Graph representation learning in bioinformatics: trends, methods and applications
Abstract Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with d...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
17.01.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies. |
---|---|
AbstractList | Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies. Abstract Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies. Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies.Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain. However, rich relational information between biological elements is retained in the non-Euclidean biomedical graphs, which is not learning friendly to classic machine learning methods. Graph representation learning aims to embed graph into a low-dimensional space while preserving graph topology and node properties. It bridges biomedical graphs and modern machine learning methods and has recently raised widespread interest in both machine learning and bioinformatics communities. In this work, we summarize the advances of graph representation learning and its representative applications in bioinformatics. To provide a comprehensive and structured analysis and perspective, we first categorize and analyze both graph embedding methods (homogeneous graph embedding, heterogeneous graph embedding, attribute graph embedding) and graph neural networks. Furthermore, we summarize their representative applications from molecular level to genomics, pharmaceutical and healthcare systems level. Moreover, we provide open resource platforms and libraries for implementing these graph representation learning methods and discuss the challenges and opportunities of graph representation learning in bioinformatics. This work provides a comprehensive survey of emerging graph representation learning algorithms and their applications in bioinformatics. It is anticipated that it could bring valuable insights for researchers to contribute their knowledge to graph representation learning and future-oriented bioinformatics studies. |
Author | Yi, Hai-Cheng Huang, De-Shuang You, Zhu-Hong Kwoh, Chee Keong |
Author_xml | – sequence: 1 givenname: Hai-Cheng surname: Yi fullname: Yi, Hai-Cheng – sequence: 2 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong email: zhuhongyou@nwpu.edu.cn – sequence: 3 givenname: De-Shuang surname: Huang fullname: Huang, De-Shuang – sequence: 4 givenname: Chee Keong surname: Kwoh fullname: Kwoh, Chee Keong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34471921$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LxDAQxYOs6K568i4FQQStm69-xJuIroIggp7LJE01S5vUpD343xvd1cOCMocZmN8bhvdmaGKd1QgdEnxBsGBzaeRcSpCM4y00JbwoUo4zPvma8yLNeM520SyEJcYUFyXZQbuM84IISqboaeGhf0u87r0O2g4wGGeTVoO3xr4mxibSOGMb57u4UuEyGby2dThPOj28uTokYOsE-r416lsb9tF2A23QB-u-h15ub56v79KHx8X99dVDqjjhQ8pLykDljVakqClRjeQ0x1SWUjRMaA5xUixTIAAKJpgguGSyEUAzqHNSsz10urrbe_c-6jBUnQlKty1Y7cZQ0SwvM1GSkkf0eANdutHb-F1F81gYE4YjdbSmRtnpuuq96cB_VD9mReBsBSjvQvC6-UUIrr6iqGIU1TqKSJMNWpmVvYMH0_6hOVlp3Nj_e_wTBiKabA |
CitedBy_id | crossref_primary_10_1093_bib_bbae043 crossref_primary_10_1109_TNNLS_2023_3269446 crossref_primary_10_1038_s41598_022_25693_2 crossref_primary_10_1109_JIOT_2024_3430297 crossref_primary_10_1093_bib_bbae565 crossref_primary_10_7717_peerj_18509 crossref_primary_10_3389_fmed_2023_1086097 crossref_primary_10_1021_acs_jcim_3c01665 crossref_primary_10_1016_j_bspc_2024_106134 crossref_primary_10_1038_s41467_023_44570_8 crossref_primary_10_1039_D3DD00078H crossref_primary_10_1186_s12859_023_05413_x crossref_primary_10_1093_bioinformatics_btae558 crossref_primary_10_1007_s12539_024_00633_y crossref_primary_10_1186_s12859_022_04611_3 crossref_primary_10_1016_j_neucom_2024_128107 crossref_primary_10_1016_j_neunet_2023_12_040 crossref_primary_10_1007_s11280_024_01303_1 crossref_primary_10_3389_fgene_2024_1399810 crossref_primary_10_1016_j_neucom_2024_128264 crossref_primary_10_1016_j_csbj_2023_08_016 crossref_primary_10_1038_s41598_025_90839_x crossref_primary_10_1007_s00371_024_03343_0 crossref_primary_10_3390_covid3090096 crossref_primary_10_1016_j_ymeth_2023_01_006 crossref_primary_10_1093_bib_bbae355 crossref_primary_10_3389_frai_2024_1408843 crossref_primary_10_1093_bib_bbac454 crossref_primary_10_3390_biology13050338 crossref_primary_10_1016_j_enbuild_2024_114735 crossref_primary_10_3390_info15050246 crossref_primary_10_1109_JBHI_2024_3439713 crossref_primary_10_3233_JIFS_236788 crossref_primary_10_1142_S2737416524400052 crossref_primary_10_1093_bib_bbae546 crossref_primary_10_1007_s00521_023_09366_3 crossref_primary_10_1007_s11042_022_13672_8 crossref_primary_10_1109_ACCESS_2024_3412961 crossref_primary_10_3390_biomedinformatics4030103 crossref_primary_10_1093_jamia_ocae137 crossref_primary_10_3390_diagnostics12102526 crossref_primary_10_3389_fnins_2023_1256351 crossref_primary_10_3390_math11030732 crossref_primary_10_1093_bioinformatics_btac837 crossref_primary_10_1016_j_corsci_2023_111420 crossref_primary_10_1016_j_ymeth_2023_10_014 crossref_primary_10_1186_s12967_024_05372_8 crossref_primary_10_1007_s12539_024_00610_5 crossref_primary_10_1016_j_inffus_2025_103062 crossref_primary_10_1111_jcmm_18571 crossref_primary_10_1016_j_jbi_2025_104772 crossref_primary_10_1016_j_neunet_2023_11_060 crossref_primary_10_1021_acs_jcim_4c01896 crossref_primary_10_1515_sagmb_2021_0087 crossref_primary_10_3389_fgene_2023_1122909 crossref_primary_10_1186_s12911_024_02564_6 crossref_primary_10_1016_j_asoc_2024_111981 crossref_primary_10_1002_wcms_1723 crossref_primary_10_1016_j_dajour_2024_100417 crossref_primary_10_1587_transinf_2023EDP7180 crossref_primary_10_1016_j_jep_2022_115966 crossref_primary_10_1021_acs_jctc_4c00810 crossref_primary_10_1038_s41598_024_77172_5 crossref_primary_10_1016_j_knosys_2025_113276 crossref_primary_10_1109_TKDE_2023_3266453 crossref_primary_10_1093_bib_bbac391 crossref_primary_10_1093_bioinformatics_btae306 crossref_primary_10_1007_s13198_024_02302_1 crossref_primary_10_1093_bib_bbae058 crossref_primary_10_1007_s41019_023_00206_x crossref_primary_10_26599_BDMA_2024_9020043 crossref_primary_10_1016_j_eswa_2025_126637 crossref_primary_10_1016_j_ins_2023_119952 crossref_primary_10_1109_TCBB_2022_3190933 crossref_primary_10_1371_journal_pone_0291223 crossref_primary_10_1016_j_inffus_2023_101950 crossref_primary_10_1093_bib_bbad324 crossref_primary_10_1109_TCBB_2024_3417715 crossref_primary_10_1093_bfgp_elad030 crossref_primary_10_1093_bioinformatics_btad774 crossref_primary_10_1007_s12539_024_00645_8 crossref_primary_10_1016_j_compbiomed_2023_106625 crossref_primary_10_1109_TKDE_2024_3437775 crossref_primary_10_1038_s42003_024_06865_4 crossref_primary_10_1021_acs_jcim_2c01407 crossref_primary_10_1002_wrna_1830 crossref_primary_10_1016_j_neucom_2023_03_053 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_1016_j_ymeth_2023_07_008 crossref_primary_10_3390_biom13030503 crossref_primary_10_1007_s10462_024_10931_y crossref_primary_10_1007_s40747_024_01545_6 |
Cites_doi | 10.1145/2623330.2623732 10.1145/2939672.2939754 10.1145/3422622 10.1109/TKDE.2017.2754499 10.1109/TCBB.2016.2550432 10.1145/3307339.3342161 10.1038/s41598-017-05778-z 10.1016/j.isci.2020.101261 10.1093/bioinformatics/btx160 10.3389/fgene.2019.00381 10.1126/science.290.5500.2323 10.1093/bioinformatics/btq510 10.1145/3292500.3330912 10.1145/3292500.3330964 10.1109/ISBI.2019.8759531 10.1109/TKDE.2020.2981333 10.1093/bib/bbz091 10.1021/acs.jcim.9b00410 10.1109/JPROC.2015.2494198 10.1109/TNN.2008.2005605 10.1145/3097983.3098061 10.1007/s11625-007-0027-8 10.1093/bioinformatics/btaa157 10.1109/TKDE.2018.2819980 10.1038/nature08454 10.1093/gigascience/giy014 10.1093/bioinformatics/btaa921 10.1145/2488388.2488393 10.1093/bib/bbaa257 10.1145/3159652.3159680 10.1093/bib/bby117 10.1109/TKDE.2018.2833443 10.1109/JPROC.2015.2483592 10.1016/j.aiopen.2021.01.001 10.14778/3402707.3402736 10.1145/2783258.2783307 10.1093/bib/bbaa430 10.1016/j.ymeth.2020.08.004 10.1093/bioinformatics/btz965 10.1371/journal.pcbi.0010042 10.1016/j.cell.2005.08.029 10.1145/3018661.3018667 10.1145/2939672.2939753 10.1039/c2ib00154c 10.1142/S0219720020400107 10.3389/fgene.2020.00089 10.1093/bib/bbaa037 10.1109/TCYB.2019.2932096 10.1016/j.ddtec.2020.11.009 10.1186/s12859-017-1605-0 10.1145/3219819.3219947 10.1109/TKDE.2018.2807452 10.1371/journal.pcbi.1007568 10.1093/nar/gkx750 10.1098/rspb.2001.1800 10.1093/bib/bbz042 10.1093/nar/gkn580 10.1186/s12859-018-2520-8 10.1145/2736277.2741093 10.1016/j.knosys.2020.105861 10.1109/TKDE.2018.2849727 10.1016/j.eswa.2020.113538 10.1145/3308558.3313508 10.1126/science.290.5500.2319 10.1145/2783258.2783296 10.1038/s41467-021-21770-8 10.1145/3394486.3403237 10.1038/nmeth.1280 10.1109/BIBM47256.2019.8983416 10.1145/2481244.2481248 10.1109/TBDATA.2018.2850013 10.1145/3110025.3110086 10.1093/bib/bbab174 10.1093/nar/30.1.163 10.1186/s12859-018-2220-4 10.1016/j.patrec.2018.04.002 10.1162/089976603321780317 10.1145/3394486.3403104 10.1186/1471-2164-13-S7-S27 10.1038/s41598-021-85255-w 10.1073/pnas.151588598 10.1145/3219819.3220052 10.1038/s41592-019-0666-6 10.1093/nar/gkm882 10.1093/bioinformatics/btz718 10.1371/journal.pcbi.1002503 10.1038/75556 10.1145/3219819.3220006 10.1145/2806416.2806512 10.1109/TNNLS.2020.2978386 10.1016/j.knosys.2018.03.022 10.1093/nar/gkm958 10.1109/IJCNN.2005.1555942 10.1093/bib/bbaa067 10.1016/j.inffus.2019.01.005 10.1109/ICDM.2016.0072 10.1093/gigascience/giaa081 10.1093/nar/gku1011 10.1137/1.9781611975673.74 10.1145/3097983.3098036 10.1186/s12859-019-3284-5 10.1109/JBHI.2020.3004143 10.1038/s41467-021-23415-2 10.15252/msb.20156651 10.1016/j.cell.2011.07.014 10.1145/2939672.2939751 10.1038/nrg2918 10.1038/nprot.2009.177 10.1093/bib/bbaa044 10.1609/aaai.v30i1.10179 10.1145/3219819.3220000 10.1145/3292500.3340404 10.1093/bib/bbz147 10.1145/3308558.3313562 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbab340 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 34471921 10_1093_bib_bbab340 10.1093/bib/bbab340 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX CITATION ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF NPM ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c414t-4823ac6fec17d21cfb42602b8b9f39e4ab8bc35ca9aa739391083bf9a25ad61d3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 08:56:54 EDT 2025 Mon Jun 30 11:09:15 EDT 2025 Wed Feb 19 02:26:48 EST 2025 Tue Jul 01 03:39:36 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Fri May 23 09:42:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning graph embedding graph neural network graph representation learning knowledge graph healthcare |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-4823ac6fec17d21cfb42602b8b9f39e4ab8bc35ca9aa739391083bf9a25ad61d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 34471921 |
PQID | 2626200130 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2568598184 proquest_journals_2626200130 pubmed_primary_34471921 crossref_primary_10_1093_bib_bbab340 crossref_citationtrail_10_1093_bib_bbab340 oup_primary_10_1093_bib_bbab340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-17 |
PublicationDateYYYYMMDD | 2022-01-17 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Gao (2022011920510002500_ref87) 2018 Vascon (2022011920510002500_ref10) 2020; 134 Ruiz (2022011920510002500_ref155) 2021; 12 Park (2022011920510002500_ref152) 2020; 159 Zhu (2022011920510002500_ref165) 2019 Ding (2022011920510002500_ref50) 2020; 21 De Cao (2022011920510002500_ref117) 2018 Cen (2022011920510002500_ref41) 2019 Wang (2022011920510002500_ref127) 2019; 59 Schadt (2022011920510002500_ref47) 2009; 461 Li (2022011920510002500_ref121) 2021 Barabási (2022011920510002500_ref46) 2011; 12 Dai (2022011920510002500_ref116) 2018 Muzio (2022011920510002500_ref52) 2020; 22 Xu (2022011920510002500_ref159) 2018 Song (2022011920510002500_ref156) 2019 Zhu (2022011920510002500_ref108) 2018 Kanehisa (2022011920510002500_ref33) 2007; 36 Zhang (2022011920510002500_ref8) 2020; 36 Ashburner (2022011920510002500_ref31) 2000; 25 Wang (2022011920510002500_ref38) 2017; 29 Li (2022011920510002500_ref15) 2020; 36 Gori (2022011920510002500_ref90) 2005 Wu (2022011920510002500_ref157) 2021; 11 Sun (2022011920510002500_ref64) 2011; 4 Angermueller (2022011920510002500_ref35) 2016; 12 Zong (2022011920510002500_ref21) 2021; 22 Yang (2022011920510002500_ref136) 2019 Zong (2022011920510002500_ref20) 2017; 33 Cui (2022011920510002500_ref39) 2018; 31 Rhee (2022011920510002500_ref137) 2018 Li (2022011920510002500_ref97) 2018 Sun (2022011920510002500_ref111) 2019 Tang (2022011920510002500_ref80) 2015 Hu (2022011920510002500_ref119) 2020 Ou (2022011920510002500_ref72) 2016 Peng (2022011920510002500_ref23) 2017; 18 Wang (2022011920510002500_ref115) 2018 Ma (2022011920510002500_ref59) 2018 Wang (2022011920510002500_ref55) 2019 Min (2022011920510002500_ref34) 2017; 18 Goyal (2022011920510002500_ref40) 2018; 151 Zhang (2022011920510002500_ref89) 2018 Duvenaud (2022011920510002500_ref123) 2015 Wang (2022011920510002500_ref78) 2016 Liu (2022011920510002500_ref164) 2021 Zheng (2022011920510002500_ref22) 2018; 19 Cao (2022011920510002500_ref65) 2015 Pan (2022011920510002500_ref113) 2020; 50 You (2022011920510002500_ref138) 2010; 26 Huang (2022011920510002500_ref85) 2017 Sheng (2022011920510002500_ref142) 2021; 22 Kipf (2022011920510002500_ref95) 2016 T-Y (2022011920510002500_ref62) 2017 Nelson (2022011920510002500_ref53) 2019; 10 Park (2022011920510002500_ref63) 2020; 197 Davis (2022011920510002500_ref24) 2008; 37 Yi (2022011920510002500_ref143) 2020 Zhang (2022011920510002500_ref66) 2016 Daminelli (2022011920510002500_ref13) 2012; 4 Grover (2022011920510002500_ref106) 2019 Sporns (2022011920510002500_ref6) 2005; 1 Zhang (2022011920510002500_ref44) 2020 Tenenbaum (2022011920510002500_ref68) 2000; 290 Chang (2022011920510002500_ref83) 2015 Zhang (2022011920510002500_ref56) 2020; 6 Vaswani (2022011920510002500_ref101) 2017 Cao (2022011920510002500_ref79) 2016 Sun (2022011920510002500_ref54) 2013; 14 Guo (2022011920510002500_ref149) 2021; 22 Tang (2022011920510002500_ref141) 2021 Salmena (2022011920510002500_ref18) 2011; 146 Li (2022011920510002500_ref92) 2015 Yang (2022011920510002500_ref166) 2019 Dong (2022011920510002500_ref61) 2017 Simonovsky (2022011920510002500_ref109) 2018 Kipf (2022011920510002500_ref104) 2016 Gao (2022011920510002500_ref98) 2018 Ding (2022011920510002500_ref14) 2021; 192 Jin (2022011920510002500_ref129) 2018 Shi (2022011920510002500_ref57) 2018 Li (2022011920510002500_ref134) 2012; 13 Zhang (2022011920510002500_ref84) 2017 Hu (2022011920510002500_ref122) 2021 Yao (2022011920510002500_ref140) 2020; 18 Shi (2022011920510002500_ref82) 2018; 31 Cheng (2022011920510002500_ref11) 2012; 8 Stelzl (2022011920510002500_ref9) 2005; 122 Liao (2022011920510002500_ref86) 2018; 30 Dai (2022011920510002500_ref94) 2018 Han (2022011920510002500_ref135) 2019 Theocharidis (2022011920510002500_ref5) 2009; 4 Zang (2022011920510002500_ref131) 2020 Kibbe (2022011920510002500_ref32) 2015; 43 Shi (2022011920510002500_ref130) 2020 Perozzi (2022011920510002500_ref76) 2017 Zhuang (2022011920510002500_ref96) 2018 Yu (2022011920510002500_ref114) 2018 Su (2022011920510002500_ref49) 2020; 21 Li (2022011920510002500_ref45) 2021 Hamilton (2022011920510002500_ref100) 2017 Bojchevski (2022011920510002500_ref107) 2018 RFI (2022011920510002500_ref3) 2001; 268 Rvd (2022011920510002500_ref105) 2017 Gilmer (2022011920510002500_ref126) 2017 Celebi (2022011920510002500_ref154) 2019; 20 Cho (2022011920510002500_ref93) 2014 Roweis (2022011920510002500_ref69) 2000; 290 Karim (2022011920510002500_ref151) 2019 Thattai (2022011920510002500_ref4) 2001; 98 Yang (2022011920510002500_ref67) 2015 Tan (2022011920510002500_ref16) 2020; 11 Li (2022011920510002500_ref125) 2021 Fan (2022011920510002500_ref139) 2020; 9 Ma (2022011920510002500_ref60) 2019 Choi (2022011920510002500_ref160) 2020; 34 Cen (2022011920510002500_ref161) 2021 Kajikawa (2022011920510002500_ref2) 2007; 2 Scarselli (2022011920510002500_ref91) 2008; 20 Gainza (2022011920510002500_ref124) 2020; 17 Zhang (2022011920510002500_ref148) 2018; 19 Ribeiro (2022011920510002500_ref77) 2017 Chen (2022011920510002500_ref153) 2019 Grover (2022011920510002500_ref75) 2016 Nickel (2022011920510002500_ref26) 2015; 104 Tran (2022011920510002500_ref19) 2020; 25 Manoochehri (2022011920510002500_ref12) 2020; 21 Wieder (2022011920510002500_ref128) 2020 Belkin (2022011920510002500_ref70) 2003; 15 Venkatesan (2022011920510002500_ref7) 2009; 6 Cai (2022011920510002500_ref37) 2018; 30 Shi (2022011920510002500_ref81) 2018 Tang (2022011920510002500_ref58) 2015 Perozzi (2022011920510002500_ref74) 2014 Velickovic (2022011920510002500_ref110) 2019 Chen (2022011920510002500_ref99) 2018 Mikolov (2022011920510002500_ref73) 2013 Yi (2022011920510002500_ref28) 2020; 23 Wishart (2022011920510002500_ref30) 2008; 36 Zhao (2022011920510002500_ref144) 2020; 22 Hewett (2022011920510002500_ref29) 2002; 30 Wang (2022011920510002500_ref163) 2019 Liu (2022011920510002500_ref88) 2019; 50 Rotmensch (2022011920510002500_ref27) 2017; 7 Peng (2022011920510002500_ref145) 2021 Fey (2022011920510002500_ref162) 2019 Zhang (2022011920510002500_ref103) 2018 Liu (2022011920510002500_ref25) 2017; 14 Wang (2022011920510002500_ref17) 2020; 16 Thafar (2022011920510002500_ref146) 2020; 12 Freeman (2022011920510002500_ref1) 2000; 1 Sun (2022011920510002500_ref158) 2021; 25 Ahmed (2022011920510002500_ref71) 2013 Goodfellow (2022011920510002500_ref112) 2020; 63 Zhang (2022011920510002500_ref120) 2020 Mahmood (2022011920510002500_ref132) 2021; 12 Sun (2022011920510002500_ref150) 2019; 21 Nguyen (2022011920510002500_ref147) 2021; 37 Veličković (2022011920510002500_ref102) 2017 Li (2022011920510002500_ref133) 2017; 45 Zhou (2022011920510002500_ref43) 2020; 1 Leung (2022011920510002500_ref36) 2015; 104 Wu (2022011920510002500_ref42) 2020; 32 Pavlopoulos (2022011920510002500_ref48) 2018; 7 Yue (2022011920510002500_ref51) 2020; 36 Bojchevski (2022011920510002500_ref118) 2018 |
References_xml | – year: 2013 ident: 2022011920510002500_ref73 article-title: Distributed representations of words and phrases and their compositionality publication-title: arXiv preprint arXiv – start-page: 701 volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2014 ident: 2022011920510002500_ref74 article-title: DeepWalk: online learning of social representations doi: 10.1145/2623330.2623732 – start-page: 855 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2022011920510002500_ref75 doi: 10.1145/2939672.2939754 – volume: 63 start-page: 139 year: 2020 ident: 2022011920510002500_ref112 article-title: Generative adversarial networks publication-title: Commun ACM doi: 10.1145/3422622 – volume: 29 start-page: 2724 year: 2017 ident: 2022011920510002500_ref38 article-title: Knowledge graph embedding: a survey of approaches and applications publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2754499 – volume: 14 start-page: 905 year: 2017 ident: 2022011920510002500_ref25 article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2550432 – year: 2018 ident: 2022011920510002500_ref117 article-title: MolGAN: an implicit generative model for small molecular graphs publication-title: arXiv – start-page: 113 volume-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics year: 2019 ident: 2022011920510002500_ref151 article-title: Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network doi: 10.1145/3307339.3342161 – volume: 7 start-page: 5994 year: 2017 ident: 2022011920510002500_ref27 article-title: Learning a health knowledge graph from electronic medical records publication-title: Sci Rep doi: 10.1038/s41598-017-05778-z – volume: 23 year: 2020 ident: 2022011920510002500_ref28 article-title: Learning representations to predict intermolecular interactions on large-scale heterogeneous molecular association network publication-title: iScience doi: 10.1016/j.isci.2020.101261 – volume: 33 start-page: 2337 year: 2017 ident: 2022011920510002500_ref20 article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx160 – volume: 10 year: 2019 ident: 2022011920510002500_ref53 article-title: To embed or not: network embedding as a paradigm in computational biology publication-title: Front Genet doi: 10.3389/fgene.2019.00381 – volume: 290 start-page: 2323 year: 2000 ident: 2022011920510002500_ref69 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 26 start-page: 2744 year: 2010 ident: 2022011920510002500_ref138 article-title: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq510 – start-page: 705 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2022011920510002500_ref135 article-title: GCN-MF: disease-gene association identification by graph convolutional networks and matrix factorization doi: 10.1145/3292500.3330912 – start-page: 1358 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2022011920510002500_ref41 article-title: Representation learning for attributed multiplex heterogeneous network doi: 10.1145/3292500.3330964 – year: 2020 ident: 2022011920510002500_ref120 article-title: Graph-Bert: only attention is needed for learning graph representations publication-title: arXiv – volume: 21 start-page: 1 year: 2020 ident: 2022011920510002500_ref12 article-title: Drug-target interaction prediction using semi-bipartite graph model and deep learning publication-title: BMC Bioinformatics – start-page: 414 volume-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) year: 2019 ident: 2022011920510002500_ref156 article-title: Graph convolutional neural networks for Alzheimer’s disease classification doi: 10.1109/ISBI.2019.8759531 – year: 2020 ident: 2022011920510002500_ref44 article-title: Deep learning on graphs: a survey publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2020.2981333 – volume: 21 start-page: 1327 year: 2020 ident: 2022011920510002500_ref50 article-title: Heterogeneous information network and its application to human health and disease publication-title: Brief Bioinform doi: 10.1093/bib/bbz091 – start-page: 1106 volume-title: International Conference on Machine Learning year: 2018 ident: 2022011920510002500_ref94 article-title: Learning steady-states of iterative algorithms over graphs – volume: 59 start-page: 3817 year: 2019 ident: 2022011920510002500_ref127 article-title: Molecule property prediction based on spatial graph embedding publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00410 – volume: 104 start-page: 176 year: 2015 ident: 2022011920510002500_ref36 article-title: Machine learning in genomic medicine: a review of computational problems and data sets publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494198 – volume: 20 start-page: 61 year: 2008 ident: 2022011920510002500_ref91 article-title: The graph neural network model publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2005605 – start-page: 3546 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2018 ident: 2022011920510002500_ref97 article-title: Adaptive graph convolutional neural networks – start-page: 385 volume-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2017 ident: 2022011920510002500_ref77 article-title: struc2vec: learning node representations from structural identity doi: 10.1145/3097983.3098061 – volume: 2 start-page: 221 year: 2007 ident: 2022011920510002500_ref2 article-title: Creating an academic landscape of sustainability science: an analysis of the citation network publication-title: Sustain Sci doi: 10.1007/s11625-007-0027-8 – volume: 36 start-page: 3474 year: 2020 ident: 2022011920510002500_ref8 article-title: A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa157 – volume: 30 start-page: 2257 year: 2018 ident: 2022011920510002500_ref86 article-title: Attributed social network embedding publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2819980 – volume: 461 start-page: 218 year: 2009 ident: 2022011920510002500_ref47 article-title: Molecular networks as sensors and drivers of common human diseases publication-title: Nature doi: 10.1038/nature08454 – start-page: 3527 volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence year: 2018 ident: 2022011920510002500_ref137 article-title: Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification – volume: 7 year: 2018 ident: 2022011920510002500_ref48 article-title: Bipartite graphs in systems biology and medicine: a survey of methods and applications publication-title: GigaScience doi: 10.1093/gigascience/giy014 – volume: 37 start-page: 1140 year: 2021 ident: 2022011920510002500_ref147 article-title: GraphDTA: predicting drug–target binding affinity with graph neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa921 – start-page: 37 volume-title: Proceedings of the 22nd International Conference on World Wide Web year: 2013 ident: 2022011920510002500_ref71 article-title: Distributed large-scale natural graph factorization doi: 10.1145/2488388.2488393 – volume: 22 start-page: 1515 year: 2020 ident: 2022011920510002500_ref52 article-title: Biological network analysis with deep learning publication-title: Brief Bioinform doi: 10.1093/bib/bbaa257 – start-page: 387 volume-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining year: 2018 ident: 2022011920510002500_ref59 article-title: Multi-dimensional network embedding with hierarchical structure doi: 10.1145/3159652.3159680 – start-page: 610 volume-title: International Conference on Machine Learning year: 2018 ident: 2022011920510002500_ref118 – start-page: 1263 volume-title: International Conference on Machine Learning year: 2017 ident: 2022011920510002500_ref126 article-title: Neural message passing for quantum chemistry – volume: 21 start-page: 182 year: 2020 ident: 2022011920510002500_ref49 article-title: Network embedding in biomedical data science publication-title: Brief Bioinform doi: 10.1093/bib/bby117 – volume: 31 start-page: 357 year: 2018 ident: 2022011920510002500_ref82 article-title: Heterogeneous information network embedding for recommendation publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2833443 – year: 2021 ident: 2022011920510002500_ref122 article-title: Graph-MLP: node classification without message passing in graph publication-title: arXiv – volume: 104 start-page: 11 year: 2015 ident: 2022011920510002500_ref26 article-title: A review of relational machine learning for knowledge graphs publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2483592 – start-page: 412 volume-title: International Conference on Artificial Neural Networks year: 2018 ident: 2022011920510002500_ref109 article-title: GraphVAE: towards generation of small graphs using variational autoencoders – year: 2018 ident: 2022011920510002500_ref103 article-title: GaAN: gated attention networks for learning on large and spatiotemporal graphs publication-title: arXiv – start-page: 1338 volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems year: 2019 ident: 2022011920510002500_ref136 article-title: Conditional structure generation through graph variational generative adversarial nets – volume: 1 start-page: 57 year: 2020 ident: 2022011920510002500_ref43 article-title: Graph neural networks: a review of methods and applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – year: 2015 ident: 2022011920510002500_ref92 article-title: Gated graph sequence neural networks publication-title: arXiv – start-page: 1 year: 2020 ident: 2022011920510002500_ref143 article-title: Learning representation of molecules in association network for predicting intermolecular associations publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 25 start-page: 499 year: 2020 ident: 2022011920510002500_ref19 article-title: Network representation of large-scale heterogeneous RNA sequences with integration of diverse multi-omics, interactions, and annotations data publication-title: Pac Symp Biocomput – year: 2016 ident: 2022011920510002500_ref95 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv – start-page: 2111 volume-title: Proceedings of the 24th International Conference on Artificial Intelligence year: 2015 ident: 2022011920510002500_ref67 article-title: Network representation learning with rich text information – volume: 4 start-page: 992 year: 2011 ident: 2022011920510002500_ref64 article-title: Pathsim: meta path-based top-k similarity search in heterogeneous information networks publication-title: Proc VLDB Endow doi: 10.14778/3402707.3402736 – start-page: 1165 volume-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2015 ident: 2022011920510002500_ref80 article-title: PTE: predictive text embedding through large-scale heterogeneous text networks doi: 10.1145/2783258.2783307 – start-page: 499 volume-title: Proceedings of the 2018 World Wide Web Conference year: 2018 ident: 2022011920510002500_ref96 article-title: Dual graph convolutional networks for graph-based semi-supervised classification – start-page: 2224 volume-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 year: 2015 ident: 2022011920510002500_ref123 article-title: Convolutional networks on graphs for learning molecular fingerprints – year: 2021 ident: 2022011920510002500_ref145 article-title: An end-to-end heterogeneous graph representation learning-based framework for drug–target interaction prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbaa430 – year: 2021 ident: 2022011920510002500_ref161 article-title: CogDL: an extensive toolkit for deep learning on graphs publication-title: arXiv – volume: 192 start-page: 25 year: 2021 ident: 2022011920510002500_ref14 article-title: Variational graph auto-encoders for miRNA-disease association prediction publication-title: Methods doi: 10.1016/j.ymeth.2020.08.004 – volume: 36 start-page: 2538 year: 2020 ident: 2022011920510002500_ref15 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 1 start-page: e42 year: 2005 ident: 2022011920510002500_ref6 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0010042 – volume: 122 start-page: 957 year: 2005 ident: 2022011920510002500_ref9 article-title: A human protein-protein interaction network: a resource for annotating the proteome publication-title: Cell doi: 10.1016/j.cell.2005.08.029 – start-page: 731 volume-title: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining year: 2017 ident: 2022011920510002500_ref85 article-title: Label informed attributed network embedding doi: 10.1145/3018661.3018667 – start-page: 1225 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2022011920510002500_ref78 article-title: Structural deep network embedding doi: 10.1145/2939672.2939753 – year: 2017 ident: 2022011920510002500_ref105 article-title: Graph convolutional matrix completion publication-title: arXiv – volume: 4 start-page: 778 year: 2012 ident: 2022011920510002500_ref13 article-title: Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network publication-title: Integr Biol doi: 10.1039/c2ib00154c – volume: 18 year: 2020 ident: 2022011920510002500_ref140 article-title: Denoising protein–protein interaction network via variational graph auto-encoder for protein complex detection publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720020400107 – volume: 11 start-page: 89 year: 2020 ident: 2022011920510002500_ref16 article-title: Multiview consensus graph learning for lncRNA–disease association prediction publication-title: Front Genet doi: 10.3389/fgene.2020.00089 – volume: 22 start-page: 2085 year: 2021 ident: 2022011920510002500_ref149 article-title: MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm publication-title: Brief Bioinform doi: 10.1093/bib/bbaa037 – year: 2017 ident: 2022011920510002500_ref100 article-title: Inductive representation learning on large graphs publication-title: arXiv – volume: 50 start-page: 2475 year: 2020 ident: 2022011920510002500_ref113 article-title: Learning graph embedding with adversarial training methods publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2019.2932096 – year: 2020 ident: 2022011920510002500_ref128 article-title: A compact review of molecular property prediction with graph neural networks publication-title: Drug Discov Today Technol doi: 10.1016/j.ddtec.2020.11.009 – volume: 18 start-page: 193 year: 2017 ident: 2022011920510002500_ref23 article-title: Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1605-0 – start-page: 1416 volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2018 ident: 2022011920510002500_ref98 article-title: Large-scale learnable graph convolutional networks doi: 10.1145/3219819.3219947 – volume: 30 start-page: 1616 year: 2018 ident: 2022011920510002500_ref37 article-title: A comprehensive survey of graph embedding: problems, techniques, and applications publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2807452 – volume: 16 year: 2020 ident: 2022011920510002500_ref17 article-title: GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007568 – volume: 45 start-page: e166 year: 2017 ident: 2022011920510002500_ref133 article-title: Network embedding-based representation learning for single cell RNA-seq data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx750 – volume: 268 start-page: 2261 year: 2001 ident: 2022011920510002500_ref3 article-title: The small world of human language publication-title: Proc R Soc Lond Series B Biol Sci doi: 10.1098/rspb.2001.1800 – volume: 21 start-page: 919 year: 2019 ident: 2022011920510002500_ref150 article-title: Graph convolutional networks for computational drug development and discovery publication-title: Brief Bioinform doi: 10.1093/bib/bbz042 – year: 2019 ident: 2022011920510002500_ref163 article-title: Deep graph library: a graph-centric, highly-performant package for graph neural networks publication-title: arXiv – volume: 37 start-page: D786 year: 2008 ident: 2022011920510002500_ref24 article-title: Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical–gene–disease networks publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn580 – volume: 19 start-page: 49 year: 2018 ident: 2022011920510002500_ref22 article-title: Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2520-8 – start-page: 1067 volume-title: Proceedings of the 24th International Conference on World Wide Web year: 2015 ident: 2022011920510002500_ref58 article-title: LINE: large-scale information network embedding doi: 10.1145/2736277.2741093 – volume: 197 year: 2020 ident: 2022011920510002500_ref63 article-title: Deep multiplex graph infomax: attentive multiplex network embedding using global information publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.105861 – year: 2021 ident: 2022011920510002500_ref164 article-title: DIG: a turnkey library for diving into graph deep learning research publication-title: arXiv – volume: 31 start-page: 833 year: 2018 ident: 2022011920510002500_ref39 article-title: A survey on network embedding publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2849727 – volume: 159 year: 2020 ident: 2022011920510002500_ref152 article-title: AGCN: attention-based graph convolutional networks for drug-drug interaction extraction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113538 – start-page: 2494 volume-title: The World Wide Web Conference year: 2019 ident: 2022011920510002500_ref165 article-title: GraphVite: a high-performance CPU-GPU hybrid system for node embedding doi: 10.1145/3308558.3313508 – volume: 290 start-page: 2319 year: 2000 ident: 2022011920510002500_ref68 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – start-page: 119 volume-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2015 ident: 2022011920510002500_ref83 article-title: Heterogeneous network embedding via deep architectures doi: 10.1145/2783258.2783296 – year: 2019 ident: 2022011920510002500_ref111 article-title: Infograph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization publication-title: arXiv – volume: 18 start-page: 851 year: 2017 ident: 2022011920510002500_ref34 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – year: 2021 ident: 2022011920510002500_ref121 article-title: Training graph neural networks with 1000 layers publication-title: arXiv – volume: 12 start-page: 1796 year: 2021 ident: 2022011920510002500_ref155 article-title: Identification of disease treatment mechanisms through the multiscale interactome publication-title: Nat Commun doi: 10.1038/s41467-021-21770-8 – volume-title: International Conference on Learning Representations year: 2018 ident: 2022011920510002500_ref107 article-title: Deep Gaussian embedding of graphs: unsupervised inductive learning via ranking – year: 2018 ident: 2022011920510002500_ref99 article-title: FastGCN: fast learning with graph convolutional networks via importance sampling publication-title: arXiv – start-page: 1857 volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2020 ident: 2022011920510002500_ref119 article-title: GPT-GNN: generative pre-training of graph neural networks doi: 10.1145/3394486.3403237 – volume: 6 start-page: 83 year: 2009 ident: 2022011920510002500_ref7 article-title: An empirical framework for binary interactome mapping publication-title: Nat Methods doi: 10.1038/nmeth.1280 – year: 2016 ident: 2022011920510002500_ref104 article-title: Variational graph auto-encoders publication-title: arXiv – volume-title: ICLR (Poster) year: 2019 ident: 2022011920510002500_ref110 article-title: Deep Graph Infomax – start-page: 3364 volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence year: 2018 ident: 2022011920510002500_ref87 article-title: Deep attributed network embedding – start-page: 354 volume-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2019 ident: 2022011920510002500_ref153 article-title: Drug-drug interaction prediction with graph representation learning doi: 10.1109/BIBM47256.2019.8983416 – volume: 14 start-page: 20 year: 2013 ident: 2022011920510002500_ref54 article-title: Mining heterogeneous information networks: a structural analysis approach publication-title: ACM SIGKDD Explor Newsletter doi: 10.1145/2481244.2481248 – volume: 6 start-page: 3 year: 2020 ident: 2022011920510002500_ref56 article-title: Network representation learning: a survey publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2018.2850013 – start-page: 258 volume-title: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 year: 2017 ident: 2022011920510002500_ref76 article-title: Don't Walk, Skip! Online learning of multi-scale network embeddings doi: 10.1145/3110025.3110086 – year: 2021 ident: 2022011920510002500_ref141 article-title: Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbab174 – volume: 30 start-page: 163 year: 2002 ident: 2022011920510002500_ref29 article-title: PharmGKB: the pharmacogenetics knowledge base publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.163 – volume: 19 start-page: 233 year: 2018 ident: 2022011920510002500_ref148 article-title: Predicting drug-disease associations by using similarity constrained matrix factorization publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2220-4 – volume: 134 start-page: 96 year: 2020 ident: 2022011920510002500_ref10 article-title: Protein function prediction as a graph-transduction game publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.04.002 – year: 2018 ident: 2022011920510002500_ref57 article-title: mvn2vec: preservation and collaboration in multi-view network embedding publication-title: arXiv – volume: 15 start-page: 1373 year: 2003 ident: 2022011920510002500_ref70 article-title: Laplacian Eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput doi: 10.1162/089976603321780317 – start-page: 617 volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event year: 2020 ident: 2022011920510002500_ref131 article-title: MoFlow: an invertible flow model for generating molecular graphs doi: 10.1145/3394486.3403104 – volume: 13 start-page: S27 year: 2012 ident: 2022011920510002500_ref134 article-title: Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data publication-title: BMC Genomics doi: 10.1186/1471-2164-13-S7-S27 – year: 2020 ident: 2022011920510002500_ref130 article-title: GraphAF: a flow-based autoregressive model for molecular graph generation publication-title: arXiv – volume: 11 start-page: 5858 year: 2021 ident: 2022011920510002500_ref157 article-title: Leveraging graph-based hierarchical medical entity embedding for healthcare applications publication-title: Sci Rep doi: 10.1038/s41598-021-85255-w – start-page: 5998 year: 2017 ident: 2022011920510002500_ref101 article-title: Attention is all you need publication-title: Adv Neural Inf Process Syst – volume: 98 start-page: 8614 year: 2001 ident: 2022011920510002500_ref4 article-title: Intrinsic noise in gene regulatory networks publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.151588598 – start-page: 3155 volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence year: 2018 ident: 2022011920510002500_ref89 – start-page: 2827 volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2018 ident: 2022011920510002500_ref108 article-title: Deep variational network embedding in Wasserstein space doi: 10.1145/3219819.3220052 – year: 2018 ident: 2022011920510002500_ref159 article-title: How powerful are graph neural networks? publication-title: arXiv – start-page: 1797 volume-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management year: 2017 ident: 2022011920510002500_ref62 article-title: Hin2Vec: explore meta-paths in heterogeneous information networks for representation learning – volume: 17 start-page: 184 year: 2020 ident: 2022011920510002500_ref124 article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning publication-title: Nat Methods doi: 10.1038/s41592-019-0666-6 – volume: 36 start-page: D480 year: 2007 ident: 2022011920510002500_ref33 article-title: KEGG for linking genomes to life and the environment publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm882 – start-page: 2167 year: 2018 ident: 2022011920510002500_ref116 article-title: Adversarial network embedding – year: 2021 ident: 2022011920510002500_ref45 article-title: Representation learning for networks in biology and medicine: advancements, challenges, and opportunities publication-title: arXiv – volume: 36 start-page: 1241 year: 2020 ident: 2022011920510002500_ref51 article-title: Graph embedding on biomedical networks: methods, applications and evaluations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz718 – volume: 8 year: 2012 ident: 2022011920510002500_ref11 article-title: Prediction of drug-target interactions and drug repositioning via network-based inference publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002503 – volume: 25 start-page: 25 year: 2000 ident: 2022011920510002500_ref31 article-title: Gene ontology: tool for the unification of biology publication-title: Nat Genet doi: 10.1038/75556 – start-page: 2190 volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2018 ident: 2022011920510002500_ref81 article-title: Easing embedding learning by comprehensive transcription of heterogeneous information networks doi: 10.1145/3219819.3220006 – start-page: 891 volume-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management year: 2015 ident: 2022011920510002500_ref65 article-title: GraRep: learning graph representations with global structural information doi: 10.1145/2806416.2806512 – volume: 32 start-page: 4 year: 2020 ident: 2022011920510002500_ref42 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2978386 – volume: 151 start-page: 78 year: 2018 ident: 2022011920510002500_ref40 article-title: Graph embedding techniques, applications, and performance: a survey publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.03.022 – volume: 36 start-page: 901 year: 2008 ident: 2022011920510002500_ref30 article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm958 – start-page: 729 volume-title: Proceedings. 2005 IEEE International Joint Conference on Neural Networks year: 2005 ident: 2022011920510002500_ref90 article-title: A new model for learning in graph domains doi: 10.1109/IJCNN.2005.1555942 – volume: 22 year: 2021 ident: 2022011920510002500_ref142 article-title: Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbaa067 – volume: 1 start-page: 4 year: 2000 ident: 2022011920510002500_ref1 article-title: Visualizing social networks publication-title: J Soc Struct – start-page: 605 year: 2017 ident: 2022011920510002500_ref84 article-title: BL-MNE: emerging heterogeneous social network embedding through broad learning with aligned autoencoder – volume: 50 start-page: 221 year: 2019 ident: 2022011920510002500_ref88 article-title: AHNG: representation learning on attributed heterogeneous network publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.01.005 – start-page: 609 volume-title: 2016 IEEE 16th International Conference on Data Mining (ICDM) year: 2016 ident: 2022011920510002500_ref66 article-title: Homophily, structure, and content augmented network representation learning doi: 10.1109/ICDM.2016.0072 – year: 2019 ident: 2022011920510002500_ref162 article-title: Fast graph representation learning with PyTorch geometric publication-title: arXiv – volume: 9 year: 2020 ident: 2022011920510002500_ref139 article-title: Graph2GO: a multi-modal attributed network embedding method for inferring protein functions publication-title: GigaScience doi: 10.1093/gigascience/giaa081 – volume: 43 start-page: D1071 year: 2015 ident: 2022011920510002500_ref32 article-title: Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1011 – start-page: 657 volume-title: Proceedings of the 2019 SIAM International Conference on Data Mining year: 2019 ident: 2022011920510002500_ref60 article-title: Multi-dimensional graph convolutional networks doi: 10.1137/1.9781611975673.74 – start-page: 135 volume-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2017 ident: 2022011920510002500_ref61 article-title: metapath2vec: scalable representation learning for heterogeneous networks doi: 10.1145/3097983.3098036 – year: 2017 ident: 2022011920510002500_ref102 article-title: Graph attention networks publication-title: arXiv – volume: 20 start-page: 726 year: 2019 ident: 2022011920510002500_ref154 article-title: Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3284-5 – volume: 25 start-page: 818 year: 2021 ident: 2022011920510002500_ref158 article-title: Disease prediction via graph neural networks publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.3004143 – volume: 12 start-page: 3156 year: 2021 ident: 2022011920510002500_ref132 article-title: Masked graph modeling for molecule generation publication-title: Nat Commun doi: 10.1038/s41467-021-23415-2 – volume: 12 start-page: 1 year: 2020 ident: 2022011920510002500_ref146 article-title: DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques publication-title: J Chem – volume: 12 start-page: 878 year: 2016 ident: 2022011920510002500_ref35 article-title: Deep learning for computational biology publication-title: Mol Syst Biol doi: 10.15252/msb.20156651 – start-page: 2434 volume-title: International Conference on Machine Learning year: 2019 ident: 2022011920510002500_ref106 article-title: Graphite: iterative generative modeling of graphs – volume: 146 start-page: 353 year: 2011 ident: 2022011920510002500_ref18 article-title: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? publication-title: Cell doi: 10.1016/j.cell.2011.07.014 – start-page: 1105 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2022011920510002500_ref72 article-title: Asymmetric transitivity preserving graph embedding doi: 10.1145/2939672.2939751 – volume: 12 start-page: 56 year: 2011 ident: 2022011920510002500_ref46 article-title: Network medicine: a network-based approach to human disease publication-title: Nat Rev Genet doi: 10.1038/nrg2918 – volume: 4 start-page: 1535 year: 2009 ident: 2022011920510002500_ref5 article-title: Network visualization and analysis of gene expression data using BioLayout Express3D publication-title: Nat Protoc doi: 10.1038/nprot.2009.177 – start-page: 2508 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2018 ident: 2022011920510002500_ref115 article-title: GraphGAN: graph representation learning with generative adversarial nets – volume: 22 start-page: 2141 year: 2020 ident: 2022011920510002500_ref144 article-title: Identifying drug–target interactions based on graph convolutional network and deep neural network publication-title: Brief Bioinform doi: 10.1093/bib/bbaa044 – volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2016 ident: 2022011920510002500_ref79 article-title: Deep neural networks for learning graph representations doi: 10.1609/aaai.v30i1.10179 – start-page: 2323 volume-title: International Conference on Machine Learning year: 2018 ident: 2022011920510002500_ref129 article-title: Junction tree variational autoencoder for molecular graph generation – start-page: 2663 volume-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2018 ident: 2022011920510002500_ref114 article-title: Learning deep network representations with adversarially regularized autoencoders doi: 10.1145/3219819.3220000 – start-page: 3165 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2022011920510002500_ref166 article-title: AliGraph: a comprehensive graph neural network platform doi: 10.1145/3292500.3340404 – start-page: 1 year: 2021 ident: 2022011920510002500_ref125 article-title: 3DMol-Net: learn 3D molecular representation using adaptive graph convolutional network based on rotation invariance publication-title: IEEE J Biomed Health Inform – year: 2014 ident: 2022011920510002500_ref93 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation publication-title: arXiv – volume: 22 start-page: 568 year: 2021 ident: 2022011920510002500_ref21 article-title: Drug–target prediction utilizing heterogeneous bio-linked network embeddings publication-title: Brief Bioinform doi: 10.1093/bib/bbz147 – start-page: 2022 volume-title: The World Wide Web Conference year: 2019 ident: 2022011920510002500_ref55 article-title: Heterogeneous graph attention network doi: 10.1145/3308558.3313562 – volume: 34 start-page: 606 year: 2020 ident: 2022011920510002500_ref160 article-title: Learning the graphical structure of electronic health records with graph convolutional transformer publication-title: Proc AAAI Conf Artif Intell |
SSID | ssj0020781 |
Score | 2.615732 |
SecondaryResourceType | review_article |
Snippet | Abstract
Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical... Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Algorithms Bioinformatics Complex systems Computational Biology - methods Data structures Deep learning Embedding Graph neural networks Graph representations Graphical representations Graphs Knowledge Knowledge representation Learning algorithms Machine Learning Neural networks Neural Networks, Computer Topology |
Title | Graph representation learning in bioinformatics: trends, methods and applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34471921 https://www.proquest.com/docview/2626200130 https://www.proquest.com/docview/2568598184 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3dS8MwEMCDCIIv4rfTqRH2JIYtTZqmvok4h6AibLC3kq_KQDpx3YP_vbk2K06HvhV6JXCXcHe93O8Q6niTSt1LNLEW_lZZwYkPjnrEeW_OjFTaVv0Vj09iMOIP43gcLsjOVpTwU9bVE93VWmnGITX37hcQ-cPncZNXAa-mbiJKCNDdQxvej2-XHM9SM9uvmLLyLf1ttBWCQnxTW3EHrbliF23UYyI_99DLPVClccWfXPQKFTjMe3jFkwLryTQQUIG6fI3L6qbrFa7nQ8-wKiz-XqreR6P-3fB2QMIoBGI45SXhMmLKiNwZmtiImlwDWT7SUqc5Sx1X_smw2KhUKWDc-SBAMp2nKoqVFdSyA7ReTAt3hHBKWWKUyHPtUwlBqZLcWQ4T5xOfiuWyhS4XespM4ITDuIq3rK5Xs8wrNQtKbaFOI_xe4zFWi517hf8t0V4YIwunaJZFAnD5UFttoYvmtd__UNRQhZvOvUwsZJz6sIO30GFtxGYdoBkC7-343-VP0GYEfQ09SmjSRuvlx9yd-mij1GfVXvsCeuPRng |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+representation+learning+in+bioinformatics%3A+trends%2C+methods+and+applications&rft.jtitle=Briefings+in+bioinformatics&rft.au=Hai-Cheng%2C+Yi&rft.au=Zhu-Hong%2C+You&rft.au=De-Shuang%2C+Huang&rft.au=Kwoh%2C+Chee+Keong&rft.date=2022-01-17&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbab340&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |