Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning

Thick cloud and its shadow severely reduce the data usability of optical satellite remote sensing data. Although many approaches have been presented for cloud and cloud shadow removal, most of these approaches are still inadequate in terms of dealing with the following three issues: (1) thick cloud...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 162; pp. 148 - 160
Main Authors Zhang, Qiang, Yuan, Qiangqiang, Li, Jie, Li, Zhiwei, Shen, Huanfeng, Zhang, Liangpei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thick cloud and its shadow severely reduce the data usability of optical satellite remote sensing data. Although many approaches have been presented for cloud and cloud shadow removal, most of these approaches are still inadequate in terms of dealing with the following three issues: (1) thick cloud cover with large-scale areas, (2) all the temporal images included cloud or shadow, and (3) deficient utilization of only single temporal images. A novel spatio-temporal patch group deep learning framework for gap-filling through multiple temporal cloudy images is proposed to overcome these issues. The global-local loss function is presented to optimize the training model through cloud-covered and free regions, considering both the global consistency and local particularity. In addition, weighted aggregation and progressive iteration are utilized for reconstructing the holistic results. A series of simulated and real experiments are then performed to validate the effectiveness of the proposed method. Especially on Sentinel-2 MSI and Landsat-8 OLI with single/multitemporal images, under small/large scale regions, respectively.
AbstractList Thick cloud and its shadow severely reduce the data usability of optical satellite remote sensing data. Although many approaches have been presented for cloud and cloud shadow removal, most of these approaches are still inadequate in terms of dealing with the following three issues: (1) thick cloud cover with large-scale areas, (2) all the temporal images included cloud or shadow, and (3) deficient utilization of only single temporal images. A novel spatio-temporal patch group deep learning framework for gap-filling through multiple temporal cloudy images is proposed to overcome these issues. The global-local loss function is presented to optimize the training model through cloud-covered and free regions, considering both the global consistency and local particularity. In addition, weighted aggregation and progressive iteration are utilized for reconstructing the holistic results. A series of simulated and real experiments are then performed to validate the effectiveness of the proposed method. Especially on Sentinel-2 MSI and Landsat-8 OLI with single/multitemporal images, under small/large scale regions, respectively.
Author Yuan, Qiangqiang
Li, Zhiwei
Shen, Huanfeng
Zhang, Liangpei
Zhang, Qiang
Li, Jie
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0002-7116-9327
  surname: Zhang
  fullname: Zhang, Qiang
  organization: State Key Laboratory of Information Engineering, Survey Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Qiangqiang
  orcidid: 0000-0001-7140-2224
  surname: Yuan
  fullname: Yuan, Qiangqiang
  email: yqiang86@gmail.com
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Zhiwei
  orcidid: 0000-0001-5635-8499
  surname: Li
  fullname: Li, Zhiwei
  organization: School of Resource and Environmental Science, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Huanfeng
  orcidid: 0000-0002-4140-1869
  surname: Shen
  fullname: Shen, Huanfeng
  organization: School of Resource and Environmental Science, Wuhan University, Wuhan, China
– sequence: 6
  givenname: Liangpei
  orcidid: 0000-0001-6890-3650
  surname: Zhang
  fullname: Zhang, Liangpei
  email: zlp62@whu.edu.cn
  organization: State Key Laboratory of Information Engineering, Survey Mapping and Remote Sensing, Wuhan University, Wuhan, China
BookMark eNqNkL1uHCEURpHlSF47eYZQppnxBQ8MW6SwrCSOZCmNUyMMd3bZMDCBmY1WeXmzWstFmrhA_Og7ny7nkpzHFJGQjwxaBkxe71pfplx2dbUcOLTAWwB1RlZM9bxR_EackxWsedfwnskLclnKDgCYkGpF_j5uvf1FbUiLoya6l1PZGpf-0Ixj2ptAfaTjEmY_4zilfHwYzQbzgS7Fxw2dctpkLMXvMRxomczsU_OarVe7pZuclok6xIkGNDlW7j15N5hQ8MPLfkV-fv3yeHffPPz49v3u9qGxHevmprPCimFwUnHpnpwC7Jx0yhlYD8JwIZ1VglkJa3wSSq0BhetB9IjSOgndzRX5dOqtc_5esMx69MViCCZiWormHYCoPUrU6OdT1OZUSsZBWz8fvxPnbHzQDPRRut7pV-n6KF0D11V65ft_-ClXV_nwBvL2RGI1sfeYdbEeo0XnM9pZu-T_2_EMMFSonQ
CitedBy_id crossref_primary_10_1109_TGRS_2023_3326545
crossref_primary_10_3390_rs15020299
crossref_primary_10_1016_j_engappai_2025_110508
crossref_primary_10_1016_j_isprsjprs_2025_01_016
crossref_primary_10_3390_agronomy13112789
crossref_primary_10_1016_j_isprsjprs_2025_01_013
crossref_primary_10_1109_TGRS_2024_3427788
crossref_primary_10_3390_rs13234736
crossref_primary_10_1016_j_isprsjprs_2023_01_004
crossref_primary_10_1109_TGRS_2023_3318521
crossref_primary_10_3390_rs16071222
crossref_primary_10_1016_j_isprsjprs_2022_03_013
crossref_primary_10_1109_TGRS_2022_3152630
crossref_primary_10_1109_LGRS_2021_3112661
crossref_primary_10_3390_rs16173134
crossref_primary_10_1016_j_isprsjprs_2024_07_030
crossref_primary_10_3390_rs16091518
crossref_primary_10_1109_TCSVT_2023_3316279
crossref_primary_10_1016_j_jhydrol_2023_129561
crossref_primary_10_1016_j_isprsjprs_2024_01_007
crossref_primary_10_1016_j_neucom_2025_129749
crossref_primary_10_3390_rs14010172
crossref_primary_10_1109_MGRS_2022_3165967
crossref_primary_10_1109_TGRS_2023_3339210
crossref_primary_10_1109_TGRS_2021_3121272
crossref_primary_10_1016_j_isprsjprs_2020_08_016
crossref_primary_10_1080_10095020_2023_2189462
crossref_primary_10_2174_2210298102666220616114622
crossref_primary_10_1016_j_isprsjprs_2024_06_010
crossref_primary_10_1016_j_rse_2023_113928
crossref_primary_10_1080_01431161_2021_2012295
crossref_primary_10_1109_ACCESS_2022_3213354
crossref_primary_10_1109_TGRS_2022_3186916
crossref_primary_10_1016_j_jag_2022_102773
crossref_primary_10_1109_TGRS_2021_3101848
crossref_primary_10_1109_JSTARS_2020_3038778
crossref_primary_10_3390_rs15082119
crossref_primary_10_1016_j_neucom_2024_128963
crossref_primary_10_1109_TCSVT_2024_3453393
crossref_primary_10_1016_j_isprsjprs_2023_04_006
crossref_primary_10_1109_TNNLS_2023_3278866
crossref_primary_10_1016_j_jag_2022_103079
crossref_primary_10_3390_rs16081392
crossref_primary_10_1109_JSTARS_2021_3075727
crossref_primary_10_1080_01431161_2021_1949069
crossref_primary_10_1109_TGRS_2024_3485595
crossref_primary_10_1155_2020_8811630
crossref_primary_10_1109_TGRS_2023_3347930
crossref_primary_10_1109_TGRS_2024_3458174
crossref_primary_10_3390_rs14194692
crossref_primary_10_1016_j_isprsjprs_2020_04_010
crossref_primary_10_1109_LGRS_2021_3069895
crossref_primary_10_1016_j_jag_2021_102640
crossref_primary_10_1016_j_jhydrol_2022_128791
crossref_primary_10_5194_essd_14_4473_2022
crossref_primary_10_1016_j_jag_2024_104244
crossref_primary_10_1080_15481603_2022_2160411
crossref_primary_10_3390_rs15215145
crossref_primary_10_1016_j_sigpro_2023_109305
crossref_primary_10_1109_TIP_2022_3211471
crossref_primary_10_1016_j_srs_2023_100102
crossref_primary_10_1016_j_isprsjprs_2021_08_013
crossref_primary_10_1016_j_srs_2022_100047
crossref_primary_10_3390_rs17061022
crossref_primary_10_1109_TGRS_2021_3076667
crossref_primary_10_1080_01431161_2023_2292014
crossref_primary_10_1080_10106049_2021_1892206
crossref_primary_10_1016_j_jag_2021_102470
crossref_primary_10_3390_rs13142709
crossref_primary_10_1016_j_isprsjprs_2021_04_021
crossref_primary_10_1080_2150704X_2022_2152753
crossref_primary_10_1109_TGRS_2025_3543617
crossref_primary_10_1109_TGRS_2022_3208694
crossref_primary_10_1109_JSTARS_2022_3229729
crossref_primary_10_1109_TGRS_2021_3131035
crossref_primary_10_1109_ACCESS_2020_3024164
crossref_primary_10_3390_rs14153648
crossref_primary_10_1109_TGRS_2024_3431556
crossref_primary_10_3390_rs16010152
crossref_primary_10_1080_01431161_2024_2433755
crossref_primary_10_1109_JSTARS_2024_3492177
crossref_primary_10_3390_rs14133134
crossref_primary_10_3390_rs12203427
crossref_primary_10_1109_TGRS_2023_3333391
crossref_primary_10_1016_j_compeleceng_2022_108177
crossref_primary_10_1016_j_rse_2024_114360
crossref_primary_10_1080_01431161_2020_1841324
crossref_primary_10_1109_TGRS_2024_3358493
crossref_primary_10_1109_TGRS_2024_3451558
crossref_primary_10_1080_15481603_2023_2196133
crossref_primary_10_1080_15481603_2024_2421574
crossref_primary_10_1016_j_engappai_2024_108861
crossref_primary_10_3390_rs16132293
crossref_primary_10_1016_j_advengsoft_2024_103856
crossref_primary_10_1016_j_imavis_2024_105100
crossref_primary_10_1016_j_rse_2024_114245
crossref_primary_10_1109_TGRS_2023_3269622
crossref_primary_10_1109_TGRS_2023_3303169
crossref_primary_10_3390_rs14174252
crossref_primary_10_3390_rs15041137
crossref_primary_10_1016_j_jag_2023_103506
crossref_primary_10_3390_rs16122150
crossref_primary_10_1016_j_jhydrol_2024_131673
crossref_primary_10_1016_j_jag_2022_102731
crossref_primary_10_1016_j_sigpro_2022_108888
crossref_primary_10_1109_TGRS_2024_3472645
crossref_primary_10_1049_cit2_12373
crossref_primary_10_22630_MGV_2023_32_2_8
crossref_primary_10_1155_2023_9953198
crossref_primary_10_5194_essd_13_1385_2021
crossref_primary_10_1109_JSTARS_2023_3235940
crossref_primary_10_1109_TGRS_2024_3468718
crossref_primary_10_1109_LGRS_2021_3093887
crossref_primary_10_1109_TGRS_2023_3291822
crossref_primary_10_1080_15481603_2022_2031549
crossref_primary_10_1109_TGRS_2022_3140800
crossref_primary_10_1109_LGRS_2024_3397875
crossref_primary_10_1109_JSTARS_2022_3203508
crossref_primary_10_1016_j_isprsjprs_2023_03_003
crossref_primary_10_3390_rs13234947
crossref_primary_10_1109_TGRS_2023_3236106
crossref_primary_10_1016_j_rse_2024_114142
crossref_primary_10_1016_j_rse_2022_113132
crossref_primary_10_1109_TGRS_2021_3128280
crossref_primary_10_1016_j_rse_2024_114546
crossref_primary_10_1109_TGRS_2024_3416128
crossref_primary_10_3390_app13169296
crossref_primary_10_1016_j_rse_2022_113136
crossref_primary_10_3390_agronomy14061089
Cites_doi 10.1016/j.isprsjprs.2014.02.015
10.1016/j.rse.2012.12.012
10.1016/j.isprsjprs.2015.03.009
10.1109/TGRS.2018.2810208
10.1109/MSP.2013.2273004
10.1016/j.isprsjprs.2019.09.003
10.1016/j.isprsjprs.2019.01.025
10.3390/rs10020196
10.1109/TGRS.2018.2865197
10.1109/LGRS.2011.2173290
10.1016/j.rse.2013.09.002
10.1109/TGRS.2014.2307354
10.1016/j.rse.2015.12.008
10.1016/j.rse.2017.07.002
10.1016/j.rse.2011.10.028
10.1080/01431161.2012.666363
10.1109/TPAMI.2014.2330611
10.1016/j.rse.2018.11.032
10.1109/TIP.2003.815261
10.1109/MGRS.2015.2441912
10.1016/j.isprsjprs.2014.06.011
10.1109/TGRS.2017.2656162
10.3390/rs11050523
10.1109/LGRS.2017.2736020
10.1016/j.isprsjprs.2018.12.013
10.1109/JSTARS.2018.2794888
10.1109/TPAMI.2015.2439281
10.1016/j.rse.2016.03.034
10.1016/j.isprsjprs.2019.03.012
10.1109/TGRS.2019.2958096
10.1016/j.rse.2017.01.026
10.1109/TGRS.2017.2670021
10.1109/TGRS.2008.2003436
10.1016/0034-4257(94)90057-4
10.3390/rs11040433
10.1016/j.rse.2018.03.023
10.1016/j.isprsjprs.2019.08.017
10.1109/TGRS.2015.2509860
10.1109/TGRS.2016.2580576
10.1016/j.rse.2010.12.010
10.1109/TIP.2004.833105
10.1016/j.rse.2018.07.006
10.1109/TGRS.2019.2912909
10.1109/TGRS.2018.2790262
10.3390/rs11161925
10.1016/j.isprsjprs.2019.02.017
10.1038/nature14539
10.1109/TIP.2017.2662206
10.1016/j.jag.2009.11.002
10.1016/j.rse.2014.12.014
ContentType Journal Article
Copyright 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2020.02.008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 160
ExternalDocumentID 10_1016_j_isprsjprs_2020_02_008
S0924271620300423
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c414t-4c5c5ffd6826dbd80e4d6d8da09f5a256dc851c609eb58890e5d7057ee6cd6043
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Mon Aug 18 09:43:23 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 03:46:43 EDT 2025
Fri Feb 23 02:47:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatio-temporal
Patch group
Global-local CNN
Progressive iteration
Thick cloud and cloud shadow
Gap-filling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-4c5c5ffd6826dbd80e4d6d8da09f5a256dc851c609eb58890e5d7057ee6cd6043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4140-1869
0000-0001-6890-3650
0000-0001-5635-8499
0000-0002-7116-9327
0000-0001-7140-2224
PQID 2400525685
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2400525685
crossref_citationtrail_10_1016_j_isprsjprs_2020_02_008
crossref_primary_10_1016_j_isprsjprs_2020_02_008
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_02_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pelletier, Webb, Petitjean (b0145) 2019; 11
Rossi, Dungan, Beck (b0160) 1994; 49
Zhu, Gao, Liu, Chen (b0270) 2012; 9
Peng, Chen, Lü, Liu, Wu (b0150) 2016; 174
Weng, Fu (b0210) 2014; 140
LeCun, Bengio, Hinton (b0095) 2015; 521
Xu, Jia, Pickering, Jia (b0220) 2019; 149
Zhu, Wang, Woodcock (b0280) 2015; 159
Zhang, Yuan, Li, Yang, Ma (b0250) 2018; 10
Chen, Jin, Brown (b0025) 2019; 151
Li, Shen, Cheng, Li, Zhang (b0120) 2019; 11
Chen, Zhu, Vogelmann, Gao, Jin (b0035) 2011; 115
Qiu, He, Zhu, Liao, Quan (b0185) 2017; 199
Shen, Li, Qian, Zhang, Yuan (b0170) 2014; 96
Lv, Wang, Shen (b0130) 2016; 179
Shen, Li, Cheng, Zeng, Yang, Li, Zhang (b0175) 2015; 3
Ji, Yokoya, Zhu, Huang (b0080) 2018; 56
Chen, He, Yokoya, Huang (b0030) 2019; 157
Ng, Yuan, Yan, Sun (b0135) 2017; 55
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Zhang, Wen, Gao, Ling (b0260) 2019
Dong, Loy, He, Tang (b0055) 2016; 38
Shen, Jiang, Li, Yuan, Wei, Zhang (b0165) 2019; 57
Li, Shen, Zhang, Zhang, Yuan, Yang (b0105) 2014; 52
Rakwatin, Takeuchi, Yasuoka (b0155) 2009; 47
Toure, Stow, Shih, Weeks, Lopez-Carr (b0180) 2018; 210
Zhang, Yuan, Li, Liu, Shen, Zhang (b0245) 2019; 57
Cheng, Shen, Zhang, Yuan, Zeng (b0040) 2014; 92
Li, Shen, Li, Xia, Gamba, Zhang (b0125) 2017; 191
Wang, Olsen, Conn, Lozano (b0195) 2016
Guillemot, Olivier (b0070) 2014; 31
Xu, Jia, Pickering, Plaza (b0215) 2016; 54
Zhang, Zuo, Chen, Meng, Zhang (b0240) 2017; 26
Otukei, Blaschke (b0140) 2010; 12
Chan (b0015) 2001; 62
Di Mauro, N., Vergari, A., Basile, T.M.A., Ventola, F.G., Esposito, F., 2017. End-to-end learning of deep spatio-temporal representations for satellite image time series classification. In DC@ PKDD/ECML.
Yuan, Wei, Meng, Shen, Zhang (b0225) 2018; 11
Yuan, Zhang, Li, Shen, Zhang (b0230) 2019; 57
He, Sun (b0075) 2014; 36
Chen, Huang, Chen, Xu (b0020) 2017; 55
Wei, Yuan, Shen, Zhang (b0205) 2017; 14
Erinjery, Singh, Kent (b0060) 2018; 216
Zhu, Woodcock (b0275) 2012; 118
Zhang, Yuan, Zeng, Li, Wei (b0255) 2018; 56
Criminisi, Pérez, Toyama (b0045) 2004; 13
Li, Shen, Zhang, Li (b0100) 2015; 106
Van der Meer (b0190) 2012; 33
Bertalmio, Vese, Sapiro, Osher (b0010) 2003; 12
Li, Wang, Cheng, Wu, Gan, Fang (b0110) 2019; 148
Baetens, Desjardins, Hagolle (b0005) 2019; 11
Wang, Yuan, Li, Shen, Zheng, Zhang (b0200) 2019; 157
Li, Shen, Cheng, Liu, You, He (b0115) 2019; 150
Zeng, Shen, Zhang (b0235) 2013; 131
Zhong, Hu, Zhou (b0265) 2019; 221
Gao, Gu (b0065) 2017; 55
Jia, Shelhamer, Donahue (b0085) 2014
Zhu (10.1016/j.isprsjprs.2020.02.008_b0275) 2012; 118
LeCun (10.1016/j.isprsjprs.2020.02.008_b0095) 2015; 521
Van der Meer (10.1016/j.isprsjprs.2020.02.008_b0190) 2012; 33
Toure (10.1016/j.isprsjprs.2020.02.008_b0180) 2018; 210
Yuan (10.1016/j.isprsjprs.2020.02.008_b0230) 2019; 57
Zhang (10.1016/j.isprsjprs.2020.02.008_b0260) 2019
Zhang (10.1016/j.isprsjprs.2020.02.008_b0255) 2018; 56
Cheng (10.1016/j.isprsjprs.2020.02.008_b0040) 2014; 92
Li (10.1016/j.isprsjprs.2020.02.008_b0100) 2015; 106
Chen (10.1016/j.isprsjprs.2020.02.008_b0025) 2019; 151
Chen (10.1016/j.isprsjprs.2020.02.008_b0020) 2017; 55
Guillemot (10.1016/j.isprsjprs.2020.02.008_b0070) 2014; 31
Yuan (10.1016/j.isprsjprs.2020.02.008_b0225) 2018; 11
Zeng (10.1016/j.isprsjprs.2020.02.008_b0235) 2013; 131
Zhu (10.1016/j.isprsjprs.2020.02.008_b0270) 2012; 9
Peng (10.1016/j.isprsjprs.2020.02.008_b0150) 2016; 174
Dong (10.1016/j.isprsjprs.2020.02.008_b0055) 2016; 38
Li (10.1016/j.isprsjprs.2020.02.008_b0120) 2019; 11
Weng (10.1016/j.isprsjprs.2020.02.008_b0210) 2014; 140
Xu (10.1016/j.isprsjprs.2020.02.008_b0215) 2016; 54
Zhu (10.1016/j.isprsjprs.2020.02.008_b0280) 2015; 159
Zhang (10.1016/j.isprsjprs.2020.02.008_b0250) 2018; 10
Erinjery (10.1016/j.isprsjprs.2020.02.008_b0060) 2018; 216
He (10.1016/j.isprsjprs.2020.02.008_b0075) 2014; 36
Zhang (10.1016/j.isprsjprs.2020.02.008_b0240) 2017; 26
Otukei (10.1016/j.isprsjprs.2020.02.008_b0140) 2010; 12
Chen (10.1016/j.isprsjprs.2020.02.008_b0030) 2019; 157
Criminisi (10.1016/j.isprsjprs.2020.02.008_b0045) 2004; 13
Bertalmio (10.1016/j.isprsjprs.2020.02.008_b0010) 2003; 12
Rossi (10.1016/j.isprsjprs.2020.02.008_b0160) 1994; 49
Li (10.1016/j.isprsjprs.2020.02.008_b0110) 2019; 148
Shen (10.1016/j.isprsjprs.2020.02.008_b0170) 2014; 96
Xu (10.1016/j.isprsjprs.2020.02.008_b0220) 2019; 149
10.1016/j.isprsjprs.2020.02.008_b0090
Shen (10.1016/j.isprsjprs.2020.02.008_b0175) 2015; 3
Qiu (10.1016/j.isprsjprs.2020.02.008_b0185) 2017; 199
10.1016/j.isprsjprs.2020.02.008_b0050
Chan (10.1016/j.isprsjprs.2020.02.008_b0015) 2001; 62
Wei (10.1016/j.isprsjprs.2020.02.008_b0205) 2017; 14
Li (10.1016/j.isprsjprs.2020.02.008_b0115) 2019; 150
Pelletier (10.1016/j.isprsjprs.2020.02.008_b0145) 2019; 11
Wang (10.1016/j.isprsjprs.2020.02.008_b0200) 2019; 157
Li (10.1016/j.isprsjprs.2020.02.008_b0125) 2017; 191
Baetens (10.1016/j.isprsjprs.2020.02.008_b0005) 2019; 11
Zhang (10.1016/j.isprsjprs.2020.02.008_b0245) 2019; 57
Li (10.1016/j.isprsjprs.2020.02.008_b0105) 2014; 52
Shen (10.1016/j.isprsjprs.2020.02.008_b0165) 2019; 57
Chen (10.1016/j.isprsjprs.2020.02.008_b0035) 2011; 115
Lv (10.1016/j.isprsjprs.2020.02.008_b0130) 2016; 179
Wang (10.1016/j.isprsjprs.2020.02.008_b0195) 2016
Ng (10.1016/j.isprsjprs.2020.02.008_b0135) 2017; 55
Rakwatin (10.1016/j.isprsjprs.2020.02.008_b0155) 2009; 47
Gao (10.1016/j.isprsjprs.2020.02.008_b0065) 2017; 55
Zhong (10.1016/j.isprsjprs.2020.02.008_b0265) 2019; 221
Ji (10.1016/j.isprsjprs.2020.02.008_b0080) 2018; 56
Jia (10.1016/j.isprsjprs.2020.02.008_b0085) 2014
References_xml – volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: b0055
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 118
  start-page: 83
  year: 2012
  end-page: 94
  ident: b0275
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 978
  year: 2018
  end-page: 989
  ident: b0225
  article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 174
  start-page: 109
  year: 2016
  end-page: 121
  ident: b0150
  article-title: Spatiotemporal patterns of remotely sensed PM2. 5 concentration in China from 1999 to 2011
  publication-title: Remote Sens. Environ.
– volume: 151
  start-page: 176
  year: 2019
  end-page: 188
  ident: b0025
  article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 54
  start-page: 2998
  year: 2016
  end-page: 3006
  ident: b0215
  article-title: Cloud removal based on sparse representation via multitemporal dictionary learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 7317
  year: 2019
  end-page: 7329
  ident: b0245
  article-title: Hybrid noise removal in hyperspectral imagery with a spatial-spectral gradient network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 433
  year: 2019
  ident: b0005
  article-title: Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and Fmask processors using reference cloud masks generated with a supervised active learning procedure
  publication-title: Remote Sens.
– volume: 115
  start-page: 1053
  year: 2011
  end-page: 1064
  ident: b0035
  article-title: A simple and effective method for filling gaps in Landsat ETM+ SLC-off images
  publication-title: Remote Sens. Environ.
– start-page: 675
  year: 2014
  end-page: 678
  ident: b0085
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
– volume: 179
  start-page: 183
  year: 2016
  end-page: 195
  ident: b0130
  article-title: An empirical and radiative transfer model based algorithm to remove thin clouds in visible bands
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 521
  year: 2012
  end-page: 525
  ident: b0270
  article-title: A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 12
  start-page: 27
  year: 2010
  end-page: 31
  ident: b0140
  article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 157
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0200
  article-title: Large-scale MODIS AOD products recovery: Spatial-temporal hybrid fusion considering aerosol variation mitigation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 131
  start-page: 182
  year: 2013
  end-page: 194
  ident: b0235
  article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
– volume: 106
  start-page: 1
  year: 2015
  end-page: 15
  ident: b0100
  article-title: Sparse-based reconstruction of missing information in remote sensing images from spectral/temporal complementary information
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 56
  start-page: 4274
  year: 2018
  end-page: 4288
  ident: b0255
  article-title: Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 2754
  year: 2016
  end-page: 2763
  ident: b0195
  article-title: Removing clouds and recovering ground observations in satellite image sequences via temporally contiguous robust matrix completion
  publication-title: CVPR
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: b0240
  article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 55
  start-page: 3656
  year: 2017
  end-page: 3668
  ident: b0065
  article-title: Multitemporal Landsat missing data recovery based on tempo-spectral angle model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 150
  start-page: 197
  year: 2019
  end-page: 212
  ident: b0115
  article-title: Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 3
  start-page: 61
  year: 2015
  end-page: 85
  ident: b0175
  article-title: Missing information reconstruction of remote sensing data: A technical review
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 199
  start-page: 107
  year: 2017
  end-page: 119
  ident: b0185
  article-title: Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4–8 images
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 523
  year: 2019
  ident: b0145
  article-title: Temporal convolutional neural network for the classification of satellite image time series
  publication-title: Remote Sens.
– volume: 62
  start-page: 1019
  year: 2001
  end-page: 1043
  ident: b0015
  article-title: Local inpainting models and TV inpainting
  publication-title: SIAM J. Appl. Math.
– volume: 57
  start-page: 1205
  year: 2019
  end-page: 1218
  ident: b0230
  article-title: Hyperspectral Image denoising employing a spatial-spectral deep residual convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 55
  start-page: 27
  year: 2017
  end-page: 37
  ident: b0020
  article-title: Spatially and temporally weighted regression: a novel method to produce continuous cloud-free Landsat imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 221
  start-page: 430
  year: 2019
  end-page: 443
  ident: b0265
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
– volume: 191
  start-page: 342
  year: 2017
  end-page: 358
  ident: b0125
  article-title: Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery
  publication-title: Remote Sens. Environ.
– volume: 31
  start-page: 127
  year: 2014
  end-page: 144
  ident: b0070
  article-title: Image inpainting: Overview and recent advances
  publication-title: IEEE Signal Process Mag.
– volume: 96
  start-page: 224
  year: 2014
  end-page: 235
  ident: b0170
  article-title: An effective thin cloud removal procedure for visible remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 56
  start-page: 3047
  year: 2018
  end-page: 3061
  ident: b0080
  article-title: Nonlocal tensor completion for multitemporal remotely sensed images' inpainting
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 157
  start-page: 93
  year: 2019
  end-page: 107
  ident: b0030
  article-title: Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 52
  start-page: 7086
  year: 2014
  end-page: 7098
  ident: b0105
  article-title: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 882
  year: 2003
  end-page: 889
  ident: b0010
  article-title: Simultaneous structure and texture image inpainting
  publication-title: IEEE Trans. Image Process.
– volume: 92
  start-page: 54
  year: 2014
  end-page: 68
  ident: b0040
  article-title: Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 149
  start-page: 215
  year: 2019
  end-page: 225
  ident: b0220
  article-title: Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 33
  start-page: 5644
  year: 2012
  end-page: 5676
  ident: b0190
  article-title: Remote-sensing image analysis and geostatistics
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 196
  year: 2018
  ident: b0250
  article-title: Learning a dilated residual network for SAR image despeckling
  publication-title: Remote Sens.
– volume: 13
  start-page: 1200
  year: 2004
  end-page: 1212
  ident: b0045
  article-title: Region filling and object removal by exemplar-based image inpainting
  publication-title: IEEE Trans. Image Process.
– volume: 140
  start-page: 267
  year: 2014
  end-page: 278
  ident: b0210
  article-title: Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 2423
  year: 2014
  end-page: 2435
  ident: b0075
  article-title: Image completion approaches using the statistics of similar patches
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2019
  end-page: 12
  ident: b0260
  article-title: A coarse-to-fine framework for cloud removal in remote sensing image sequence
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 216
  start-page: 345
  year: 2018
  end-page: 354
  ident: b0060
  article-title: Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 613
  year: 2009
  end-page: 627
  ident: b0155
  article-title: Restoration of Aqua MODIS band 6 using histogram matching and local least squares fitting
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 49
  start-page: 32
  year: 1994
  end-page: 40
  ident: b0160
  article-title: Kriging in the shadows: geostatistical interpolation for remote sensing
  publication-title: Remote Sens. Environ.
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: b0280
  article-title: Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
– reference: Di Mauro, N., Vergari, A., Basile, T.M.A., Ventola, F.G., Esposito, F., 2017. End-to-end learning of deep spatio-temporal representations for satellite image time series classification. In DC@ PKDD/ECML.
– reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– volume: 11
  start-page: 1925
  year: 2019
  ident: b0120
  article-title: Thick cloud removal in high-resolution satellite images using stepwise radiometric adjustment and residual correction
  publication-title: Remote Sens.
– volume: 14
  start-page: 1795
  year: 2017
  end-page: 1799
  ident: b0205
  article-title: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 521
  start-page: 436
  year: 2015
  ident: b0095
  article-title: Deep learning
  publication-title: Nature
– volume: 57
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0165
  article-title: Spatial-spectral fusion by combining deep learning and variation model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 148
  start-page: 103
  year: 2019
  end-page: 113
  ident: b0110
  article-title: Cloud removal in remote sensing images using nonnegative matrix factorization and error correction
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 55
  start-page: 3367
  year: 2017
  end-page: 3381
  ident: b0135
  article-title: An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 210
  start-page: 259
  year: 2018
  end-page: 268
  ident: b0180
  article-title: Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis
  publication-title: Remote Sens. Environ.
– start-page: 2754
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.02.008_b0195
  article-title: Removing clouds and recovering ground observations in satellite image sequences via temporally contiguous robust matrix completion
  publication-title: CVPR
– volume: 92
  start-page: 54
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.008_b0040
  article-title: Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.015
– volume: 131
  start-page: 182
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.008_b0235
  article-title: Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.012
– volume: 106
  start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.02.008_b0100
  article-title: Sparse-based reconstruction of missing information in remote sensing images from spectral/temporal complementary information
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.03.009
– volume: 56
  start-page: 4274
  issue: 8
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.008_b0255
  article-title: Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2810208
– volume: 31
  start-page: 127
  issue: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.008_b0070
  article-title: Image inpainting: Overview and recent advances
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2013.2273004
– volume: 157
  start-page: 93
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0030
  article-title: Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.003
– volume: 149
  start-page: 215
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0220
  article-title: Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.01.025
– volume: 10
  start-page: 196
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.008_b0250
  article-title: Learning a dilated residual network for SAR image despeckling
  publication-title: Remote Sens.
  doi: 10.3390/rs10020196
– volume: 57
  start-page: 1205
  issue: 2
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0230
  article-title: Hyperspectral Image denoising employing a spatial-spectral deep residual convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2865197
– volume: 9
  start-page: 521
  issue: 3
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.008_b0270
  article-title: A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2173290
– ident: 10.1016/j.isprsjprs.2020.02.008_b0090
– volume: 140
  start-page: 267
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.008_b0210
  article-title: Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.002
– volume: 52
  start-page: 7086
  issue: 11
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.008_b0105
  article-title: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2307354
– volume: 174
  start-page: 109
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.02.008_b0150
  article-title: Spatiotemporal patterns of remotely sensed PM2. 5 concentration in China from 1999 to 2011
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.008
– volume: 199
  start-page: 107
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.008_b0185
  article-title: Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4–8 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.002
– volume: 118
  start-page: 83
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.008_b0275
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.028
– volume: 62
  start-page: 1019
  issue: 3
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.02.008_b0015
  article-title: Local inpainting models and TV inpainting
  publication-title: SIAM J. Appl. Math.
– volume: 33
  start-page: 5644
  issue: 18
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.008_b0190
  article-title: Remote-sensing image analysis and geostatistics
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.666363
– volume: 36
  start-page: 2423
  issue: 12
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.008_b0075
  article-title: Image completion approaches using the statistics of similar patches
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2330611
– volume: 221
  start-page: 430
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0265
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.032
– volume: 12
  start-page: 882
  issue: 8
  year: 2003
  ident: 10.1016/j.isprsjprs.2020.02.008_b0010
  article-title: Simultaneous structure and texture image inpainting
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.815261
– volume: 3
  start-page: 61
  issue: 3
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.02.008_b0175
  article-title: Missing information reconstruction of remote sensing data: A technical review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2441912
– volume: 96
  start-page: 224
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.008_b0170
  article-title: An effective thin cloud removal procedure for visible remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.06.011
– volume: 55
  start-page: 3656
  issue: 7
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.008_b0065
  article-title: Multitemporal Landsat missing data recovery based on tempo-spectral angle model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2656162
– start-page: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0260
  article-title: A coarse-to-fine framework for cloud removal in remote sensing image sequence
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 523
  issue: 5
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0145
  article-title: Temporal convolutional neural network for the classification of satellite image time series
  publication-title: Remote Sens.
  doi: 10.3390/rs11050523
– volume: 14
  start-page: 1795
  issue: 10
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.008_b0205
  article-title: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2736020
– volume: 148
  start-page: 103
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0110
  article-title: Cloud removal in remote sensing images using nonnegative matrix factorization and error correction
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.12.013
– volume: 11
  start-page: 978
  issue: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.008_b0225
  article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2794888
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.02.008_b0055
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 179
  start-page: 183
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.02.008_b0130
  article-title: An empirical and radiative transfer model based algorithm to remove thin clouds in visible bands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.034
– volume: 151
  start-page: 176
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0025
  article-title: Automatic mapping of planting year for tree crops with Landsat satellite time series stacks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.012
– volume: 57
  start-page: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0165
  article-title: Spatial-spectral fusion by combining deep learning and variation model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2958096
– volume: 191
  start-page: 342
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.008_b0125
  article-title: Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.026
– volume: 55
  start-page: 3367
  issue: 6
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.008_b0135
  article-title: An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2670021
– volume: 47
  start-page: 613
  issue: 2
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.02.008_b0155
  article-title: Restoration of Aqua MODIS band 6 using histogram matching and local least squares fitting
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2003436
– volume: 49
  start-page: 32
  issue: 1
  year: 1994
  ident: 10.1016/j.isprsjprs.2020.02.008_b0160
  article-title: Kriging in the shadows: geostatistical interpolation for remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90057-4
– volume: 11
  start-page: 433
  issue: 4
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0005
  article-title: Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and Fmask processors using reference cloud masks generated with a supervised active learning procedure
  publication-title: Remote Sens.
  doi: 10.3390/rs11040433
– volume: 210
  start-page: 259
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.008_b0180
  article-title: Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.03.023
– volume: 157
  start-page: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0200
  article-title: Large-scale MODIS AOD products recovery: Spatial-temporal hybrid fusion considering aerosol variation mitigation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.08.017
– ident: 10.1016/j.isprsjprs.2020.02.008_b0050
– volume: 54
  start-page: 2998
  issue: 5
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.02.008_b0215
  article-title: Cloud removal based on sparse representation via multitemporal dictionary learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2509860
– volume: 55
  start-page: 27
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.008_b0020
  article-title: Spatially and temporally weighted regression: a novel method to produce continuous cloud-free Landsat imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2580576
– volume: 115
  start-page: 1053
  issue: 4
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.02.008_b0035
  article-title: A simple and effective method for filling gaps in Landsat ETM+ SLC-off images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.010
– volume: 13
  start-page: 1200
  issue: 9
  year: 2004
  ident: 10.1016/j.isprsjprs.2020.02.008_b0045
  article-title: Region filling and object removal by exemplar-based image inpainting
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.833105
– volume: 216
  start-page: 345
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.008_b0060
  article-title: Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.006
– volume: 57
  start-page: 7317
  issue: 10
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0245
  article-title: Hybrid noise removal in hyperspectral imagery with a spatial-spectral gradient network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2912909
– volume: 56
  start-page: 3047
  issue: 6
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.008_b0080
  article-title: Nonlocal tensor completion for multitemporal remotely sensed images' inpainting
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2790262
– volume: 11
  start-page: 1925
  issue: 16
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0120
  article-title: Thick cloud removal in high-resolution satellite images using stepwise radiometric adjustment and residual correction
  publication-title: Remote Sens.
  doi: 10.3390/rs11161925
– volume: 150
  start-page: 197
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.008_b0115
  article-title: Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.017
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.02.008_b0095
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 675
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.008_b0085
  article-title: Caffe: Convolutional architecture for fast feature embedding
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.008_b0240
  article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– volume: 12
  start-page: 27
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.02.008_b0140
  article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2009.11.002
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.02.008_b0280
  article-title: Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
SSID ssj0001568
Score 2.6058853
Snippet Thick cloud and its shadow severely reduce the data usability of optical satellite remote sensing data. Although many approaches have been presented for cloud...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms cloud cover
Gap-filling
geospatial data processing
Global-local CNN
image analysis
Landsat
Patch group
Progressive iteration
remote sensing
spatial data
Spatio-temporal
Thick cloud and cloud shadow
Title Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning
URI https://dx.doi.org/10.1016/j.isprsjprs.2020.02.008
https://www.proquest.com/docview/2400525685
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_UgPnF9EcFr3Ww3zbbeZHFZFb2o4C2kydStru2yD2UR_O1O2nR9gHiQ0tKUCS2Z6Tzab2YIOUqU0n7LTzyApvJ4CA0vjmw2mh-KEBTauNgmOF9di-4dv7gP7udIu8qFsbBKp_tLnV5oa3el7lazPkjT-g3D0MG3BZBYs0B32Ax23rJSfvz-CfNolOlwltiz1N8wXuloMBw94o6Bos_K4p3hbxbqh64uDFBnlaw4z5Gelg-3RuYgWyfLX-oJrpNF19K8N90gb7e9VD9R3c8nhqrMuLNRT5n8lQ7hOUcZo2lGC0ihq1CFF55tUYsptXj4B1qgtyxQ9gX6Uzoq0NfejBaHukeLvBBqAAbUtaB42CR3nbPbdtdznRY8zRt87HEd6CBJjMBgw8QmZMCNMKFRLEoChV6R0eiZacEiiIMwjBgEpoWeHoDQRjDe3CLzWZ7BNqGJaGgT-EnMDXAMH3FLIsBj3Ip9rlSNiGp1pXZlyG03jL6s8GaPcsYWadkimS-RLTXCZhMHZSWOv6ecVOyT34RKor34e_JhxXCJr5z9j6IyyCdIxO3HdJSrYOc_N9glS3ZUwoD2yPx4OIF99HDG8UEhwgdk4fT8snv9ATe1AU0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-x8sB4QIxtGjA2T9prVjd13GRvUwXqxsfLisSb5dgXGlaSqh-gCom_fefEKTBp4gFFiRLnrEQ--z6S390BfM20NmEvzALErg5EjJ0gTVw0WhjLGDXpuNQFOJ-eycG5-HURXaxBv4mFcbBKL_trmV5Ja9_S9qPZnuR5-zcn1yF0CZB4t0J3vIJ1QcvXlTH4dv-A8-jU8XCOOnDkT0Be-WwynV3RTp5iyOvsnfH_VNQ_wrrSQEfbsOVNR_ajfrs3sIbFDmw-Sii4Axu-pvlo-RbuhqPc_GFmXC4s04X1Z7ORtuUtm-J1SZOM5QWrMIU-RRU1XLusFkvmAPGXrIJvOaTsDY6XbFbBr4MVLV2aEasCQ5hFnDBfg-LyHZwfHQ77g8CXWgiM6Ih5IExkoiyzkrwNm9qYo7DSxlbzJIs0mUXWkGlmJE8wjeI44RjZHpl6iNJYyUX3PbSKssAPwDLZMTYKs1RYFOQ_0pYlSMe0l4ZC612Qzegq4_OQu3IYY9UAzq7Uii3KsUXxUBFbdoGvOk7qVBzPd_nesE89mVWKFMbznb80DFe05tyPFF1guSAi4b6m07yK9l7ygM-wMRienqiTn2fH-_Da3akxQR-hNZ8u8IDMnXn6qZrOfwEE0ALb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thick+cloud+and+cloud+shadow+removal+in+multitemporal+imagery+using+progressively+spatio-temporal+patch+group+deep+learning&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Zhang%2C+Qiang&rft.au=Yuan%2C+Qiangqiang&rft.au=Li%2C+Jie&rft.au=Li%2C+Zhiwei&rft.date=2020-04-01&rft.issn=0924-2716&rft.volume=162+p.148-160&rft.spage=148&rft.epage=160&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.02.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon