Graph representation learning in bioinformatics: trends, methods and applications

Abstract Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with d...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 1
Main Authors Yi, Hai-Cheng, You, Zhu-Hong, Huang, De-Shuang, Kwoh, Chee Keong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 17.01.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.
AbstractList Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.
Abstract Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.
Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.
Author Yi, Hai-Cheng
Huang, De-Shuang
You, Zhu-Hong
Kwoh, Chee Keong
Author_xml – sequence: 1
  givenname: Hai-Cheng
  surname: Yi
  fullname: Yi, Hai-Cheng
– sequence: 2
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
  email: zhuhongyou@nwpu.edu.cn
– sequence: 3
  givenname: De-Shuang
  surname: Huang
  fullname: Huang, De-Shuang
– sequence: 4
  givenname: Chee Keong
  surname: Kwoh
  fullname: Kwoh, Chee Keong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34471921$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LxDAQxYOs6K568i4FQQStm69-xJuIroIggp7LJE01S5vUpD343xvd1cOCMocZmN8bhvdmaGKd1QgdEnxBsGBzaeRcSpCM4y00JbwoUo4zPvma8yLNeM520SyEJcYUFyXZQbuM84IISqboaeGhf0u87r0O2g4wGGeTVoO3xr4mxibSOGMb57u4UuEyGby2dThPOj28uTokYOsE-r416lsb9tF2A23QB-u-h15ub56v79KHx8X99dVDqjjhQ8pLykDljVakqClRjeQ0x1SWUjRMaA5xUixTIAAKJpgguGSyEUAzqHNSsz10urrbe_c-6jBUnQlKty1Y7cZQ0SwvM1GSkkf0eANdutHb-F1F81gYE4YjdbSmRtnpuuq96cB_VD9mReBsBSjvQvC6-UUIrr6iqGIU1TqKSJMNWpmVvYMH0_6hOVlp3Nj_e_wTBiKabA
CitedBy_id crossref_primary_10_1093_bib_bbae043
crossref_primary_10_1109_TNNLS_2023_3269446
crossref_primary_10_1038_s41598_022_25693_2
crossref_primary_10_1109_JIOT_2024_3430297
crossref_primary_10_1093_bib_bbae565
crossref_primary_10_7717_peerj_18509
crossref_primary_10_3389_fmed_2023_1086097
crossref_primary_10_1021_acs_jcim_3c01665
crossref_primary_10_1016_j_bspc_2024_106134
crossref_primary_10_1038_s41467_023_44570_8
crossref_primary_10_1039_D3DD00078H
crossref_primary_10_1186_s12859_023_05413_x
crossref_primary_10_1093_bioinformatics_btae558
crossref_primary_10_1007_s12539_024_00633_y
crossref_primary_10_1186_s12859_022_04611_3
crossref_primary_10_1016_j_neucom_2024_128107
crossref_primary_10_1016_j_neunet_2023_12_040
crossref_primary_10_1007_s11280_024_01303_1
crossref_primary_10_3389_fgene_2024_1399810
crossref_primary_10_1016_j_neucom_2024_128264
crossref_primary_10_1016_j_csbj_2023_08_016
crossref_primary_10_1038_s41598_025_90839_x
crossref_primary_10_1007_s00371_024_03343_0
crossref_primary_10_3390_covid3090096
crossref_primary_10_1016_j_ymeth_2023_01_006
crossref_primary_10_1093_bib_bbae355
crossref_primary_10_3389_frai_2024_1408843
crossref_primary_10_1093_bib_bbac454
crossref_primary_10_3390_biology13050338
crossref_primary_10_1016_j_enbuild_2024_114735
crossref_primary_10_3390_info15050246
crossref_primary_10_1109_JBHI_2024_3439713
crossref_primary_10_3233_JIFS_236788
crossref_primary_10_1142_S2737416524400052
crossref_primary_10_1093_bib_bbae546
crossref_primary_10_1007_s00521_023_09366_3
crossref_primary_10_1007_s11042_022_13672_8
crossref_primary_10_1109_ACCESS_2024_3412961
crossref_primary_10_3390_biomedinformatics4030103
crossref_primary_10_1093_jamia_ocae137
crossref_primary_10_3390_diagnostics12102526
crossref_primary_10_3389_fnins_2023_1256351
crossref_primary_10_3390_math11030732
crossref_primary_10_1093_bioinformatics_btac837
crossref_primary_10_1016_j_corsci_2023_111420
crossref_primary_10_1016_j_ymeth_2023_10_014
crossref_primary_10_1186_s12967_024_05372_8
crossref_primary_10_1007_s12539_024_00610_5
crossref_primary_10_1016_j_inffus_2025_103062
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_1016_j_jbi_2025_104772
crossref_primary_10_1016_j_neunet_2023_11_060
crossref_primary_10_1021_acs_jcim_4c01896
crossref_primary_10_1515_sagmb_2021_0087
crossref_primary_10_3389_fgene_2023_1122909
crossref_primary_10_1186_s12911_024_02564_6
crossref_primary_10_1016_j_asoc_2024_111981
crossref_primary_10_1002_wcms_1723
crossref_primary_10_1016_j_dajour_2024_100417
crossref_primary_10_1587_transinf_2023EDP7180
crossref_primary_10_1016_j_jep_2022_115966
crossref_primary_10_1021_acs_jctc_4c00810
crossref_primary_10_1038_s41598_024_77172_5
crossref_primary_10_1016_j_knosys_2025_113276
crossref_primary_10_1109_TKDE_2023_3266453
crossref_primary_10_1093_bib_bbac391
crossref_primary_10_1093_bioinformatics_btae306
crossref_primary_10_1007_s13198_024_02302_1
crossref_primary_10_1093_bib_bbae058
crossref_primary_10_1007_s41019_023_00206_x
crossref_primary_10_26599_BDMA_2024_9020043
crossref_primary_10_1016_j_eswa_2025_126637
crossref_primary_10_1016_j_ins_2023_119952
crossref_primary_10_1109_TCBB_2022_3190933
crossref_primary_10_1371_journal_pone_0291223
crossref_primary_10_1016_j_inffus_2023_101950
crossref_primary_10_1093_bib_bbad324
crossref_primary_10_1109_TCBB_2024_3417715
crossref_primary_10_1093_bfgp_elad030
crossref_primary_10_1093_bioinformatics_btad774
crossref_primary_10_1007_s12539_024_00645_8
crossref_primary_10_1016_j_compbiomed_2023_106625
crossref_primary_10_1109_TKDE_2024_3437775
crossref_primary_10_1038_s42003_024_06865_4
crossref_primary_10_1021_acs_jcim_2c01407
crossref_primary_10_1002_wrna_1830
crossref_primary_10_1016_j_neucom_2023_03_053
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_1016_j_ymeth_2023_07_008
crossref_primary_10_3390_biom13030503
crossref_primary_10_1007_s10462_024_10931_y
crossref_primary_10_1007_s40747_024_01545_6
Cites_doi 10.1145/2623330.2623732
10.1145/2939672.2939754
10.1145/3422622
10.1109/TKDE.2017.2754499
10.1109/TCBB.2016.2550432
10.1145/3307339.3342161
10.1038/s41598-017-05778-z
10.1016/j.isci.2020.101261
10.1093/bioinformatics/btx160
10.3389/fgene.2019.00381
10.1126/science.290.5500.2323
10.1093/bioinformatics/btq510
10.1145/3292500.3330912
10.1145/3292500.3330964
10.1109/ISBI.2019.8759531
10.1109/TKDE.2020.2981333
10.1093/bib/bbz091
10.1021/acs.jcim.9b00410
10.1109/JPROC.2015.2494198
10.1109/TNN.2008.2005605
10.1145/3097983.3098061
10.1007/s11625-007-0027-8
10.1093/bioinformatics/btaa157
10.1109/TKDE.2018.2819980
10.1038/nature08454
10.1093/gigascience/giy014
10.1093/bioinformatics/btaa921
10.1145/2488388.2488393
10.1093/bib/bbaa257
10.1145/3159652.3159680
10.1093/bib/bby117
10.1109/TKDE.2018.2833443
10.1109/JPROC.2015.2483592
10.1016/j.aiopen.2021.01.001
10.14778/3402707.3402736
10.1145/2783258.2783307
10.1093/bib/bbaa430
10.1016/j.ymeth.2020.08.004
10.1093/bioinformatics/btz965
10.1371/journal.pcbi.0010042
10.1016/j.cell.2005.08.029
10.1145/3018661.3018667
10.1145/2939672.2939753
10.1039/c2ib00154c
10.1142/S0219720020400107
10.3389/fgene.2020.00089
10.1093/bib/bbaa037
10.1109/TCYB.2019.2932096
10.1016/j.ddtec.2020.11.009
10.1186/s12859-017-1605-0
10.1145/3219819.3219947
10.1109/TKDE.2018.2807452
10.1371/journal.pcbi.1007568
10.1093/nar/gkx750
10.1098/rspb.2001.1800
10.1093/bib/bbz042
10.1093/nar/gkn580
10.1186/s12859-018-2520-8
10.1145/2736277.2741093
10.1016/j.knosys.2020.105861
10.1109/TKDE.2018.2849727
10.1016/j.eswa.2020.113538
10.1145/3308558.3313508
10.1126/science.290.5500.2319
10.1145/2783258.2783296
10.1038/s41467-021-21770-8
10.1145/3394486.3403237
10.1038/nmeth.1280
10.1109/BIBM47256.2019.8983416
10.1145/2481244.2481248
10.1109/TBDATA.2018.2850013
10.1145/3110025.3110086
10.1093/bib/bbab174
10.1093/nar/30.1.163
10.1186/s12859-018-2220-4
10.1016/j.patrec.2018.04.002
10.1162/089976603321780317
10.1145/3394486.3403104
10.1186/1471-2164-13-S7-S27
10.1038/s41598-021-85255-w
10.1073/pnas.151588598
10.1145/3219819.3220052
10.1038/s41592-019-0666-6
10.1093/nar/gkm882
10.1093/bioinformatics/btz718
10.1371/journal.pcbi.1002503
10.1038/75556
10.1145/3219819.3220006
10.1145/2806416.2806512
10.1109/TNNLS.2020.2978386
10.1016/j.knosys.2018.03.022
10.1093/nar/gkm958
10.1109/IJCNN.2005.1555942
10.1093/bib/bbaa067
10.1016/j.inffus.2019.01.005
10.1109/ICDM.2016.0072
10.1093/gigascience/giaa081
10.1093/nar/gku1011
10.1137/1.9781611975673.74
10.1145/3097983.3098036
10.1186/s12859-019-3284-5
10.1109/JBHI.2020.3004143
10.1038/s41467-021-23415-2
10.15252/msb.20156651
10.1016/j.cell.2011.07.014
10.1145/2939672.2939751
10.1038/nrg2918
10.1038/nprot.2009.177
10.1093/bib/bbaa044
10.1609/aaai.v30i1.10179
10.1145/3219819.3220000
10.1145/3292500.3340404
10.1093/bib/bbz147
10.1145/3308558.3313562
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbab340
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 34471921
10_1093_bib_bbab340
10.1093/bib/bbab340
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c414t-4823ac6fec17d21cfb42602b8b9f39e4ab8bc35ca9aa739391083bf9a25ad61d3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 08:56:54 EDT 2025
Mon Jun 30 11:09:15 EDT 2025
Wed Feb 19 02:26:48 EST 2025
Tue Jul 01 03:39:36 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Fri May 23 09:42:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
graph embedding
graph neural network
graph representation learning
knowledge graph
healthcare
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-4823ac6fec17d21cfb42602b8b9f39e4ab8bc35ca9aa739391083bf9a25ad61d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34471921
PQID 2626200130
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2568598184
proquest_journals_2626200130
pubmed_primary_34471921
crossref_primary_10_1093_bib_bbab340
crossref_citationtrail_10_1093_bib_bbab340
oup_primary_10_1093_bib_bbab340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-17
PublicationDateYYYYMMDD 2022-01-17
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Gao (2022011920510002500_ref87) 2018
Vascon (2022011920510002500_ref10) 2020; 134
Ruiz (2022011920510002500_ref155) 2021; 12
Park (2022011920510002500_ref152) 2020; 159
Zhu (2022011920510002500_ref165) 2019
Ding (2022011920510002500_ref50) 2020; 21
De Cao (2022011920510002500_ref117) 2018
Cen (2022011920510002500_ref41) 2019
Wang (2022011920510002500_ref127) 2019; 59
Schadt (2022011920510002500_ref47) 2009; 461
Li (2022011920510002500_ref121) 2021
Barabási (2022011920510002500_ref46) 2011; 12
Dai (2022011920510002500_ref116) 2018
Muzio (2022011920510002500_ref52) 2020; 22
Xu (2022011920510002500_ref159) 2018
Song (2022011920510002500_ref156) 2019
Zhu (2022011920510002500_ref108) 2018
Kanehisa (2022011920510002500_ref33) 2007; 36
Zhang (2022011920510002500_ref8) 2020; 36
Ashburner (2022011920510002500_ref31) 2000; 25
Wang (2022011920510002500_ref38) 2017; 29
Li (2022011920510002500_ref15) 2020; 36
Gori (2022011920510002500_ref90) 2005
Wu (2022011920510002500_ref157) 2021; 11
Sun (2022011920510002500_ref64) 2011; 4
Angermueller (2022011920510002500_ref35) 2016; 12
Zong (2022011920510002500_ref21) 2021; 22
Yang (2022011920510002500_ref136) 2019
Zong (2022011920510002500_ref20) 2017; 33
Cui (2022011920510002500_ref39) 2018; 31
Rhee (2022011920510002500_ref137) 2018
Li (2022011920510002500_ref97) 2018
Sun (2022011920510002500_ref111) 2019
Tang (2022011920510002500_ref80) 2015
Hu (2022011920510002500_ref119) 2020
Ou (2022011920510002500_ref72) 2016
Peng (2022011920510002500_ref23) 2017; 18
Wang (2022011920510002500_ref115) 2018
Ma (2022011920510002500_ref59) 2018
Wang (2022011920510002500_ref55) 2019
Min (2022011920510002500_ref34) 2017; 18
Goyal (2022011920510002500_ref40) 2018; 151
Zhang (2022011920510002500_ref89) 2018
Duvenaud (2022011920510002500_ref123) 2015
Wang (2022011920510002500_ref78) 2016
Liu (2022011920510002500_ref164) 2021
Zheng (2022011920510002500_ref22) 2018; 19
Cao (2022011920510002500_ref65) 2015
Pan (2022011920510002500_ref113) 2020; 50
You (2022011920510002500_ref138) 2010; 26
Huang (2022011920510002500_ref85) 2017
Sheng (2022011920510002500_ref142) 2021; 22
Kipf (2022011920510002500_ref95) 2016
T-Y (2022011920510002500_ref62) 2017
Nelson (2022011920510002500_ref53) 2019; 10
Park (2022011920510002500_ref63) 2020; 197
Davis (2022011920510002500_ref24) 2008; 37
Yi (2022011920510002500_ref143) 2020
Zhang (2022011920510002500_ref66) 2016
Daminelli (2022011920510002500_ref13) 2012; 4
Grover (2022011920510002500_ref106) 2019
Sporns (2022011920510002500_ref6) 2005; 1
Zhang (2022011920510002500_ref44) 2020
Tenenbaum (2022011920510002500_ref68) 2000; 290
Chang (2022011920510002500_ref83) 2015
Zhang (2022011920510002500_ref56) 2020; 6
Vaswani (2022011920510002500_ref101) 2017
Cao (2022011920510002500_ref79) 2016
Sun (2022011920510002500_ref54) 2013; 14
Guo (2022011920510002500_ref149) 2021; 22
Tang (2022011920510002500_ref141) 2021
Salmena (2022011920510002500_ref18) 2011; 146
Li (2022011920510002500_ref92) 2015
Yang (2022011920510002500_ref166) 2019
Dong (2022011920510002500_ref61) 2017
Simonovsky (2022011920510002500_ref109) 2018
Kipf (2022011920510002500_ref104) 2016
Gao (2022011920510002500_ref98) 2018
Ding (2022011920510002500_ref14) 2021; 192
Jin (2022011920510002500_ref129) 2018
Shi (2022011920510002500_ref57) 2018
Li (2022011920510002500_ref134) 2012; 13
Zhang (2022011920510002500_ref84) 2017
Hu (2022011920510002500_ref122) 2021
Yao (2022011920510002500_ref140) 2020; 18
Shi (2022011920510002500_ref82) 2018; 31
Cheng (2022011920510002500_ref11) 2012; 8
Stelzl (2022011920510002500_ref9) 2005; 122
Liao (2022011920510002500_ref86) 2018; 30
Dai (2022011920510002500_ref94) 2018
Han (2022011920510002500_ref135) 2019
Theocharidis (2022011920510002500_ref5) 2009; 4
Zang (2022011920510002500_ref131) 2020
Kibbe (2022011920510002500_ref32) 2015; 43
Shi (2022011920510002500_ref130) 2020
Perozzi (2022011920510002500_ref76) 2017
Zhuang (2022011920510002500_ref96) 2018
Yu (2022011920510002500_ref114) 2018
Su (2022011920510002500_ref49) 2020; 21
Li (2022011920510002500_ref45) 2021
Hamilton (2022011920510002500_ref100) 2017
Bojchevski (2022011920510002500_ref107) 2018
RFI (2022011920510002500_ref3) 2001; 268
Rvd (2022011920510002500_ref105) 2017
Gilmer (2022011920510002500_ref126) 2017
Celebi (2022011920510002500_ref154) 2019; 20
Cho (2022011920510002500_ref93) 2014
Roweis (2022011920510002500_ref69) 2000; 290
Karim (2022011920510002500_ref151) 2019
Thattai (2022011920510002500_ref4) 2001; 98
Yang (2022011920510002500_ref67) 2015
Tan (2022011920510002500_ref16) 2020; 11
Li (2022011920510002500_ref125) 2021
Fan (2022011920510002500_ref139) 2020; 9
Ma (2022011920510002500_ref60) 2019
Choi (2022011920510002500_ref160) 2020; 34
Cen (2022011920510002500_ref161) 2021
Kajikawa (2022011920510002500_ref2) 2007; 2
Scarselli (2022011920510002500_ref91) 2008; 20
Gainza (2022011920510002500_ref124) 2020; 17
Zhang (2022011920510002500_ref148) 2018; 19
Ribeiro (2022011920510002500_ref77) 2017
Chen (2022011920510002500_ref153) 2019
Grover (2022011920510002500_ref75) 2016
Nickel (2022011920510002500_ref26) 2015; 104
Tran (2022011920510002500_ref19) 2020; 25
Manoochehri (2022011920510002500_ref12) 2020; 21
Wieder (2022011920510002500_ref128) 2020
Belkin (2022011920510002500_ref70) 2003; 15
Venkatesan (2022011920510002500_ref7) 2009; 6
Cai (2022011920510002500_ref37) 2018; 30
Shi (2022011920510002500_ref81) 2018
Tang (2022011920510002500_ref58) 2015
Perozzi (2022011920510002500_ref74) 2014
Velickovic (2022011920510002500_ref110) 2019
Chen (2022011920510002500_ref99) 2018
Mikolov (2022011920510002500_ref73) 2013
Yi (2022011920510002500_ref28) 2020; 23
Wishart (2022011920510002500_ref30) 2008; 36
Zhao (2022011920510002500_ref144) 2020; 22
Hewett (2022011920510002500_ref29) 2002; 30
Wang (2022011920510002500_ref163) 2019
Liu (2022011920510002500_ref88) 2019; 50
Rotmensch (2022011920510002500_ref27) 2017; 7
Peng (2022011920510002500_ref145) 2021
Fey (2022011920510002500_ref162) 2019
Zhang (2022011920510002500_ref103) 2018
Liu (2022011920510002500_ref25) 2017; 14
Wang (2022011920510002500_ref17) 2020; 16
Thafar (2022011920510002500_ref146) 2020; 12
Freeman (2022011920510002500_ref1) 2000; 1
Sun (2022011920510002500_ref158) 2021; 25
Ahmed (2022011920510002500_ref71) 2013
Goodfellow (2022011920510002500_ref112) 2020; 63
Zhang (2022011920510002500_ref120) 2020
Mahmood (2022011920510002500_ref132) 2021; 12
Sun (2022011920510002500_ref150) 2019; 21
Nguyen (2022011920510002500_ref147) 2021; 37
Veličković (2022011920510002500_ref102) 2017
Li (2022011920510002500_ref133) 2017; 45
Zhou (2022011920510002500_ref43) 2020; 1
Leung (2022011920510002500_ref36) 2015; 104
Wu (2022011920510002500_ref42) 2020; 32
Pavlopoulos (2022011920510002500_ref48) 2018; 7
Yue (2022011920510002500_ref51) 2020; 36
Bojchevski (2022011920510002500_ref118) 2018
References_xml – year: 2013
  ident: 2022011920510002500_ref73
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: arXiv preprint arXiv
– start-page: 701
  volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2014
  ident: 2022011920510002500_ref74
  article-title: DeepWalk: online learning of social representations
  doi: 10.1145/2623330.2623732
– start-page: 855
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2022011920510002500_ref75
  doi: 10.1145/2939672.2939754
– volume: 63
  start-page: 139
  year: 2020
  ident: 2022011920510002500_ref112
  article-title: Generative adversarial networks
  publication-title: Commun ACM
  doi: 10.1145/3422622
– volume: 29
  start-page: 2724
  year: 2017
  ident: 2022011920510002500_ref38
  article-title: Knowledge graph embedding: a survey of approaches and applications
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2754499
– volume: 14
  start-page: 905
  year: 2017
  ident: 2022011920510002500_ref25
  article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2550432
– year: 2018
  ident: 2022011920510002500_ref117
  article-title: MolGAN: an implicit generative model for small molecular graphs
  publication-title: arXiv
– start-page: 113
  volume-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
  year: 2019
  ident: 2022011920510002500_ref151
  article-title: Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network
  doi: 10.1145/3307339.3342161
– volume: 7
  start-page: 5994
  year: 2017
  ident: 2022011920510002500_ref27
  article-title: Learning a health knowledge graph from electronic medical records
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05778-z
– volume: 23
  year: 2020
  ident: 2022011920510002500_ref28
  article-title: Learning representations to predict intermolecular interactions on large-scale heterogeneous molecular association network
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101261
– volume: 33
  start-page: 2337
  year: 2017
  ident: 2022011920510002500_ref20
  article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx160
– volume: 10
  year: 2019
  ident: 2022011920510002500_ref53
  article-title: To embed or not: network embedding as a paradigm in computational biology
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00381
– volume: 290
  start-page: 2323
  year: 2000
  ident: 2022011920510002500_ref69
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 26
  start-page: 2744
  year: 2010
  ident: 2022011920510002500_ref138
  article-title: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq510
– start-page: 705
  volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2019
  ident: 2022011920510002500_ref135
  article-title: GCN-MF: disease-gene association identification by graph convolutional networks and matrix factorization
  doi: 10.1145/3292500.3330912
– start-page: 1358
  volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2019
  ident: 2022011920510002500_ref41
  article-title: Representation learning for attributed multiplex heterogeneous network
  doi: 10.1145/3292500.3330964
– year: 2020
  ident: 2022011920510002500_ref120
  article-title: Graph-Bert: only attention is needed for learning graph representations
  publication-title: arXiv
– volume: 21
  start-page: 1
  year: 2020
  ident: 2022011920510002500_ref12
  article-title: Drug-target interaction prediction using semi-bipartite graph model and deep learning
  publication-title: BMC Bioinformatics
– start-page: 414
  volume-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
  year: 2019
  ident: 2022011920510002500_ref156
  article-title: Graph convolutional neural networks for Alzheimer’s disease classification
  doi: 10.1109/ISBI.2019.8759531
– year: 2020
  ident: 2022011920510002500_ref44
  article-title: Deep learning on graphs: a survey
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2020.2981333
– volume: 21
  start-page: 1327
  year: 2020
  ident: 2022011920510002500_ref50
  article-title: Heterogeneous information network and its application to human health and disease
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz091
– start-page: 1106
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: 2022011920510002500_ref94
  article-title: Learning steady-states of iterative algorithms over graphs
– volume: 59
  start-page: 3817
  year: 2019
  ident: 2022011920510002500_ref127
  article-title: Molecule property prediction based on spatial graph embedding
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00410
– volume: 104
  start-page: 176
  year: 2015
  ident: 2022011920510002500_ref36
  article-title: Machine learning in genomic medicine: a review of computational problems and data sets
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494198
– volume: 20
  start-page: 61
  year: 2008
  ident: 2022011920510002500_ref91
  article-title: The graph neural network model
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005605
– start-page: 3546
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2018
  ident: 2022011920510002500_ref97
  article-title: Adaptive graph convolutional neural networks
– start-page: 385
  volume-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2017
  ident: 2022011920510002500_ref77
  article-title: struc2vec: learning node representations from structural identity
  doi: 10.1145/3097983.3098061
– volume: 2
  start-page: 221
  year: 2007
  ident: 2022011920510002500_ref2
  article-title: Creating an academic landscape of sustainability science: an analysis of the citation network
  publication-title: Sustain Sci
  doi: 10.1007/s11625-007-0027-8
– volume: 36
  start-page: 3474
  year: 2020
  ident: 2022011920510002500_ref8
  article-title: A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa157
– volume: 30
  start-page: 2257
  year: 2018
  ident: 2022011920510002500_ref86
  article-title: Attributed social network embedding
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2819980
– volume: 461
  start-page: 218
  year: 2009
  ident: 2022011920510002500_ref47
  article-title: Molecular networks as sensors and drivers of common human diseases
  publication-title: Nature
  doi: 10.1038/nature08454
– start-page: 3527
  volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
  year: 2018
  ident: 2022011920510002500_ref137
  article-title: Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification
– volume: 7
  year: 2018
  ident: 2022011920510002500_ref48
  article-title: Bipartite graphs in systems biology and medicine: a survey of methods and applications
  publication-title: GigaScience
  doi: 10.1093/gigascience/giy014
– volume: 37
  start-page: 1140
  year: 2021
  ident: 2022011920510002500_ref147
  article-title: GraphDTA: predicting drug–target binding affinity with graph neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa921
– start-page: 37
  volume-title: Proceedings of the 22nd International Conference on World Wide Web
  year: 2013
  ident: 2022011920510002500_ref71
  article-title: Distributed large-scale natural graph factorization
  doi: 10.1145/2488388.2488393
– volume: 22
  start-page: 1515
  year: 2020
  ident: 2022011920510002500_ref52
  article-title: Biological network analysis with deep learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa257
– start-page: 387
  volume-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining
  year: 2018
  ident: 2022011920510002500_ref59
  article-title: Multi-dimensional network embedding with hierarchical structure
  doi: 10.1145/3159652.3159680
– start-page: 610
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: 2022011920510002500_ref118
– start-page: 1263
  volume-title: International Conference on Machine Learning
  year: 2017
  ident: 2022011920510002500_ref126
  article-title: Neural message passing for quantum chemistry
– volume: 21
  start-page: 182
  year: 2020
  ident: 2022011920510002500_ref49
  article-title: Network embedding in biomedical data science
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby117
– volume: 31
  start-page: 357
  year: 2018
  ident: 2022011920510002500_ref82
  article-title: Heterogeneous information network embedding for recommendation
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2833443
– year: 2021
  ident: 2022011920510002500_ref122
  article-title: Graph-MLP: node classification without message passing in graph
  publication-title: arXiv
– volume: 104
  start-page: 11
  year: 2015
  ident: 2022011920510002500_ref26
  article-title: A review of relational machine learning for knowledge graphs
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2483592
– start-page: 412
  volume-title: International Conference on Artificial Neural Networks
  year: 2018
  ident: 2022011920510002500_ref109
  article-title: GraphVAE: towards generation of small graphs using variational autoencoders
– year: 2018
  ident: 2022011920510002500_ref103
  article-title: GaAN: gated attention networks for learning on large and spatiotemporal graphs
  publication-title: arXiv
– start-page: 1338
  volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems
  year: 2019
  ident: 2022011920510002500_ref136
  article-title: Conditional structure generation through graph variational generative adversarial nets
– volume: 1
  start-page: 57
  year: 2020
  ident: 2022011920510002500_ref43
  article-title: Graph neural networks: a review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– year: 2015
  ident: 2022011920510002500_ref92
  article-title: Gated graph sequence neural networks
  publication-title: arXiv
– start-page: 1
  year: 2020
  ident: 2022011920510002500_ref143
  article-title: Learning representation of molecules in association network for predicting intermolecular associations
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 25
  start-page: 499
  year: 2020
  ident: 2022011920510002500_ref19
  article-title: Network representation of large-scale heterogeneous RNA sequences with integration of diverse multi-omics, interactions, and annotations data
  publication-title: Pac Symp Biocomput
– year: 2016
  ident: 2022011920510002500_ref95
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv
– start-page: 2111
  volume-title: Proceedings of the 24th International Conference on Artificial Intelligence
  year: 2015
  ident: 2022011920510002500_ref67
  article-title: Network representation learning with rich text information
– volume: 4
  start-page: 992
  year: 2011
  ident: 2022011920510002500_ref64
  article-title: Pathsim: meta path-based top-k similarity search in heterogeneous information networks
  publication-title: Proc VLDB Endow
  doi: 10.14778/3402707.3402736
– start-page: 1165
  volume-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2015
  ident: 2022011920510002500_ref80
  article-title: PTE: predictive text embedding through large-scale heterogeneous text networks
  doi: 10.1145/2783258.2783307
– start-page: 499
  volume-title: Proceedings of the 2018 World Wide Web Conference
  year: 2018
  ident: 2022011920510002500_ref96
  article-title: Dual graph convolutional networks for graph-based semi-supervised classification
– start-page: 2224
  volume-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2
  year: 2015
  ident: 2022011920510002500_ref123
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– year: 2021
  ident: 2022011920510002500_ref145
  article-title: An end-to-end heterogeneous graph representation learning-based framework for drug–target interaction prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa430
– year: 2021
  ident: 2022011920510002500_ref161
  article-title: CogDL: an extensive toolkit for deep learning on graphs
  publication-title: arXiv
– volume: 192
  start-page: 25
  year: 2021
  ident: 2022011920510002500_ref14
  article-title: Variational graph auto-encoders for miRNA-disease association prediction
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.08.004
– volume: 36
  start-page: 2538
  year: 2020
  ident: 2022011920510002500_ref15
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 1
  start-page: e42
  year: 2005
  ident: 2022011920510002500_ref6
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0010042
– volume: 122
  start-page: 957
  year: 2005
  ident: 2022011920510002500_ref9
  article-title: A human protein-protein interaction network: a resource for annotating the proteome
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.029
– start-page: 731
  volume-title: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
  year: 2017
  ident: 2022011920510002500_ref85
  article-title: Label informed attributed network embedding
  doi: 10.1145/3018661.3018667
– start-page: 1225
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2022011920510002500_ref78
  article-title: Structural deep network embedding
  doi: 10.1145/2939672.2939753
– year: 2017
  ident: 2022011920510002500_ref105
  article-title: Graph convolutional matrix completion
  publication-title: arXiv
– volume: 4
  start-page: 778
  year: 2012
  ident: 2022011920510002500_ref13
  article-title: Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network
  publication-title: Integr Biol
  doi: 10.1039/c2ib00154c
– volume: 18
  year: 2020
  ident: 2022011920510002500_ref140
  article-title: Denoising protein–protein interaction network via variational graph auto-encoder for protein complex detection
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720020400107
– volume: 11
  start-page: 89
  year: 2020
  ident: 2022011920510002500_ref16
  article-title: Multiview consensus graph learning for lncRNA–disease association prediction
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00089
– volume: 22
  start-page: 2085
  year: 2021
  ident: 2022011920510002500_ref149
  article-title: MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa037
– year: 2017
  ident: 2022011920510002500_ref100
  article-title: Inductive representation learning on large graphs
  publication-title: arXiv
– volume: 50
  start-page: 2475
  year: 2020
  ident: 2022011920510002500_ref113
  article-title: Learning graph embedding with adversarial training methods
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2019.2932096
– year: 2020
  ident: 2022011920510002500_ref128
  article-title: A compact review of molecular property prediction with graph neural networks
  publication-title: Drug Discov Today Technol
  doi: 10.1016/j.ddtec.2020.11.009
– volume: 18
  start-page: 193
  year: 2017
  ident: 2022011920510002500_ref23
  article-title: Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1605-0
– start-page: 1416
  volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2018
  ident: 2022011920510002500_ref98
  article-title: Large-scale learnable graph convolutional networks
  doi: 10.1145/3219819.3219947
– volume: 30
  start-page: 1616
  year: 2018
  ident: 2022011920510002500_ref37
  article-title: A comprehensive survey of graph embedding: problems, techniques, and applications
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2807452
– volume: 16
  year: 2020
  ident: 2022011920510002500_ref17
  article-title: GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007568
– volume: 45
  start-page: e166
  year: 2017
  ident: 2022011920510002500_ref133
  article-title: Network embedding-based representation learning for single cell RNA-seq data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx750
– volume: 268
  start-page: 2261
  year: 2001
  ident: 2022011920510002500_ref3
  article-title: The small world of human language
  publication-title: Proc R Soc Lond Series B Biol Sci
  doi: 10.1098/rspb.2001.1800
– volume: 21
  start-page: 919
  year: 2019
  ident: 2022011920510002500_ref150
  article-title: Graph convolutional networks for computational drug development and discovery
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz042
– year: 2019
  ident: 2022011920510002500_ref163
  article-title: Deep graph library: a graph-centric, highly-performant package for graph neural networks
  publication-title: arXiv
– volume: 37
  start-page: D786
  year: 2008
  ident: 2022011920510002500_ref24
  article-title: Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical–gene–disease networks
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn580
– volume: 19
  start-page: 49
  year: 2018
  ident: 2022011920510002500_ref22
  article-title: Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2520-8
– start-page: 1067
  volume-title: Proceedings of the 24th International Conference on World Wide Web
  year: 2015
  ident: 2022011920510002500_ref58
  article-title: LINE: large-scale information network embedding
  doi: 10.1145/2736277.2741093
– volume: 197
  year: 2020
  ident: 2022011920510002500_ref63
  article-title: Deep multiplex graph infomax: attentive multiplex network embedding using global information
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.105861
– year: 2021
  ident: 2022011920510002500_ref164
  article-title: DIG: a turnkey library for diving into graph deep learning research
  publication-title: arXiv
– volume: 31
  start-page: 833
  year: 2018
  ident: 2022011920510002500_ref39
  article-title: A survey on network embedding
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2849727
– volume: 159
  year: 2020
  ident: 2022011920510002500_ref152
  article-title: AGCN: attention-based graph convolutional networks for drug-drug interaction extraction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113538
– start-page: 2494
  volume-title: The World Wide Web Conference
  year: 2019
  ident: 2022011920510002500_ref165
  article-title: GraphVite: a high-performance CPU-GPU hybrid system for node embedding
  doi: 10.1145/3308558.3313508
– volume: 290
  start-page: 2319
  year: 2000
  ident: 2022011920510002500_ref68
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– start-page: 119
  volume-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2015
  ident: 2022011920510002500_ref83
  article-title: Heterogeneous network embedding via deep architectures
  doi: 10.1145/2783258.2783296
– year: 2019
  ident: 2022011920510002500_ref111
  article-title: Infograph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization
  publication-title: arXiv
– volume: 18
  start-page: 851
  year: 2017
  ident: 2022011920510002500_ref34
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– year: 2021
  ident: 2022011920510002500_ref121
  article-title: Training graph neural networks with 1000 layers
  publication-title: arXiv
– volume: 12
  start-page: 1796
  year: 2021
  ident: 2022011920510002500_ref155
  article-title: Identification of disease treatment mechanisms through the multiscale interactome
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21770-8
– volume-title: International Conference on Learning Representations
  year: 2018
  ident: 2022011920510002500_ref107
  article-title: Deep Gaussian embedding of graphs: unsupervised inductive learning via ranking
– year: 2018
  ident: 2022011920510002500_ref99
  article-title: FastGCN: fast learning with graph convolutional networks via importance sampling
  publication-title: arXiv
– start-page: 1857
  volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2020
  ident: 2022011920510002500_ref119
  article-title: GPT-GNN: generative pre-training of graph neural networks
  doi: 10.1145/3394486.3403237
– volume: 6
  start-page: 83
  year: 2009
  ident: 2022011920510002500_ref7
  article-title: An empirical framework for binary interactome mapping
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1280
– year: 2016
  ident: 2022011920510002500_ref104
  article-title: Variational graph auto-encoders
  publication-title: arXiv
– volume-title: ICLR (Poster)
  year: 2019
  ident: 2022011920510002500_ref110
  article-title: Deep Graph Infomax
– start-page: 3364
  volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
  year: 2018
  ident: 2022011920510002500_ref87
  article-title: Deep attributed network embedding
– start-page: 354
  volume-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2019
  ident: 2022011920510002500_ref153
  article-title: Drug-drug interaction prediction with graph representation learning
  doi: 10.1109/BIBM47256.2019.8983416
– volume: 14
  start-page: 20
  year: 2013
  ident: 2022011920510002500_ref54
  article-title: Mining heterogeneous information networks: a structural analysis approach
  publication-title: ACM SIGKDD Explor Newsletter
  doi: 10.1145/2481244.2481248
– volume: 6
  start-page: 3
  year: 2020
  ident: 2022011920510002500_ref56
  article-title: Network representation learning: a survey
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2018.2850013
– start-page: 258
  volume-title: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017
  year: 2017
  ident: 2022011920510002500_ref76
  article-title: Don't Walk, Skip! Online learning of multi-scale network embeddings
  doi: 10.1145/3110025.3110086
– year: 2021
  ident: 2022011920510002500_ref141
  article-title: Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab174
– volume: 30
  start-page: 163
  year: 2002
  ident: 2022011920510002500_ref29
  article-title: PharmGKB: the pharmacogenetics knowledge base
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.163
– volume: 19
  start-page: 233
  year: 2018
  ident: 2022011920510002500_ref148
  article-title: Predicting drug-disease associations by using similarity constrained matrix factorization
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2220-4
– volume: 134
  start-page: 96
  year: 2020
  ident: 2022011920510002500_ref10
  article-title: Protein function prediction as a graph-transduction game
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.04.002
– year: 2018
  ident: 2022011920510002500_ref57
  article-title: mvn2vec: preservation and collaboration in multi-view network embedding
  publication-title: arXiv
– volume: 15
  start-page: 1373
  year: 2003
  ident: 2022011920510002500_ref70
  article-title: Laplacian Eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput
  doi: 10.1162/089976603321780317
– start-page: 617
  volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event
  year: 2020
  ident: 2022011920510002500_ref131
  article-title: MoFlow: an invertible flow model for generating molecular graphs
  doi: 10.1145/3394486.3403104
– volume: 13
  start-page: S27
  year: 2012
  ident: 2022011920510002500_ref134
  article-title: Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-S7-S27
– year: 2020
  ident: 2022011920510002500_ref130
  article-title: GraphAF: a flow-based autoregressive model for molecular graph generation
  publication-title: arXiv
– volume: 11
  start-page: 5858
  year: 2021
  ident: 2022011920510002500_ref157
  article-title: Leveraging graph-based hierarchical medical entity embedding for healthcare applications
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85255-w
– start-page: 5998
  year: 2017
  ident: 2022011920510002500_ref101
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– volume: 98
  start-page: 8614
  year: 2001
  ident: 2022011920510002500_ref4
  article-title: Intrinsic noise in gene regulatory networks
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.151588598
– start-page: 3155
  volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
  year: 2018
  ident: 2022011920510002500_ref89
– start-page: 2827
  volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2018
  ident: 2022011920510002500_ref108
  article-title: Deep variational network embedding in Wasserstein space
  doi: 10.1145/3219819.3220052
– year: 2018
  ident: 2022011920510002500_ref159
  article-title: How powerful are graph neural networks?
  publication-title: arXiv
– start-page: 1797
  volume-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
  year: 2017
  ident: 2022011920510002500_ref62
  article-title: Hin2Vec: explore meta-paths in heterogeneous information networks for representation learning
– volume: 17
  start-page: 184
  year: 2020
  ident: 2022011920510002500_ref124
  article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0666-6
– volume: 36
  start-page: D480
  year: 2007
  ident: 2022011920510002500_ref33
  article-title: KEGG for linking genomes to life and the environment
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm882
– start-page: 2167
  year: 2018
  ident: 2022011920510002500_ref116
  article-title: Adversarial network embedding
– year: 2021
  ident: 2022011920510002500_ref45
  article-title: Representation learning for networks in biology and medicine: advancements, challenges, and opportunities
  publication-title: arXiv
– volume: 36
  start-page: 1241
  year: 2020
  ident: 2022011920510002500_ref51
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz718
– volume: 8
  year: 2012
  ident: 2022011920510002500_ref11
  article-title: Prediction of drug-target interactions and drug repositioning via network-based inference
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002503
– volume: 25
  start-page: 25
  year: 2000
  ident: 2022011920510002500_ref31
  article-title: Gene ontology: tool for the unification of biology
  publication-title: Nat Genet
  doi: 10.1038/75556
– start-page: 2190
  volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2018
  ident: 2022011920510002500_ref81
  article-title: Easing embedding learning by comprehensive transcription of heterogeneous information networks
  doi: 10.1145/3219819.3220006
– start-page: 891
  volume-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
  year: 2015
  ident: 2022011920510002500_ref65
  article-title: GraRep: learning graph representations with global structural information
  doi: 10.1145/2806416.2806512
– volume: 32
  start-page: 4
  year: 2020
  ident: 2022011920510002500_ref42
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2978386
– volume: 151
  start-page: 78
  year: 2018
  ident: 2022011920510002500_ref40
  article-title: Graph embedding techniques, applications, and performance: a survey
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.03.022
– volume: 36
  start-page: 901
  year: 2008
  ident: 2022011920510002500_ref30
  article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm958
– start-page: 729
  volume-title: Proceedings. 2005 IEEE International Joint Conference on Neural Networks
  year: 2005
  ident: 2022011920510002500_ref90
  article-title: A new model for learning in graph domains
  doi: 10.1109/IJCNN.2005.1555942
– volume: 22
  year: 2021
  ident: 2022011920510002500_ref142
  article-title: Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa067
– volume: 1
  start-page: 4
  year: 2000
  ident: 2022011920510002500_ref1
  article-title: Visualizing social networks
  publication-title: J Soc Struct
– start-page: 605
  year: 2017
  ident: 2022011920510002500_ref84
  article-title: BL-MNE: emerging heterogeneous social network embedding through broad learning with aligned autoencoder
– volume: 50
  start-page: 221
  year: 2019
  ident: 2022011920510002500_ref88
  article-title: AHNG: representation learning on attributed heterogeneous network
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.01.005
– start-page: 609
  volume-title: 2016 IEEE 16th International Conference on Data Mining (ICDM)
  year: 2016
  ident: 2022011920510002500_ref66
  article-title: Homophily, structure, and content augmented network representation learning
  doi: 10.1109/ICDM.2016.0072
– year: 2019
  ident: 2022011920510002500_ref162
  article-title: Fast graph representation learning with PyTorch geometric
  publication-title: arXiv
– volume: 9
  year: 2020
  ident: 2022011920510002500_ref139
  article-title: Graph2GO: a multi-modal attributed network embedding method for inferring protein functions
  publication-title: GigaScience
  doi: 10.1093/gigascience/giaa081
– volume: 43
  start-page: D1071
  year: 2015
  ident: 2022011920510002500_ref32
  article-title: Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1011
– start-page: 657
  volume-title: Proceedings of the 2019 SIAM International Conference on Data Mining
  year: 2019
  ident: 2022011920510002500_ref60
  article-title: Multi-dimensional graph convolutional networks
  doi: 10.1137/1.9781611975673.74
– start-page: 135
  volume-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2017
  ident: 2022011920510002500_ref61
  article-title: metapath2vec: scalable representation learning for heterogeneous networks
  doi: 10.1145/3097983.3098036
– year: 2017
  ident: 2022011920510002500_ref102
  article-title: Graph attention networks
  publication-title: arXiv
– volume: 20
  start-page: 726
  year: 2019
  ident: 2022011920510002500_ref154
  article-title: Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3284-5
– volume: 25
  start-page: 818
  year: 2021
  ident: 2022011920510002500_ref158
  article-title: Disease prediction via graph neural networks
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.3004143
– volume: 12
  start-page: 3156
  year: 2021
  ident: 2022011920510002500_ref132
  article-title: Masked graph modeling for molecule generation
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23415-2
– volume: 12
  start-page: 1
  year: 2020
  ident: 2022011920510002500_ref146
  article-title: DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
  publication-title: J Chem
– volume: 12
  start-page: 878
  year: 2016
  ident: 2022011920510002500_ref35
  article-title: Deep learning for computational biology
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156651
– start-page: 2434
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: 2022011920510002500_ref106
  article-title: Graphite: iterative generative modeling of graphs
– volume: 146
  start-page: 353
  year: 2011
  ident: 2022011920510002500_ref18
  article-title: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.014
– start-page: 1105
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2022011920510002500_ref72
  article-title: Asymmetric transitivity preserving graph embedding
  doi: 10.1145/2939672.2939751
– volume: 12
  start-page: 56
  year: 2011
  ident: 2022011920510002500_ref46
  article-title: Network medicine: a network-based approach to human disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2918
– volume: 4
  start-page: 1535
  year: 2009
  ident: 2022011920510002500_ref5
  article-title: Network visualization and analysis of gene expression data using BioLayout Express3D
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.177
– start-page: 2508
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2018
  ident: 2022011920510002500_ref115
  article-title: GraphGAN: graph representation learning with generative adversarial nets
– volume: 22
  start-page: 2141
  year: 2020
  ident: 2022011920510002500_ref144
  article-title: Identifying drug–target interactions based on graph convolutional network and deep neural network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa044
– volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2016
  ident: 2022011920510002500_ref79
  article-title: Deep neural networks for learning graph representations
  doi: 10.1609/aaai.v30i1.10179
– start-page: 2323
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: 2022011920510002500_ref129
  article-title: Junction tree variational autoencoder for molecular graph generation
– start-page: 2663
  volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2018
  ident: 2022011920510002500_ref114
  article-title: Learning deep network representations with adversarially regularized autoencoders
  doi: 10.1145/3219819.3220000
– start-page: 3165
  volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2019
  ident: 2022011920510002500_ref166
  article-title: AliGraph: a comprehensive graph neural network platform
  doi: 10.1145/3292500.3340404
– start-page: 1
  year: 2021
  ident: 2022011920510002500_ref125
  article-title: 3DMol-Net: learn 3D molecular representation using adaptive graph convolutional network based on rotation invariance
  publication-title: IEEE J Biomed Health Inform
– year: 2014
  ident: 2022011920510002500_ref93
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: arXiv
– volume: 22
  start-page: 568
  year: 2021
  ident: 2022011920510002500_ref21
  article-title: Drug–target prediction utilizing heterogeneous bio-linked network embeddings
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz147
– start-page: 2022
  volume-title: The World Wide Web Conference
  year: 2019
  ident: 2022011920510002500_ref55
  article-title: Heterogeneous graph attention network
  doi: 10.1145/3308558.3313562
– volume: 34
  start-page: 606
  year: 2020
  ident: 2022011920510002500_ref160
  article-title: Learning the graphical structure of electronic health records with graph convolutional transformer
  publication-title: Proc AAAI Conf Artif Intell
SSID ssj0020781
Score 2.615732
SecondaryResourceType review_article
Snippet Abstract Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical...
Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Bioinformatics
Complex systems
Computational Biology - methods
Data structures
Deep learning
Embedding
Graph neural networks
Graph representations
Graphical representations
Graphs
Knowledge
Knowledge representation
Learning algorithms
Machine Learning
Neural networks
Neural Networks, Computer
Topology
Title Graph representation learning in bioinformatics: trends, methods and applications
URI https://www.ncbi.nlm.nih.gov/pubmed/34471921
https://www.proquest.com/docview/2626200130
https://www.proquest.com/docview/2568598184
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3dS8MwEMCDCIIv4rfTqRH2JIYtTZqmvok4h6AibLC3kq_KQDpx3YP_vbk2K06HvhV6JXCXcHe93O8Q6niTSt1LNLEW_lZZwYkPjnrEeW_OjFTaVv0Vj09iMOIP43gcLsjOVpTwU9bVE93VWmnGITX37hcQ-cPncZNXAa-mbiJKCNDdQxvej2-XHM9SM9uvmLLyLf1ttBWCQnxTW3EHrbliF23UYyI_99DLPVClccWfXPQKFTjMe3jFkwLryTQQUIG6fI3L6qbrFa7nQ8-wKiz-XqreR6P-3fB2QMIoBGI45SXhMmLKiNwZmtiImlwDWT7SUqc5Sx1X_smw2KhUKWDc-SBAMp2nKoqVFdSyA7ReTAt3hHBKWWKUyHPtUwlBqZLcWQ4T5xOfiuWyhS4XespM4ITDuIq3rK5Xs8wrNQtKbaFOI_xe4zFWi517hf8t0V4YIwunaJZFAnD5UFttoYvmtd__UNRQhZvOvUwsZJz6sIO30GFtxGYdoBkC7-343-VP0GYEfQ09SmjSRuvlx9yd-mij1GfVXvsCeuPRng
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+representation+learning+in+bioinformatics%3A+trends%2C+methods+and+applications&rft.jtitle=Briefings+in+bioinformatics&rft.au=Hai-Cheng%2C+Yi&rft.au=Zhu-Hong%2C+You&rft.au=De-Shuang%2C+Huang&rft.au=Kwoh%2C+Chee+Keong&rft.date=2022-01-17&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbab340&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon