FCCDN: Feature constraint network for VHR image change detection
Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep convolutional neural network (CNN)-based methods have been shown in the field of change detection. However, there is still a lack of effective superv...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 187; pp. 101 - 119 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2022.02.021 |
Cover
Loading…
Abstract | Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep convolutional neural network (CNN)-based methods have been shown in the field of change detection. However, there is still a lack of effective supervision for change feature learning. In this work, a feature constraint change detection network (FCCDN) is proposed. We constrain features both in bitemporal feature extraction and feature fusion. More specifically, we propose a dual encoder-decoder network backbone for the change detection task. At the center of the backbone, we design a nonlocal feature pyramid network to extract and fuse multiscale features. To fuse bitemporal features in a robust way, we build a dense connection-based feature fusion module. Moreover, a self-supervised learning-based strategy is proposed to constrain feature learning. Based on FCCDN, we achieve state-of-the-art performance on three change detection datasets (LEVIR-CD, WHU, and SECOND). The experimental results show that FCCDN outperforms all benchmark methods. Moreover, for the first time, the acquisition of accurate bitemporal semantic segmentation results is achieved without using semantic segmentation labels. This is vital for the application of change detection because it saves the cost of labeling. The code of this work can be found on https://github.com/chenpan0615/FCCDN_pytorch. |
---|---|
AbstractList | Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep convolutional neural network (CNN)-based methods have been shown in the field of change detection. However, there is still a lack of effective supervision for change feature learning. In this work, a feature constraint change detection network (FCCDN) is proposed. We constrain features both in bitemporal feature extraction and feature fusion. More specifically, we propose a dual encoder-decoder network backbone for the change detection task. At the center of the backbone, we design a nonlocal feature pyramid network to extract and fuse multiscale features. To fuse bitemporal features in a robust way, we build a dense connection-based feature fusion module. Moreover, a self-supervised learning-based strategy is proposed to constrain feature learning. Based on FCCDN, we achieve state-of-the-art performance on three change detection datasets (LEVIR-CD, WHU, and SECOND). The experimental results show that FCCDN outperforms all benchmark methods. Moreover, for the first time, the acquisition of accurate bitemporal semantic segmentation results is achieved without using semantic segmentation labels. This is vital for the application of change detection because it saves the cost of labeling. The code of this work can be found on https://github.com/chenpan0615/FCCDN_pytorch. |
Author | Chen, Pan Hong, Danfeng Yang, Xuan Zhang, Bing Li, Baipeng Chen, Zhengchao |
Author_xml | – sequence: 1 givenname: Pan surname: Chen fullname: Chen, Pan organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 2 givenname: Bing surname: Zhang fullname: Zhang, Bing email: zb@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 3 givenname: Danfeng surname: Hong fullname: Hong, Danfeng organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 4 givenname: Zhengchao surname: Chen fullname: Chen, Zhengchao organization: Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 5 givenname: Xuan surname: Yang fullname: Yang, Xuan organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 6 givenname: Baipeng surname: Li fullname: Li, Baipeng organization: Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China |
BookMark | eNqNkFFLwzAUhYNMcJv-BvvoS2uStmkqCI7qnDAURH0NWXqrqV0yk0zx39sy8cEXhXs5L-cc7v0maGSsAYSOCU4IJuy0TbTfON_2m1BMaYKHIXtoTHhBY07TfITGuKRZTAvCDtDE-xZjTHLGx-hiXlWXt2fRHGTYOoiUNT44qU2IDIQP616jxrroaXEf6bV87g0v0vRSQwAVtDWHaL-RnYejb52ix_nVQ7WIl3fXN9VsGauMZCFmcsVKwus6rynmPAPSKMJWDFKarrhiBCQhNMsLXpY5LWTKszQrqAQOOJcS0ik62fVunH3bgg9irb2CrpMG7NYLyoo85ykvWW8tdlblrPcOGrFx_fHuUxAsBmaiFT_MxMBM4GFInzz_lVQ6yOHNgUn3j_xsl4eexLsGJ7zSYBTU2vW4RG31nx1floOPYg |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3335287 crossref_primary_10_1016_j_jag_2024_103767 crossref_primary_10_1016_j_eswa_2024_123731 crossref_primary_10_1109_TGRS_2022_3233849 crossref_primary_10_1109_TGRS_2023_3328966 crossref_primary_10_1080_01431161_2024_2305627 crossref_primary_10_1109_TGRS_2023_3297850 crossref_primary_10_3390_rs15082145 crossref_primary_10_1109_TGRS_2024_3403727 crossref_primary_10_1109_TGRS_2024_3400215 crossref_primary_10_1109_JSTARS_2024_3468949 crossref_primary_10_1016_j_isprsjprs_2024_11_017 crossref_primary_10_1109_JSTARS_2022_3215773 crossref_primary_10_1109_JSTARS_2024_3402431 crossref_primary_10_1109_JSTARS_2024_3449923 crossref_primary_10_1109_TGRS_2023_3328334 crossref_primary_10_1109_TGRS_2024_3407884 crossref_primary_10_1109_TGRS_2023_3344083 crossref_primary_10_3390_rs15102645 crossref_primary_10_1007_s12145_022_00914_4 crossref_primary_10_1109_JSEN_2023_3271391 crossref_primary_10_1117_1_JRS_18_044508 crossref_primary_10_1109_JSTARS_2024_3490754 crossref_primary_10_1109_TGRS_2024_3489615 crossref_primary_10_1109_TIM_2023_3243680 crossref_primary_10_1109_MGRS_2022_3227063 crossref_primary_10_1109_TGRS_2024_3357085 crossref_primary_10_1016_j_isprsjprs_2023_05_011 crossref_primary_10_1109_TGRS_2024_3392696 crossref_primary_10_1109_TGRS_2023_3235917 crossref_primary_10_1016_j_isprsjprs_2024_07_024 crossref_primary_10_1016_j_rse_2024_113996 crossref_primary_10_1080_15481603_2024_2380126 crossref_primary_10_1016_j_isprsjprs_2023_11_004 crossref_primary_10_1109_JSTARS_2023_3348630 crossref_primary_10_1109_JSTARS_2024_3418632 crossref_primary_10_1109_TGRS_2025_3535496 crossref_primary_10_1016_j_isprsjprs_2022_07_016 crossref_primary_10_1109_JSTARS_2024_3487137 crossref_primary_10_1016_j_jag_2024_104077 crossref_primary_10_1109_TGRS_2024_3425540 crossref_primary_10_3390_rs17020217 crossref_primary_10_1109_JSTARS_2023_3267137 crossref_primary_10_1109_TGRS_2024_3497983 crossref_primary_10_1016_j_jag_2025_104393 crossref_primary_10_1109_TGRS_2024_3439395 crossref_primary_10_1109_JSTARS_2024_3371015 crossref_primary_10_1109_TGRS_2023_3261273 crossref_primary_10_1109_LGRS_2023_3329058 crossref_primary_10_1109_TGRS_2023_3344948 crossref_primary_10_1016_j_isprsjprs_2024_04_012 crossref_primary_10_1016_j_isprsjprs_2023_09_012 crossref_primary_10_1016_j_isprsjprs_2022_07_001 crossref_primary_10_1109_JSTARS_2024_3354310 crossref_primary_10_1109_TGRS_2023_3305499 crossref_primary_10_1080_01431161_2023_2242590 crossref_primary_10_1016_j_jag_2022_102940 crossref_primary_10_1109_TGRS_2023_3327780 crossref_primary_10_1109_TGRS_2024_3440001 crossref_primary_10_3390_rs14194972 crossref_primary_10_1109_JSTARS_2023_3348572 crossref_primary_10_3390_rs15040928 crossref_primary_10_3390_rs15081958 crossref_primary_10_3390_rs16081387 crossref_primary_10_1109_JSTARS_2021_3133021 crossref_primary_10_1109_JSTARS_2024_3407972 crossref_primary_10_3390_rs15164095 crossref_primary_10_1109_TGRS_2023_3324947 crossref_primary_10_1016_j_isprsjprs_2024_09_002 crossref_primary_10_1080_01431161_2023_2288946 crossref_primary_10_1109_TGRS_2023_3277496 crossref_primary_10_1109_TGRS_2024_3505201 crossref_primary_10_1109_TGRS_2025_3545760 crossref_primary_10_1109_TIP_2024_3349868 crossref_primary_10_1117_1_JRS_18_016513 crossref_primary_10_1109_JSTARS_2022_3174780 crossref_primary_10_1111_phor_12495 crossref_primary_10_1109_JSTARS_2024_3491762 crossref_primary_10_3390_rs14092046 crossref_primary_10_1109_TGRS_2023_3332338 crossref_primary_10_1080_22797254_2022_2161419 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_3390_s25010103 crossref_primary_10_3390_rs15010045 crossref_primary_10_1109_JSTARS_2023_3314133 crossref_primary_10_1016_j_inffus_2025_103110 crossref_primary_10_1109_TIM_2024_3472783 crossref_primary_10_3390_rs15040949 crossref_primary_10_1007_s11069_024_07094_y crossref_primary_10_1109_TGRS_2025_3526211 crossref_primary_10_1109_TITS_2024_3411647 crossref_primary_10_12677_jisp_2025_141006 crossref_primary_10_1016_j_isprsjprs_2023_07_001 crossref_primary_10_3390_rs14194908 crossref_primary_10_1109_TGRS_2024_3432771 crossref_primary_10_3390_rs17010135 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_1109_TGRS_2023_3276853 crossref_primary_10_1109_JSTARS_2024_3350044 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_3390_rs15051219 crossref_primary_10_3390_rs14246352 crossref_primary_10_1109_JSTARS_2024_3372386 crossref_primary_10_1007_s00371_024_03755_y crossref_primary_10_1016_j_isprsjprs_2023_06_017 crossref_primary_10_3390_rs15061655 crossref_primary_10_1109_LGRS_2023_3234645 crossref_primary_10_1109_TCSVT_2024_3494820 crossref_primary_10_1109_LGRS_2024_3366981 crossref_primary_10_1109_TGRS_2024_3433014 crossref_primary_10_1109_JSTARS_2024_3439340 crossref_primary_10_3390_rs15235459 crossref_primary_10_1109_TGRS_2023_3313619 crossref_primary_10_1109_LGRS_2022_3232763 crossref_primary_10_3390_rs15215106 crossref_primary_10_1109_JSTARS_2022_3181155 crossref_primary_10_1109_JSTARS_2024_3394571 crossref_primary_10_1109_JSTARS_2023_3283524 crossref_primary_10_1109_JSTARS_2024_3434966 crossref_primary_10_3390_rs16183466 crossref_primary_10_1109_TGRS_2023_3317701 crossref_primary_10_1016_j_jag_2024_104282 crossref_primary_10_1109_JSTARS_2025_3531499 crossref_primary_10_1109_LGRS_2023_3238553 crossref_primary_10_1109_TGRS_2024_3434451 |
Cites_doi | 10.1016/j.ins.2010.10.016 10.1109/TGRS.2019.2948659 10.1080/01431168108948362 10.1109/CVPR.2017.660 10.1109/TGRS.2015.2396686 10.1109/CVPR.2019.01061 10.1109/CVPR.2016.278 10.1109/CVPR.2017.106 10.1109/JSTARS.2020.3037893 10.1007/s12145-019-00380-5 10.1109/TGRS.2021.3085870 10.3390/rs12101662 10.1016/j.isprsjprs.2020.01.013 10.1016/j.rse.2005.09.008 10.1162/neco.1997.9.8.1735 10.1109/CVPR.2017.615 10.1109/JSTARS.2020.2974276 10.14358/PERS.83.3.225 10.1109/TPAMI.2020.2992393 10.1080/01431168908903937 10.1016/0034-4257(84)90025-7 10.1109/LGRS.2019.2916601 10.3390/rs12111868 10.1016/j.isprsjprs.2019.11.006 10.3390/info11020125 10.1016/j.isprsjprs.2021.10.001 10.1109/ICPR48806.2021.9413112 10.1016/j.isprsjprs.2016.09.013 10.1109/CVPR.2018.00813 10.1109/CVPR.2015.7299064 10.1109/CVPRW.2018.00034 10.1016/j.isprsjprs.2021.05.001 10.1109/JPROC.2019.2948454 10.1016/j.isprsjprs.2020.06.003 10.3390/rs13183707 10.3390/rs11111382 10.1007/s10514-018-9734-5 10.1016/j.isprsjprs.2021.05.002 10.1109/CVPR.2015.7298965 10.1109/ICCV.2017.74 10.3390/rs13081440 10.1109/JSTARS.2019.2953128 10.1109/CVPR.2018.00745 10.3390/rs11111314 10.1109/IGARSS.2019.8900330 10.1109/TGRS.2018.2858817 10.1016/j.cviu.2019.07.003 10.3390/rs12101688 10.1016/j.isprsjprs.2021.03.005 10.1109/TGRS.2021.3089453 10.1016/j.rse.2004.10.012 |
ContentType | Journal Article |
Copyright | 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2022.02.021 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 119 |
ExternalDocumentID | 10_1016_j_isprsjprs_2022_02_021 S0924271622000636 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c414t-6ab6918dd5d20884e1fc16b6e323b8c61ea112457899527a3843472ae8e05aae3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Mon Jul 21 09:49:17 EDT 2025 Tue Jul 01 03:46:47 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Fri Feb 23 02:41:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Feature constraint Change detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-6ab6918dd5d20884e1fc16b6e323b8c61ea112457899527a3843472ae8e05aae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2675583896 |
PQPubID | 24069 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2675583896 crossref_primary_10_1016_j_isprsjprs_2022_02_021 crossref_citationtrail_10_1016_j_isprsjprs_2022_02_021 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_02_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, L., Zhang, C., Wu, M., 2018. D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 182–186. Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440. Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing, arXiv preprint arXiv:1809.00916 (2018). Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141. Jing, L., Tian, Y., 2020. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. Ronneberger, Fischer, Brox (b0255) 2015 Diakogiannis, Waldner, Caccetta, Wu (b0065) 2020; 162 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch. Hou, Liu, Wang, Wang (b0110) 2019; 58 Howarth, Wickware (b0120) 1981; 2 Zhang, Chen, Peng, Benediktsson, Liu, Zou, Li, Plaza (b0315) 2019; 107 Peng, Zhong, Li, Li (b0235) 2020 Cui, Zhang, Yan, Wei, Wu (b0050) 2019; 11 Jabari, S., Zhang, Y., 2018. Urban change detection utilizing high-resolution optical images taken from different viewing angles and different platforms. In: Urban Remote Sensing, CRC Press, 2018, pp. 125–148. Asokan, Anitha (b0010) 2019; 12 Li, H., Xiong, P., An, J., Wang, L., 2018. Pyramid attention network for semantic segmentation, arXiv preprint arXiv:1805.10180 (2018). Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L., 2021. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b0015) 2020; 11 Daudt, R.C., Le Saux, B., Boulch, A., 2018. Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, 2018, pp. 4063–4067. Liu, Chen, Xu, Sun, Yan, Diao, Han (b0185) 2019; 17 Zhang, Yue, Tapete, Jiang, Shangguan, Huang, Liu (b0320) 2020; 166 Papadomanolaki, M., Verma, S., Vakalopoulou, M., Gupta, S., Karantzalos, K., 2019. Detecting urban changes with recurrent neural networks from multitemporal sentinel-2 data. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019, pp. 214–217. Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803. Zhang, Hu, Zhang, Shu, Zhou (b0325) 2021; 177 Noroozi, Favaro (b0210) 2016 Jin, Sader (b0150) 2005; 94 Daudt, Le Saux, Boulch, Gousseau (b0060) 2019; 187 Zhang, Fu, Li, Zhang (b0330) 2021; 13 Shi, Zhang, Zhang, Chen, Zhan (b0265) 2020; 12 Feng, Z., Xu, C., Tao, D., 2019. Self-supervised representation learning by rotation feature decoupling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10364–10374. Xu, J., Ranftl, R., Koltun, V., 2017. Accurate optical flow via direct cost volume processing. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1289–1297. Im, Jensen (b0130) 2005; 99 Liu, Jiang, Zhang, Zhang (b0190) 2020; 13 Chen, H., Qi, Z., Shi, Z., 2021. Efficient transformer based method for remote sensing image change detection, arXiv preprint arXiv:2103.00208 (2021). Diakogiannis, Waldner, Caccetta (b0070) 2021; 13 LeCun, Bengio, Hinton (b0165) 2015; 521 Cheng, Wu, Zheng, Qi, Liu (b0045) 2021; 182 Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A., 2016. Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2536–2544. Quarmby, Cushnie (b0245) 1989; 10 Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587 (2017). Chen, Shi (b0020) 2020; 12 Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR, 2015, pp. 448–456. Ghosh, Mishra, Ghosh (b0095) 2011; 181 Mi, Chen (b0205) 2020; 159 Ji, Wei, Lu (b0145) 2018; 57 Yang, K., Xia, G.-S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection, arXiv preprint arXiv:2010.05687 (2020). Zagoruyko, S., Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4353–4361. Hou, Bai, Li, Shang, Shen (b0115) 2021; 177 Mahmoudzadeh, H., 2007. Digital change detection using remotely sensed data for monitoring green space destruction in Tabriz. Qin, Tian, Reinartz (b0240) 2016; 122 Chen, Y., Bruzzone, L., Self-supervised change detection in multi-view remote sensing images, arXiv preprint arXiv:2103.05969 (2021). Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014). Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125. Zhu, Su, Guo, Harmon (b0355) 2017; 83 Vincenzi, S., Porrello, A., Buzzega, P., Cipriano, M., Fronte, P., Cuccu, R., Ippoliti, C., Conte, A., Calderara, S., 2020. The color out of space: learning self-supervised representations for earth observation imagery, arXiv preprint arXiv:2006.12119 (2020). Peng, Zhang, Guan (b0230) 2019; 11 Gao, Gao, Dong, Wang (b0090) 2019; 12 Richards (b0250) 1984; 16 Zheng, Wan, Zhang, Xiang, Peng, Zhang (b0340) 2021; 175 Liu, Bruzzone, Bovolo, Zanetti, Du (b0180) 2015; 53 Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626. Fang, Li, Shao, Li (b0080) 2021 Hendrycks, D., Lee, K., Mazeika, M., 2019. Using pre-training can improve model robustness and uncertainty. In: International Conference on Machine Learning, PMLR, 2019, pp. 2712–2721. Alcantarilla, Stent, Ros, Arroyo, Gherardi (b0005) 2018; 42 Chen, J., Yuan, Z., Peng, J., Chen, L., Haozhe, H., Zhu, J., Liu, Y., Li, H., 2020. Dasnet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2020. Zhang, Isola, Efros (b0310) 2016 Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–2890. Tao, Qi, Lu, Wang, Li (b0275) 2020 Zhou, Siddiquee, Tajbakhsh, Liang (b0345) 2018 Hochreiter, Schmidhuber (b0105) 1997; 9 Dong, Ma, Wu, Zhang, Jiao (b0075) 2020; 12 10.1016/j.isprsjprs.2022.02.021_b0305 10.1016/j.isprsjprs.2022.02.021_b0025 Shi (10.1016/j.isprsjprs.2022.02.021_b0265) 2020; 12 10.1016/j.isprsjprs.2022.02.021_b0300 Cui (10.1016/j.isprsjprs.2022.02.021_b0050) 2019; 11 10.1016/j.isprsjprs.2022.02.021_b0225 Fang (10.1016/j.isprsjprs.2022.02.021_b0080) 2021 10.1016/j.isprsjprs.2022.02.021_b0100 Ji (10.1016/j.isprsjprs.2022.02.021_b0145) 2018; 57 10.1016/j.isprsjprs.2022.02.021_b0220 10.1016/j.isprsjprs.2022.02.021_b0140 10.1016/j.isprsjprs.2022.02.021_b0260 Liu (10.1016/j.isprsjprs.2022.02.021_b0185) 2019; 17 Dong (10.1016/j.isprsjprs.2022.02.021_b0075) 2020; 12 Diakogiannis (10.1016/j.isprsjprs.2022.02.021_b0065) 2020; 162 Liu (10.1016/j.isprsjprs.2022.02.021_b0180) 2015; 53 Hochreiter (10.1016/j.isprsjprs.2022.02.021_b0105) 1997; 9 Asokan (10.1016/j.isprsjprs.2022.02.021_b0010) 2019; 12 Diakogiannis (10.1016/j.isprsjprs.2022.02.021_b0070) 2021; 13 Hou (10.1016/j.isprsjprs.2022.02.021_b0115) 2021; 177 10.1016/j.isprsjprs.2022.02.021_b0035 10.1016/j.isprsjprs.2022.02.021_b0350 10.1016/j.isprsjprs.2022.02.021_b0155 Zhu (10.1016/j.isprsjprs.2022.02.021_b0355) 2017; 83 10.1016/j.isprsjprs.2022.02.021_b0270 10.1016/j.isprsjprs.2022.02.021_b0030 10.1016/j.isprsjprs.2022.02.021_b0195 Ronneberger (10.1016/j.isprsjprs.2022.02.021_b0255) 2015 Tao (10.1016/j.isprsjprs.2022.02.021_b0275) 2020 Daudt (10.1016/j.isprsjprs.2022.02.021_b0060) 2019; 187 10.1016/j.isprsjprs.2022.02.021_b0200 Quarmby (10.1016/j.isprsjprs.2022.02.021_b0245) 1989; 10 Alcantarilla (10.1016/j.isprsjprs.2022.02.021_b0005) 2018; 42 10.1016/j.isprsjprs.2022.02.021_b0125 10.1016/j.isprsjprs.2022.02.021_b0285 Zhang (10.1016/j.isprsjprs.2022.02.021_b0315) 2019; 107 Buslaev (10.1016/j.isprsjprs.2022.02.021_b0015) 2020; 11 Jin (10.1016/j.isprsjprs.2022.02.021_b0150) 2005; 94 10.1016/j.isprsjprs.2022.02.021_b0160 10.1016/j.isprsjprs.2022.02.021_b0280 Zhang (10.1016/j.isprsjprs.2022.02.021_b0320) 2020; 166 Zhou (10.1016/j.isprsjprs.2022.02.021_b0345) 2018 10.1016/j.isprsjprs.2022.02.021_b0085 Richards (10.1016/j.isprsjprs.2022.02.021_b0250) 1984; 16 Zhang (10.1016/j.isprsjprs.2022.02.021_b0310) 2016 10.1016/j.isprsjprs.2022.02.021_b0040 Cheng (10.1016/j.isprsjprs.2022.02.021_b0045) 2021; 182 Howarth (10.1016/j.isprsjprs.2022.02.021_b0120) 1981; 2 Zheng (10.1016/j.isprsjprs.2022.02.021_b0340) 2021; 175 Peng (10.1016/j.isprsjprs.2022.02.021_b0235) 2020 LeCun (10.1016/j.isprsjprs.2022.02.021_b0165) 2015; 521 Ghosh (10.1016/j.isprsjprs.2022.02.021_b0095) 2011; 181 Hou (10.1016/j.isprsjprs.2022.02.021_b0110) 2019; 58 10.1016/j.isprsjprs.2022.02.021_b0215 Zhang (10.1016/j.isprsjprs.2022.02.021_b0330) 2021; 13 10.1016/j.isprsjprs.2022.02.021_b0135 Gao (10.1016/j.isprsjprs.2022.02.021_b0090) 2019; 12 10.1016/j.isprsjprs.2022.02.021_b0335 10.1016/j.isprsjprs.2022.02.021_b0175 10.1016/j.isprsjprs.2022.02.021_b0295 Chen (10.1016/j.isprsjprs.2022.02.021_b0020) 2020; 12 10.1016/j.isprsjprs.2022.02.021_b0055 Qin (10.1016/j.isprsjprs.2022.02.021_b0240) 2016; 122 10.1016/j.isprsjprs.2022.02.021_b0170 Peng (10.1016/j.isprsjprs.2022.02.021_b0230) 2019; 11 Mi (10.1016/j.isprsjprs.2022.02.021_b0205) 2020; 159 Noroozi (10.1016/j.isprsjprs.2022.02.021_b0210) 2016 10.1016/j.isprsjprs.2022.02.021_b0290 Liu (10.1016/j.isprsjprs.2022.02.021_b0190) 2020; 13 Im (10.1016/j.isprsjprs.2022.02.021_b0130) 2005; 99 Zhang (10.1016/j.isprsjprs.2022.02.021_b0325) 2021; 177 |
References_xml | – reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–2890. – volume: 83 start-page: 225 year: 2017 end-page: 236 ident: b0355 article-title: Unsupervised object-based differencing for land-cover change detection publication-title: Photogram. Eng. Remote Sens. – volume: 107 start-page: 2294 year: 2019 end-page: 2301 ident: b0315 article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view] publication-title: Proc. IEEE – volume: 159 start-page: 140 year: 2020 end-page: 152 ident: b0205 article-title: Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation publication-title: ISPRS J. Photogram. Remote Sens. – reference: Vincenzi, S., Porrello, A., Buzzega, P., Cipriano, M., Fronte, P., Cuccu, R., Ippoliti, C., Conte, A., Calderara, S., 2020. The color out of space: learning self-supervised representations for earth observation imagery, arXiv preprint arXiv:2006.12119 (2020). – volume: 122 start-page: 41 year: 2016 end-page: 56 ident: b0240 article-title: 3d change detection–approaches and applications publication-title: ISPRS J. Photogram. Remote Sens. – reference: Chen, H., Qi, Z., Shi, Z., 2021. Efficient transformer based method for remote sensing image change detection, arXiv preprint arXiv:2103.00208 (2021). – reference: Feng, Z., Xu, C., Tao, D., 2019. Self-supervised representation learning by rotation feature decoupling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10364–10374. – reference: Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587 (2017). – volume: 11 start-page: 1382 year: 2019 ident: b0230 article-title: End-to-end change detection for high resolution satellite images using improved unet++ publication-title: Remote Sensing – reference: Yuan, Y., Wang, J., 2018. Ocnet: Object context network for scene parsing, arXiv preprint arXiv:1809.00916 (2018). – volume: 13 start-page: 3707 year: 2021 ident: b0070 article-title: Looking for change? roll the dice and demand attention publication-title: Remote Sens. – reference: Li, H., Xiong, P., An, J., Wang, L., 2018. Pyramid attention network for semantic segmentation, arXiv preprint arXiv:1805.10180 (2018). – reference: Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125. – reference: Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803. – reference: Papadomanolaki, M., Verma, S., Vakalopoulou, M., Gupta, S., Karantzalos, K., 2019. Detecting urban changes with recurrent neural networks from multitemporal sentinel-2 data. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019, pp. 214–217. – volume: 175 start-page: 247 year: 2021 end-page: 267 ident: b0340 article-title: Clnet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery publication-title: ISPRS J. Photogram. Remote Sens. – reference: Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–626. – reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, PMLR, 2015, pp. 448–456. – start-page: 69 year: 2016 end-page: 84 ident: b0210 article-title: Unsupervised learning of visual representations by solving jigsaw puzzles publication-title: European conference on computer vision – reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141. – reference: Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L., 2021. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. – volume: 166 start-page: 183 year: 2020 end-page: 200 ident: b0320 article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. – volume: 99 start-page: 326 year: 2005 end-page: 340 ident: b0130 article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification publication-title: Remote Sens. Environ. – volume: 57 start-page: 574 year: 2018 end-page: 586 ident: b0145 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 42 start-page: 1301 year: 2018 end-page: 1322 ident: b0005 article-title: Street-view change detection with deconvolutional networks publication-title: Autono. Robots – volume: 53 start-page: 4363 year: 2015 end-page: 4378 ident: b0180 article-title: Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0165 publication-title: Deep learning, nature – reference: Zagoruyko, S., Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 4353–4361. – reference: Chen, Y., Bruzzone, L., Self-supervised change detection in multi-view remote sensing images, arXiv preprint arXiv:2103.05969 (2021). – volume: 11 start-page: 1314 year: 2019 ident: b0050 article-title: An unsupervised sar change detection method based on stochastic subspace ensemble learning publication-title: Remote Sens. – reference: Hendrycks, D., Lee, K., Mazeika, M., 2019. Using pre-training can improve model robustness and uncertainty. In: International Conference on Machine Learning, PMLR, 2019, pp. 2712–2721. – volume: 177 start-page: 147 year: 2021 end-page: 160 ident: b0325 article-title: Object-level change detection with a dual correlation attention-guided detector publication-title: ISPRS J. Photogram. Remote Sens. – volume: 94 start-page: 364 year: 2005 end-page: 372 ident: b0150 article-title: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances publication-title: Remote Sens. Environ. – volume: 13 start-page: 1109 year: 2020 end-page: 1118 ident: b0190 article-title: Deep depthwise separable convolutional network for change detection in optical aerial images publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Jing, L., Tian, Y., 2020. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. – volume: 12 start-page: 1688 year: 2020 ident: b0265 article-title: Change detection based on artificial intelligence: State-of-the-art and challenges publication-title: Remote Sensing – reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440. – volume: 13 start-page: 1440 year: 2021 ident: b0330 article-title: Hdfnet: Hierarchical dynamic fusion network for change detection in optical aerial images publication-title: Remote Sens. – volume: 162 start-page: 94 year: 2020 end-page: 114 ident: b0065 article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogram. Remote Sens. – year: 2021 ident: b0080 article-title: Snunet-cd: A densely connected siamese network for change detection of vhr images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0105 article-title: Long short-term memory publication-title: Neural Comput. – reference: Xu, J., Ranftl, R., Koltun, V., 2017. Accurate optical flow via direct cost volume processing. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1289–1297. – volume: 2 start-page: 277 year: 1981 end-page: 291 ident: b0120 article-title: Procedures for change detection using landsat digital data publication-title: Int. J. Remote Sens. – volume: 11 start-page: 125 year: 2020 ident: b0015 article-title: Albumentations: fast and flexible image augmentations publication-title: Information – reference: Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A., 2016. Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2536–2544. – start-page: 234 year: 2015 end-page: 241 ident: b0255 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – volume: 182 start-page: 52 year: 2021 end-page: 66 ident: b0045 article-title: A hierarchical self-attention augmented laplacian pyramid expanding network for change detection in high-resolution remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. – volume: 12 start-page: 1662 year: 2020 ident: b0020 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote Sens. – start-page: 649 year: 2016 end-page: 666 ident: b0310 article-title: Colorful image colorization publication-title: European conference on computer vision – volume: 181 start-page: 699 year: 2011 end-page: 715 ident: b0095 article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images publication-title: Inf. Sci. – reference: Zhou, L., Zhang, C., Wu, M., 2018. D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 182–186. – volume: 12 start-page: 4517 year: 2019 end-page: 4529 ident: b0090 article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Yang, K., Xia, G.-S., Liu, Z., Du, B., Yang, W., Pelillo, M., 2020. Asymmetric siamese networks for semantic change detection, arXiv preprint arXiv:2010.05687 (2020). – reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014). – reference: Mahmoudzadeh, H., 2007. Digital change detection using remotely sensed data for monitoring green space destruction in Tabriz. – volume: 177 start-page: 103 year: 2021 end-page: 115 ident: b0115 article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images publication-title: ISPRS J. Photogram. Remote Sens. – volume: 10 start-page: 953 year: 1989 end-page: 963 ident: b0245 article-title: Monitoring urban land cover changes at the urban fringe from spot hrv imagery in south-east England publication-title: Int. J. Remote Sens. – year: 2020 ident: b0235 article-title: Optical remote sensing image change detection based on attention mechanism and image difference publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 3 year: 2018 end-page: 11 ident: b0345 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep learning in medical image analysis and multimodal learning for clinical decision support – volume: 17 start-page: 127 year: 2019 end-page: 131 ident: b0185 article-title: Convolutional neural network-based transfer learning for optical aerial images change detection publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch. – volume: 12 start-page: 143 year: 2019 end-page: 160 ident: b0010 article-title: Change detection techniques for remote sensing applications: a survey publication-title: Earth Sci. Inf. – volume: 16 start-page: 35 year: 1984 end-page: 46 ident: b0250 article-title: Thematic mapping from multitemporal image data using the principal components transformation publication-title: Remote Sens. Environ. – year: 2020 ident: b0275 article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Chen, J., Yuan, Z., Peng, J., Chen, L., Haozhe, H., Zhu, J., Liu, Y., Li, H., 2020. Dasnet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 2020. – volume: 187 start-page: 102783 year: 2019 ident: b0060 article-title: Multitask learning for large-scale semantic change detection publication-title: Comput. Vis. Image Underst. – reference: Jabari, S., Zhang, Y., 2018. Urban change detection utilizing high-resolution optical images taken from different viewing angles and different platforms. In: Urban Remote Sensing, CRC Press, 2018, pp. 125–148. – volume: 58 start-page: 1790 year: 2019 end-page: 1802 ident: b0110 article-title: From w-net to cdgan: Bitemporal change detection via deep learning techniques publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Daudt, R.C., Le Saux, B., Boulch, A., 2018. Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, 2018, pp. 4063–4067. – volume: 12 start-page: 1868 year: 2020 ident: b0075 article-title: Self-supervised representation learning for remote sensing image change detection based on temporal prediction publication-title: Remote Sens. – volume: 181 start-page: 699 year: 2011 ident: 10.1016/j.isprsjprs.2022.02.021_b0095 article-title: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.10.016 – volume: 58 start-page: 1790 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0110 article-title: From w-net to cdgan: Bitemporal change detection via deep learning techniques publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2948659 – volume: 2 start-page: 277 year: 1981 ident: 10.1016/j.isprsjprs.2022.02.021_b0120 article-title: Procedures for change detection using landsat digital data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168108948362 – ident: 10.1016/j.isprsjprs.2022.02.021_b0335 doi: 10.1109/CVPR.2017.660 – ident: 10.1016/j.isprsjprs.2022.02.021_b0100 – ident: 10.1016/j.isprsjprs.2022.02.021_b0040 – volume: 53 start-page: 4363 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.021_b0180 article-title: Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2396686 – start-page: 649 year: 2016 ident: 10.1016/j.isprsjprs.2022.02.021_b0310 article-title: Colorful image colorization – ident: 10.1016/j.isprsjprs.2022.02.021_b0085 doi: 10.1109/CVPR.2019.01061 – ident: 10.1016/j.isprsjprs.2022.02.021_b0225 doi: 10.1109/CVPR.2016.278 – ident: 10.1016/j.isprsjprs.2022.02.021_b0175 doi: 10.1109/CVPR.2017.106 – ident: 10.1016/j.isprsjprs.2022.02.021_b0030 doi: 10.1109/JSTARS.2020.3037893 – volume: 12 start-page: 143 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0010 article-title: Change detection techniques for remote sensing applications: a survey publication-title: Earth Sci. Inf. doi: 10.1007/s12145-019-00380-5 – start-page: 234 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.021_b0255 article-title: U-net: Convolutional networks for biomedical image segmentation – ident: 10.1016/j.isprsjprs.2022.02.021_b0270 doi: 10.1109/TGRS.2021.3085870 – volume: 12 start-page: 1662 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0020 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote Sens. doi: 10.3390/rs12101662 – volume: 162 start-page: 94 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0065 article-title: Resunet-a: a deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.013 – start-page: 69 year: 2016 ident: 10.1016/j.isprsjprs.2022.02.021_b0210 article-title: Unsupervised learning of visual representations by solving jigsaw puzzles – year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0235 article-title: Optical remote sensing image change detection based on attention mechanism and image difference publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 10.1016/j.isprsjprs.2022.02.021_b0295 – volume: 99 start-page: 326 year: 2005 ident: 10.1016/j.isprsjprs.2022.02.021_b0130 article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.09.008 – ident: 10.1016/j.isprsjprs.2022.02.021_b0140 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.isprsjprs.2022.02.021_b0105 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.021_b0165 publication-title: Deep learning, nature – ident: 10.1016/j.isprsjprs.2022.02.021_b0290 doi: 10.1109/CVPR.2017.615 – volume: 13 start-page: 1109 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0190 article-title: Deep depthwise separable convolutional network for change detection in optical aerial images publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2020.2974276 – volume: 83 start-page: 225 year: 2017 ident: 10.1016/j.isprsjprs.2022.02.021_b0355 article-title: Unsupervised object-based differencing for land-cover change detection publication-title: Photogram. Eng. Remote Sens. doi: 10.14358/PERS.83.3.225 – ident: 10.1016/j.isprsjprs.2022.02.021_b0155 doi: 10.1109/TPAMI.2020.2992393 – volume: 10 start-page: 953 year: 1989 ident: 10.1016/j.isprsjprs.2022.02.021_b0245 article-title: Monitoring urban land cover changes at the urban fringe from spot hrv imagery in south-east England publication-title: Int. J. Remote Sens. doi: 10.1080/01431168908903937 – volume: 16 start-page: 35 year: 1984 ident: 10.1016/j.isprsjprs.2022.02.021_b0250 article-title: Thematic mapping from multitemporal image data using the principal components transformation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90025-7 – start-page: 3 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.021_b0345 article-title: Unet++: A nested u-net architecture for medical image segmentation – ident: 10.1016/j.isprsjprs.2022.02.021_b0200 – ident: 10.1016/j.isprsjprs.2022.02.021_b0055 – ident: 10.1016/j.isprsjprs.2022.02.021_b0135 – ident: 10.1016/j.isprsjprs.2022.02.021_b0160 – year: 2021 ident: 10.1016/j.isprsjprs.2022.02.021_b0080 article-title: Snunet-cd: A densely connected siamese network for change detection of vhr images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 17 start-page: 127 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0185 article-title: Convolutional neural network-based transfer learning for optical aerial images change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2916601 – volume: 12 start-page: 1868 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0075 article-title: Self-supervised representation learning for remote sensing image change detection based on temporal prediction publication-title: Remote Sens. doi: 10.3390/rs12111868 – year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0275 article-title: Remote sensing image scene classification with self-supervised paradigm under limited labeled samples publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 159 start-page: 140 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0205 article-title: Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.006 – volume: 11 start-page: 125 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0015 article-title: Albumentations: fast and flexible image augmentations publication-title: Information doi: 10.3390/info11020125 – volume: 182 start-page: 52 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.021_b0045 article-title: A hierarchical self-attention augmented laplacian pyramid expanding network for change detection in high-resolution remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2021.10.001 – ident: 10.1016/j.isprsjprs.2022.02.021_b0280 doi: 10.1109/ICPR48806.2021.9413112 – volume: 122 start-page: 41 year: 2016 ident: 10.1016/j.isprsjprs.2022.02.021_b0240 article-title: 3d change detection–approaches and applications publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2016.09.013 – ident: 10.1016/j.isprsjprs.2022.02.021_b0285 doi: 10.1109/CVPR.2018.00813 – ident: 10.1016/j.isprsjprs.2022.02.021_b0305 doi: 10.1109/CVPR.2015.7299064 – ident: 10.1016/j.isprsjprs.2022.02.021_b0170 – ident: 10.1016/j.isprsjprs.2022.02.021_b0350 doi: 10.1109/CVPRW.2018.00034 – volume: 177 start-page: 103 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.021_b0115 article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.001 – volume: 107 start-page: 2294 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0315 article-title: Remotely sensed big data: Evolution in model development for information extraction [point of view] publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2948454 – volume: 166 start-page: 183 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0320 article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.003 – ident: 10.1016/j.isprsjprs.2022.02.021_b0220 – volume: 13 start-page: 3707 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.021_b0070 article-title: Looking for change? roll the dice and demand attention publication-title: Remote Sens. doi: 10.3390/rs13183707 – volume: 11 start-page: 1382 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0230 article-title: End-to-end change detection for high resolution satellite images using improved unet++ publication-title: Remote Sensing doi: 10.3390/rs11111382 – ident: 10.1016/j.isprsjprs.2022.02.021_b0025 – ident: 10.1016/j.isprsjprs.2022.02.021_b0300 – volume: 42 start-page: 1301 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.021_b0005 article-title: Street-view change detection with deconvolutional networks publication-title: Autono. Robots doi: 10.1007/s10514-018-9734-5 – volume: 177 start-page: 147 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.021_b0325 article-title: Object-level change detection with a dual correlation attention-guided detector publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.002 – ident: 10.1016/j.isprsjprs.2022.02.021_b0195 doi: 10.1109/CVPR.2015.7298965 – ident: 10.1016/j.isprsjprs.2022.02.021_b0260 doi: 10.1109/ICCV.2017.74 – volume: 13 start-page: 1440 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.021_b0330 article-title: Hdfnet: Hierarchical dynamic fusion network for change detection in optical aerial images publication-title: Remote Sens. doi: 10.3390/rs13081440 – volume: 12 start-page: 4517 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0090 article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2953128 – ident: 10.1016/j.isprsjprs.2022.02.021_b0125 doi: 10.1109/CVPR.2018.00745 – volume: 11 start-page: 1314 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0050 article-title: An unsupervised sar change detection method based on stochastic subspace ensemble learning publication-title: Remote Sens. doi: 10.3390/rs11111314 – ident: 10.1016/j.isprsjprs.2022.02.021_b0215 doi: 10.1109/IGARSS.2019.8900330 – volume: 57 start-page: 574 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.021_b0145 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2858817 – volume: 187 start-page: 102783 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.021_b0060 article-title: Multitask learning for large-scale semantic change detection publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.07.003 – volume: 12 start-page: 1688 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.021_b0265 article-title: Change detection based on artificial intelligence: State-of-the-art and challenges publication-title: Remote Sensing doi: 10.3390/rs12101688 – volume: 175 start-page: 247 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.021_b0340 article-title: Clnet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2021.03.005 – ident: 10.1016/j.isprsjprs.2022.02.021_b0035 doi: 10.1109/TGRS.2021.3089453 – volume: 94 start-page: 364 year: 2005 ident: 10.1016/j.isprsjprs.2022.02.021_b0150 article-title: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.10.012 |
SSID | ssj0001568 |
Score | 2.6604924 |
Snippet | Change detection is of great significance to Earth observations. Recently, with the emergence of deep learning (DL), the power and feasibility of deep... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | Change detection data collection Deep learning Feature constraint neural networks photogrammetry |
Title | FCCDN: Feature constraint network for VHR image change detection |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2022.02.021 https://www.proquest.com/docview/2675583896 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG6WeVAPRqfGn0tNvOKglAI7uaDL1GQHdWY30kIXWZQtGzt48W_3PX5MZ2J2MIEDpC_Aa_v6lX7vKyGXsXQk86RvxMpl-LdKGr7jjAw70oxrHHB1zrboi96A3w-dYY0EVS4M0irL2F_E9Dxal3dapTdb0yRpPZkwdWAogJRnm9gou825i6386vOb5mEV6XBY2MDSKxyvZD6dzcdwwkSRsVy8k1l_jVC_YnU-AHV3yU6JHGmneLk9UtNpg2z_0BNskM1yS_PXj31y3Q2Cm36bIsZbzDSNEAjifhAZTQvqNwW8Sl96jzR5h6BCixRgGussZ2elB2TQvX0Oeka5XYIRcYtnhpBK-JYXx07MIHZwbY0iSyihbWYrLxKWlgCuOHRR33eYK22P29xlUnvadKTU9iGpp5NUHxHqCRPqCpCcGQmupPLYiDseAHHU7lHKOiaiclEYlVri-AlvYUUaG4dL34bo29DEAwzNpeG0kNNYb9Ku6iBcaRkhBP31xhdVrYXQb3AxRKZ6soBCMFPCJWNfnPznAadkC68KCuQZqWezhT4HmJKpZt4Om2Sjc_fQ638BwdvmzQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6Ccigc0MYPwcY2I-0aNXFsN-mJqlCFwXrYKOJm2YkrWkFatelh__3ey48KJiEOk5JL4qckz_bnz_F7nwG-Z0YaHpnYy2yX098q48VSTrwwdVw4GnBdGW0xUslY_HiQD1swaHJhKKyyxv4K00u0rq90am92FtNp57ePUwdOAkhltkmotmGH1KlkC3b61zfJaAPIQZURR-U9MngV5jVdLZarGZ44V-S81O_kwVuD1D9wXY5Bww-wX5NH1q_e7yNsufwA9l5ICh5Au97V_PHPIVwMB4PLUY8RzVsvHUuJC9KWEAXLq-hvhpSV3Se_2PQZcYVVWcAsc0UZoJUfwXh4dTdIvHrHBC8VgSg8ZayKgyjLZMYRPoQLJmmgrHIhD22UqsAZ5FcCe2kcS941YSRC0eXGRc6XxrjwGFr5PHcnwCLlY3UhmfNTJayxEZ8IGSEXJ_kea4NTUI2LdFrLidMnPOkmbmymN77V5Fvt04GG_sZwUSlqvG_Sa-pAv2ocGnH_fePzptY0dh1aDzG5m6-xEE6WaNU4Vp_-5wHfoJ3c_bzVt9ejm8-wS3eqiMgzaBXLtfuCrKWwX-tW-Rex6Ol- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCCDN%3A+Feature+constraint+network+for+VHR+image+change+detection&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Chen%2C+Pan&rft.au=Zhang%2C+Bing&rft.au=Hong%2C+Danfeng&rft.au=Chen%2C+Zhengchao&rft.date=2022-05-01&rft.issn=0924-2716&rft.volume=187+p.101-119&rft.spage=101&rft.epage=119&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.02.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |