Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel
Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cla...
Saved in:
Published in | Optics and laser technology Vol. 65; pp. 180 - 188 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.
•The influence of multiple parameters on formation quality is concluded.•The optimal parameters are predicted by response surface method.•Good formation quality with large dimension of clad layers is stably obtained.•The clad shows uneven microstructure, divided into quenched and tempered martensite.•The tensile strength of clad is 96% of the substrate, while impact toughness 86%. |
---|---|
AbstractList | Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed V s , wire feed rate V f and overlap ratio eta were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing V f , and increasing P, V s and eta . No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate. Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate. •The influence of multiple parameters on formation quality is concluded.•The optimal parameters are predicted by response surface method.•Good formation quality with large dimension of clad layers is stably obtained.•The clad shows uneven microstructure, divided into quenched and tempered martensite.•The tensile strength of clad is 96% of the substrate, while impact toughness 86%. |
Author | Zheng, Shiqing Wen, Peng Feng, Zhenhua |
Author_xml | – sequence: 1 givenname: Peng surname: Wen fullname: Wen, Peng organization: Tsinghua University, Department of Mechanical Engineering, Beijing 100084, China – sequence: 2 givenname: Zhenhua surname: Feng fullname: Feng, Zhenhua organization: Tsinghua University, Department of Mechanical Engineering, Beijing 100084, China – sequence: 3 givenname: Shiqing surname: Zheng fullname: Zheng, Shiqing organization: Tsinghua University, Department of Mechanical Engineering, Beijing 100084, China |
BookMark | eNqNkMFuFSEUhompibfVZ5Clmxk5MzDDLFw0jVWTJm50TbhwsNxwYQpcTfv0cjONCze6Ohzy_19yvktyEVNEQt4C64HB9P7Qp7UGXSqafmDAezb3DOYXZAdyXrpBcHFBdoyNrBuXZXhFLks5MMb4JMYdebpN-airT5E-nHTw9ZE2nD_6p-0zOdrYmOl9qvSXz0hN0Nb6-IO6lGnGVft83o46V4zFV6RrRuNXXzfCvc4W4zlSqvYxYCnthRhek5dOh4JvnucV-X778dvN5-7u66cvN9d3neHAa8eZtCCHZYHFOQNyL5zecxjdPC0M7d5MwyitlVYIMG7vBLhFama01DBMVo5X5N3GXXN6OGGp6uiLwRB0xHQqCiYBHMTApxb9sEVNTqVkdMo8n1Gz9kEBU2fn6qD-OFdn54rNqjlv_fmv_pp9M_P4H83rrYnNxE-PWRXjMRq0zbmpyib_T8ZvuhaoOQ |
CitedBy_id | crossref_primary_10_1007_s11223_019_00054_z crossref_primary_10_1088_1402_4896_ad2759 crossref_primary_10_1016_j_optlastec_2018_02_019 crossref_primary_10_1016_j_optlastec_2016_02_013 crossref_primary_10_1007_s11465_018_0503_0 crossref_primary_10_1016_j_optlastec_2024_111357 crossref_primary_10_1016_j_nimb_2015_04_046 crossref_primary_10_1299_transjsme_15_00119 crossref_primary_10_3390_met10060706 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119536 crossref_primary_10_1016_j_optlastec_2024_111074 crossref_primary_10_1016_j_optlaseng_2019_06_003 crossref_primary_10_3390_coatings10020151 crossref_primary_10_1016_j_optlaseng_2019_105998 crossref_primary_10_1016_j_ijleo_2023_171014 crossref_primary_10_1142_S0218625X24500380 crossref_primary_10_1007_s00170_022_09300_2 crossref_primary_10_1080_02670844_2016_1200847 crossref_primary_10_1016_j_optlastec_2023_109220 crossref_primary_10_1007_s00170_021_08066_3 crossref_primary_10_1016_j_jmapro_2018_11_004 crossref_primary_10_1007_s00170_020_06486_1 crossref_primary_10_1177_0954405419843754 crossref_primary_10_1016_j_surfcoat_2015_12_031 crossref_primary_10_1016_j_optlastec_2022_108639 crossref_primary_10_1007_s12204_020_2225_9 crossref_primary_10_1016_j_matpr_2021_01_529 crossref_primary_10_1016_j_optlaseng_2017_07_008 crossref_primary_10_1016_j_jmapro_2020_10_008 crossref_primary_10_1007_s40516_017_0043_1 crossref_primary_10_1016_j_matdes_2022_110666 crossref_primary_10_1007_s00170_019_04060_y crossref_primary_10_1007_s00170_018_2107_6 crossref_primary_10_1016_j_matpr_2019_05_163 crossref_primary_10_1007_s11665_021_06267_1 crossref_primary_10_1016_j_jmatprotec_2018_03_007 crossref_primary_10_2351_1_4983238 crossref_primary_10_2351_7_0001115 crossref_primary_10_1016_j_optlastec_2015_07_014 crossref_primary_10_1007_s00170_017_0066_y crossref_primary_10_1007_s00339_022_06175_8 crossref_primary_10_3390_met10081109 crossref_primary_10_1016_j_msea_2021_141825 crossref_primary_10_1016_j_optlastec_2015_08_019 crossref_primary_10_1016_j_jmapro_2021_04_065 crossref_primary_10_3390_ma17225636 crossref_primary_10_4028_p_kRJm2D crossref_primary_10_1007_s00170_015_7696_8 crossref_primary_10_1007_s12666_023_02972_8 crossref_primary_10_1016_S1875_5372_17_30006_1 crossref_primary_10_1007_s00170_019_03755_6 crossref_primary_10_1016_j_surfcoat_2021_127822 crossref_primary_10_1016_j_jmapro_2020_04_045 crossref_primary_10_1016_j_surfcoat_2021_127942 crossref_primary_10_1016_j_jmapro_2023_07_063 crossref_primary_10_1016_j_matdes_2017_10_020 crossref_primary_10_1016_j_surfcoat_2021_127706 crossref_primary_10_1088_1742_6596_2519_1_012039 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_164 crossref_primary_10_1016_j_ijoes_2023_100213 crossref_primary_10_1016_j_optlaseng_2017_02_008 crossref_primary_10_1108_RPJ_05_2024_0216 crossref_primary_10_1016_j_rcim_2018_03_007 crossref_primary_10_1016_j_optlastec_2016_01_015 crossref_primary_10_1016_j_phpro_2016_08_074 crossref_primary_10_3390_coatings9060356 crossref_primary_10_1007_s00170_019_04893_7 crossref_primary_10_1177_09544089211044558 crossref_primary_10_1080_02670844_2018_1548416 crossref_primary_10_1016_j_jmapro_2022_12_036 crossref_primary_10_1007_s11465_016_0397_7 |
Cites_doi | 10.1016/j.optlaseng.2012.01.018 10.1016/j.optlastec.2012.03.033 10.1179/1362171813Y.0000000108 10.1007/s00170-012-4308-8 10.1016/j.apsusc.2005.08.118 10.1016/j.jmatprotec.2006.01.005 10.1080/09507116.2010.540880 10.1080/10426914.2012.677908 10.2207/qjjws.29.58s 10.1016/j.optlastec.2007.03.009 10.1016/j.msea.2012.05.095 10.1016/j.optlastec.2006.09.008 10.1016/S0257-8972(00)00735-0 10.1007/s11668-013-9691-4 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 7U5 8BQ 8FD F28 FR3 H8D JG9 L7M |
DOI | 10.1016/j.optlastec.2014.07.017 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2545 |
EndPage | 188 |
ExternalDocumentID | 10_1016_j_optlastec_2014_07_017 S0030399214001972 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7U5 8BQ 8FD F28 FR3 H8D JG9 L7M |
ID | FETCH-LOGICAL-c414t-408d1829919ffc18b5fab413f7690edbc6238dd8d551cfbf51f98a0ca8a126d83 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Fri Jul 11 03:50:04 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Tue Jul 01 01:38:24 EDT 2025 Fri Feb 23 02:29:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Martensite stainless steel Response surface methodology Laser cladding Hot wire |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-408d1829919ffc18b5fab413f7690edbc6238dd8d551cfbf51f98a0ca8a126d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1651415246 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1651415246 crossref_citationtrail_10_1016_j_optlastec_2014_07_017 crossref_primary_10_1016_j_optlastec_2014_07_017 elsevier_sciencedirect_doi_10_1016_j_optlastec_2014_07_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ohnishi, Kawahito, Katayama (bib6) 2013; 18 Kadoi, Shinozaki, Yamamoto, Takayanagi, Nishimoto, Owaki (bib9) 2010; 39 Prabu Balu, Hamid, Kovacevic (bib17) 2013; 28 Zhou, Zhai (bib19) 2009; 45 Kathuria (bib3) 2000; 132 Yamamoto, Shinozaki, Kadoi, Fujita, Inoue, Fukahori (bib8) 2011; 29 Mondal, Paul, Kukreja, Bandyopadhyay, Pal (bib13) 2013; 66 Yang, Li, He, Nie, Huang (bib14) 2012; 44 Benyounis, Olabi, MSJ. (bib18) 2008; 40 Kannan, Amirthagadeswaran, Christopher, Rao (bib2) 2013; 13 Birger, Moskvitin, Polyakov, Arkhipov (bib4) 2011; 25 Janne Nurminen, Näkki, Vuoristo (bib11) 2006 Capello, Previtali (bib12) 2006; 174 Jones, Erikson (bib7) 2004 Godfrey, Paulo D, O, Cardoso (bib16) 2007; 39 Zheng, Wen, Shan, Feng (bib10) 2013 Sun, Hao (bib15) 2012; 50 Syed, Pinkerton, Li (bib5) 2006; 252 Lin, Cao, Wu, Yang, Chen, Huang (bib1) 2012; 553 Kadoi (10.1016/j.optlastec.2014.07.017_bib9) 2010; 39 Mondal (10.1016/j.optlastec.2014.07.017_bib13) 2013; 66 Jones (10.1016/j.optlastec.2014.07.017_bib7) 2004 Kathuria (10.1016/j.optlastec.2014.07.017_bib3) 2000; 132 Kannan (10.1016/j.optlastec.2014.07.017_bib2) 2013; 13 Prabu Balu (10.1016/j.optlastec.2014.07.017_bib17) 2013; 28 Birger (10.1016/j.optlastec.2014.07.017_bib4) 2011; 25 Godfrey (10.1016/j.optlastec.2014.07.017_bib16) 2007; 39 Capello (10.1016/j.optlastec.2014.07.017_bib12) 2006; 174 Zhou (10.1016/j.optlastec.2014.07.017_bib19) 2009; 45 Zheng (10.1016/j.optlastec.2014.07.017_bib10) 2013 Yang (10.1016/j.optlastec.2014.07.017_bib14) 2012; 44 Yamamoto (10.1016/j.optlastec.2014.07.017_bib8) 2011; 29 Syed (10.1016/j.optlastec.2014.07.017_bib5) 2006; 252 Lin (10.1016/j.optlastec.2014.07.017_bib1) 2012; 553 Janne Nurminen (10.1016/j.optlastec.2014.07.017_bib11) 2006 Sun (10.1016/j.optlastec.2014.07.017_bib15) 2012; 50 Benyounis (10.1016/j.optlastec.2014.07.017_bib18) 2008; 40 Ohnishi (10.1016/j.optlastec.2014.07.017_bib6) 2013; 18 |
References_xml | – volume: 132 start-page: 262 year: 2000 end-page: 269 ident: bib3 article-title: Some aspects of laser surface cladding in the turbine industry publication-title: Surf Coat Technol – volume: 252 start-page: 4803 year: 2006 end-page: 4808 ident: bib5 article-title: Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping publication-title: Appl Surf Sci – volume: 40 start-page: 76 year: 2008 end-page: 87 ident: bib18 article-title: Multi-response optimization of CO publication-title: Opt Laser Technol – volume: 553 start-page: 80 year: 2012 end-page: 88 ident: bib1 article-title: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel publication-title: Mater Sci Eng, A – volume: 29 start-page: 58 year: 2011 end-page: 61 ident: bib8 article-title: Development of hot wire laser welding method for lap joint of steel sheet with wide gap publication-title: Q J Jpn Weld Soc – volume: 13 start-page: 1 year: 2013 end-page: 11 ident: bib2 article-title: Failures of high-temperature critical components in combined cycle power plants publication-title: J Fail Anal Prev – volume: 66 start-page: 91 year: 2013 end-page: 94 ident: bib13 article-title: Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface publication-title: Int J Adv Manuf Technol – volume: 28 start-page: 173 year: 2013 end-page: 182 ident: bib17 article-title: Multi-response optimization of laser-based powder deposition of multi-pass single layer Hastelloy C-276 publication-title: Mater Manuf Proc – volume: 45 start-page: 1249 year: 2009 end-page: 1254 ident: bib19 article-title: Aging process optimization for a high trength and toughness of FV520B martensitic steel publication-title: Acta Metall. Sinica – volume: 39 start-page: 1130 year: 2007 end-page: 1134 ident: bib16 article-title: Prediction of clad angle in laser cladding by power using response surface methodology and scatter search publication-title: Opt Laser Technol – volume: 25 start-page: 234 year: 2011 end-page: 243 ident: bib4 article-title: Industrial laser cladding: current state and future publication-title: Weld Int – volume: 50 start-page: 985 year: 2012 end-page: 995 ident: bib15 article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser publication-title: Opt Laser Technol – start-page: 1 year: 2004 end-page: 8 ident: bib7 article-title: Laser hot wire welding for minimizing defects publication-title: In: ICALEO Congress Proceedings; 2004 Oct 03-07 – volume: 174 start-page: 223 year: 2006 end-page: 232 ident: bib12 article-title: The influence of operator skills, process parameters and materials on clad shape in repair using laser cladding by wire publication-title: J Mater Proc Technol – start-page: 947 year: 2013 end-page: 952 ident: bib10 article-title: Numerical simulation of wire temperature field for prediction of wire transfer stability in laser hot wire welding publication-title: ICALEO Congress Proceedings; 2013 Oct 6-10 – volume: 18 start-page: 314 year: 2013 end-page: 322 ident: bib6 article-title: Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content publication-title: Sci Technol Weld Joining – volume: 44 start-page: 2020 year: 2012 end-page: 2025 ident: bib14 article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach publication-title: Opt Laser Technol – volume: 39 start-page: 47 year: 2010 end-page: 49 ident: bib9 article-title: Development of a high-efficiency/high-quality hot wire laser fillet welding process publication-title: Trans JWRI – start-page: 634 year: 2006 end-page: 637 ident: bib11 article-title: Comparison of laser cladding with powder and hot and cold wire techniques publication-title: ICALEO Congress Proceedings; 2006 Oct 30-Nov 02 – volume: 50 start-page: 985 year: 2012 ident: 10.1016/j.optlastec.2014.07.017_bib15 article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser publication-title: Opt Laser Technol doi: 10.1016/j.optlaseng.2012.01.018 – volume: 44 start-page: 2020 year: 2012 ident: 10.1016/j.optlastec.2014.07.017_bib14 article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2012.03.033 – volume: 18 start-page: 314 issue: 4 year: 2013 ident: 10.1016/j.optlastec.2014.07.017_bib6 article-title: Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content publication-title: Sci Technol Weld Joining doi: 10.1179/1362171813Y.0000000108 – start-page: 1 year: 2004 ident: 10.1016/j.optlastec.2014.07.017_bib7 article-title: Laser hot wire welding for minimizing defects – volume: 66 start-page: 91 year: 2013 ident: 10.1016/j.optlastec.2014.07.017_bib13 article-title: Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4308-8 – volume: 252 start-page: 4803 year: 2006 ident: 10.1016/j.optlastec.2014.07.017_bib5 article-title: Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2005.08.118 – volume: 174 start-page: 223 year: 2006 ident: 10.1016/j.optlastec.2014.07.017_bib12 article-title: The influence of operator skills, process parameters and materials on clad shape in repair using laser cladding by wire publication-title: J Mater Proc Technol doi: 10.1016/j.jmatprotec.2006.01.005 – volume: 25 start-page: 234 year: 2011 ident: 10.1016/j.optlastec.2014.07.017_bib4 article-title: Industrial laser cladding: current state and future publication-title: Weld Int doi: 10.1080/09507116.2010.540880 – volume: 28 start-page: 173 year: 2013 ident: 10.1016/j.optlastec.2014.07.017_bib17 article-title: Multi-response optimization of laser-based powder deposition of multi-pass single layer Hastelloy C-276 publication-title: Mater Manuf Proc doi: 10.1080/10426914.2012.677908 – volume: 45 start-page: 1249 year: 2009 ident: 10.1016/j.optlastec.2014.07.017_bib19 article-title: Aging process optimization for a high trength and toughness of FV520B martensitic steel publication-title: Acta Metall. Sinica – volume: 29 start-page: 58 year: 2011 ident: 10.1016/j.optlastec.2014.07.017_bib8 article-title: Development of hot wire laser welding method for lap joint of steel sheet with wide gap publication-title: Q J Jpn Weld Soc doi: 10.2207/qjjws.29.58s – volume: 39 start-page: 47 year: 2010 ident: 10.1016/j.optlastec.2014.07.017_bib9 article-title: Development of a high-efficiency/high-quality hot wire laser fillet welding process publication-title: Trans JWRI – volume: 40 start-page: 76 year: 2008 ident: 10.1016/j.optlastec.2014.07.017_bib18 article-title: Multi-response optimization of CO2 laser-welding process of austenitic stainless steel publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2007.03.009 – volume: 553 start-page: 80 year: 2012 ident: 10.1016/j.optlastec.2014.07.017_bib1 article-title: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2012.05.095 – start-page: 947 year: 2013 ident: 10.1016/j.optlastec.2014.07.017_bib10 article-title: Numerical simulation of wire temperature field for prediction of wire transfer stability in laser hot wire welding – volume: 39 start-page: 1130 year: 2007 ident: 10.1016/j.optlastec.2014.07.017_bib16 article-title: Prediction of clad angle in laser cladding by power using response surface methodology and scatter search publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2006.09.008 – start-page: 634 year: 2006 ident: 10.1016/j.optlastec.2014.07.017_bib11 article-title: Comparison of laser cladding with powder and hot and cold wire techniques – volume: 132 start-page: 262 year: 2000 ident: 10.1016/j.optlastec.2014.07.017_bib3 article-title: Some aspects of laser surface cladding in the turbine industry publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(00)00735-0 – volume: 13 start-page: 1 issue: 4 year: 2013 ident: 10.1016/j.optlastec.2014.07.017_bib2 article-title: Failures of high-temperature critical components in combined cycle power plants publication-title: J Fail Anal Prev doi: 10.1007/s11668-013-9691-4 |
SSID | ssj0004653 |
Score | 2.3465905 |
Snippet | Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 180 |
SubjectTerms | Cladding Feed rate Formations Hot wire Laser cladding Lasers Maintenance Martensite Martensite stainless steel Precipitation hardening Response surface methodology Wire |
Title | Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel |
URI | https://dx.doi.org/10.1016/j.optlastec.2014.07.017 https://www.proquest.com/docview/1651415246 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KIuhBtCrWj7KC12iSbtKtt1IsVbEnBW_LZj-00iahTQ968Lc7k2yKiuDBWxKyyZLZzLxJ5r0h5BxAZwRhUXs2NtxjKrFeEmrfCyMNwcAmMi7bvd2P49Eju32KnhpkUHNhsKzS-f7Kp5fe2h25dE_zMp9MkOML7rfXCyFF8LF5FjLYWRdX-cVH8IUb6ZQoO-Bv4OxvNV5ZXgBGLQxqGQasVPEsO5f9GqF--OoyAA13yLZDjrRfTW6XNEzaJFtf9ASbZKOs51SLPfI-rEmJtKJNvlGYxWTmWJc0sxSmZOb0JSsoyhVTNcXSovSZAoqlcwhSE7wmnWHNZ4q_mGmOQhi50_SmyNYy-FGFlgysKXhM2DJmuk8eh9cPg5Hn2ix4igWsgAySa8gyACj2rFUBTyIrE4httguZs9GJAnNxrbkGcKVsYqPA9rj0leQyCGPNOwdkLc1Sc0goKut0Qq6MNGBorSVTUSiZhZwl7NogbpG4frRCufliK4ypqIvNXsXKJgJtIvyuAJu0iL8amFcyHH8PuaptJ76tKAHB4u_BZ7W1Bbxv-BNFpiZbLkQQA8QE0MPio__c4Jhswl5Ufcw5IWvFfGlOAd4USbtcv22y3r-5G40_AU5Q_1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEBQQ5WkkOIYmXifrReKAgNWWPk6t1Jtx_IBF2yTaTYXKgT_FH-Rz4lQtQuoB9RYlsjPy2DPfJDPfEL0C6MzhFm3iCycTYUqflNymCc8tnIEvddG1e9vbL2aH4vNRfrRGv4damJBWGW1_b9M7ax3vbMXV3Grm81DjC_M7mXCECGlonhUzK3fc6Q_Ebat32x-h5NecTz8dfJglsbVAYkQmWkRN0gJZAxxNvDeZLHOvS9hzP0a06GxpIKK0VloACuNLn2d-InVqtNQZL6wcYd5rdF3AXIS2CW9-ZeeKMSP15QgGDuJdSCqrmxaguHWBPDETHW1o1yrtny7xL-fQebzpXboToSp736_GPVpz1QbdPkdguEE3ugRSs7pPP6dDFSTr6zRPGaSYH8cyT1Z7BpHckn2rWxb4kZlZhFym6isDbGZLeMV5mJMdhyTTKvzTZk1g3mgiiTgL5WEufMVhXcnXAiYaV84tHtDhlSz-Q1qv6so9IhaofEZcGqcddpa1Wpica-ERJPGxz4pNKoalVSbKG3pvLNSQ3fZdnelEBZ2odKygk01KzwY2Pe_H5UPeDrpTF7awgne6fPDLQdsKBzz8tdGVq09WKiuAaYGyRPH4f17wgm7ODvZ21e72_s4TuoUnef8l6Smtt8sT9wzYqi2fd3uZ0ZerPjx_AIvQO6E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+quality+optimization+of+laser+hot+wire+cladding+for+repairing+martensite+precipitation+hardening+stainless+steel&rft.jtitle=Optics+and+laser+technology&rft.au=Wen%2C+Peng&rft.au=Feng%2C+Zhenhua&rft.au=Zheng%2C+Shiqing&rft.date=2015-01-01&rft.issn=0030-3992&rft.volume=65&rft.spage=180&rft.epage=188&rft_id=info:doi/10.1016%2Fj.optlastec.2014.07.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |