Variational Bayesian inference and complexity control for stochastic block models

It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model p...

Full description

Saved in:
Bibliographic Details
Published inStatistical modelling Vol. 12; no. 1; pp. 93 - 115
Main Authors Latouche, P, Birmelé, E, Ambroise, C
Format Journal Article
LanguageEnglish
Published New Delhi, India SAGE Publications 01.02.2012
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work, and numerous inference strategies such as variational expectation maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model-based criterion, Integrated Complete-data Likelihood (ICL), has been derived for SBM in the literature. It relies on an asymptotic approximation of the integrated complete-data likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call Integrated Likelihood Variational Bayes (ILvb), based on a non-asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm.
AbstractList It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work, and numerous inference strategies such as variational expectation maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model-based criterion, Integrated Complete-data Likelihood (ICL), has been derived for SBM in the literature. It relies on an asymptotic approximation of the integrated complete-data likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call Integrated Likelihood Variational Bayes (ILvb), based on a non-asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm.
It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work and numerous inference strategies such as variational Expectation Maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model based criterion, ICL, has been derived for SBM in the literature. It relies on an asymptotic approximation of the Integrated Complete-data Likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call ILvb, based on a non asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm.
It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have been proposed and in this paper we concentrate on the Stochastic Block Model (SBM). The clustering of vertices and the estimation of SBM model parameters have been subject to previous work, and numerous inference strategies such as variational expectation maximization (EM) and classification EM have been proposed. However, SBM still suffers from a lack of criteria to estimate the number of components in the mixture. To our knowledge, only one model-based criterion, Integrated Complete-data Likelihood (ICL), has been derived for SBM in the literature. It relies on an asymptotic approximation of the integrated complete-data likelihood and recent studies have shown that it tends to be too conservative in the case of small networks. To tackle this issue, we propose a new criterion that we call Integrated Likelihood Variational Bayes (ILvb), based on a non-asymptotic approximation of the marginal likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm. [PUBLICATION ABSTRACT]
Author Ambroise, C
Birmelé, E
Latouche, P
Author_xml – sequence: 1
  givenname: P
  surname: Latouche
  fullname: Latouche, P
  email: pierre.latouche@genopole.cnrs.fr
– sequence: 2
  givenname: E
  surname: Birmelé
  fullname: Birmelé, E
– sequence: 3
  givenname: C
  surname: Ambroise
  fullname: Ambroise, C
BackLink https://hal.science/hal-00624536$$DView record in HAL
BookMark eNp9kEFLwzAYhoMouE3_gKfgzUNdkqZpe5xDnTAQQcVbSNPEZWbNTDJx_952VQSFHUI-Pp4nvHmH4LBxjQLgDKNLjPN8jGmOUUFeMEKYtAdlB2DQLvMEpZQc7macdMQxGIawRIjgnJUD8PAsvBHRuEZYeCW2KhjRQNNo5VUjFRRNDaVbra36NHHbjk30zkLtPAzRyYUI0UhYWSff4MrVyoYTcKSFDer0-x6Bp5vrx-ksmd_f3k0n80RSTGNCtZJpXaRa5qJNw8guNlG0yrAui0pTJGtWZUSwQmtVZilFmdYMI1ZWKSHpCFz07y6E5WtvVsJvuROGzyZz3u0QYoRmKfvALXves2vv3jcqRL50G99-OfCSFUVJWN5BRQ9J70LwSnNp4q6a6IWxHCPedc3_d92q5I_6E2ivNO6lIF7Vb6A9xhf_6o7U
CitedBy_id crossref_primary_10_1007_s00180_016_0655_5
crossref_primary_10_1016_j_chemolab_2015_02_003
crossref_primary_10_1080_08839514_2022_2032923
crossref_primary_10_1109_TSIPN_2022_3188458
crossref_primary_10_1103_PhysRevE_89_012804
crossref_primary_10_1080_00949655_2024_2439481
crossref_primary_10_1103_PhysRevE_95_012304
crossref_primary_10_1093_jrsssa_qnad007
crossref_primary_10_1214_20_EJS1750
crossref_primary_10_30757_ALEA_v21_11
crossref_primary_10_1016_j_csda_2023_107836
crossref_primary_10_1016_j_neuroimage_2020_116611
crossref_primary_10_1111_rssb_12200
crossref_primary_10_1126_sciadv_aav1478
crossref_primary_10_1007_s11222_020_09947_5
crossref_primary_10_1007_s11227_020_03151_y
crossref_primary_10_1177_1471082X15577017
crossref_primary_10_3150_13_BEJ579
crossref_primary_10_1007_s12239_024_00139_y
crossref_primary_10_1016_j_neucom_2016_02_031
crossref_primary_10_1103_PhysRevLett_117_078301
crossref_primary_10_5351_KJAS_2016_29_3_487
crossref_primary_10_1111_stan_12219
crossref_primary_10_1016_j_joi_2018_05_004
crossref_primary_10_1214_20_AOS2042
crossref_primary_10_1103_PhysRevX_4_011047
crossref_primary_10_1214_18_AOAS1169
crossref_primary_10_1016_j_jtbi_2014_03_040
crossref_primary_10_1007_s41109_019_0232_2
crossref_primary_10_1063_1_5120503
crossref_primary_10_1080_01621459_2018_1458618
crossref_primary_10_1016_j_physrep_2016_09_002
crossref_primary_10_1214_21_EJS1971
crossref_primary_10_1002_wics_1651
crossref_primary_10_1111_rssc_12489
crossref_primary_10_1080_01621459_2019_1637744
crossref_primary_10_1103_PhysRevE_96_032310
crossref_primary_10_1214_14_EJS903
crossref_primary_10_1007_s11222_015_9607_0
crossref_primary_10_1016_j_apm_2018_04_013
crossref_primary_10_1145_3713076
crossref_primary_10_1111_rssb_12505
crossref_primary_10_1109_TIT_2020_3016331
crossref_primary_10_1007_s10614_021_10092_y
crossref_primary_10_5351_KJAS_2016_29_4_613
crossref_primary_10_1016_j_neucom_2019_10_069
crossref_primary_10_1080_10618600_2015_1096790
crossref_primary_10_1051_ps_2022019
crossref_primary_10_1080_10618600_2017_1349663
crossref_primary_10_1016_j_csda_2012_10_021
crossref_primary_10_1109_ACCESS_2018_2853115
crossref_primary_10_1111_insr_12398
crossref_primary_10_1088_1742_5468_2015_01_P01001
crossref_primary_10_1080_01621459_2022_2035736
crossref_primary_10_1016_j_csda_2021_107179
crossref_primary_10_1080_01621459_2022_2054817
crossref_primary_10_1080_01621459_2018_1562934
crossref_primary_10_1103_PhysRevResearch_2_023100
crossref_primary_10_1007_s11222_022_10082_6
crossref_primary_10_1142_S2010326319500102
crossref_primary_10_1007_s00362_025_01660_7
crossref_primary_10_1080_07350015_2022_2139709
crossref_primary_10_1080_01621459_2016_1246365
crossref_primary_10_1016_j_csda_2020_107051
crossref_primary_10_1103_PhysRevE_97_032301
crossref_primary_10_2139_ssrn_3438987
crossref_primary_10_1017_nws_2015_29
crossref_primary_10_1002_sta4_426
crossref_primary_10_3390_math7121143
crossref_primary_10_1103_PhysRevE_99_010301
crossref_primary_10_1007_s11222_016_9713_7
crossref_primary_10_1016_j_csda_2022_107449
crossref_primary_10_1080_03610918_2020_1743858
crossref_primary_10_1214_13_AOAS691
crossref_primary_10_7717_peerj_cs_1006
crossref_primary_10_1007_s11222_023_10265_9
crossref_primary_10_1093_biomet_asaa006
crossref_primary_10_1016_j_ins_2021_12_011
crossref_primary_10_1093_comnet_cnac042
crossref_primary_10_1103_PhysRevE_97_022315
crossref_primary_10_1145_3442589
crossref_primary_10_1007_s11222_018_9832_4
crossref_primary_10_1007_s10115_020_01521_9
crossref_primary_10_1214_23_AOS2282
Cites_doi 10.1007/978-94-011-5014-9_12
10.1016/j.jspi.2010.03.042
10.1214/10-AOAS361
10.1007/b97636
10.1016/0378-8733(83)90021-7
10.1098/rspa.1946.0056
10.1103/PhysRevE.72.046105
10.1109/34.865189
10.1073/pnas.122653799
10.1080/01621459.1982.10477895
10.1016/j.patcog.2008.06.019
10.2307/270741
10.1214/09-AOS689
10.1198/016214501753208735
10.1198/016214502388618906
10.1109/TCBB.2006.55
10.1016/j.neucom.2004.11.018
10.1038/nrg1272
10.1016/0167-7152(86)90016-7
10.1038/30918
10.1088/1742-5468/2005/09/P09008
10.1103/RevModPhys.74.47
10.1086/226141
10.1007/s11222-007-9046-7
10.1103/PhysRevLett.100.258701
10.1007/s003579900004
10.1073/pnas.0610537104
10.1111/j.2517-6161.1977.tb01600.x
10.1111/j.1467-985X.2007.00471.x
10.1038/nature05670
ContentType Journal Article
Copyright 2012 SAGE Publications
SAGE Publications © Feb 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 SAGE Publications
– notice: SAGE Publications © Feb 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
88I
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
1XC
DOI 10.1177/1471082X1001200105
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ABI/INFORM Collection China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1477-0342
EndPage 115
ExternalDocumentID oai_HAL_hal_00624536v1
2627599871
10_1177_1471082X1001200105
10.1177_1471082X1001200105
Genre Feature
GroupedDBID -TM
.2L
01A
0R~
123
1~K
29Q
31W
31X
4.4
54M
56W
5VS
7WY
88I
8FE
8FG
8FL
8R4
8R5
8V8
AADIR
AADUE
AAGLT
AAJPV
AAQDB
AAQXI
AARIX
AATAA
ABAWP
ABCCA
ABCJG
ABEIX
ABFXH
ABHQH
ABIDT
ABJCF
ABKRH
ABPNF
ABQPY
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ACDXX
ACFUR
ACFZE
ACGFS
ACGOD
ACIWK
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUIR
ADDLC
ADEBD
ADNMO
ADNON
ADRRZ
ADTOS
ADYCS
AEDXQ
AEMOZ
AENEX
AEOBU
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ANDLU
ARAPS
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
AZQEC
B8T
B8Z
BDZRT
BENPR
BEZIV
BGLVJ
BMVBW
BPACV
BPHCQ
CAG
CCPQU
CEADM
COF
CS3
DG~
DOPDO
DV7
DV8
DWQXO
EBS
EJD
EMI
EST
F5P
FEDTE
FHBDP
FRNLG
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HF~
HVGLF
HZ~
J8X
J9A
K1G
K60
K6V
K6~
K7-
L6V
M0C
M2P
M7S
N9A
O9-
P.B
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
Q2X
Q7P
ROL
S01
SASJQ
SAUOL
SCNPE
SFC
SFK
SFT
SGU
SGV
SHB
SPJ
SSDHQ
TH9
TN5
ZPLXX
ZPPRI
~32
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
3V.
7XB
8FK
AAPII
AJHME
AJVBE
JQ2
L.-
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
M4V
ID FETCH-LOGICAL-c414t-4fec3d83fc7a00262200102e4b51f98bf40cd6b52a68ffe953405ff61069b3223
IEDL.DBID BENPR
ISSN 1471-082X
IngestDate Fri May 09 12:17:27 EDT 2025
Wed Aug 13 06:51:46 EDT 2025
Thu Apr 24 23:10:45 EDT 2025
Tue Jul 01 05:26:44 EDT 2025
Tue Jun 17 22:31:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords variational Bayes EM
integrated observed-data likelihood
integrated complete-data likelihood
variational EM
random graphs
stochastic block models
community detection
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-4fec3d83fc7a00262200102e4b51f98bf40cd6b52a68ffe953405ff61069b3223
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0002-8148-0346
0009-0009-7398-1640
0000-0002-6996-4014
PQID 968892671
PQPubID 44215
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_00624536v1
proquest_journals_968892671
crossref_citationtrail_10_1177_1471082X1001200105
crossref_primary_10_1177_1471082X1001200105
sage_journals_10_1177_1471082X1001200105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New Delhi, India
PublicationPlace_xml – name: New Delhi, India
– name: London
PublicationTitle Statistical modelling
PublicationYear 2012
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Biernacki, Celeux, Govaert 2000; 7
Hoff, Raftery, Handcock 2002; 97
White, Boorman, Breiger 1976; 81
Estrada, Rodriguez-Velazquez 2005; 72
Barabási, Oltvai 2004; 5
Newman, Leicht 2007; 104
Dempster, Laird, Rubin 1977; 39
Danon, Diaz-Guilera, Duch, Arenas 2005
Watts, Strogatz 1998; 393
Airoldi, Blei, Fienberg, Xing 2008; 9
Daudin, Picard, Robin 2008; 18
Hathaway 1986; 4
Holland, Laskey, Leinhardt 1983; 5
Boer, Huisman, Snijders, Steglich, Wichers, Zeggelink 2006
Handcock, Raftery, Tantrum 2007; 170
Nowicki, Snijders 2001; 96
Palla, Barabási, Vicsek 2007; 446
Mariadassou, Robin, Vacher 2010; 4
Biernacki, Celeux, Govaert 2010; 140
Svensén, Bishop 2004; 64
Lacroix, Fernandes, Sagot 2006; 3
Albert, Barabási 2002; 74
Allman, Matias, Rhodes 2009; 37
Jeffreys 1946; 186
Fienberg, Wasserman 1981; 12
Girvan, Newman 2002; 99
Hofman, Wiggins 2008; 100
Frank, Harary 1982; 77
Snijders, Nowicki 1997; 14
Zanghi, Ambroise, Miele 2008; 41
bibr33-1471082X1001200105
bibr36-1471082X1001200105
bibr35-1471082X1001200105
bibr34-1471082X1001200105
bibr12-1471082X1001200105
bibr37-1471082X1001200105
bibr29-1471082X1001200105
bibr11-1471082X1001200105
Corduneanu A (bibr10-1471082X1001200105) 2001
bibr15-1471082X1001200105
bibr14-1471082X1001200105
bibr16-1471082X1001200105
McLachlan G (bibr28-1471082X1001200105) 1997
Boer P (bibr8-1471082X1001200105) 2006
bibr21-1471082X1001200105
bibr22-1471082X1001200105
bibr20-1471082X1001200105
Attias H (bibr4-1471082X1001200105) 1999
bibr18-1471082X1001200105
bibr19-1471082X1001200105
Airoldi EM (bibr1-1471082X1001200105) 2008; 9
bibr17-1471082X1001200105
bibr23-1471082X1001200105
Kemp C (bibr24-1471082X1001200105) 2004
bibr25-1471082X1001200105
bibr26-1471082X1001200105
bibr27-1471082X1001200105
bibr9-1471082X1001200105
bibr30-1471082X1001200105
Dempster AP (bibr13-1471082X1001200105) 1977; 39
bibr7-1471082X1001200105
bibr32-1471082X1001200105
bibr2-1471082X1001200105
bibr31-1471082X1001200105
bibr3-1471082X1001200105
bibr5-1471082X1001200105
bibr6-1471082X1001200105
References_xml – volume: 12
  start-page: 156
  year: 1981
  end-page: 92
  article-title: Categorical data analysis of single sociometric relations
  publication-title: Sociological Methodology
– volume: 7
  start-page: 719
  year: 2000
  end-page: 25
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Transactions Pattern Analysis and Machine Inteligence
– volume: 97
  start-page: 1090
  year: 2002
  end-page: 098
  article-title: Latent space approaches to social network analysis
  publication-title: Journal of the American Statistical Association
– volume: 3
  start-page: 360
  year: 2006
  end-page: 68
  article-title: Motif search in graphs: Application to metabolic networks
  publication-title: Transactions in Computational Biology and Bioinformatics
– year: 2005
  article-title: Comparing community structure identification
  publication-title: Journal of Statistical Mechanics
– volume: 5
  start-page: 109
  year: 1983
  end-page: 37
  article-title: Stochastic blockmodels: some first steps
  publication-title: Social Networks
– volume: 64
  start-page: 235
  year: 2004
  end-page: 52
  article-title: Robust Bayesian mixture modelling
  publication-title: Neurocomputing
– volume: 74
  start-page: 47
  year: 2002
  end-page: 97
  article-title: Statistical mechanics of complex networks
  publication-title: Modern Physics
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 826
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Science
– volume: 5
  start-page: 101
  year: 2004
  end-page: 13
  article-title: Network biology: understanding the cell’s functional organization
  publication-title: Nature Review Genetics
– volume: 104
  start-page: 9564
  year: 2007
  end-page: 569
  article-title: Mixture models and exploratory analysis in networks
  publication-title: PNAS
– year: 2006
  publication-title: StOCNET: an open software system for the advanced statistical analysis of social networks
– volume: 170
  start-page: 1
  year: 2007
  end-page: 22
  article-title: Model-based clustering for social networks
  publication-title: Journal of the Royal Statistical Society, Series A
– volume: 186
  start-page: 453
  year: 1946
  end-page: 61
  article-title: An invariant form for the prior probability in estimations problems
  publication-title: Proceedings of the Royal Society of London. Series A
– volume: 4
  start-page: 53
  year: 1986
  end-page: 56
  article-title: Another interpretation of the EM algorithm for mixture distributions
  publication-title: Statistics & Probability Letters
– volume: 4
  start-page: 715
  year: 2010
  end-page: 42
  article-title: Uncovering latent structure in valued graphs: a variational approach
  publication-title: Annals of Applied Statistics
– volume: 37
  start-page: 3099
  year: 2009
  end-page: 132
  article-title: Identifiability of parameters in latent structure models with many observed variables
  publication-title: Annals of Statistics
– volume: 140
  start-page: 2991
  year: 2010
  end-page: 3002
  article-title: Exact and monte carlo calculations of integrated likelihoods for the latent class model
  publication-title: Journal of Statistical Planning and Inference
– volume: 81
  start-page: 730
  year: 1976
  end-page: 80
  article-title: Social structure from multiple networks. I. Blockmodels of roles and positions
  publication-title: American Journal of Sociology
– volume: 393
  start-page: 440
  year: 1998
  end-page: 42
  article-title: Collective dynamics of small-world networks
  publication-title: Nature
– volume: 72
  year: 2005
  article-title: Spectral measures of bipartivity in complex networks
  publication-title: Physical Review E
– volume: 77
  start-page: 835
  year: 1982
  end-page: 40
  article-title: Cluster inference by using transitivity indices in empirical graphs
  publication-title: Journal of the American Statistical Association
– volume: 96
  start-page: 1077
  year: 2001
  end-page: 087
  article-title: Estimation and prediction for stochastic blockstructures
  publication-title: Journal of the American Statistical Association
– volume: 41
  start-page: 3592
  year: 2008
  end-page: 599
  article-title: Fast online graph clustering via Erdös Renyi mixture
  publication-title: Pattern Recognition
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood for incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 446
  start-page: 664
  year: 2007
  end-page: 67
  article-title: Quantifying social group evolution
  publication-title: Nature
– volume: 18
  start-page: 1
  year: 2008
  end-page: 36
  article-title: A mixture model for random graph
  publication-title: Statistics and Computing
– volume: 14
  start-page: 75
  year: 1997
  end-page: 100
  article-title: Estimation and prediction for stochastic block-structures for graphs with latent block structure
  publication-title: Journal of Classification
– volume: 100
  start-page: 258701
  year: 2008
  article-title: A Bayesian approach to network modularity
  publication-title: Physical Review Letters
– volume: 9
  start-page: 1981
  year: 2008
  end-page: 2014
  article-title: Mixed-membership stochastic blockmodels
  publication-title: Journal of Machine Learning Research
– ident: bibr29-1471082X1001200105
  doi: 10.1007/978-94-011-5014-9_12
– ident: bibr7-1471082X1001200105
  doi: 10.1016/j.jspi.2010.03.042
– ident: bibr27-1471082X1001200105
  doi: 10.1214/10-AOAS361
– ident: bibr9-1471082X1001200105
  doi: 10.1007/b97636
– ident: bibr22-1471082X1001200105
  doi: 10.1016/0378-8733(83)90021-7
– ident: bibr23-1471082X1001200105
  doi: 10.1098/rspa.1946.0056
– start-page: 21
  volume-title: Uncertainty in artificial intelligence: proceedings of the fifth conference
  year: 1999
  ident: bibr4-1471082X1001200105
– ident: bibr14-1471082X1001200105
  doi: 10.1103/PhysRevE.72.046105
– ident: bibr6-1471082X1001200105
  doi: 10.1109/34.865189
– ident: bibr17-1471082X1001200105
  doi: 10.1073/pnas.122653799
– ident: bibr16-1471082X1001200105
  doi: 10.1080/01621459.1982.10477895
– ident: bibr37-1471082X1001200105
  doi: 10.1016/j.patcog.2008.06.019
– ident: bibr15-1471082X1001200105
  doi: 10.2307/270741
– volume: 9
  start-page: 1981
  year: 2008
  ident: bibr1-1471082X1001200105
  publication-title: Journal of Machine Learning Research
– ident: bibr3-1471082X1001200105
  doi: 10.1214/09-AOS689
– ident: bibr31-1471082X1001200105
  doi: 10.1198/016214501753208735
– ident: bibr20-1471082X1001200105
  doi: 10.1198/016214502388618906
– ident: bibr26-1471082X1001200105
  doi: 10.1109/TCBB.2006.55
– ident: bibr34-1471082X1001200105
  doi: 10.1016/j.neucom.2004.11.018
– start-page: 27
  volume-title: Artificial intelligence and statistics: proceedings of the eighth conference
  year: 2001
  ident: bibr10-1471082X1001200105
– year: 2006
  ident: bibr8-1471082X1001200105
  publication-title: StOCNET: an open software system for the advanced statistical analysis of social networks
– ident: bibr5-1471082X1001200105
  doi: 10.1038/nrg1272
– ident: bibr19-1471082X1001200105
  doi: 10.1016/0167-7152(86)90016-7
– ident: bibr35-1471082X1001200105
  doi: 10.1038/30918
– ident: bibr11-1471082X1001200105
  doi: 10.1088/1742-5468/2005/09/P09008
– ident: bibr2-1471082X1001200105
  doi: 10.1103/RevModPhys.74.47
– ident: bibr36-1471082X1001200105
  doi: 10.1086/226141
– ident: bibr12-1471082X1001200105
  doi: 10.1007/s11222-007-9046-7
– ident: bibr21-1471082X1001200105
  doi: 10.1103/PhysRevLett.100.258701
– volume-title: Discovering latent classes in relational data
  year: 2004
  ident: bibr24-1471082X1001200105
– ident: bibr25-1471082X1001200105
– ident: bibr33-1471082X1001200105
  doi: 10.1007/s003579900004
– volume-title: The EM algorithm and extensions
  year: 1997
  ident: bibr28-1471082X1001200105
– ident: bibr30-1471082X1001200105
  doi: 10.1073/pnas.0610537104
– volume: 39
  start-page: 1
  year: 1977
  ident: bibr13-1471082X1001200105
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: bibr18-1471082X1001200105
  doi: 10.1111/j.1467-985X.2007.00471.x
– ident: bibr32-1471082X1001200105
  doi: 10.1038/nature05670
SSID ssj0021769
Score 2.2777758
Snippet It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to the connection profiles. Many methods have...
It is now widely accepted that knowledge can be acquired from networks by clustering their vertices according to connection profiles. Many methods have been...
SourceID hal
proquest
crossref
sage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Algorithms
Applications
Approximation
Cluster analysis
Clustering
Methodology
Optimization techniques
Social sciences
Software
Statistics
Stochastic models
Studies
Title Variational Bayesian inference and complexity control for stochastic block models
URI https://journals.sagepub.com/doi/full/10.1177/1471082X1001200105
https://www.proquest.com/docview/968892671
https://hal.science/hal-00624536
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9qIP4ifO6QjigyDFpU3T9kmmOIc4UVGZTyXpEhRlTjdF_3vvurQqoq_56Ecuvftder87gG0_1EJkUYC-SaI8StDlJVobT1mpWsaPbBQQwbl3JrvX4qQf9l1sztiFVRY6MVfUg6eMzsj3EhnHiS8jvj969qhoFP1cdRU0KlBDDRzHVagdHJ2dX5YeF4_ymnYcNbCHtq5fsGaIb45t1MRz-ijVifxhmSp3FBf5DXR-i_PKTU9nAeYdZmTtqZAXYcYMl2CuVyZcHS_DxQ36vO5cjx2oD0PcSHZfsPmYGg5YHj1u3hF2MxegzhCxMkR_2Z2idM1Mo2V7YHlxnPEKXHeOrg67nquW4GWCi4knrMmCQRzYLFLkWfn5W_lG6JDbJNZWtLKB1KGvZGytScIAsZq1CJ9kovGzDlahOnwamjVg2ImTtbSCBmmtUSFarSJEJy3LVVQHXqxUmrlU4lTR4jHlLnv479Wtw245ZzRNpPHv6C0UQDmQcmB326cptRHrE59LvvE6NAr5pO7LG6flPqnDDonsq-fvu63_e6EGzCJK8qeh2htQnby8mk1EIhPdhErcOW5CrX17ftFrut33CYJy15w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB71eGh5QBSoCL1WCKRKldXser22H1DVQkNCDqlSWuXN3XV2FQRKCg49fhT_kRlfBCH6lte9bO2Md75ZzzcD8FYERso09NE3ibVHCbq82Bjraad004rQhT4RnPsD1b6Un0fBaAV-VVwYCquszsT8oB7PUrojP45VFMVChfzk5rtHRaPo52pVQaPQiq59uEOPLXvf-YjifSdE63z4oe2VRQW8VHI596SzqT-OfJeGmhwQIfK0alaagLs4Mk4207EygdAqcs7GgY-QxjlEGSo2qP0-rrsK69JHQ07E9Nan2r_jYV5Bj-N576FlHVUcHWK3Yxs18ZysSlUp_7KDqxOKwlyAuAtRZbmhaz2DpyVCZaeFSm3Bip0-hyf9Or1r9gIurtDDLm8R2Zl-sMTEZF8q7iDT0zHLY9XtPYJ8VobDM8THDLFmOtGUHJoZtKNfWV6KJ3sJl0vZxm1Ym86m9hUw7MTJRjlJg4wxePw6o0PEQk3HddgAXu1UkpaJy6l-xreEl7nK_93dBhzVc26KtB2Pjn6DAqgHUsbt9mkvoTbimOJ7qVvegJ1KPkn5nWdJrZUNOCSR_en5_9NeP7rQAWy0h_1e0usMujuwifhMFEHiu7A2__HT7iEGmpv9XPMYXC9b1X8D19APdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkFA5UKBFLI_WqkBCqgJrx3GSQw9L6WopLAKpVMsp2FlbINCC2KWF_qn-FX4SM1lnebbqhUOv8diZjMeZb5J5ACyJyEiZxyH6JqkOqEBXkBpjA-2UrloRuzikBOfmjmrsy6-tqDUEv8tcGC_B7iqFVSFHxcuaTvd52635f4xrHN-oaLpavEj9pB6PPqpyy17_RJ-t-2lzAzd4WYj6l2-fG4FvKxDkksteIJ3Nw3YSujzW5IKIYglhpYm4SxPjZDVvKxMJrRLnbBqFCGqcQ5yhUoP6H-K6wzCKlpEQ2WjtYHevOfDxeFx00SMOA2KxzNN5lusHtnD4iCIx78Hce5FlhbGrv4abUkz9GJeT1cseSujXowqS_5EcJ2HCA29W65-UKRiynWkYbw6q1nbfwN53fXHsP46ydX1tKcGUHZcpkUx32qwIwbdX6LswH-XPEPYzhND5kaaa18wgPDhhRYeh7lvYf5FnmoGRzlnHzgLDQZxslJNEZIxBq-KMjhHiVR3XcQV4uflZ7uuxU1uQ04z7EuxPt6cCHwdzzvvVSP5K_QF1akBIhcQbte2MrlHqLPKlfvAKzJcql5VKk6UqSVKhYhxdIQW6G_nz3eb-nfQ9jO1u1LPtzZ2teXiFEFT04-AXYKR3cWkXEeb1zDt_tBgcvrQW3gLey06q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+inference+and+complexity+control+for+stochastic+block+models&rft.jtitle=Statistical+modelling&rft.au=Latouche%2C+P&rft.au=Birmel%C3%A9%2C+E&rft.au=Ambroise%2C+C&rft.date=2012-02-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=12&rft.issue=1&rft.spage=93&rft.epage=115&rft_id=info:doi/10.1177%2F1471082X1001200105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X1001200105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon