Monitoring biochemical reactions using Y-cut quartz thermal sensors
In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically separated but located in close proximity to the resonator for sensitive calorimetric biosensing applications. The coupling of heat from the react...
Saved in:
Published in | Analyst (London) Vol. 136; no. 14; pp. 2904 - 2911 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.07.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically separated but located in close proximity to the resonator for sensitive calorimetric biosensing applications. The coupling of heat from the reaction chamber to the quartz resonator is achieved via radiation and conduction through ambient gas. The sensor was packaged onto a 300 μm thick stainless plate with an opening in the middle. The sensor array was aligned to the opening and mounted from the underside of the plate. A reaction chamber designed for performing (bio)chemical reactions was used in the measurements. This configuration of the sensor allows for a very robust sensing platform with no fouling of the sensor surface or degradation in its performance metrics. Impedance-based tracking of resonance frequency was used for chemical, enzymatic, and cellular activity measurements. The sensor described has an impedance sensitivity of 852 Ω °C(-1) or a frequency sensitivity of 7.32 kHz °C(-1) for the 91 MHz resonator used in this work. Results on exothermic reaction between hydrochloric acid and ammonium hydroxide, the hydrolysis reaction of urea by urease and the catalytic reaction of glucose with glucose dehydrogenase are reported. From the signal to noise ratio analysis of the glucose sensor, <10 μM glucose sensitivity could be obtained improving the detection limit by a factor of 250 in comparison to our previous work using thermopile sensors. Finally, calcium ionophore induced cellular activity was measured in pancreatic cancer cells using the sensor. |
---|---|
AbstractList | In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically separated but located in close proximity to the resonator for sensitive calorimetric biosensing applications. The coupling of heat from the reaction chamber to the quartz resonator is achieved via radiation and conduction through ambient gas. The sensor was packaged onto a 300 μm thick stainless plate with an opening in the middle. The sensor array was aligned to the opening and mounted from the underside of the plate. A reaction chamber designed for performing (bio)chemical reactions was used in the measurements. This configuration of the sensor allows for a very robust sensing platform with no fouling of the sensor surface or degradation in its performance metrics. Impedance-based tracking of resonance frequency was used for chemical, enzymatic, and cellular activity measurements. The sensor described has an impedance sensitivity of 852 Ω °C(-1) or a frequency sensitivity of 7.32 kHz °C(-1) for the 91 MHz resonator used in this work. Results on exothermic reaction between hydrochloric acid and ammonium hydroxide, the hydrolysis reaction of urea by urease and the catalytic reaction of glucose with glucose dehydrogenase are reported. From the signal to noise ratio analysis of the glucose sensor, <10 μM glucose sensitivity could be obtained improving the detection limit by a factor of 250 in comparison to our previous work using thermopile sensors. Finally, calcium ionophore induced cellular activity was measured in pancreatic cancer cells using the sensor. In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically separated but located in close proximity to the resonator for sensitive calorimetric biosensing applications. The coupling of heat from the reaction chamber to the quartz resonator is achieved via radiation and conduction through ambient gas. The sensor was packaged onto a 300 mu m thick stainless plate with an opening in the middle. The sensor array was aligned to the opening and mounted from the underside of the plate. A reaction chamber designed for performing (bio)chemical reactions was used in the measurements. This configuration of the sensor allows for a very robust sensing platform with no fouling of the sensor surface or degradation in its performance metrics. Impedance-based tracking of resonance frequency was used for chemical, enzymatic, and cellular activity measurements. The sensor described has an impedance sensitivity of 852 Omega degree C super(-1) or a frequency sensitivity of 7.32 kHz degree C super(-1) for the 91 MHz resonator used in this work. Results on exothermic reaction between hydrochloric acid and ammonium hydroxide, the hydrolysis reaction of urea by urease and the catalytic reaction of glucose with glucose dehydrogenase are reported. From the signal to noise ratio analysis of the glucose sensor, < 10 mu M glucose sensitivity could be obtained improving the detection limit by a factor of 250 in comparison to our previous work using thermopile sensors. Finally, calcium ionophore induced cellular activity was measured in pancreatic cancer cells using the sensor. In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically separated but located in close proximity to the resonator for sensitive calorimetric biosensing applications. The coupling of heat from the reaction chamber to the quartz resonator is achieved via radiation and conduction through ambient gas. The sensor was packaged onto a 300 μm thick stainless plate with an opening in the middle. The sensor array was aligned to the opening and mounted from the underside of the plate. A reaction chamber designed for performing (bio)chemical reactions was used in the measurements. This configuration of the sensor allows for a very robust sensing platform with no fouling of the sensor surface or degradation in its performance metrics. Impedance-based tracking of resonance frequency was used for chemical, enzymatic, and cellular activity measurements. The sensor described has an impedance sensitivity of 852 Ω °C(-1) or a frequency sensitivity of 7.32 kHz °C(-1) for the 91 MHz resonator used in this work. Results on exothermic reaction between hydrochloric acid and ammonium hydroxide, the hydrolysis reaction of urea by urease and the catalytic reaction of glucose with glucose dehydrogenase are reported. From the signal to noise ratio analysis of the glucose sensor, <10 μM glucose sensitivity could be obtained improving the detection limit by a factor of 250 in comparison to our previous work using thermopile sensors. Finally, calcium ionophore induced cellular activity was measured in pancreatic cancer cells using the sensor. |
Author | KAILIANG REN PING KAO TADIGADAPA, Srinivas PISANI, Marcelo B |
Author_xml | – sequence: 1 surname: KAILIANG REN fullname: KAILIANG REN organization: Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States – sequence: 2 surname: PING KAO fullname: PING KAO organization: Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States – sequence: 3 givenname: Marcelo B surname: PISANI fullname: PISANI, Marcelo B organization: Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States – sequence: 4 givenname: Srinivas surname: TADIGADAPA fullname: TADIGADAPA, Srinivas organization: Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24559042$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21655628$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0E1Lw0AQBuBFFPuhF3-A5CKCEN3vJEcpfkHFSy-ewmSysSvNbrubHPTXm9Jqj56GmXl4D--EHDvvDCEXjN4yKoo7ZOCYYkrgERkzoWWqFM-PyZhSKlKulRyRSYyfw8qooqdkxJlWSvN8TGav3tnOB-s-ksp6XJrWIqySYAA7611M-rj9vafYd8mmh9B9J93ShHZA0bjoQzwjJw2sojnfzylZPD4sZs_p_O3pZXY_T1Ey2aUqN6JmBnKhaiporZFrKKrhpADQoMmlQAqQSdqICivaZEZQhpBluhZcTMn1LnYd_KY3sStbG9GsVuCM72NZMKqFkEr_K_NMsiLnWg7yZicx-BiDacp1sC2Er5LRcltueSh3wJf72L5qTf1Hf9scwNUeQBxKbAI4tPHgpFIFlVz8AOzwhBc |
CODEN | ANALAO |
CitedBy_id | crossref_primary_10_1039_C5AN01306B crossref_primary_10_1109_JSEN_2020_2997926 crossref_primary_10_1016_j_bbapap_2014_06_005 crossref_primary_10_1002_adfm_201807618 crossref_primary_10_1016_j_snb_2014_05_076 crossref_primary_10_1109_LED_2019_2918238 crossref_primary_10_1016_j_proeng_2011_12_341 crossref_primary_10_1088_0960_1317_23_4_045011 |
Cites_doi | 10.1016/j.bios.2004.01.009 10.1177/193229680900300438 10.1063/1.121802 10.1016/j.sna.2008.11.013 10.1016/j.tca.2007.03.020 10.1088/0957-0233/20/12/124007 10.1016/S0925-4005(00)00554-2 10.1016/S0009-2614(98)00817-3 10.1016/0168-1656(90)90026-8 10.1016/j.jbiotec.2005.10.008 10.1063/1.118111 10.1016/0005-2744(76)90178-9 10.1016/j.bios.2010.12.042 10.1016/0924-4247(93)00658-Q 10.1016/0009-2614(93)E1419-H 10.1023/A:1010152517237 10.1016/S0956-5663(01)00124-5 10.1109/58.20453 10.1016/S0079-6727(02)00024-1 10.1109/JMEMS.2010.2100030 10.1016/S0925-4005(03)00075-3 10.1016/S0167-9317(96)00201-8 10.1109/84.506201 10.1016/j.bios.2004.11.012 10.1063/1.1144509 10.1063/1.1463720 10.1016/0924-4247(95)01000-9 10.1006/meth.1996.0061 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c1an15153c |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 2911 |
ExternalDocumentID | 10_1039_c1an15153c 21655628 24559042 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- -JG -~X .GJ .HR 0-7 0R~ 0UZ 186 1TJ 23M 2WC 3EH 3O- 4.4 53G 5RE 705 70J 70~ 71~ 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABOCM ABPTK ABRYZ ACGFS ACHDF ACHRU ACIWK ACLDK ADMRA AENEX AETIL AFFNX AFMIJ AFOGI AFVBQ AGKEF AGRSR AGSTE AHGXI AIDUJ ALMA_UNASSIGNED_HOLDINGS ANLMG ANUXI ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C1A C6K CAG COF CS3 EBS ECGLT EE0 EF- EJD F5P GNO H13 HZ~ H~N IDY IDZ IQODW J3G J3H J3I KC5 L-8 M4U MVM N9A NDZJH O9- P2P R56 R7B R7E RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RRXOS RSCEA SC5 SKM SKR SKZ SLC SLF SLH TN5 UPT VH6 WH7 XFK XOL XXG ZCG ZKB ZXP ~02 AAJAE AAWGC AAXHV ABEMK ABJNI ABPDG ABXOH ADSRN AEFDR AENGV AESAV AFLYV AGEGJ AHGCF ANBJS APEMP CGR CUY CVF ECM EIF GGIMP NPM AAMEH AAYXX ACMRT CITATION EEHRC LPU 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c414t-58e3d1ea835d030d6c26a9bd1e5aacece843c0aa740f3bcb0f7e301ca776d323 |
ISSN | 0003-2654 |
IngestDate | Fri Oct 25 07:52:24 EDT 2024 Fri Oct 25 04:52:15 EDT 2024 Fri Aug 23 00:38:04 EDT 2024 Sat Sep 28 07:49:20 EDT 2024 Sun Oct 22 16:07:57 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Performance evaluation Ammonium Calcium Glucose Hydrochloric acid Design Degradation Enzymatic activity Resonance frequency Detection limit Ureas Coupling Ionophore Monitoring Catalytic reaction Enzyme Use Urease Chemical sensor Quartz Quartz resonator Plate Hydrolysis Urea Sensitivity Chemical reaction Biosensor Hydrolases Impedance Sensor array Application Comparative study Signal to noise ratio |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c414t-58e3d1ea835d030d6c26a9bd1e5aacece843c0aa740f3bcb0f7e301ca776d323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21655628 |
PQID | 874198264 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_910633456 proquest_miscellaneous_874198264 crossref_primary_10_1039_c1an15153c pubmed_primary_21655628 pascalfrancis_primary_24559042 |
PublicationCentury | 2000 |
PublicationDate | 2011-07-21 |
PublicationDateYYYYMMDD | 2011-07-21 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2011 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yao (c1an15153c-(cit4)/*[position()=1]) 2011; 26 Nakagawa (c1an15153c-(cit25)/*[position()=1]) 1998; 73 van Herwaarden (c1an15153c-(cit12)/*[position()=1]) 1994; 43 Gimzewski (c1an15153c-(cit20)/*[position()=1]) 1994; 217 Jelesarov (c1an15153c-(cit28)/*[position()=1]) 1996; 9 Barnes (c1an15153c-(cit21)/*[position()=1]) 1994; 65 Weaver (c1an15153c-(cit13)/*[position()=1]) 1976; 452 Kao (c1an15153c-(cit37)/*[position()=1]) 2009; 149 Vig (c1an15153c-(cit36)/*[position()=1]) 1996; 5 Maskow (c1an15153c-(cit18)/*[position()=1]) 2006; 122 Berger (c1an15153c-(cit22)/*[position()=1]) 1996; 69 Ginsberg (c1an15153c-(cit40)/*[position()=1]) 2009; 3 Kao (c1an15153c-(cit39)/*[position()=1]) 2009; 20 Berger (c1an15153c-(cit24)/*[position()=1]) 1998; 294 Danielsson (c1an15153c-(cit9)/*[position()=1]) 1990; 15 Lahiji (c1an15153c-(cit15)/*[position()=1]) 1982; ED-29 Zhang (c1an15153c-(cit10)/*[position()=1]) 2004; 19 Lerchner (c1an15153c-(cit29)/*[position()=1]) 1999; 57 Malhotra (c1an15153c-(cit1)/*[position()=1]) 2003; 91 Lerchner (c1an15153c-(cit17)/*[position()=1]) 2000; B70 Pisani (c1an15153c-(cit38)/*[position()=1]) 2011; 20 Cherian (c1an15153c-(cit26)/*[position()=1]) 2002; 80 Zanini (c1an15153c-(cit11)/*[position()=1]) 1995; 48 Ramanathan (c1an15153c-(cit8)/*[position()=1]) 2001; 16 Minakov (c1an15153c-(cit16)/*[position()=1]) 2007; 461 Berger (c1an15153c-(cit23)/*[position()=1]) 1997; 35 Newman (c1an15153c-(cit2)/*[position()=1]) 2005; 20 Eernisse (c1an15153c-(cit32)/*[position()=1]) 1988; 35 Rogalski (c1an15153c-(cit34)/*[position()=1]) 2003; 27 |
References_xml | – volume: 19 start-page: 1733 year: 2004 ident: c1an15153c-(cit10)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.01.009 contributor: fullname: Zhang – volume: 3 start-page: 903 year: 2009 ident: c1an15153c-(cit40)/*[position()=1] publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680900300438 contributor: fullname: Ginsberg – volume: 73 start-page: 2296 year: 1998 ident: c1an15153c-(cit25)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.121802 contributor: fullname: Nakagawa – volume: 149 start-page: 189 year: 2009 ident: c1an15153c-(cit37)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2008.11.013 contributor: fullname: Kao – volume: 461 start-page: 96 year: 2007 ident: c1an15153c-(cit16)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.03.020 contributor: fullname: Minakov – volume: 20 start-page: 124007 year: 2009 ident: c1an15153c-(cit39)/*[position()=1] publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/12/124007 contributor: fullname: Kao – volume: B70 start-page: 57 year: 2000 ident: c1an15153c-(cit17)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/S0925-4005(00)00554-2 contributor: fullname: Lerchner – volume: 294 start-page: 363 year: 1998 ident: c1an15153c-(cit24)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00817-3 contributor: fullname: Berger – volume: 15 start-page: 187 year: 1990 ident: c1an15153c-(cit9)/*[position()=1] publication-title: J. Biotechnol. doi: 10.1016/0168-1656(90)90026-8 contributor: fullname: Danielsson – volume: 122 start-page: 431 year: 2006 ident: c1an15153c-(cit18)/*[position()=1] publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2005.10.008 contributor: fullname: Maskow – volume: 69 start-page: 40 year: 1996 ident: c1an15153c-(cit22)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.118111 contributor: fullname: Berger – volume: 452 start-page: 285 year: 1976 ident: c1an15153c-(cit13)/*[position()=1] publication-title: Biochim. Biophys. Acta Enzymol. doi: 10.1016/0005-2744(76)90178-9 contributor: fullname: Weaver – volume: 26 start-page: 3290 year: 2011 ident: c1an15153c-(cit4)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.12.042 contributor: fullname: Yao – volume: 43 start-page: 24 year: 1994 ident: c1an15153c-(cit12)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/0924-4247(93)00658-Q contributor: fullname: van Herwaarden – volume: 217 start-page: 589 year: 1994 ident: c1an15153c-(cit20)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)E1419-H contributor: fullname: Gimzewski – volume: 57 start-page: 241 year: 1999 ident: c1an15153c-(cit29)/*[position()=1] publication-title: J. Therm. Anal. Calorim. doi: 10.1023/A:1010152517237 contributor: fullname: Lerchner – volume: 16 start-page: 417 year: 2001 ident: c1an15153c-(cit8)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(01)00124-5 contributor: fullname: Ramanathan – volume: 35 start-page: 323 year: 1988 ident: c1an15153c-(cit32)/*[position()=1] publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. doi: 10.1109/58.20453 contributor: fullname: Eernisse – volume: 27 start-page: 59 year: 2003 ident: c1an15153c-(cit34)/*[position()=1] publication-title: Prog. Quantum Electron. doi: 10.1016/S0079-6727(02)00024-1 contributor: fullname: Rogalski – volume: 20 start-page: 288 year: 2011 ident: c1an15153c-(cit38)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2010.2100030 contributor: fullname: Pisani – volume: 91 start-page: 117 year: 2003 ident: c1an15153c-(cit1)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/S0925-4005(03)00075-3 contributor: fullname: Malhotra – volume: 35 start-page: 373 year: 1997 ident: c1an15153c-(cit23)/*[position()=1] publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(96)00201-8 contributor: fullname: Berger – volume: 5 start-page: 131 year: 1996 ident: c1an15153c-(cit36)/*[position()=1] publication-title: J. Microelectromech. Syst. doi: 10.1109/84.506201 contributor: fullname: Vig – volume: 20 start-page: 2435 year: 2005 ident: c1an15153c-(cit2)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.11.012 contributor: fullname: Newman – volume: 65 start-page: 3793 year: 1994 ident: c1an15153c-(cit21)/*[position()=1] publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1144509 contributor: fullname: Barnes – volume: 80 start-page: 2219 year: 2002 ident: c1an15153c-(cit26)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1463720 contributor: fullname: Cherian – volume: 48 start-page: 187 year: 1995 ident: c1an15153c-(cit11)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/0924-4247(95)01000-9 contributor: fullname: Zanini – volume: 9 start-page: 533 year: 1996 ident: c1an15153c-(cit28)/*[position()=1] publication-title: Methods doi: 10.1006/meth.1996.0061 contributor: fullname: Jelesarov – volume: ED-29 year: 1982 ident: c1an15153c-(cit15)/*[position()=1] publication-title: IEEE Trans. Electron Devices contributor: fullname: Lahiji |
SSID | ssj0001050 |
Score | 2.144038 |
Snippet | In this paper, we present a micromachined Y-cut quartz resonator based thermal sensor array which is configured with a reaction chamber that is physically... |
SourceID | proquest crossref pubmed pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 2904 |
SubjectTerms | Analytical chemistry Biological and medical sciences Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Biotechnology Calorimetry Calorimetry - methods Cellular Chambers Chemistry Exact sciences and technology Fundamental and applied biological sciences. Psychology General, instrumentation Glucose Glucose - metabolism Glucose 1-Dehydrogenase - metabolism Humans Ionophores - chemistry Methods. Procedures. Technologies Quartz Quartz - chemistry Resonators Sensor arrays Sensors Temperature Tumor Cells, Cultured Urea - metabolism Urease - metabolism Various methods and equipments |
Title | Monitoring biochemical reactions using Y-cut quartz thermal sensors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21655628 https://search.proquest.com/docview/874198264 https://search.proquest.com/docview/910633456 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBZt8tBCKb27PYKgfQva2pYsrx7TJSU9CWUL6ZMZHQ6G4A1Zbx_y6zuSfOw2DaR9MUbYxtZ8_uaQZoaQtxXwIs-EY1WVWyaEBaZBSaZQ3VXa5saBj3d8_SaPfohPJ_nJuJU3ZJe0emou_5pX8j9SxTGUq8-S_QfJDg_FATxH-eIRJYzHG8k4_pBhB52ufeurmPuPdqCJG9zWIRLwk5l1SJ-8aC-9oYlcfLa_Qv912S3lDMWUfYGSdrPLxxAm-B7p6TPUPi5yOvA0hFDrcT0OHder2CfK5wEZd7bcfz8d4wO2PgWLCjpEXf3q0S_Yijz4UGrBYjrzwKacZTIWgZ66SKBcCpbnXcJ3z7CxxkkPJbFJmCp2H77C5An3hVBNCo03ubgZ9VW_Rv-HGhs2F4Zlda7K8d7bZDdDHkIC3D04XHz8MqhqNC6TvqWi_5C-fi1X78a7tyyWe-ewQklWsevJ9W5JME8WD8j9zq-gBxEkD8kt1zwid-Z9O7_HZD6ChW6AhQ5goQEsNICFRrDQDiy0A8sTsvhwuJgfsa6DBjMiFS3LZ47b1AGa2RbZ3EqTSVAah3IA44ybCW4SgEIkFddGJ1XhkPENFIW0PONPyU6zbNxzQiHLEidSp7hWwvh0bfyNhUulK4TVhZ6QN_0kleexTkp5VRATsrc1f8OlmUDPFvXHhNB-QkucH794BY1brlflDE1fhb6wuP4StHwl5-gRTMizKIvx-anM0dKfvbjRa74kd0e8vyI77cXavUbbs9V7HYJ-A-_4hsI |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+biochemical+reactions+using+Y-cut+quartz+thermal+sensors&rft.jtitle=Analyst+%28London%29&rft.au=Ren%2C+Kailiang&rft.au=Kao%2C+Ping&rft.au=Pisani%2C+Marcelo+B.&rft.au=Tadigadapa%2C+Srinivas&rft.date=2011-07-21&rft.issn=0003-2654&rft.eissn=1364-5528&rft.volume=136&rft.issue=14&rft.spage=2904&rft_id=info:doi/10.1039%2Fc1an15153c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c1an15153c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |