Early detection of earthquake magnitude based on stacked ensemble model

•Stacked ensemble machine learning model has been developed in this paper.•Feature and model ablation study has been performed in the model.•Prediction error has been calculated using records of various earthquakes.•Magnitude has been calculated for a test earthquake using developed model.•Predictio...

Full description

Saved in:
Bibliographic Details
Published inJournal of Asian Earth Sciences: X Vol. 8; p. 100122
Main Authors Joshi, Anushka, Vishnu, Chalavadi, Mohan, C Krishna
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Stacked ensemble machine learning model has been developed in this paper.•Feature and model ablation study has been performed in the model.•Prediction error has been calculated using records of various earthquakes.•Magnitude has been calculated for a test earthquake using developed model.•Predictions with conventional methods establishes the efficacy of the model. Anew machine learning model, named, EEWPEnsembleStack has been developed for predicting the magnitude of the earthquake from a few seconds of recorded ground motion after the arrival of the P phase. The testing and training dataset consists of 2360 and 591 strong-motion records from central Japan recorded by the Kyoshin Network. Eight parameters that are well correlated with the magnitude have been used for training and testing of the model. Feature ablation study using several models shows that a minimum mean absolute error of 0.42 has been obtained for the case when the model has been trained by using all parameters rather than by a single parameter. The model ablation study indicates that among all individually trained single models, the minimum error has been obtained for a Decision Tree regression model. However, the error is minimized when all machine learning models have been together utilized in the EEWPEnsembleStack model for the training purposes. The EEWPEnsembleStack model has been used to predict a 6.3 magnitude earthquake by using its 21 records from various stations that lie within 50 to 150 km epicentral distance. The predicted magnitude from the developed model using weighted magnitude prediction is obtained as 6.4, which is close to the actual magnitude. The comparison of the predicted magnitude of this earthquake from the developed model with that predicted by using popular τc and Pd methods clearly indicates the suitability of the developed machine learning model over other conventional models.
AbstractList •Stacked ensemble machine learning model has been developed in this paper.•Feature and model ablation study has been performed in the model.•Prediction error has been calculated using records of various earthquakes.•Magnitude has been calculated for a test earthquake using developed model.•Predictions with conventional methods establishes the efficacy of the model. Anew machine learning model, named, EEWPEnsembleStack has been developed for predicting the magnitude of the earthquake from a few seconds of recorded ground motion after the arrival of the P phase. The testing and training dataset consists of 2360 and 591 strong-motion records from central Japan recorded by the Kyoshin Network. Eight parameters that are well correlated with the magnitude have been used for training and testing of the model. Feature ablation study using several models shows that a minimum mean absolute error of 0.42 has been obtained for the case when the model has been trained by using all parameters rather than by a single parameter. The model ablation study indicates that among all individually trained single models, the minimum error has been obtained for a Decision Tree regression model. However, the error is minimized when all machine learning models have been together utilized in the EEWPEnsembleStack model for the training purposes. The EEWPEnsembleStack model has been used to predict a 6.3 magnitude earthquake by using its 21 records from various stations that lie within 50 to 150 km epicentral distance. The predicted magnitude from the developed model using weighted magnitude prediction is obtained as 6.4, which is close to the actual magnitude. The comparison of the predicted magnitude of this earthquake from the developed model with that predicted by using popular τc and Pd methods clearly indicates the suitability of the developed machine learning model over other conventional models.
A new machine learning model, named, EEWPEnsembleStack has been developed for predicting the magnitude of the earthquake from a few seconds of recorded ground motion after the arrival of the P phase. The testing and training dataset consists of 2360 and 591 strong-motion records from central Japan recorded by the Kyoshin Network. Eight parameters that are well correlated with the magnitude have been used for training and testing of the model. Feature ablation study using several models shows that a minimum mean absolute error of 0.42 has been obtained for the case when the model has been trained by using all parameters rather than by a single parameter. The model ablation study indicates that among all individually trained single models, the minimum error has been obtained for a Decision Tree regression model. However, the error is minimized when all machine learning models have been together utilized in the EEWPEnsembleStack model for the training purposes. The EEWPEnsembleStack model has been used to predict a 6.3 magnitude earthquake by using its 21 records from various stations that lie within 50 to 150 km epicentral distance. The predicted magnitude from the developed model using weighted magnitude prediction is obtained as 6.4, which is close to the actual magnitude. The comparison of the predicted magnitude of this earthquake from the developed model with that predicted by using popular τc and Pd methods clearly indicates the suitability of the developed machine learning model over other conventional models.
ArticleNumber 100122
Author Vishnu, Chalavadi
Joshi, Anushka
Mohan, C Krishna
Author_xml – sequence: 1
  givenname: Anushka
  orcidid: 0000-0002-7262-4379
  surname: Joshi
  fullname: Joshi, Anushka
  email: anushka_j@cs.iitr.ac.in
– sequence: 2
  givenname: Chalavadi
  orcidid: 0000-0001-9184-3545
  surname: Vishnu
  fullname: Vishnu, Chalavadi
– sequence: 3
  givenname: C Krishna
  surname: Mohan
  fullname: Mohan, C Krishna
BookMark eNqFkM9OwzAMhyM0JP7tCbj0BTaSNMmSAweExpiExAXOkZu4kNK1kBTE3p6MIoQ4wMmW5e8n-zsik67vkJBTRueMMnXWzBvA9D7nlPM8oYzzPXLIpaEzKhWd_OgPyDSlhlLKtVRa6EOyWkJst4XHAd0Q-q7o6wIhDo8vr_CExQYeujC8eiwqSOiLvJAGcE-5xS7hpmrzTu-xPSH7NbQJp1_1mNxfLe8ur2c3t6v15cXNzAkmhpkUZuFExYR0QmhXL0pjlKa6pKIGkJpxJ0uDpRNKSeZr8GqByDxHVAZVWR6T9Zjre2jscwwbiFvbQ7Cfgz4-2Hx9cC1aUxrBQaEGo4SusZJacaOkq0XlgGHOKscsF_uUItbfeYzanVrb2E-1dqfWjmozZX5RLgywczdECO0_7PnIYlb0FjDa5AJ2Dn2I2X_-IfzJfwBqdJbc
CitedBy_id crossref_primary_10_1109_TGRS_2024_3459425
crossref_primary_10_1109_TGRS_2024_3492023
crossref_primary_10_1007_s00521_024_09891_9
crossref_primary_10_1007_s12145_024_01253_2
crossref_primary_10_1007_s11069_025_07134_1
crossref_primary_10_1785_0120240119
crossref_primary_10_1007_s00521_024_10002_x
Cites_doi 10.1785/gssrl.80.5.727
10.1023/A:1024813612271
10.1785/gssrl.66.6.42
10.5194/nhess-20-921-2020
10.1002/2013GL058580
10.1016/j.asoc.2012.10.014
10.1111/j.2517-6161.1996.tb02080.x
10.1029/2008GL036689
10.1007/s12040-013-0346-3
10.1029/2009GL038678
10.1785/0120130146
10.1007/s00024-015-1114-x
10.1016/j.nrjag.2013.08.001
10.1785/0120150143
10.1785/0220140179
10.1126/sciadv.1700578
10.1029/2008GL035611
10.1785/0220200317
10.1146/annurev.earth.33.092203.122626
10.1029/2008GL035576
10.1785/0120020008
10.1029/2020GL089394
10.1785/gssrl.82.3.394
10.1007/s00024-015-1061-6
10.1785/0120070054
10.1213/ANE.0000000000002864
10.1785/0220170140
10.1190/1.1441433
10.3390/app10093227
10.1029/2006GL027795
10.1785/BSSA0680051521
10.1007/978-94-007-0152-6_12
10.1785/0220170062
10.1111/j.1365-246X.2007.03430.x
10.1126/science.1080912
10.1785/gssrl.80.5.717
10.1038/s41598-020-78046-2
10.1109/ACCESS.2019.2893448
10.1016/j.geog.2017.03.010
10.1785/0120080034
10.1029/2019GL085976
10.3389/feart.2021.653226
10.1016/j.jseaes.2012.04.014
10.1785/gssrl.80.1.57
10.1785/0120010217
10.1029/2005GL025395
10.1785/0220170146
10.1029/2011GL047461
10.1007/s11589-013-0005-4
10.1785/0220210144
10.1785/0120040097
10.1098/rsta.2014.0375
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jaesx.2022.100122
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-0560
ExternalDocumentID oai_doaj_org_article_93942a6e8a9648feb5862965cf4bca1e
10_1016_j_jaesx_2022_100122
S2590056022000433
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-5497c4b145c448cf73996808304faa5812c539e3c46651dfad67ee1d2ee69e633
IEDL.DBID DOA
ISSN 2590-0560
IngestDate Wed Aug 27 01:28:34 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Tue Jul 01 04:01:57 EDT 2025
Tue Jul 25 20:59:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Strong motion
Magnitude
Prediction
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-5497c4b145c448cf73996808304faa5812c539e3c46651dfad67ee1d2ee69e633
ORCID 0000-0002-7262-4379
0000-0001-9184-3545
OpenAccessLink https://doaj.org/article/93942a6e8a9648feb5862965cf4bca1e
ParticipantIDs doaj_primary_oai_doaj_org_article_93942a6e8a9648feb5862965cf4bca1e
crossref_primary_10_1016_j_jaesx_2022_100122
crossref_citationtrail_10_1016_j_jaesx_2022_100122
elsevier_sciencedirect_doi_10_1016_j_jaesx_2022_100122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Asian Earth Sciences: X
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wei, Seno (b0270) 1998
Aranda, Jimenez, Ibarrola, Alcantar, Aguilar, Inostroza, Maldonado (b0025) 1995; 66
Allen (b0010) 1978; 68
Wu, Y.M., Kanamori, H., Richard, M.A., Hauksson, E, 2007. Determination of earthquake early warning parameters, τ
Chen, Liu, Chen, Liu, Zhang, Liu (b0090) 2019; 7
Erdik, Fahjan, Ozel, Alcik, Mert, Gul (b0100) 2003; 1
Zollo, Iannaccone, Lancieri, Cantore, Convertito, Emolo, Festa, Gallovič, Vassallo, Martino (b0320) 2009; 36
Wang, Ni, Chen, Kanamori (b0260) 2009; 36
Kanamori (b0140) 2005; 33
Perol, Gharbi, Denolle (b0200) 2018; 4
Jin, Zhang, Li, Wei, Ma (b0130) 2013; 26
Kuang, Yuan, Zhang (b0150) 2021; 92
X, Zhang, M, Zhang, & X, Tian, (2021).
Real-time earthquake early warning with deep learning: Application to the 2016 M 6.0 Central Apennines, Italy Earthquake.
Chamoli, Kumar, Chen, Gairola, Jakka, Pandey, Kumar, Rathore (b0075) 2019
Zhu, Li, Song, Wang (b0310) 2021; 9
Satake (b0215) 2015; 373
Takla, Yumoto, Okano, Uozumi, Abe (b0240) 2013; 2
Wang, Wang (b0265) 2020; 10
Sinvhal, Khattri (b0235) 1983; 48
Ionescu, Böse, Wenzel, Marmureanu, Grigore, Marmureanu (b0125) 2007
Chen, Guestrin (b0085) 2016
Wu, Zhao (b0295) 2006; 331
.
Zhang, Jin, Wei, Li, Kang, Wang, Huang, Yu (b0300) 2016; 106
Bishop (b0050) 2006
Chen, Jiang, Zhuang (b0080) 2016; 173
Zollo, Lancieri, Nielsen (b0325) 2006; 33
Lin, Wu, Chen (b0165) 2011; 38
Wang, Li, Song (b0255) 2020; 10
Mousavi, Beroza (b0175) 2020; 47
Reddy, Nair (b0205) 2013; 122
Olivieri, Allen, Wurman (b0190) 2008; 98
Allen, Kanamori (b0005) 2003; 300
Hastie, Tibshirani, Friedman (b0120) 2009
Kohler, Cochran, Given, Guiwits, Neuhauser, Henson, Hartog, Bodin, Kress, Thompson (b0145) 2018; 89
Sheen, Park, Chi, Hwang, Lim, Seong, Pak (b0225) 2017; 88
Festa, Zollo, Lancieri (b0105) 2008; 35
Kuyuk, Allen, Brown, Hellweg, Henson, Neuhauser (b0160) 2014; 104
Gunes, F., Wolfinger, R., Tan, P., 2017. Stacked Ensemble Models for Improved Prediction Accuracy. SAS-2017.
Wu, Yen, Zhao, Huang, Liang (b0290) 2006; 33
S, Aoi, T, Kunugi, H, Nakamura, H, Fujiwara, 2011. Deployment of new strong motion seismographs of K-NET and KiK-net. In: Akkar et al (Eds.) Earthquake data in engineering seismology, geotechnical, geological, and earthquake engineering 14. Springer, Berlin, pp. 167–186. doi
Atefi, Heidari, Mirzaei, Siahkoohi (b0040) 2017; 88
Odaka, Ashiya, Tsukada, Sato, Ohtake, Nozaka (b0185) 2003; 93
Brown, Allen, Richard, Grasso (b0065) 2009; 80
Wakita (b0250) 2013; 72
and
Breiman, Friedman, Olshen, Stone (b0060) 1984
Geophys. Res. Lett.
Freund, Schapire (b0110) 1997
for southern California. Geophys. J. Int. 170, 711–717.
Wu, Kanamori (b0275) 2005; 95
Schober, Boer, Schwarte (b0220) 2018; 126
Wu, Teng (b0285) 2002; 92
Kamigaichi, Saito, Doi, Matsumori, Tsukada, Takeda, Shimoyama, Nakamura, Kiyomoto, Watanabe (b0135) 2009; 80
48, 2020GL089394.
Reyes, Morales-Esteban, Martínez-Álvarez (b0210) 2013; 13
Peng, Wu, Wu, Yu, Zhang, Huang (b0195) 2011; 82
Zhu, Li, Song (b0315) 2021; 93
Carranza, Buforn, Zollo (b0070) 2015; 172
Lundberg, Lee (b0170) 2017
Behr, Clinton, Kästli, Cauzzi, Racine, Meier (b0045) 2015; 86
Colombelli, Carotenuto, Elia, Zollo (b0095) 2020; 20
Ochoa, Niño, Vargas (b0180) 2017; 9
Allen, Marano, Earle, Wald (b0015) 2009; 80
Kuyuk, Allen (b0155) 2013; 40
Shieh, Wu, Allen (b0230) 2008; 35
Böse, Hauksson, Solanki, Kanamori, Wu, Heaton (b0055) 2009; 99
Tibshirani (b0245) 1996; 58
Behr (10.1016/j.jaesx.2022.100122_b0045) 2015; 86
Perol (10.1016/j.jaesx.2022.100122_b0200) 2018; 4
Ionescu (10.1016/j.jaesx.2022.100122_b0125) 2007
Wu (10.1016/j.jaesx.2022.100122_b0285) 2002; 92
Chen (10.1016/j.jaesx.2022.100122_b0085) 2016
Zhu (10.1016/j.jaesx.2022.100122_b0315) 2021; 93
Zollo (10.1016/j.jaesx.2022.100122_b0320) 2009; 36
Kuyuk (10.1016/j.jaesx.2022.100122_b0160) 2014; 104
10.1016/j.jaesx.2022.100122_b0020
Odaka (10.1016/j.jaesx.2022.100122_b0185) 2003; 93
Kanamori (10.1016/j.jaesx.2022.100122_b0140) 2005; 33
Shieh (10.1016/j.jaesx.2022.100122_b0230) 2008; 35
Wu (10.1016/j.jaesx.2022.100122_b0295) 2006; 331
Allen (10.1016/j.jaesx.2022.100122_b0010) 1978; 68
Peng (10.1016/j.jaesx.2022.100122_b0195) 2011; 82
Takla (10.1016/j.jaesx.2022.100122_b0240) 2013; 2
Satake (10.1016/j.jaesx.2022.100122_b0215) 2015; 373
Jin (10.1016/j.jaesx.2022.100122_b0130) 2013; 26
Allen (10.1016/j.jaesx.2022.100122_b0005) 2003; 300
10.1016/j.jaesx.2022.100122_b0115
Kuang (10.1016/j.jaesx.2022.100122_b0150) 2021; 92
Colombelli (10.1016/j.jaesx.2022.100122_b0095) 2020; 20
Wu (10.1016/j.jaesx.2022.100122_b0275) 2005; 95
Reddy (10.1016/j.jaesx.2022.100122_b0205) 2013; 122
Carranza (10.1016/j.jaesx.2022.100122_b0070) 2015; 172
10.1016/j.jaesx.2022.100122_b0305
Zollo (10.1016/j.jaesx.2022.100122_b0325) 2006; 33
Schober (10.1016/j.jaesx.2022.100122_b0220) 2018; 126
Freund (10.1016/j.jaesx.2022.100122_b0110) 1997
Erdik (10.1016/j.jaesx.2022.100122_b0100) 2003; 1
Sinvhal (10.1016/j.jaesx.2022.100122_b0235) 1983; 48
Zhu (10.1016/j.jaesx.2022.100122_b0310) 2021; 9
Atefi (10.1016/j.jaesx.2022.100122_b0040) 2017; 88
Böse (10.1016/j.jaesx.2022.100122_b0055) 2009; 99
10.1016/j.jaesx.2022.100122_b0280
Zhang (10.1016/j.jaesx.2022.100122_b0300) 2016; 106
Olivieri (10.1016/j.jaesx.2022.100122_b0190) 2008; 98
Aranda (10.1016/j.jaesx.2022.100122_b0025) 1995; 66
Lin (10.1016/j.jaesx.2022.100122_b0165) 2011; 38
Ochoa (10.1016/j.jaesx.2022.100122_b0180) 2017; 9
Wei (10.1016/j.jaesx.2022.100122_b0270) 1998
Chen (10.1016/j.jaesx.2022.100122_b0080) 2016; 173
Festa (10.1016/j.jaesx.2022.100122_b0105) 2008; 35
Kamigaichi (10.1016/j.jaesx.2022.100122_b0135) 2009; 80
Wakita (10.1016/j.jaesx.2022.100122_b0250) 2013; 72
Sheen (10.1016/j.jaesx.2022.100122_b0225) 2017; 88
Wang (10.1016/j.jaesx.2022.100122_b0260) 2009; 36
Wang (10.1016/j.jaesx.2022.100122_b0255) 2020; 10
Wu (10.1016/j.jaesx.2022.100122_b0290) 2006; 33
Breiman (10.1016/j.jaesx.2022.100122_b0060) 1984
Allen (10.1016/j.jaesx.2022.100122_b0015) 2009; 80
Hastie (10.1016/j.jaesx.2022.100122_b0120) 2009
Brown (10.1016/j.jaesx.2022.100122_b0065) 2009; 80
Chen (10.1016/j.jaesx.2022.100122_b0090) 2019; 7
Lundberg (10.1016/j.jaesx.2022.100122_b0170) 2017
Kohler (10.1016/j.jaesx.2022.100122_b0145) 2018; 89
Tibshirani (10.1016/j.jaesx.2022.100122_b0245) 1996; 58
Wang (10.1016/j.jaesx.2022.100122_b0265) 2020; 10
Bishop (10.1016/j.jaesx.2022.100122_b0050) 2006
Mousavi (10.1016/j.jaesx.2022.100122_b0175) 2020; 47
Chamoli (10.1016/j.jaesx.2022.100122_b0075) 2019
Kuyuk (10.1016/j.jaesx.2022.100122_b0155) 2013; 40
Reyes (10.1016/j.jaesx.2022.100122_b0210) 2013; 13
References_xml – volume: 95
  start-page: 347
  year: 2005
  end-page: 353
  ident: b0275
  article-title: Experiment on an onsite early warning method for Taiwan early warning system
  publication-title: Bull. Seismol. Soc. Am.
– volume: 36
  year: 2009
  ident: b0320
  article-title: Earthquake early warning system in southern Italy: methodologies and performance evaluation
  publication-title: Geophys. Res. Lett.
– volume: 126
  start-page: 1763
  year: 2018
  end-page: 1768
  ident: b0220
  article-title: Correlation Coefficients: appropriate Use and Interpretation
  publication-title: Anesthesia and Analgesia.
– volume: 89
  start-page: 99
  year: 2018
  end-page: 107
  ident: b0145
  article-title: Earthquake early warning ShakeAlert system: west coast wide production prototype
  publication-title: Seismol. Res. Lett.
– volume: 10
  start-page: 3227
  year: 2020
  ident: b0265
  article-title: Application of improved LightGBM model in blood glucose prediction
  publication-title: Appl. Sci.
– volume: 173
  start-page: 305
  year: 2016
  end-page: 319
  ident: b0080
  article-title: Statistical evaluation of efficiency and possibility of earthquake predictions with gravity field variations and its analytic signal in western China
  publication-title: Pure. Appl. Geophys.
– reference: and
– volume: 35
  start-page: L22307
  year: 2008
  ident: b0105
  article-title: Earthquake magnitude estimation from early radiated energy
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 23
  year: 2013
  end-page: 31
  ident: b0130
  article-title: Earthquake magnitude estimation using the τc and Pd method for earthquake early warning systems
  publication-title: Earthq. Sci.
– volume: 331
  year: 2006
  ident: b0295
  article-title: Magnitude estimation using the first three second P-wave amplitude in earthquake early warning
  publication-title: Geophy. Res. Lett.
– volume: 9
  year: 2021
  ident: b0310
  article-title: Magnitude estimation for earthquake early warning using a deep convolutional neural network
  publication-title: Front. Earth Sci.
– volume: 33
  year: 2006
  ident: b0325
  article-title: Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records
  publication-title: Geophys. Res. Lett.
– volume: 82
  start-page: 394
  year: 2011
  end-page: 403
  ident: b0195
  article-title: Developing a prototype earthquake early warning system in the Beijing capital region
  publication-title: Seismol. Res. Lett.
– volume: 1
  start-page: 157
  year: 2003
  end-page: 163
  ident: b0100
  article-title: Istanbul earthquake rapid response and the early warning system
  publication-title: Bull. Earthq. Eng.
– volume: 72
  start-page: 75
  year: 2013
  end-page: 87
  ident: b0250
  article-title: Geology and tectonics of Japanese islands: a review - the key to understanding the geology of Asia
  publication-title: J. Asian Earth Sci.
– volume: 104
  start-page: 162
  year: 2014
  end-page: 173
  ident: b0160
  article-title: Designing a network-based earthquake early warning algorithm for California: Elarms-2
  publication-title: Bull. Seism. Soc. Am.
– volume: 48
  start-page: 498
  year: 1983
  end-page: 1513
  ident: b0235
  article-title: Application of seismic reflection data to discriminate subsurface lithostratigraphy
  publication-title: Geophysics.
– year: 1984
  ident: b0060
  article-title: Classification and Regression Trees
– volume: 20
  start-page: 921
  year: 2020
  end-page: 931
  ident: b0095
  article-title: Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
  publication-title: Nat. Hazards Earth Syst. Sci.
– reference: S, Aoi, T, Kunugi, H, Nakamura, H, Fujiwara, 2011. Deployment of new strong motion seismographs of K-NET and KiK-net. In: Akkar et al (Eds.) Earthquake data in engineering seismology, geotechnical, geological, and earthquake engineering 14. Springer, Berlin, pp. 167–186. doi:
– volume: 10
  start-page: 21055
  year: 2020
  ident: b0255
  article-title: Threshold-based evolutionary magnitude estimation for an earthquake early warning system in the Sichuan-Yunnan region
  publication-title: China. Sci. Rep.
– year: 2019
  ident: b0075
  article-title: A prototype earthquake early warning system for northern india
  publication-title: J. Earthq. Eng.
– reference: X, Zhang, M, Zhang, & X, Tian, (2021).
– volume: 80
  start-page: 727
  year: 2009
  end-page: 739
  ident: b0065
  article-title: Testing ElarmS in Japan
  publication-title: Seismol. Res. Lett.
– volume: 98
  start-page: 495
  year: 2008
  end-page: 503
  ident: b0190
  article-title: The potential for earthquake early warning in Italy using elarmS
  publication-title: Bul. Seismol. Soc. Am.
– volume: 80
  start-page: 717
  year: 2009
  end-page: 726
  ident: b0135
  article-title: Earthquake early warning in Japan: warning the general public and future prospects
  publication-title: Seismol. Res. Lett.
– volume: 93
  start-page: 526
  year: 2003
  end-page: 532
  ident: b0185
  article-title: A new method of quickly estimating epicentral distance and magnitude from a single seismic record
  publication-title: Bull. Seismol. Soc. Am.
– volume: 35
  year: 2008
  ident: b0230
  article-title: A comparison of τc and τpmax for magnitude estimation in earthquake early warning
  publication-title: Geophy. Res. Lett.
– volume: 4
  year: 2018
  ident: b0200
  article-title: Convolutional neural network for earthquake detection and location
  publication-title: Sci. Adv.
– volume: 300
  start-page: 786
  year: 2003
  end-page: 789
  ident: b0005
  article-title: The potential for earthquake early warning in southern California
  publication-title: Sci.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0245
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Series B (Methodol.)
– reference: Real-time earthquake early warning with deep learning: Application to the 2016 M 6.0 Central Apennines, Italy Earthquake.
– volume: 47
  year: 2020
  ident: b0175
  article-title: A machine-learning approach for earthquake magnitude estimation
  publication-title: Geophy. Res. Lett.
– volume: 80
  start-page: 57
  year: 2009
  end-page: 62
  ident: b0015
  article-title: PAGER-CAT: a composite earthquake catalog for calibrating global fatality models
  publication-title: Seismol. Res. Lett.
– volume: 66
  start-page: 42
  year: 1995
  end-page: 53
  ident: b0025
  article-title: Mexico City seismic alert system
  publication-title: Seismol. Res. Lett.
– year: 1998
  ident: b0270
  article-title: Determination of the Amurian Plate Motion
  publication-title: Mantle Dynamics and Plate Interactions in East Asia
– start-page: 343
  year: 2007
  end-page: 349
  ident: b0125
  article-title: An early warning system for deep Vrancea (Romania) earthquakes
  publication-title: Earthquake Early Warning Systems
– reference: 48, 2020GL089394.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b0085
  article-title: XGBoost: a Scalable Tree Boosting System. KDD '16
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 122
  start-page: 1423
  year: 2013
  end-page: 1434
  ident: b0205
  article-title: The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan
  publication-title: Jour. Earth Syst. Sci.
– year: 1997
  ident: b0110
  article-title: 1997
– volume: 68
  start-page: 1521
  year: 1978
  end-page: 1532
  ident: b0010
  article-title: Automatic earthquake recognition and timing from single traces
  publication-title: Bull. Seismol. Soc. Am.
– volume: 86
  start-page: 830
  year: 2015
  end-page: 840
  ident: b0045
  article-title: Anatomy of an earthquake early warning (EEW) alert: Predicting time delays for an end-to-end EEW system
  publication-title: Seismol. Res. Lett.
– volume: 92
  start-page: 2008
  year: 2002
  end-page: 2018
  ident: b0285
  article-title: A virtual sub-network approach to earthquake early warning
  publication-title: Bull. Seism. Soc. Am.
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: b0170
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 38
  year: 2011
  ident: b0165
  article-title: Magnitude estimation using initial P-wave amplitude and its spatial distribution in earthquake early warning in Taiwan
  publication-title: Geophys. Res. Lett.
– volume: 93
  start-page: 126
  year: 2021
  end-page: 136
  ident: b0315
  article-title: Magnitude estimation for earthquake early warning with multiple parameter inputs and a support vector machine
  publication-title: Seismol. Res. Lett.
– volume: 92
  start-page: 2245
  year: 2021
  end-page: 2254
  ident: b0150
  article-title: Network-based earthquake magnitude determination via deep learning
  publication-title: Seismol. Res. Lett.
– volume: 106
  start-page: 755
  year: 2016
  end-page: 765
  ident: b0300
  article-title: An earthquake early warning system in Fujian
  publication-title: China. Bull. Seismol. Soc. Am.
– volume: 7
  start-page: 13149
  year: 2019
  end-page: 13158
  ident: b0090
  article-title: XGBoost-Based algorithm interpretation and application on post-fault transient stability status prediction of power system
  publication-title: IEEE Access.
– volume: 99
  start-page: 897
  year: 2009
  end-page: 905
  ident: b0055
  article-title: A new trigger criterion for improved real-time performance of onsite earthquake early warning in southern California
  publication-title: Bull. Seismol. Soc. Am.
– reference: Gunes, F., Wolfinger, R., Tan, P., 2017. Stacked Ensemble Models for Improved Prediction Accuracy. SAS-2017.
– year: 2006
  ident: b0050
  publication-title: Pattern Recognition and Machine Learning
– volume: 88
  start-page: 1527
  year: 2017
  end-page: 1533
  ident: b0040
  article-title: Rapid Estimation of Earthquake Magnitude by a New Wavelet-Based Proxy
  publication-title: Seismol. Res. Lett.
– volume: 36
  year: 2009
  ident: b0260
  article-title: Magnitude estimation for early warning applications using the initial part of P waves: a case study on the 2008 Wenchuan sequence
  publication-title: Geophys. Res. Lett.
– volume: 172
  start-page: 2435
  year: 2015
  end-page: 2448
  ident: b0070
  article-title: Testing the earthquake early-warning parameter correlations in the southern Iberian Peninsula
  publication-title: Pure Appl. Geophys.
– volume: 40
  start-page: 6329
  year: 2013
  end-page: 6333
  ident: b0155
  article-title: A global approach to provide magnitude estimates for earthquake early warning alerts
  publication-title: Geophy. Res. Let.
– volume: 2
  start-page: 185
  year: 2013
  end-page: 195
  ident: b0240
  article-title: The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan
  publication-title: NRIAG. J. Astronomy and Geophys.
– volume: 13
  start-page: 1314
  year: 2013
  end-page: 1328
  ident: b0210
  article-title: Neural networks to predict earthquakes in Chile
  publication-title: Appl. Soft. Comput.
– reference: Geophys. Res. Lett.,
– reference: .
– reference: Wu, Y.M., Kanamori, H., Richard, M.A., Hauksson, E, 2007. Determination of earthquake early warning parameters, τ
– volume: 88
  start-page: 1491
  year: 2017
  end-page: 1498
  ident: b0225
  article-title: The first stage of an earthquake early warning system in South Korea
  publication-title: Seismol. Res. Lett.
– volume: 9
  start-page: 34
  year: 2017
  end-page: 41
  ident: b0180
  article-title: Fast magnitude determination using a single seismological station record implementing machine learning techniques
  publication-title: Geod. Geodyn.
– volume: 33
  start-page: 195
  year: 2005
  end-page: 214
  ident: b0140
  article-title: Real-time seismology and earthquake damage mitigation
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 373
  start-page: 20140375
  year: 2015
  ident: b0215
  article-title: Geological and historical evidence of irregular recurrent earthquakes in Japan
  publication-title: Phil. Trans. R. Soc. A
– volume: 33
  year: 2006
  ident: b0290
  article-title: Magnitude determination using initial P waves: a single-station approach
  publication-title: Geophys. Res. Lett.
– year: 2009
  ident: b0120
  article-title: The elements of statistical learning
– reference: , for southern California. Geophys. J. Int. 170, 711–717.
– volume: 80
  start-page: 727
  year: 2009
  ident: 10.1016/j.jaesx.2022.100122_b0065
  article-title: Testing ElarmS in Japan
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/gssrl.80.5.727
– volume: 1
  start-page: 157
  year: 2003
  ident: 10.1016/j.jaesx.2022.100122_b0100
  article-title: Istanbul earthquake rapid response and the early warning system
  publication-title: Bull. Earthq. Eng.
  doi: 10.1023/A:1024813612271
– volume: 66
  start-page: 42
  year: 1995
  ident: 10.1016/j.jaesx.2022.100122_b0025
  article-title: Mexico City seismic alert system
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/gssrl.66.6.42
– volume: 20
  start-page: 921
  year: 2020
  ident: 10.1016/j.jaesx.2022.100122_b0095
  article-title: Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-20-921-2020
– volume: 40
  start-page: 6329
  year: 2013
  ident: 10.1016/j.jaesx.2022.100122_b0155
  article-title: A global approach to provide magnitude estimates for earthquake early warning alerts
  publication-title: Geophy. Res. Let.
  doi: 10.1002/2013GL058580
– volume: 13
  start-page: 1314
  year: 2013
  ident: 10.1016/j.jaesx.2022.100122_b0210
  article-title: Neural networks to predict earthquakes in Chile
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2012.10.014
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.jaesx.2022.100122_b0245
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Series B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 36
  year: 2009
  ident: 10.1016/j.jaesx.2022.100122_b0320
  article-title: Earthquake early warning system in southern Italy: methodologies and performance evaluation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL036689
– volume: 122
  start-page: 1423
  year: 2013
  ident: 10.1016/j.jaesx.2022.100122_b0205
  article-title: The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan
  publication-title: Jour. Earth Syst. Sci.
  doi: 10.1007/s12040-013-0346-3
– ident: 10.1016/j.jaesx.2022.100122_b0115
– volume: 36
  year: 2009
  ident: 10.1016/j.jaesx.2022.100122_b0260
  article-title: Magnitude estimation for early warning applications using the initial part of P waves: a case study on the 2008 Wenchuan sequence
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL038678
– volume: 104
  start-page: 162
  year: 2014
  ident: 10.1016/j.jaesx.2022.100122_b0160
  article-title: Designing a network-based earthquake early warning algorithm for California: Elarms-2
  publication-title: Bull. Seism. Soc. Am.
  doi: 10.1785/0120130146
– year: 2006
  ident: 10.1016/j.jaesx.2022.100122_b0050
– volume: 173
  start-page: 305
  year: 2016
  ident: 10.1016/j.jaesx.2022.100122_b0080
  article-title: Statistical evaluation of efficiency and possibility of earthquake predictions with gravity field variations and its analytic signal in western China
  publication-title: Pure. Appl. Geophys.
  doi: 10.1007/s00024-015-1114-x
– volume: 2
  start-page: 185
  year: 2013
  ident: 10.1016/j.jaesx.2022.100122_b0240
  article-title: The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan
  publication-title: NRIAG. J. Astronomy and Geophys.
  doi: 10.1016/j.nrjag.2013.08.001
– start-page: 785
  year: 2016
  ident: 10.1016/j.jaesx.2022.100122_b0085
  article-title: XGBoost: a Scalable Tree Boosting System. KDD '16
– volume: 106
  start-page: 755
  year: 2016
  ident: 10.1016/j.jaesx.2022.100122_b0300
  article-title: An earthquake early warning system in Fujian
  publication-title: China. Bull. Seismol. Soc. Am.
  doi: 10.1785/0120150143
– volume: 86
  start-page: 830
  year: 2015
  ident: 10.1016/j.jaesx.2022.100122_b0045
  article-title: Anatomy of an earthquake early warning (EEW) alert: Predicting time delays for an end-to-end EEW system
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220140179
– volume: 4
  year: 2018
  ident: 10.1016/j.jaesx.2022.100122_b0200
  article-title: Convolutional neural network for earthquake detection and location
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700578
– volume: 35
  year: 2008
  ident: 10.1016/j.jaesx.2022.100122_b0230
  article-title: A comparison of τc and τpmax for magnitude estimation in earthquake early warning
  publication-title: Geophy. Res. Lett.
  doi: 10.1029/2008GL035611
– volume: 92
  start-page: 2245
  year: 2021
  ident: 10.1016/j.jaesx.2022.100122_b0150
  article-title: Network-based earthquake magnitude determination via deep learning
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220200317
– volume: 331
  year: 2006
  ident: 10.1016/j.jaesx.2022.100122_b0295
  article-title: Magnitude estimation using the first three second P-wave amplitude in earthquake early warning
  publication-title: Geophy. Res. Lett.
– volume: 33
  start-page: 195
  year: 2005
  ident: 10.1016/j.jaesx.2022.100122_b0140
  article-title: Real-time seismology and earthquake damage mitigation
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.33.092203.122626
– volume: 35
  start-page: L22307
  year: 2008
  ident: 10.1016/j.jaesx.2022.100122_b0105
  article-title: Earthquake magnitude estimation from early radiated energy
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL035576
– volume: 93
  start-page: 526
  year: 2003
  ident: 10.1016/j.jaesx.2022.100122_b0185
  article-title: A new method of quickly estimating epicentral distance and magnitude from a single seismic record
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120020008
– ident: 10.1016/j.jaesx.2022.100122_b0305
  doi: 10.1029/2020GL089394
– volume: 82
  start-page: 394
  year: 2011
  ident: 10.1016/j.jaesx.2022.100122_b0195
  article-title: Developing a prototype earthquake early warning system in the Beijing capital region
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/gssrl.82.3.394
– volume: 172
  start-page: 2435
  year: 2015
  ident: 10.1016/j.jaesx.2022.100122_b0070
  article-title: Testing the earthquake early-warning parameter correlations in the southern Iberian Peninsula
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-015-1061-6
– volume: 98
  start-page: 495
  year: 2008
  ident: 10.1016/j.jaesx.2022.100122_b0190
  article-title: The potential for earthquake early warning in Italy using elarmS
  publication-title: Bul. Seismol. Soc. Am.
  doi: 10.1785/0120070054
– volume: 126
  start-page: 1763
  year: 2018
  ident: 10.1016/j.jaesx.2022.100122_b0220
  article-title: Correlation Coefficients: appropriate Use and Interpretation
  publication-title: Anesthesia and Analgesia.
  doi: 10.1213/ANE.0000000000002864
– volume: 89
  start-page: 99
  year: 2018
  ident: 10.1016/j.jaesx.2022.100122_b0145
  article-title: Earthquake early warning ShakeAlert system: west coast wide production prototype
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220170140
– volume: 48
  start-page: 498
  year: 1983
  ident: 10.1016/j.jaesx.2022.100122_b0235
  article-title: Application of seismic reflection data to discriminate subsurface lithostratigraphy
  publication-title: Geophysics.
  doi: 10.1190/1.1441433
– year: 1984
  ident: 10.1016/j.jaesx.2022.100122_b0060
– volume: 10
  start-page: 3227
  year: 2020
  ident: 10.1016/j.jaesx.2022.100122_b0265
  article-title: Application of improved LightGBM model in blood glucose prediction
  publication-title: Appl. Sci.
  doi: 10.3390/app10093227
– volume: 33
  year: 2006
  ident: 10.1016/j.jaesx.2022.100122_b0325
  article-title: Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027795
– volume: 68
  start-page: 1521
  year: 1978
  ident: 10.1016/j.jaesx.2022.100122_b0010
  article-title: Automatic earthquake recognition and timing from single traces
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0680051521
– year: 2019
  ident: 10.1016/j.jaesx.2022.100122_b0075
  article-title: A prototype earthquake early warning system for northern india
  publication-title: J. Earthq. Eng.
– ident: 10.1016/j.jaesx.2022.100122_b0020
  doi: 10.1007/978-94-007-0152-6_12
– volume: 88
  start-page: 1491
  year: 2017
  ident: 10.1016/j.jaesx.2022.100122_b0225
  article-title: The first stage of an earthquake early warning system in South Korea
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220170062
– ident: 10.1016/j.jaesx.2022.100122_b0280
  doi: 10.1111/j.1365-246X.2007.03430.x
– volume: 300
  start-page: 786
  year: 2003
  ident: 10.1016/j.jaesx.2022.100122_b0005
  article-title: The potential for earthquake early warning in southern California
  publication-title: Sci.
  doi: 10.1126/science.1080912
– volume: 80
  start-page: 717
  year: 2009
  ident: 10.1016/j.jaesx.2022.100122_b0135
  article-title: Earthquake early warning in Japan: warning the general public and future prospects
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/gssrl.80.5.717
– start-page: 4768
  year: 2017
  ident: 10.1016/j.jaesx.2022.100122_b0170
  article-title: A unified approach to interpreting model predictions
– volume: 10
  start-page: 21055
  year: 2020
  ident: 10.1016/j.jaesx.2022.100122_b0255
  article-title: Threshold-based evolutionary magnitude estimation for an earthquake early warning system in the Sichuan-Yunnan region
  publication-title: China. Sci. Rep.
  doi: 10.1038/s41598-020-78046-2
– volume: 7
  start-page: 13149
  year: 2019
  ident: 10.1016/j.jaesx.2022.100122_b0090
  article-title: XGBoost-Based algorithm interpretation and application on post-fault transient stability status prediction of power system
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2893448
– volume: 9
  start-page: 34
  year: 2017
  ident: 10.1016/j.jaesx.2022.100122_b0180
  article-title: Fast magnitude determination using a single seismological station record implementing machine learning techniques
  publication-title: Geod. Geodyn.
  doi: 10.1016/j.geog.2017.03.010
– volume: 99
  start-page: 897
  year: 2009
  ident: 10.1016/j.jaesx.2022.100122_b0055
  article-title: A new trigger criterion for improved real-time performance of onsite earthquake early warning in southern California
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120080034
– start-page: 343
  year: 2007
  ident: 10.1016/j.jaesx.2022.100122_b0125
  article-title: An early warning system for deep Vrancea (Romania) earthquakes
– volume: 47
  year: 2020
  ident: 10.1016/j.jaesx.2022.100122_b0175
  article-title: A machine-learning approach for earthquake magnitude estimation
  publication-title: Geophy. Res. Lett.
  doi: 10.1029/2019GL085976
– volume: 9
  year: 2021
  ident: 10.1016/j.jaesx.2022.100122_b0310
  article-title: Magnitude estimation for earthquake early warning using a deep convolutional neural network
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2021.653226
– volume: 72
  start-page: 75
  year: 2013
  ident: 10.1016/j.jaesx.2022.100122_b0250
  article-title: Geology and tectonics of Japanese islands: a review - the key to understanding the geology of Asia
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2012.04.014
– year: 2009
  ident: 10.1016/j.jaesx.2022.100122_b0120
– volume: 80
  start-page: 57
  year: 2009
  ident: 10.1016/j.jaesx.2022.100122_b0015
  article-title: PAGER-CAT: a composite earthquake catalog for calibrating global fatality models
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/gssrl.80.1.57
– volume: 92
  start-page: 2008
  year: 2002
  ident: 10.1016/j.jaesx.2022.100122_b0285
  article-title: A virtual sub-network approach to earthquake early warning
  publication-title: Bull. Seism. Soc. Am.
  doi: 10.1785/0120010217
– volume: 33
  year: 2006
  ident: 10.1016/j.jaesx.2022.100122_b0290
  article-title: Magnitude determination using initial P waves: a single-station approach
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL025395
– volume: 88
  start-page: 1527
  year: 2017
  ident: 10.1016/j.jaesx.2022.100122_b0040
  article-title: Rapid Estimation of Earthquake Magnitude by a New Wavelet-Based Proxy
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220170146
– volume: 38
  year: 2011
  ident: 10.1016/j.jaesx.2022.100122_b0165
  article-title: Magnitude estimation using initial P-wave amplitude and its spatial distribution in earthquake early warning in Taiwan
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047461
– volume: 26
  start-page: 23
  year: 2013
  ident: 10.1016/j.jaesx.2022.100122_b0130
  article-title: Earthquake magnitude estimation using the τc and Pd method for earthquake early warning systems
  publication-title: Earthq. Sci.
  doi: 10.1007/s11589-013-0005-4
– volume: 93
  start-page: 126
  year: 2021
  ident: 10.1016/j.jaesx.2022.100122_b0315
  article-title: Magnitude estimation for earthquake early warning with multiple parameter inputs and a support vector machine
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220210144
– year: 1997
  ident: 10.1016/j.jaesx.2022.100122_b0110
– volume: 95
  start-page: 347
  year: 2005
  ident: 10.1016/j.jaesx.2022.100122_b0275
  article-title: Experiment on an onsite early warning method for Taiwan early warning system
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120040097
– volume: 373
  start-page: 20140375
  year: 2015
  ident: 10.1016/j.jaesx.2022.100122_b0215
  article-title: Geological and historical evidence of irregular recurrent earthquakes in Japan
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2014.0375
– year: 1998
  ident: 10.1016/j.jaesx.2022.100122_b0270
  article-title: Determination of the Amurian Plate Motion
SSID ssj0002856848
Score 2.4739485
Snippet •Stacked ensemble machine learning model has been developed in this paper.•Feature and model ablation study has been performed in the model.•Prediction error...
A new machine learning model, named, EEWPEnsembleStack has been developed for predicting the magnitude of the earthquake from a few seconds of recorded ground...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100122
SubjectTerms Machine learning
Magnitude
Prediction
Strong motion
Title Early detection of earthquake magnitude based on stacked ensemble model
URI https://dx.doi.org/10.1016/j.jaesx.2022.100122
https://doaj.org/article/93942a6e8a9648feb5862965cf4bca1e
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqLi-yMGjxW2azDZHFXUR9KSwt5LHBF21vrrgz3eSdpd60YvXMk3CTNLvm2b4hrEjBaWX2kKmnVKZDIXItHE2C8L7UWnAl6nk_-YWJvfyeqqmvVZfsSaslQduHXeiCy2FASyNBlkGtIo4uAblgrTO5Bi_voR5vWRqln4Z0SJS6yyi9_G2F0YLyaFU3DUz-PlF2aEQSYRIiB-wlNT7e-jUQ5zLdbbWUUV-2i5xg61gvcmukiIx99ikGqqavwZOm7V5eJ-bJ-QvJlYDzT3yCE-ekwHRPzqpnlO-ii_2mWxi85stdn95cXc-ybpmCJmTuWwyyuPGTtpcKkcZlQtjYhaxbUYxksEYRTjtVKGxcBJA5T4YD2PE3AtE0AhFsc0G9WuNO4znCpUDbRSddYIjZ60FYwKBWElsBMyQiYUvKtcphceGFc_VoiRsViUHVtGBVevAITtevvTWCmX8bn4Wnbw0jSrX6QHFvupiX_0V-yGDRYiqjjC0RICGevxt9t3_mH2PrcYh29qWfTZoPuZ4QAylsYdpM34D_qrgsQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+earthquake+magnitude+based+on+stacked+ensemble+model&rft.jtitle=Journal+of+Asian+Earth+Sciences%3A+X&rft.au=Anushka+Joshi&rft.au=Chalavadi+Vishnu&rft.au=C+Krishna+Mohan&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2590-0560&rft.eissn=2590-0560&rft.volume=8&rft.spage=100122&rft_id=info:doi/10.1016%2Fj.jaesx.2022.100122&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93942a6e8a9648feb5862965cf4bca1e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0560&client=summon