2024_2305627
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_3390_rs15082145
crossref_primary_10_1109_TGRS_2024_3403727
crossref_primary_10_1109_TGRS_2024_3400215
crossref_primary_10_1109_JSTARS_2024_3468949
crossref_primary_10_1016_j_isprsjprs_2024_11_017
crossref_primary_10_1109_JSTARS_2022_3215773
crossref_primary_10_1109_JSTARS_2024_3402431
crossref_primary_10_1109_JSTARS_2024_3449923
crossref_primary_10_1109_TGRS_2023_3328334
crossref_primary_10_1109_TGRS_2024_3407884
crossref_primary_10_1109_TGRS_2023_3344083
crossref_primary_10_3390_rs15102645
crossref_primary_10_1007_s12145_022_00914_4
crossref_primary_10_1109_JSEN_2023_3271391
crossref_primary_10_1117_1_JRS_18_044508
crossref_primary_10_1109_JSTARS_2024_3490754
crossref_primary_10_1109_TGRS_2024_3489615
crossref_primary_10_1109_TIM_2023_3243680
crossref_primary_10_1109_MGRS_2022_3227063
crossref_primary_10_1109_TGRS_2024_3357085
crossref_primary_10_1016_j_isprsjprs_2023_05_011
crossref_primary_10_1109_TGRS_2024_3392696
crossref_primary_10_1109_TGRS_2023_3235917
crossref_primary_10_1016_j_isprsjprs_2024_07_024
crossref_primary_10_1016_j_rse_2024_113996
crossref_primary_10_1080_15481603_2024_2380126
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_1109_JSTARS_2023_3348630
crossref_primary_10_1109_JSTARS_2024_3418632
crossref_primary_10_1109_TGRS_2025_3535496
crossref_primary_10_1016_j_isprsjprs_2022_07_016
crossref_primary_10_1109_JSTARS_2024_3487137
crossref_primary_10_1016_j_jag_2024_104077
crossref_primary_10_1109_TGRS_2024_3425540
crossref_primary_10_3390_rs17020217
crossref_primary_10_1109_JSTARS_2023_3267137
crossref_primary_10_1109_TGRS_2024_3497983
crossref_primary_10_1016_j_jag_2025_104393
crossref_primary_10_1109_TGRS_2024_3439395
crossref_primary_10_1109_JSTARS_2024_3371015
crossref_primary_10_1109_TGRS_2023_3261273
crossref_primary_10_1109_LGRS_2023_3329058
crossref_primary_10_1109_TGRS_2023_3344948
crossref_primary_10_1016_j_isprsjprs_2024_04_012
crossref_primary_10_1016_j_isprsjprs_2023_09_012
crossref_primary_10_1016_j_isprsjprs_2022_07_001
crossref_primary_10_1109_JSTARS_2024_3354310
crossref_primary_10_1109_TGRS_2023_3305499
crossref_primary_10_1080_01431161_2023_2242590
crossref_primary_10_1016_j_jag_2022_102940
crossref_primary_10_1109_TGRS_2023_3327780
crossref_primary_10_1109_TGRS_2024_3440001
crossref_primary_10_3390_rs14194972
crossref_primary_10_1109_JSTARS_2023_3348572
crossref_primary_10_3390_rs15040928
crossref_primary_10_3390_rs15081958
crossref_primary_10_3390_rs16081387
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_1109_JSTARS_2024_3407972
crossref_primary_10_3390_rs15164095
crossref_primary_10_1109_TGRS_2023_3324947
crossref_primary_10_1016_j_isprsjprs_2024_09_002
crossref_primary_10_1080_01431161_2023_2288946
crossref_primary_10_1109_TGRS_2023_3277496
crossref_primary_10_1109_TGRS_2024_3505201
crossref_primary_10_1109_TGRS_2025_3545760
crossref_primary_10_1109_TIP_2024_3349868
crossref_primary_10_1117_1_JRS_18_016513
crossref_primary_10_1109_JSTARS_2022_3174780
crossref_primary_10_1111_phor_12495
crossref_primary_10_1109_JSTARS_2024_3491762
crossref_primary_10_3390_rs14092046
crossref_primary_10_1109_TGRS_2023_3332338
crossref_primary_10_1080_22797254_2022_2161419
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_3390_s25010103
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_JSTARS_2023_3314133
crossref_primary_10_1016_j_inffus_2025_103110
crossref_primary_10_1109_TIM_2024_3472783
crossref_primary_10_3390_rs15040949
crossref_primary_10_1007_s11069_024_07094_y
crossref_primary_10_1109_TGRS_2025_3526211
crossref_primary_10_1109_TITS_2024_3411647
crossref_primary_10_12677_jisp_2025_141006
crossref_primary_10_1016_j_isprsjprs_2023_07_001
crossref_primary_10_3390_rs14194908
crossref_primary_10_1109_TGRS_2024_3432771
crossref_primary_10_3390_rs17010135
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_1109_TGRS_2023_3276853
crossref_primary_10_1109_JSTARS_2024_3350044
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_3390_rs15051219
crossref_primary_10_3390_rs14246352
crossref_primary_10_1109_JSTARS_2024_3372386
crossref_primary_10_1007_s00371_024_03755_y
crossref_primary_10_1016_j_isprsjprs_2023_06_017
crossref_primary_10_3390_rs15061655
crossref_primary_10_1109_LGRS_2023_3234645
crossref_primary_10_1109_TCSVT_2024_3494820
crossref_primary_10_1109_LGRS_2024_3366981
crossref_primary_10_1109_TGRS_2024_3433014
crossref_primary_10_1109_JSTARS_2024_3439340
crossref_primary_10_3390_rs15235459
crossref_primary_10_1109_TGRS_2023_3313619
crossref_primary_10_1109_LGRS_2022_3232763
crossref_primary_10_3390_rs15215106
crossref_primary_10_1109_JSTARS_2022_3181155
crossref_primary_10_1109_JSTARS_2024_3394571
crossref_primary_10_1109_JSTARS_2023_3283524
crossref_primary_10_1109_JSTARS_2024_3434966
crossref_primary_10_3390_rs16183466
crossref_primary_10_1109_TGRS_2023_3317701
crossref_primary_10_1016_j_jag_2024_104282
crossref_primary_10_1109_JSTARS_2025_3531499
crossref_primary_10_1109_LGRS_2023_3238553
crossref_primary_10_1109_TGRS_2024_3434451
Cites_doi 10.1016/j.ins.2010.10.016
10.1109/TGRS.2019.2948659
10.1080/01431168108948362
10.1109/CVPR.2017.660
10.1109/TGRS.2015.2396686
10.1109/CVPR.2019.01061
10.1109/CVPR.2016.278
10.1109/CVPR.2017.106
10.1109/JSTARS.2020.3037893
10.1007/s12145-019-00380-5
10.1109/TGRS.2021.3085870
10.3390/rs12101662
10.1016/j.isprsjprs.2020.01.013
10.1016/j.rse.2005.09.008
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2017.615
10.1109/JSTARS.2020.2974276
10.14358/PERS.83.3.225
10.1109/TPAMI.2020.2992393
10.1080/01431168908903937
10.1016/0034-4257(84)90025-7
10.1109/LGRS.2019.2916601
10.3390/rs12111868
10.1016/j.isprsjprs.2019.11.006
10.3390/info11020125
10.1016/j.isprsjprs.2021.10.001
10.1109/ICPR48806.2021.9413112
10.1016/j.isprsjprs.2016.09.013
10.1109/CVPR.2018.00813
10.1109/CVPR.2015.7299064
10.1109/CVPRW.2018.00034
10.1016/j.isprsjprs.2021.05.001
10.1109/JPROC.2019.2948454
10.1016/j.isprsjprs.2020.06.003
10.3390/rs13183707
10.3390/rs11111382
10.1007/s10514-018-9734-5
10.1016/j.isprsjprs.2021.05.002
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.74
10.3390/rs13081440
10.1109/JSTARS.2019.2953128
10.1109/CVPR.2018.00745
10.3390/rs11111314
10.1109/IGARSS.2019.8900330
10.1109/TGRS.2018.2858817
10.1016/j.cviu.2019.07.003
10.3390/rs12101688
10.1016/j.isprsjprs.2021.03.005
10.1109/TGRS.2021.3089453
10.1016/j.rse.2004.10.012
ContentType Journal Article
Copyright 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2022.02.021
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 119
ExternalDocumentID 10_1016_j_isprsjprs_2022_02_021
S0924271622000636
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c414t-6ab6918dd5d20884e1fc16b6e323b8c61ea112457899527a3843472ae8e05aae3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Mon Jul 21 09:49:17 EDT 2025
Tue Jul 01 03:46:47 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Fri Feb 23 02:41:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Feature constraint
Change detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-6ab6918dd5d20884e1fc16b6e323b8c61ea112457899527a3843472ae8e05aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2675583896
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_2675583896
crossref_primary_10_1016_j_isprsjprs_2022_02_021
crossref_citationtrail_10_1016_j_isprsjprs_2022_02_021
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_02_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, L., Zhang, C., Wu, M., 2018. D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 182–186.
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing, arXiv preprint arXiv:1809.00916 (2018).
Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
Jing, L., Tian, Y., 2020. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell.
Ronneberger, Fischer, Brox (b0255) 2015
Diakogiannis, Waldner, Caccetta, Wu (b0065) 2020; 162
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch.
Hou, Liu, Wang, Wang (b0110) 2019; 58
Howarth, Wickware (b0120) 1981; 2
Zhang, Chen, Peng, Benediktsson, Liu, Zou, Li, Plaza (b0315) 2019; 107
Peng, Zhong, Li, Li (b0235) 2020
Cui, Zhang, Yan, Wei, Wu (b0050) 2019; 11
Jabari, S., Zhang, Y., 2018. Urban change detection utilizing high-resolution optical images taken from different viewing angles and different platforms. In: Urban Remote Sensing, CRC Press, 2018, pp. 125–148.
Asokan, Anitha (b0010) 2019; 12
Li, H., Xiong, P., An, J., Wang, L., 2018. Pyramid attention network for semantic segmentation, arXiv preprint arXiv:1805.10180 (2018).
Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L., 2021. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens.
Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b0015) 2020; 11
Daudt, R.C., Le Saux, B., Boulch, A., 2018. Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, 2018, pp. 4063–4067.
Liu, Chen, Xu, Sun, Yan, Diao, Han (b0185) 2019; 17
Zhang, Yue, Tapete, Jiang, Shangguan, Huang, Liu (b0320) 2020; 166
Papadomanolaki, M., Verma, S., Vakalopoulou, M., Gupta, S., Karantzalos, K., 2019. Detecting urban changes with recurrent neural networks from multitemporal sentinel-2 data. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019, pp. 214–217.
Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803.
Zhang, Hu, Zhang, Shu, Zhou (b0325) 2021; 177
Noroozi, Favaro (b0210) 2016
Jin, Sader (b0150) 2005; 94
Daudt, Le Saux, Boulch, Gousseau (b0060) 2019; 187
Zhang, Fu, Li, Zhang (b0330) 2021; 13
Shi, Zhang, Zhang, Chen, Zhan (b0265) 2020; 12
Feng, Z., Xu, C., Tao, D., 2019. Self-supervised representation learning by rotation feature decoupling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10364–10374.
Xu, J., Ranftl, R., Koltun, V., 2017. Accurate optical flow via direct cost volume processing. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1289–1297.
Im, Jensen (b0130) 2005; 99
Liu, Jiang, Zhang, Zhang (b0190) 2020; 13
Chen, H., Qi, Z., Shi, Z., 2021. Efficient transformer based method for remote sensing image change detection, arXiv preprint arXiv:2103.00208 (2021).
Diakogiannis, Waldner, Caccetta (b0070) 2021; 13
LeCun, Bengio, Hinton (b0165) 2015; 521
Cheng, Wu, Zheng, Qi, Liu (b0045) 2021; 182
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A., 2016. Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2536–2544.
Quarmby, Cushnie (b0245) 1989; 10
Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587 (2017).
Chen, Shi (b0020) 2020; 12
Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR, 2015, pp. 448–456.
Ghosh, Mishra, Ghosh (b0095) 2011; 181
Mi, Chen (b0205) 2020; 159
Ji, Wei, Lu (b0145) 2018; 57
Yang, K., Xia, G.-S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection, arXiv preprint arXiv:2010.05687 (2020).
Zagoruyko, S., Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4353–4361.
Hou, Bai, Li, Shang, Shen (b0115) 2021; 177
Mahmoudzadeh, H., 2007. Digital change detection using remotely sensed data for monitoring green space destruction in Tabriz.
Qin, Tian, Reinartz (b0240) 2016; 122
Chen, Y., Bruzzone, L., Self-supervised change detection in multi-view remote sensing images, arXiv preprint arXiv:2103.05969 (2021).
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
Zhu, Su, Guo, Harmon (b0355) 2017; 83
Vincenzi, S., Porrello, A., Buzzega, P., Cipriano, M., Fronte, P., Cuccu, R., Ippoliti, C., Conte, A., Calderara, S., 2020. The color out of space: learning self-supervised representations for earth observation imagery, arXiv preprint arXiv:2006.12119 (2020).
Peng, Zhang, Guan (b0230) 2019; 11
Gao, Gao, Dong, Wang (b0090) 2019; 12
Richards (b0250) 1984; 16
Zheng, Wan, Zhang, Xiang, Peng, Zhang (b0340) 2021; 175
Liu, Bruzzone, Bovolo, Zanetti, Du (b0180) 2015; 53
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626.
Fang, Li, Shao, Li (b0080) 2021
Hendrycks, D., Lee, K., Mazeika, M., 2019. Using pre-training can improve model robustness and uncertainty. In: International Conference on Machine Learning, PMLR, 2019, pp. 2712–2721.
Alcantarilla, Stent, Ros, Arroyo, Gherardi (b0005) 2018; 42
Chen, J., Yuan, Z., Peng, J., Chen, L., Haozhe, H., Zhu, J., Liu, Y., Li, H., 2020. Dasnet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2020.
Zhang, Isola, Efros (b0310) 2016
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–2890.
Tao, Qi, Lu, Wang, Li (b0275) 2020
Zhou, Siddiquee, Tajbakhsh, Liang (b0345) 2018
Hochreiter, Schmidhuber (b0105) 1997; 9
Dong, Ma, Wu, Zhang, Jiao (b0075) 2020; 12
10.1016/j.isprsjprs.2022.02.021_b0305
10.1016/j.isprsjprs.2022.02.021_b0025
Shi (10.1016/j.isprsjprs.2022.02.021_b0265) 2020; 12
10.1016/j.isprsjprs.2022.02.021_b0300
Cui (10.1016/j.isprsjprs.2022.02.021_b0050) 2019; 11
10.1016/j.isprsjprs.2022.02.021_b0225
Fang (10.1016/j.isprsjprs.2022.02.021_b0080) 2021
10.1016/j.isprsjprs.2022.02.021_b0100
Ji (10.1016/j.isprsjprs.2022.02.021_b0145) 2018; 57
10.1016/j.isprsjprs.2022.02.021_b0220
10.1016/j.isprsjprs.2022.02.021_b0140
10.1016/j.isprsjprs.2022.02.021_b0260
Liu (10.1016/j.isprsjprs.2022.02.021_b0185) 2019; 17
Dong (10.1016/j.isprsjprs.2022.02.021_b0075) 2020; 12
Diakogiannis (10.1016/j.isprsjprs.2022.02.021_b0065) 2020; 162
Liu (10.1016/j.isprsjprs.2022.02.021_b0180) 2015; 53
Hochreiter (10.1016/j.isprsjprs.2022.02.021_b0105) 1997; 9
Asokan (10.1016/j.isprsjprs.2022.02.021_b0010) 2019; 12
Diakogiannis (10.1016/j.isprsjprs.2022.02.021_b0070) 2021; 13
Hou (10.1016/j.isprsjprs.2022.02.021_b0115) 2021; 177
10.1016/j.isprsjprs.2022.02.021_b0035
10.1016/j.isprsjprs.2022.02.021_b0350
10.1016/j.isprsjprs.2022.02.021_b0155
Zhu (10.1016/j.isprsjprs.2022.02.021_b0355) 2017; 83
10.1016/j.isprsjprs.2022.02.021_b0270
10.1016/j.isprsjprs.2022.02.021_b0030
10.1016/j.isprsjprs.2022.02.021_b0195
Ronneberger (10.1016/j.isprsjprs.2022.02.021_b0255) 2015
Tao (10.1016/j.isprsjprs.2022.02.021_b0275) 2020
Daudt (10.1016/j.isprsjprs.2022.02.021_b0060) 2019; 187
10.1016/j.isprsjprs.2022.02.021_b0200
Quarmby (10.1016/j.isprsjprs.2022.02.021_b0245) 1989; 10
Alcantarilla (10.1016/j.isprsjprs.2022.02.021_b0005) 2018; 42
10.1016/j.isprsjprs.2022.02.021_b0125
10.1016/j.isprsjprs.2022.02.021_b0285
Zhang (10.1016/j.isprsjprs.2022.02.021_b0315) 2019; 107
Buslaev (10.1016/j.isprsjprs.2022.02.021_b0015) 2020; 11
Jin (10.1016/j.isprsjprs.2022.02.021_b0150) 2005; 94
10.1016/j.isprsjprs.2022.02.021_b0160
10.1016/j.isprsjprs.2022.02.021_b0280
Zhang (10.1016/j.isprsjprs.2022.02.021_b0320) 2020; 166
Zhou (10.1016/j.isprsjprs.2022.02.021_b0345) 2018
10.1016/j.isprsjprs.2022.02.021_b0085
Richards (10.1016/j.isprsjprs.2022.02.021_b0250) 1984; 16
Zhang (10.1016/j.isprsjprs.2022.02.021_b0310) 2016
10.1016/j.isprsjprs.2022.02.021_b0040
Cheng (10.1016/j.isprsjprs.2022.02.021_b0045) 2021; 182
Howarth (10.1016/j.isprsjprs.2022.02.021_b0120) 1981; 2
Zheng (10.1016/j.isprsjprs.2022.02.021_b0340) 2021; 175
Peng (10.1016/j.isprsjprs.2022.02.021_b0235) 2020
LeCun (10.1016/j.isprsjprs.2022.02.021_b0165) 2015; 521
Ghosh (10.1016/j.isprsjprs.2022.02.021_b0095) 2011; 181
Hou (10.1016/j.isprsjprs.2022.02.021_b0110) 2019; 58
10.1016/j.isprsjprs.2022.02.021_b0215
Zhang (10.1016/j.isprsjprs.2022.02.021_b0330) 2021; 13
10.1016/j.isprsjprs.2022.02.021_b0135
Gao (10.1016/j.isprsjprs.2022.02.021_b0090) 2019; 12
10.1016/j.isprsjprs.2022.02.021_b0335
10.1016/j.isprsjprs.2022.02.021_b0175
10.1016/j.isprsjprs.2022.02.021_b0295
Chen (10.1016/j.isprsjprs.2022.02.021_b0020) 2020; 12
10.1016/j.isprsjprs.2022.02.021_b0055
Qin (10.1016/j.isprsjprs.2022.02.021_b0240) 2016; 122
10.1016/j.isprsjprs.2022.02.021_b0170
Peng (10.1016/j.isprsjprs.2022.02.021_b0230) 2019; 11
Mi (10.1016/j.isprsjprs.2022.02.021_b0205) 2020; 159
Noroozi (10.1016/j.isprsjprs.2022.02.021_b0210) 2016
10.1016/j.isprsjprs.2022.02.021_b0290
Liu (10.1016/j.isprsjprs.2022.02.021_b0190) 2020; 13
Im (10.1016/j.isprsjprs.2022.02.021_b0130) 2005; 99
Zhang (10.1016/j.isprsjprs.2022.02.021_b0325) 2021; 177
References_xml – reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–2890.
– volume: 83
  start-page: 225
  year: 2017
  end-page: 236
  ident: b0355
  article-title: Unsupervised object-based differencing for land-cover change detection
  publication-title: Photogram. Eng. Remote Sens.
– volume: 107
  start-page: 2294
  year: 2019
  end-page: 2301
  ident: b0315
  article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view]
  publication-title: Proc. IEEE
– volume: 159
  start-page: 140
  year: 2020
  end-page: 152
  ident: b0205
  article-title: Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogram. Remote Sens.
– reference: Vincenzi, S., Porrello, A., Buzzega, P., Cipriano, M., Fronte, P., Cuccu, R., Ippoliti, C., Conte, A., Calderara, S., 2020. The color out of space: learning self-supervised representations for earth observation imagery, arXiv preprint arXiv:2006.12119 (2020).
– volume: 122
  start-page: 41
  year: 2016
  end-page: 56
  ident: b0240
  article-title: 3d change detection–approaches and applications
  publication-title: ISPRS J. Photogram. Remote Sens.
– reference: Chen, H., Qi, Z., Shi, Z., 2021. Efficient transformer based method for remote sensing image change detection, arXiv preprint arXiv:2103.00208 (2021).
– reference: Feng, Z., Xu, C., Tao, D., 2019. Self-supervised representation learning by rotation feature decoupling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10364–10374.
– reference: Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587 (2017).
– volume: 11
  start-page: 1382
  year: 2019
  ident: b0230
  article-title: End-to-end change detection for high resolution satellite images using improved unet++
  publication-title: Remote Sensing
– reference: Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing, arXiv preprint arXiv:1809.00916 (2018).
– volume: 13
  start-page: 3707
  year: 2021
  ident: b0070
  article-title: Looking for change? roll the dice and demand attention
  publication-title: Remote Sens.
– reference: Li, H., Xiong, P., An, J., Wang, L., 2018. Pyramid attention network for semantic segmentation, arXiv preprint arXiv:1805.10180 (2018).
– reference: Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
– reference: Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803.
– reference: Papadomanolaki, M., Verma, S., Vakalopoulou, M., Gupta, S., Karantzalos, K., 2019. Detecting urban changes with recurrent neural networks from multitemporal sentinel-2 data. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019, pp. 214–217.
– volume: 175
  start-page: 247
  year: 2021
  end-page: 267
  ident: b0340
  article-title: Clnet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery
  publication-title: ISPRS J. Photogram. Remote Sens.
– reference: Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626.
– reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR, 2015, pp. 448–456.
– start-page: 69
  year: 2016
  end-page: 84
  ident: b0210
  article-title: Unsupervised learning of visual representations by solving jigsaw puzzles
  publication-title: European conference on computer vision
– reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
– reference: Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L., 2021. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens.
– volume: 166
  start-page: 183
  year: 2020
  end-page: 200
  ident: b0320
  article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 99
  start-page: 326
  year: 2005
  end-page: 340
  ident: b0130
  article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification
  publication-title: Remote Sens. Environ.
– volume: 57
  start-page: 574
  year: 2018
  end-page: 586
  ident: b0145
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 42
  start-page: 1301
  year: 2018
  end-page: 1322
  ident: b0005
  article-title: Street-view change detection with deconvolutional networks
  publication-title: Autono. Robots
– volume: 53
  start-page: 4363
  year: 2015
  end-page: 4378
  ident: b0180
  article-title: Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0165
  publication-title: Deep learning, nature
– reference: Zagoruyko, S., Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4353–4361.
– reference: Chen, Y., Bruzzone, L., Self-supervised change detection in multi-view remote sensing images, arXiv preprint arXiv:2103.05969 (2021).
– volume: 11
  start-page: 1314
  year: 2019
  ident: b0050
  article-title: An unsupervised sar change detection method based on stochastic subspace ensemble learning
  publication-title: Remote Sens.
– reference: Hendrycks, D., Lee, K., Mazeika, M., 2019. Using pre-training can improve model robustness and uncertainty. In: International Conference on Machine Learning, PMLR, 2019, pp. 2712–2721.
– volume: 177
  start-page: 147
  year: 2021
  end-page: 160
  ident: b0325
  article-title: Object-level change detection with a dual correlation attention-guided detector
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 94
  start-page: 364
  year: 2005
  end-page: 372
  ident: b0150
  article-title: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 1109
  year: 2020
  end-page: 1118
  ident: b0190
  article-title: Deep depthwise separable convolutional network for change detection in optical aerial images
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Jing, L., Tian, Y., 2020. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  start-page: 1688
  year: 2020
  ident: b0265
  article-title: Change detection based on artificial intelligence: State-of-the-art and challenges
  publication-title: Remote Sensing
– reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
– volume: 13
  start-page: 1440
  year: 2021
  ident: b0330
  article-title: Hdfnet: Hierarchical dynamic fusion network for change detection in optical aerial images
  publication-title: Remote Sens.
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: b0065
  article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogram. Remote Sens.
– year: 2021
  ident: b0080
  article-title: Snunet-cd: A densely connected siamese network for change detection of vhr images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0105
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: Xu, J., Ranftl, R., Koltun, V., 2017. Accurate optical flow via direct cost volume processing. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1289–1297.
– volume: 2
  start-page: 277
  year: 1981
  end-page: 291
  ident: b0120
  article-title: Procedures for change detection using landsat digital data
  publication-title: Int. J. Remote Sens.
– volume: 11
  start-page: 125
  year: 2020
  ident: b0015
  article-title: Albumentations: fast and flexible image augmentations
  publication-title: Information
– reference: Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A., 2016. Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2536–2544.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0255
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– volume: 182
  start-page: 52
  year: 2021
  end-page: 66
  ident: b0045
  article-title: A hierarchical self-attention augmented laplacian pyramid expanding network for change detection in high-resolution remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 12
  start-page: 1662
  year: 2020
  ident: b0020
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote Sens.
– start-page: 649
  year: 2016
  end-page: 666
  ident: b0310
  article-title: Colorful image colorization
  publication-title: European conference on computer vision
– volume: 181
  start-page: 699
  year: 2011
  end-page: 715
  ident: b0095
  article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
  publication-title: Inf. Sci.
– reference: Zhou, L., Zhang, C., Wu, M., 2018. D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 182–186.
– volume: 12
  start-page: 4517
  year: 2019
  end-page: 4529
  ident: b0090
  article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Yang, K., Xia, G.-S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection, arXiv preprint arXiv:2010.05687 (2020).
– reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
– reference: Mahmoudzadeh, H., 2007. Digital change detection using remotely sensed data for monitoring green space destruction in Tabriz.
– volume: 177
  start-page: 103
  year: 2021
  end-page: 115
  ident: b0115
  article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 10
  start-page: 953
  year: 1989
  end-page: 963
  ident: b0245
  article-title: Monitoring urban land cover changes at the urban fringe from spot hrv imagery in south-east England
  publication-title: Int. J. Remote Sens.
– year: 2020
  ident: b0235
  article-title: Optical remote sensing image change detection based on attention mechanism and image difference
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3
  year: 2018
  end-page: 11
  ident: b0345
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep learning in medical image analysis and multimodal learning for clinical decision support
– volume: 17
  start-page: 127
  year: 2019
  end-page: 131
  ident: b0185
  article-title: Convolutional neural network-based transfer learning for optical aerial images change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch.
– volume: 12
  start-page: 143
  year: 2019
  end-page: 160
  ident: b0010
  article-title: Change detection techniques for remote sensing applications: a survey
  publication-title: Earth Sci. Inf.
– volume: 16
  start-page: 35
  year: 1984
  end-page: 46
  ident: b0250
  article-title: Thematic mapping from multitemporal image data using the principal components transformation
  publication-title: Remote Sens. Environ.
– year: 2020
  ident: b0275
  article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Chen, J., Yuan, Z., Peng, J., Chen, L., Haozhe, H., Zhu, J., Liu, Y., Li, H., 2020. Dasnet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2020.
– volume: 187
  start-page: 102783
  year: 2019
  ident: b0060
  article-title: Multitask learning for large-scale semantic change detection
  publication-title: Comput. Vis. Image Underst.
– reference: Jabari, S., Zhang, Y., 2018. Urban change detection utilizing high-resolution optical images taken from different viewing angles and different platforms. In: Urban Remote Sensing, CRC Press, 2018, pp. 125–148.
– volume: 58
  start-page: 1790
  year: 2019
  end-page: 1802
  ident: b0110
  article-title: From w-net to cdgan: Bitemporal change detection via deep learning techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Daudt, R.C., Le Saux, B., Boulch, A., 2018. Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, 2018, pp. 4063–4067.
– volume: 12
  start-page: 1868
  year: 2020
  ident: b0075
  article-title: Self-supervised representation learning for remote sensing image change detection based on temporal prediction
  publication-title: Remote Sens.
– volume: 181
  start-page: 699
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.02.021_b0095
  article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.10.016
– volume: 58
  start-page: 1790
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0110
  article-title: From w-net to cdgan: Bitemporal change detection via deep learning techniques
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2948659
– volume: 2
  start-page: 277
  year: 1981
  ident: 10.1016/j.isprsjprs.2022.02.021_b0120
  article-title: Procedures for change detection using landsat digital data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168108948362
– ident: 10.1016/j.isprsjprs.2022.02.021_b0335
  doi: 10.1109/CVPR.2017.660
– ident: 10.1016/j.isprsjprs.2022.02.021_b0100
– ident: 10.1016/j.isprsjprs.2022.02.021_b0040
– volume: 53
  start-page: 4363
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.021_b0180
  article-title: Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2396686
– start-page: 649
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.02.021_b0310
  article-title: Colorful image colorization
– ident: 10.1016/j.isprsjprs.2022.02.021_b0085
  doi: 10.1109/CVPR.2019.01061
– ident: 10.1016/j.isprsjprs.2022.02.021_b0225
  doi: 10.1109/CVPR.2016.278
– ident: 10.1016/j.isprsjprs.2022.02.021_b0175
  doi: 10.1109/CVPR.2017.106
– ident: 10.1016/j.isprsjprs.2022.02.021_b0030
  doi: 10.1109/JSTARS.2020.3037893
– volume: 12
  start-page: 143
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0010
  article-title: Change detection techniques for remote sensing applications: a survey
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-019-00380-5
– start-page: 234
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.021_b0255
  article-title: U-net: Convolutional networks for biomedical image segmentation
– ident: 10.1016/j.isprsjprs.2022.02.021_b0270
  doi: 10.1109/TGRS.2021.3085870
– volume: 12
  start-page: 1662
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0020
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote Sens.
  doi: 10.3390/rs12101662
– volume: 162
  start-page: 94
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0065
  article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.013
– start-page: 69
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.02.021_b0210
  article-title: Unsupervised learning of visual representations by solving jigsaw puzzles
– year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0235
  article-title: Optical remote sensing image change detection based on attention mechanism and image difference
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.isprsjprs.2022.02.021_b0295
– volume: 99
  start-page: 326
  year: 2005
  ident: 10.1016/j.isprsjprs.2022.02.021_b0130
  article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.09.008
– ident: 10.1016/j.isprsjprs.2022.02.021_b0140
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.isprsjprs.2022.02.021_b0105
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.021_b0165
  publication-title: Deep learning, nature
– ident: 10.1016/j.isprsjprs.2022.02.021_b0290
  doi: 10.1109/CVPR.2017.615
– volume: 13
  start-page: 1109
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0190
  article-title: Deep depthwise separable convolutional network for change detection in optical aerial images
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2020.2974276
– volume: 83
  start-page: 225
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.021_b0355
  article-title: Unsupervised object-based differencing for land-cover change detection
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.83.3.225
– ident: 10.1016/j.isprsjprs.2022.02.021_b0155
  doi: 10.1109/TPAMI.2020.2992393
– volume: 10
  start-page: 953
  year: 1989
  ident: 10.1016/j.isprsjprs.2022.02.021_b0245
  article-title: Monitoring urban land cover changes at the urban fringe from spot hrv imagery in south-east England
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168908903937
– volume: 16
  start-page: 35
  year: 1984
  ident: 10.1016/j.isprsjprs.2022.02.021_b0250
  article-title: Thematic mapping from multitemporal image data using the principal components transformation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90025-7
– start-page: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.021_b0345
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– ident: 10.1016/j.isprsjprs.2022.02.021_b0200
– ident: 10.1016/j.isprsjprs.2022.02.021_b0055
– ident: 10.1016/j.isprsjprs.2022.02.021_b0135
– ident: 10.1016/j.isprsjprs.2022.02.021_b0160
– year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.021_b0080
  article-title: Snunet-cd: A densely connected siamese network for change detection of vhr images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 17
  start-page: 127
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0185
  article-title: Convolutional neural network-based transfer learning for optical aerial images change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2916601
– volume: 12
  start-page: 1868
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0075
  article-title: Self-supervised representation learning for remote sensing image change detection based on temporal prediction
  publication-title: Remote Sens.
  doi: 10.3390/rs12111868
– year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0275
  article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 159
  start-page: 140
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0205
  article-title: Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.11.006
– volume: 11
  start-page: 125
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0015
  article-title: Albumentations: fast and flexible image augmentations
  publication-title: Information
  doi: 10.3390/info11020125
– volume: 182
  start-page: 52
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.021_b0045
  article-title: A hierarchical self-attention augmented laplacian pyramid expanding network for change detection in high-resolution remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.10.001
– ident: 10.1016/j.isprsjprs.2022.02.021_b0280
  doi: 10.1109/ICPR48806.2021.9413112
– volume: 122
  start-page: 41
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.02.021_b0240
  article-title: 3d change detection–approaches and applications
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.09.013
– ident: 10.1016/j.isprsjprs.2022.02.021_b0285
  doi: 10.1109/CVPR.2018.00813
– ident: 10.1016/j.isprsjprs.2022.02.021_b0305
  doi: 10.1109/CVPR.2015.7299064
– ident: 10.1016/j.isprsjprs.2022.02.021_b0170
– ident: 10.1016/j.isprsjprs.2022.02.021_b0350
  doi: 10.1109/CVPRW.2018.00034
– volume: 177
  start-page: 103
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.021_b0115
  article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.001
– volume: 107
  start-page: 2294
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0315
  article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2948454
– volume: 166
  start-page: 183
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0320
  article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.003
– ident: 10.1016/j.isprsjprs.2022.02.021_b0220
– volume: 13
  start-page: 3707
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.021_b0070
  article-title: Looking for change? roll the dice and demand attention
  publication-title: Remote Sens.
  doi: 10.3390/rs13183707
– volume: 11
  start-page: 1382
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0230
  article-title: End-to-end change detection for high resolution satellite images using improved unet++
  publication-title: Remote Sensing
  doi: 10.3390/rs11111382
– ident: 10.1016/j.isprsjprs.2022.02.021_b0025
– ident: 10.1016/j.isprsjprs.2022.02.021_b0300
– volume: 42
  start-page: 1301
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.021_b0005
  article-title: Street-view change detection with deconvolutional networks
  publication-title: Autono. Robots
  doi: 10.1007/s10514-018-9734-5
– volume: 177
  start-page: 147
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.021_b0325
  article-title: Object-level change detection with a dual correlation attention-guided detector
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.002
– ident: 10.1016/j.isprsjprs.2022.02.021_b0195
  doi: 10.1109/CVPR.2015.7298965
– ident: 10.1016/j.isprsjprs.2022.02.021_b0260
  doi: 10.1109/ICCV.2017.74
– volume: 13
  start-page: 1440
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.021_b0330
  article-title: Hdfnet: Hierarchical dynamic fusion network for change detection in optical aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs13081440
– volume: 12
  start-page: 4517
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0090
  article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2953128
– ident: 10.1016/j.isprsjprs.2022.02.021_b0125
  doi: 10.1109/CVPR.2018.00745
– volume: 11
  start-page: 1314
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0050
  article-title: An unsupervised sar change detection method based on stochastic subspace ensemble learning
  publication-title: Remote Sens.
  doi: 10.3390/rs11111314
– ident: 10.1016/j.isprsjprs.2022.02.021_b0215
  doi: 10.1109/IGARSS.2019.8900330
– volume: 57
  start-page: 574
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.021_b0145
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858817
– volume: 187
  start-page: 102783
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.021_b0060
  article-title: Multitask learning for large-scale semantic change detection
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.07.003
– volume: 12
  start-page: 1688
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.021_b0265
  article-title: Change detection based on artificial intelligence: State-of-the-art and challenges
  publication-title: Remote Sensing
  doi: 10.3390/rs12101688
– volume: 175
  start-page: 247
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.021_b0340
  article-title: Clnet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.03.005
– ident: 10.1016/j.isprsjprs.2022.02.021_b0035
  doi: 10.1109/TGRS.2021.3089453
– volume: 94
  start-page: 364
  year: 2005
  ident: 10.1016/j.isprsjprs.2022.02.021_b0150
  article-title: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.10.012
SSID ssj0001568
Score 2.6604924
Snippet Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Change detection
data collection
Deep learning
Feature constraint
neural networks
photogrammetry
Title FCCDN: Feature constraint network for VHR image change detection
URI https://dx.doi.org/10.1016/j.isprsjprs.2022.02.021
https://www.proquest.com/docview/2675583896
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG6WeVAPRqfGn0tNvOKglAI7uaDL1GQHdWY30kIXWZQtGzt48W_3PX5MZ2J2MIEDpC_Aa_v6lX7vKyGXsXQk86RvxMpl-LdKGr7jjAw70oxrHHB1zrboi96A3w-dYY0EVS4M0irL2F_E9Dxal3dapTdb0yRpPZkwdWAogJRnm9gou825i6386vOb5mEV6XBY2MDSKxyvZD6dzcdwwkSRsVy8k1l_jVC_YnU-AHV3yU6JHGmneLk9UtNpg2z_0BNskM1yS_PXj31y3Q2Cm36bIsZbzDSNEAjifhAZTQvqNwW8Sl96jzR5h6BCixRgGussZ2elB2TQvX0Oeka5XYIRcYtnhpBK-JYXx07MIHZwbY0iSyihbWYrLxKWlgCuOHRR33eYK22P29xlUnvadKTU9iGpp5NUHxHqCRPqCpCcGQmupPLYiDseAHHU7lHKOiaiclEYlVri-AlvYUUaG4dL34bo29DEAwzNpeG0kNNYb9Ku6iBcaRkhBP31xhdVrYXQb3AxRKZ6soBCMFPCJWNfnPznAadkC68KCuQZqWezhT4HmJKpZt4Om2Sjc_fQ638BwdvmzQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6Ccigc0MYPwcY2I-0aNXFsN-mJqlCFwXrYKOJm2YkrWkFatelh__3ey48KJiEOk5JL4qckz_bnz_F7nwG-Z0YaHpnYy2yX098q48VSTrwwdVw4GnBdGW0xUslY_HiQD1swaHJhKKyyxv4K00u0rq90am92FtNp57ePUwdOAkhltkmotmGH1KlkC3b61zfJaAPIQZURR-U9MngV5jVdLZarGZ44V-S81O_kwVuD1D9wXY5Bww-wX5NH1q_e7yNsufwA9l5ICh5Au97V_PHPIVwMB4PLUY8RzVsvHUuJC9KWEAXLq-hvhpSV3Se_2PQZcYVVWcAsc0UZoJUfwXh4dTdIvHrHBC8VgSg8ZayKgyjLZMYRPoQLJmmgrHIhD22UqsAZ5FcCe2kcS941YSRC0eXGRc6XxrjwGFr5PHcnwCLlY3UhmfNTJayxEZ8IGSEXJ_kea4NTUI2LdFrLidMnPOkmbmymN77V5Fvt04GG_sZwUSlqvG_Sa-pAv2ocGnH_fePzptY0dh1aDzG5m6-xEE6WaNU4Vp_-5wHfoJ3c_bzVt9ejm8-wS3eqiMgzaBXLtfuCrKWwX-tW-Rex6Ol-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCCDN%3A+Feature+constraint+network+for+VHR+image+change+detection&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Chen%2C+Pan&rft.au=Zhang%2C+Bing&rft.au=Hong%2C+Danfeng&rft.au=Chen%2C+Zhengchao&rft.date=2022-05-01&rft.issn=0924-2716&rft.volume=187+p.101-119&rft.spage=101&rft.epage=119&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.02.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon