Variational Bayesian inference and complexity control for stochastic block models
It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model p...
Saved in:
Published in | Statistical modelling Vol. 12; no. 1; pp. 93 - 115 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New Delhi, India
SAGE Publications
01.02.2012
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work, and numerous inference strategies such as variational expectation maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model-based criterion, Integrated Complete-data Likelihood (ICL), has been derived for SBM in the literature. It relies on an asymptotic approximation of the integrated complete-data likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call Integrated Likelihood Variational Bayes (ILvb), based on a non-asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm. |
---|---|
AbstractList | It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work, and numerous inference strategies such as variational expectation maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model-based criterion, Integrated Complete-data Likelihood (ICL), has been derived for SBM in the literature. It relies on an asymptotic approximation of the integrated complete-data likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call Integrated Likelihood Variational Bayes (ILvb), based on a non-asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm. It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work and numerous inference strategies such as variational Expectation Maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model based criterion, ICL, has been derived for SBM in the literature. It relies on an asymptotic approximation of the Integrated Complete-data Likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call ILvb, based on a non asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm. It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work, and numerous inference strategies such as variational expectation maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model-based criterion, Integrated Complete-data Likelihood (ICL), has been derived for SBM in the literature. It relies on an asymptotic approximation of the integrated complete-data likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call Integrated Likelihood Variational Bayes (ILvb), based on a non-asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm. [PUBLICATION ABSTRACT] |
Author | Ambroise, C Birmelé, E Latouche, P |
Author_xml | – sequence: 1 givenname: P surname: Latouche fullname: Latouche, P email: pierre.latouche@genopole.cnrs.fr – sequence: 2 givenname: E surname: Birmelé fullname: Birmelé, E – sequence: 3 givenname: C surname: Ambroise fullname: Ambroise, C |
BackLink | https://hal.science/hal-00624536$$DView record in HAL |
BookMark | eNp9kEFLwzAYhoMouE3_gKfgzUNdkqZpe5xDnTAQQcVbSNPEZWbNTDJx_952VQSFHUI-Pp4nvHmH4LBxjQLgDKNLjPN8jGmOUUFeMEKYtAdlB2DQLvMEpZQc7macdMQxGIawRIjgnJUD8PAsvBHRuEZYeCW2KhjRQNNo5VUjFRRNDaVbra36NHHbjk30zkLtPAzRyYUI0UhYWSff4MrVyoYTcKSFDer0-x6Bp5vrx-ksmd_f3k0n80RSTGNCtZJpXaRa5qJNw8guNlG0yrAui0pTJGtWZUSwQmtVZilFmdYMI1ZWKSHpCFz07y6E5WtvVsJvuROGzyZz3u0QYoRmKfvALXves2vv3jcqRL50G99-OfCSFUVJWN5BRQ9J70LwSnNp4q6a6IWxHCPedc3_d92q5I_6E2ivNO6lIF7Vb6A9xhf_6o7U |
CitedBy_id | crossref_primary_10_1007_s00180_016_0655_5 crossref_primary_10_1016_j_chemolab_2015_02_003 crossref_primary_10_1080_08839514_2022_2032923 crossref_primary_10_1109_TSIPN_2022_3188458 crossref_primary_10_1103_PhysRevE_89_012804 crossref_primary_10_1080_00949655_2024_2439481 crossref_primary_10_1103_PhysRevE_95_012304 crossref_primary_10_1093_jrsssa_qnad007 crossref_primary_10_1214_20_EJS1750 crossref_primary_10_30757_ALEA_v21_11 crossref_primary_10_1016_j_csda_2023_107836 crossref_primary_10_1016_j_neuroimage_2020_116611 crossref_primary_10_1111_rssb_12200 crossref_primary_10_1126_sciadv_aav1478 crossref_primary_10_1007_s11222_020_09947_5 crossref_primary_10_1007_s11227_020_03151_y crossref_primary_10_1177_1471082X15577017 crossref_primary_10_3150_13_BEJ579 crossref_primary_10_1007_s12239_024_00139_y crossref_primary_10_1016_j_neucom_2016_02_031 crossref_primary_10_1103_PhysRevLett_117_078301 crossref_primary_10_5351_KJAS_2016_29_3_487 crossref_primary_10_1111_stan_12219 crossref_primary_10_1016_j_joi_2018_05_004 crossref_primary_10_1214_20_AOS2042 crossref_primary_10_1103_PhysRevX_4_011047 crossref_primary_10_1214_18_AOAS1169 crossref_primary_10_1016_j_jtbi_2014_03_040 crossref_primary_10_1007_s41109_019_0232_2 crossref_primary_10_1063_1_5120503 crossref_primary_10_1080_01621459_2018_1458618 crossref_primary_10_1016_j_physrep_2016_09_002 crossref_primary_10_1214_21_EJS1971 crossref_primary_10_1002_wics_1651 crossref_primary_10_1111_rssc_12489 crossref_primary_10_1080_01621459_2019_1637744 crossref_primary_10_1103_PhysRevE_96_032310 crossref_primary_10_1214_14_EJS903 crossref_primary_10_1007_s11222_015_9607_0 crossref_primary_10_1016_j_apm_2018_04_013 crossref_primary_10_1145_3713076 crossref_primary_10_1111_rssb_12505 crossref_primary_10_1109_TIT_2020_3016331 crossref_primary_10_1007_s10614_021_10092_y crossref_primary_10_5351_KJAS_2016_29_4_613 crossref_primary_10_1016_j_neucom_2019_10_069 crossref_primary_10_1080_10618600_2015_1096790 crossref_primary_10_1051_ps_2022019 crossref_primary_10_1080_10618600_2017_1349663 crossref_primary_10_1016_j_csda_2012_10_021 crossref_primary_10_1109_ACCESS_2018_2853115 crossref_primary_10_1111_insr_12398 crossref_primary_10_1088_1742_5468_2015_01_P01001 crossref_primary_10_1080_01621459_2022_2035736 crossref_primary_10_1016_j_csda_2021_107179 crossref_primary_10_1080_01621459_2022_2054817 crossref_primary_10_1080_01621459_2018_1562934 crossref_primary_10_1103_PhysRevResearch_2_023100 crossref_primary_10_1007_s11222_022_10082_6 crossref_primary_10_1142_S2010326319500102 crossref_primary_10_1007_s00362_025_01660_7 crossref_primary_10_1080_07350015_2022_2139709 crossref_primary_10_1080_01621459_2016_1246365 crossref_primary_10_1016_j_csda_2020_107051 crossref_primary_10_1103_PhysRevE_97_032301 crossref_primary_10_2139_ssrn_3438987 crossref_primary_10_1017_nws_2015_29 crossref_primary_10_1002_sta4_426 crossref_primary_10_3390_math7121143 crossref_primary_10_1103_PhysRevE_99_010301 crossref_primary_10_1007_s11222_016_9713_7 crossref_primary_10_1016_j_csda_2022_107449 crossref_primary_10_1080_03610918_2020_1743858 crossref_primary_10_1214_13_AOAS691 crossref_primary_10_7717_peerj_cs_1006 crossref_primary_10_1007_s11222_023_10265_9 crossref_primary_10_1093_biomet_asaa006 crossref_primary_10_1016_j_ins_2021_12_011 crossref_primary_10_1093_comnet_cnac042 crossref_primary_10_1103_PhysRevE_97_022315 crossref_primary_10_1145_3442589 crossref_primary_10_1007_s11222_018_9832_4 crossref_primary_10_1007_s10115_020_01521_9 crossref_primary_10_1214_23_AOS2282 |
Cites_doi | 10.1007/978-94-011-5014-9_12 10.1016/j.jspi.2010.03.042 10.1214/10-AOAS361 10.1007/b97636 10.1016/0378-8733(83)90021-7 10.1098/rspa.1946.0056 10.1103/PhysRevE.72.046105 10.1109/34.865189 10.1073/pnas.122653799 10.1080/01621459.1982.10477895 10.1016/j.patcog.2008.06.019 10.2307/270741 10.1214/09-AOS689 10.1198/016214501753208735 10.1198/016214502388618906 10.1109/TCBB.2006.55 10.1016/j.neucom.2004.11.018 10.1038/nrg1272 10.1016/0167-7152(86)90016-7 10.1038/30918 10.1088/1742-5468/2005/09/P09008 10.1103/RevModPhys.74.47 10.1086/226141 10.1007/s11222-007-9046-7 10.1103/PhysRevLett.100.258701 10.1007/s003579900004 10.1073/pnas.0610537104 10.1111/j.2517-6161.1977.tb01600.x 10.1111/j.1467-985X.2007.00471.x 10.1038/nature05670 |
ContentType | Journal Article |
Copyright | 2012 SAGE Publications SAGE Publications © Feb 2012 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 SAGE Publications – notice: SAGE Publications © Feb 2012 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 88I 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U 1XC |
DOI | 10.1177/1471082X1001200105 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ABI/INFORM Collection China ProQuest Central Basic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1477-0342 |
EndPage | 115 |
ExternalDocumentID | oai_HAL_hal_00624536v1 2627599871 10_1177_1471082X1001200105 10.1177_1471082X1001200105 |
Genre | Feature |
GroupedDBID | -TM .2L 01A 0R~ 123 1~K 29Q 31W 31X 4.4 54M 56W 5VS 7WY 88I 8FE 8FG 8FL 8R4 8R5 8V8 AADIR AADUE AAGLT AAJPV AAQDB AAQXI AARIX AATAA ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJCF ABKRH ABPNF ABQPY ABQXT ABRHV ABTDE ABUJY ABUWG ACDXX ACFUR ACFZE ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUIR ADDLC ADEBD ADNMO ADNON ADRRZ ADTOS ADYCS AEDXQ AEMOZ AENEX AEOBU AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS AMVHM ANDLU ARAPS ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN AZQEC B8T B8Z BDZRT BENPR BEZIV BGLVJ BMVBW BPACV BPHCQ CAG CCPQU CEADM COF CS3 DG~ DOPDO DV7 DV8 DWQXO EBS EJD EMI EST F5P FEDTE FHBDP FRNLG GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ J8X J9A K1G K60 K6V K6~ K7- L6V M0C M2P M7S N9A O9- P.B P2P P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS Q2X Q7P ROL S01 SASJQ SAUOL SCNPE SFC SFK SFT SGU SGV SHB SPJ SSDHQ TH9 TN5 ZPLXX ZPPRI ~32 AAYXX ACCVC AJGYC AMNSR CITATION 3V. 7XB 8FK AAPII AJHME AJVBE JQ2 L.- PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC M4V |
ID | FETCH-LOGICAL-c414t-4fec3d83fc7a00262200102e4b51f98bf40cd6b52a68ffe953405ff61069b3223 |
IEDL.DBID | BENPR |
ISSN | 1471-082X |
IngestDate | Fri May 09 12:17:27 EDT 2025 Wed Aug 13 06:51:46 EDT 2025 Thu Apr 24 23:10:45 EDT 2025 Tue Jul 01 05:26:44 EDT 2025 Tue Jun 17 22:31:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | variational Bayes EM integrated observed-data likelihood integrated complete-data likelihood variational EM random graphs stochastic block models community detection |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-4fec3d83fc7a00262200102e4b51f98bf40cd6b52a68ffe953405ff61069b3223 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ORCID | 0000-0002-8148-0346 0009-0009-7398-1640 0000-0002-6996-4014 |
PQID | 968892671 |
PQPubID | 44215 |
PageCount | 23 |
ParticipantIDs | hal_primary_oai_HAL_hal_00624536v1 proquest_journals_968892671 crossref_citationtrail_10_1177_1471082X1001200105 crossref_primary_10_1177_1471082X1001200105 sage_journals_10_1177_1471082X1001200105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-01 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New Delhi, India |
PublicationPlace_xml | – name: New Delhi, India – name: London |
PublicationTitle | Statistical modelling |
PublicationYear | 2012 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Biernacki, Celeux, Govaert 2000; 7 Hoff, Raftery, Handcock 2002; 97 White, Boorman, Breiger 1976; 81 Estrada, Rodriguez-Velazquez 2005; 72 Barabási, Oltvai 2004; 5 Newman, Leicht 2007; 104 Dempster, Laird, Rubin 1977; 39 Danon, Diaz-Guilera, Duch, Arenas 2005 Watts, Strogatz 1998; 393 Airoldi, Blei, Fienberg, Xing 2008; 9 Daudin, Picard, Robin 2008; 18 Hathaway 1986; 4 Holland, Laskey, Leinhardt 1983; 5 Boer, Huisman, Snijders, Steglich, Wichers, Zeggelink 2006 Handcock, Raftery, Tantrum 2007; 170 Nowicki, Snijders 2001; 96 Palla, Barabási, Vicsek 2007; 446 Mariadassou, Robin, Vacher 2010; 4 Biernacki, Celeux, Govaert 2010; 140 Svensén, Bishop 2004; 64 Lacroix, Fernandes, Sagot 2006; 3 Albert, Barabási 2002; 74 Allman, Matias, Rhodes 2009; 37 Jeffreys 1946; 186 Fienberg, Wasserman 1981; 12 Girvan, Newman 2002; 99 Hofman, Wiggins 2008; 100 Frank, Harary 1982; 77 Snijders, Nowicki 1997; 14 Zanghi, Ambroise, Miele 2008; 41 bibr33-1471082X1001200105 bibr36-1471082X1001200105 bibr35-1471082X1001200105 bibr34-1471082X1001200105 bibr12-1471082X1001200105 bibr37-1471082X1001200105 bibr29-1471082X1001200105 bibr11-1471082X1001200105 Corduneanu A (bibr10-1471082X1001200105) 2001 bibr15-1471082X1001200105 bibr14-1471082X1001200105 bibr16-1471082X1001200105 McLachlan G (bibr28-1471082X1001200105) 1997 Boer P (bibr8-1471082X1001200105) 2006 bibr21-1471082X1001200105 bibr22-1471082X1001200105 bibr20-1471082X1001200105 Attias H (bibr4-1471082X1001200105) 1999 bibr18-1471082X1001200105 bibr19-1471082X1001200105 Airoldi EM (bibr1-1471082X1001200105) 2008; 9 bibr17-1471082X1001200105 bibr23-1471082X1001200105 Kemp C (bibr24-1471082X1001200105) 2004 bibr25-1471082X1001200105 bibr26-1471082X1001200105 bibr27-1471082X1001200105 bibr9-1471082X1001200105 bibr30-1471082X1001200105 Dempster AP (bibr13-1471082X1001200105) 1977; 39 bibr7-1471082X1001200105 bibr32-1471082X1001200105 bibr2-1471082X1001200105 bibr31-1471082X1001200105 bibr3-1471082X1001200105 bibr5-1471082X1001200105 bibr6-1471082X1001200105 |
References_xml | – volume: 12 start-page: 156 year: 1981 end-page: 92 article-title: Categorical data analysis of single sociometric relations publication-title: Sociological Methodology – volume: 7 start-page: 719 year: 2000 end-page: 25 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Transactions Pattern Analysis and Machine Inteligence – volume: 97 start-page: 1090 year: 2002 end-page: 098 article-title: Latent space approaches to social network analysis publication-title: Journal of the American Statistical Association – volume: 3 start-page: 360 year: 2006 end-page: 68 article-title: Motif search in graphs: Application to metabolic networks publication-title: Transactions in Computational Biology and Bioinformatics – year: 2005 article-title: Comparing community structure identification publication-title: Journal of Statistical Mechanics – volume: 5 start-page: 109 year: 1983 end-page: 37 article-title: Stochastic blockmodels: some first steps publication-title: Social Networks – volume: 64 start-page: 235 year: 2004 end-page: 52 article-title: Robust Bayesian mixture modelling publication-title: Neurocomputing – volume: 74 start-page: 47 year: 2002 end-page: 97 article-title: Statistical mechanics of complex networks publication-title: Modern Physics – volume: 99 start-page: 7821 year: 2002 end-page: 826 article-title: Community structure in social and biological networks publication-title: Proceedings of the National Academy of Science – volume: 5 start-page: 101 year: 2004 end-page: 13 article-title: Network biology: understanding the cell’s functional organization publication-title: Nature Review Genetics – volume: 104 start-page: 9564 year: 2007 end-page: 569 article-title: Mixture models and exploratory analysis in networks publication-title: PNAS – year: 2006 publication-title: StOCNET: an open software system for the advanced statistical analysis of social networks – volume: 170 start-page: 1 year: 2007 end-page: 22 article-title: Model-based clustering for social networks publication-title: Journal of the Royal Statistical Society, Series A – volume: 186 start-page: 453 year: 1946 end-page: 61 article-title: An invariant form for the prior probability in estimations problems publication-title: Proceedings of the Royal Society of London. Series A – volume: 4 start-page: 53 year: 1986 end-page: 56 article-title: Another interpretation of the EM algorithm for mixture distributions publication-title: Statistics & Probability Letters – volume: 4 start-page: 715 year: 2010 end-page: 42 article-title: Uncovering latent structure in valued graphs: a variational approach publication-title: Annals of Applied Statistics – volume: 37 start-page: 3099 year: 2009 end-page: 132 article-title: Identifiability of parameters in latent structure models with many observed variables publication-title: Annals of Statistics – volume: 140 start-page: 2991 year: 2010 end-page: 3002 article-title: Exact and monte carlo calculations of integrated likelihoods for the latent class model publication-title: Journal of Statistical Planning and Inference – volume: 81 start-page: 730 year: 1976 end-page: 80 article-title: Social structure from multiple networks. I. Blockmodels of roles and positions publication-title: American Journal of Sociology – volume: 393 start-page: 440 year: 1998 end-page: 42 article-title: Collective dynamics of small-world networks publication-title: Nature – volume: 72 year: 2005 article-title: Spectral measures of bipartivity in complex networks publication-title: Physical Review E – volume: 77 start-page: 835 year: 1982 end-page: 40 article-title: Cluster inference by using transitivity indices in empirical graphs publication-title: Journal of the American Statistical Association – volume: 96 start-page: 1077 year: 2001 end-page: 087 article-title: Estimation and prediction for stochastic blockstructures publication-title: Journal of the American Statistical Association – volume: 41 start-page: 3592 year: 2008 end-page: 599 article-title: Fast online graph clustering via Erdös Renyi mixture publication-title: Pattern Recognition – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood for incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society, Series B – volume: 446 start-page: 664 year: 2007 end-page: 67 article-title: Quantifying social group evolution publication-title: Nature – volume: 18 start-page: 1 year: 2008 end-page: 36 article-title: A mixture model for random graph publication-title: Statistics and Computing – volume: 14 start-page: 75 year: 1997 end-page: 100 article-title: Estimation and prediction for stochastic block-structures for graphs with latent block structure publication-title: Journal of Classification – volume: 100 start-page: 258701 year: 2008 article-title: A Bayesian approach to network modularity publication-title: Physical Review Letters – volume: 9 start-page: 1981 year: 2008 end-page: 2014 article-title: Mixed-membership stochastic blockmodels publication-title: Journal of Machine Learning Research – ident: bibr29-1471082X1001200105 doi: 10.1007/978-94-011-5014-9_12 – ident: bibr7-1471082X1001200105 doi: 10.1016/j.jspi.2010.03.042 – ident: bibr27-1471082X1001200105 doi: 10.1214/10-AOAS361 – ident: bibr9-1471082X1001200105 doi: 10.1007/b97636 – ident: bibr22-1471082X1001200105 doi: 10.1016/0378-8733(83)90021-7 – ident: bibr23-1471082X1001200105 doi: 10.1098/rspa.1946.0056 – start-page: 21 volume-title: Uncertainty in artificial intelligence: proceedings of the fifth conference year: 1999 ident: bibr4-1471082X1001200105 – ident: bibr14-1471082X1001200105 doi: 10.1103/PhysRevE.72.046105 – ident: bibr6-1471082X1001200105 doi: 10.1109/34.865189 – ident: bibr17-1471082X1001200105 doi: 10.1073/pnas.122653799 – ident: bibr16-1471082X1001200105 doi: 10.1080/01621459.1982.10477895 – ident: bibr37-1471082X1001200105 doi: 10.1016/j.patcog.2008.06.019 – ident: bibr15-1471082X1001200105 doi: 10.2307/270741 – volume: 9 start-page: 1981 year: 2008 ident: bibr1-1471082X1001200105 publication-title: Journal of Machine Learning Research – ident: bibr3-1471082X1001200105 doi: 10.1214/09-AOS689 – ident: bibr31-1471082X1001200105 doi: 10.1198/016214501753208735 – ident: bibr20-1471082X1001200105 doi: 10.1198/016214502388618906 – ident: bibr26-1471082X1001200105 doi: 10.1109/TCBB.2006.55 – ident: bibr34-1471082X1001200105 doi: 10.1016/j.neucom.2004.11.018 – start-page: 27 volume-title: Artificial intelligence and statistics: proceedings of the eighth conference year: 2001 ident: bibr10-1471082X1001200105 – year: 2006 ident: bibr8-1471082X1001200105 publication-title: StOCNET: an open software system for the advanced statistical analysis of social networks – ident: bibr5-1471082X1001200105 doi: 10.1038/nrg1272 – ident: bibr19-1471082X1001200105 doi: 10.1016/0167-7152(86)90016-7 – ident: bibr35-1471082X1001200105 doi: 10.1038/30918 – ident: bibr11-1471082X1001200105 doi: 10.1088/1742-5468/2005/09/P09008 – ident: bibr2-1471082X1001200105 doi: 10.1103/RevModPhys.74.47 – ident: bibr36-1471082X1001200105 doi: 10.1086/226141 – ident: bibr12-1471082X1001200105 doi: 10.1007/s11222-007-9046-7 – ident: bibr21-1471082X1001200105 doi: 10.1103/PhysRevLett.100.258701 – volume-title: Discovering latent classes in relational data year: 2004 ident: bibr24-1471082X1001200105 – ident: bibr25-1471082X1001200105 – ident: bibr33-1471082X1001200105 doi: 10.1007/s003579900004 – volume-title: The EM algorithm and extensions year: 1997 ident: bibr28-1471082X1001200105 – ident: bibr30-1471082X1001200105 doi: 10.1073/pnas.0610537104 – volume: 39 start-page: 1 year: 1977 ident: bibr13-1471082X1001200105 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: bibr18-1471082X1001200105 doi: 10.1111/j.1467-985X.2007.00471.x – ident: bibr32-1471082X1001200105 doi: 10.1038/nature05670 |
SSID | ssj0021769 |
Score | 2.2777758 |
Snippet | It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have... It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to connection profiles. Many methods have been... |
SourceID | hal proquest crossref sage |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | Algorithms Applications Approximation Cluster analysis Clustering Methodology Optimization techniques Social sciences Software Statistics Stochastic models Studies |
Title | Variational Bayesian inference and complexity control for stochastic block models |
URI | https://journals.sagepub.com/doi/full/10.1177/1471082X1001200105 https://www.proquest.com/docview/968892671 https://hal.science/hal-00624536 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9qIP4ifO6QjigyDFpU3T9kmmOIc4UVGZTyXpEhRlTjdF_3vvurQqoq_56Ecuvftder87gG0_1EJkUYC-SaI8StDlJVobT1mpWsaPbBQQwbl3JrvX4qQf9l1sztiFVRY6MVfUg6eMzsj3EhnHiS8jvj969qhoFP1cdRU0KlBDDRzHVagdHJ2dX5YeF4_ymnYcNbCHtq5fsGaIb45t1MRz-ijVifxhmSp3FBf5DXR-i_PKTU9nAeYdZmTtqZAXYcYMl2CuVyZcHS_DxQ36vO5cjx2oD0PcSHZfsPmYGg5YHj1u3hF2MxegzhCxMkR_2Z2idM1Mo2V7YHlxnPEKXHeOrg67nquW4GWCi4knrMmCQRzYLFLkWfn5W_lG6JDbJNZWtLKB1KGvZGytScIAsZq1CJ9kovGzDlahOnwamjVg2ImTtbSCBmmtUSFarSJEJy3LVVQHXqxUmrlU4lTR4jHlLnv479Wtw245ZzRNpPHv6C0UQDmQcmB326cptRHrE59LvvE6NAr5pO7LG6flPqnDDonsq-fvu63_e6EGzCJK8qeh2htQnby8mk1EIhPdhErcOW5CrX17ftFrut33CYJy15w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB71eGh5QBSoCL1WCKRKldXser22H1DVQkNCDqlSWuXN3XV2FQRKCg49fhT_kRlfBCH6lte9bO2Md75ZzzcD8FYERso09NE3ibVHCbq82Bjraad004rQhT4RnPsD1b6Un0fBaAV-VVwYCquszsT8oB7PUrojP45VFMVChfzk5rtHRaPo52pVQaPQiq59uEOPLXvf-YjifSdE63z4oe2VRQW8VHI596SzqT-OfJeGmhwQIfK0alaagLs4Mk4207EygdAqcs7GgY-QxjlEGSo2qP0-rrsK69JHQ07E9Nan2r_jYV5Bj-N576FlHVUcHWK3Yxs18ZysSlUp_7KDqxOKwlyAuAtRZbmhaz2DpyVCZaeFSm3Bip0-hyf9Or1r9gIurtDDLm8R2Zl-sMTEZF8q7iDT0zHLY9XtPYJ8VobDM8THDLFmOtGUHJoZtKNfWV6KJ3sJl0vZxm1Ym86m9hUw7MTJRjlJg4wxePw6o0PEQk3HddgAXu1UkpaJy6l-xreEl7nK_93dBhzVc26KtB2Pjn6DAqgHUsbt9mkvoTbimOJ7qVvegJ1KPkn5nWdJrZUNOCSR_en5_9NeP7rQAWy0h_1e0usMujuwifhMFEHiu7A2__HT7iEGmpv9XPMYXC9b1X8D19APdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkFA5UKBFLI_WqkBCqgJrx3GSQw9L6WopLAKpVMsp2FlbINCC2KWF_qn-FX4SM1lnebbqhUOv8diZjMeZb5J5ACyJyEiZxyH6JqkOqEBXkBpjA-2UrloRuzikBOfmjmrsy6-tqDUEv8tcGC_B7iqFVSFHxcuaTvd52635f4xrHN-oaLpavEj9pB6PPqpyy17_RJ-t-2lzAzd4WYj6l2-fG4FvKxDkksteIJ3Nw3YSujzW5IKIYglhpYm4SxPjZDVvKxMJrRLnbBqFCGqcQ5yhUoP6H-K6wzCKlpEQ2WjtYHevOfDxeFx00SMOA2KxzNN5lusHtnD4iCIx78Hce5FlhbGrv4abUkz9GJeT1cseSujXowqS_5EcJ2HCA29W65-UKRiynWkYbw6q1nbfwN53fXHsP46ydX1tKcGUHZcpkUx32qwIwbdX6LswH-XPEPYzhND5kaaa18wgPDhhRYeh7lvYf5FnmoGRzlnHzgLDQZxslJNEZIxBq-KMjhHiVR3XcQV4uflZ7uuxU1uQ04z7EuxPt6cCHwdzzvvVSP5K_QF1akBIhcQbte2MrlHqLPKlfvAKzJcql5VKk6UqSVKhYhxdIQW6G_nz3eb-nfQ9jO1u1LPtzZ2teXiFEFT04-AXYKR3cWkXEeb1zDt_tBgcvrQW3gLey06q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+inference+and+complexity+control+for+stochastic+block+models&rft.jtitle=Statistical+modelling&rft.au=Latouche%2C+P&rft.au=Birmel%C3%A9%2C+E&rft.au=Ambroise%2C+C&rft.date=2012-02-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=12&rft.issue=1&rft.spage=93&rft.epage=115&rft_id=info:doi/10.1177%2F1471082X1001200105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X1001200105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon |