Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cla...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 65; pp. 180 - 188
Main Authors Wen, Peng, Feng, Zhenhua, Zheng, Shiqing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate. •The influence of multiple parameters on formation quality is concluded.•The optimal parameters are predicted by response surface method.•Good formation quality with large dimension of clad layers is stably obtained.•The clad shows uneven microstructure, divided into quenched and tempered martensite.•The tensile strength of clad is 96% of the substrate, while impact toughness 86%.
AbstractList Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed V s , wire feed rate V f and overlap ratio eta were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing V f , and increasing P, V s and eta . No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.
Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate. •The influence of multiple parameters on formation quality is concluded.•The optimal parameters are predicted by response surface method.•Good formation quality with large dimension of clad layers is stably obtained.•The clad shows uneven microstructure, divided into quenched and tempered martensite.•The tensile strength of clad is 96% of the substrate, while impact toughness 86%.
Author Zheng, Shiqing
Wen, Peng
Feng, Zhenhua
Author_xml – sequence: 1
  givenname: Peng
  surname: Wen
  fullname: Wen, Peng
  organization: Tsinghua University, Department of Mechanical Engineering, Beijing 100084, China
– sequence: 2
  givenname: Zhenhua
  surname: Feng
  fullname: Feng, Zhenhua
  organization: Tsinghua University, Department of Mechanical Engineering, Beijing 100084, China
– sequence: 3
  givenname: Shiqing
  surname: Zheng
  fullname: Zheng, Shiqing
  organization: Tsinghua University, Department of Mechanical Engineering, Beijing 100084, China
BookMark eNqNkMFuFSEUhompibfVZ5Clmxk5MzDDLFw0jVWTJm50TbhwsNxwYQpcTfv0cjONCze6Ohzy_19yvktyEVNEQt4C64HB9P7Qp7UGXSqafmDAezb3DOYXZAdyXrpBcHFBdoyNrBuXZXhFLks5MMb4JMYdebpN-airT5E-nHTw9ZE2nD_6p-0zOdrYmOl9qvSXz0hN0Nb6-IO6lGnGVft83o46V4zFV6RrRuNXXzfCvc4W4zlSqvYxYCnthRhek5dOh4JvnucV-X778dvN5-7u66cvN9d3neHAa8eZtCCHZYHFOQNyL5zecxjdPC0M7d5MwyitlVYIMG7vBLhFama01DBMVo5X5N3GXXN6OGGp6uiLwRB0xHQqCiYBHMTApxb9sEVNTqVkdMo8n1Gz9kEBU2fn6qD-OFdn54rNqjlv_fmv_pp9M_P4H83rrYnNxE-PWRXjMRq0zbmpyib_T8ZvuhaoOQ
CitedBy_id crossref_primary_10_1007_s11223_019_00054_z
crossref_primary_10_1088_1402_4896_ad2759
crossref_primary_10_1016_j_optlastec_2018_02_019
crossref_primary_10_1016_j_optlastec_2016_02_013
crossref_primary_10_1007_s11465_018_0503_0
crossref_primary_10_1016_j_optlastec_2024_111357
crossref_primary_10_1016_j_nimb_2015_04_046
crossref_primary_10_1299_transjsme_15_00119
crossref_primary_10_3390_met10060706
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119536
crossref_primary_10_1016_j_optlastec_2024_111074
crossref_primary_10_1016_j_optlaseng_2019_06_003
crossref_primary_10_3390_coatings10020151
crossref_primary_10_1016_j_optlaseng_2019_105998
crossref_primary_10_1016_j_ijleo_2023_171014
crossref_primary_10_1142_S0218625X24500380
crossref_primary_10_1007_s00170_022_09300_2
crossref_primary_10_1080_02670844_2016_1200847
crossref_primary_10_1016_j_optlastec_2023_109220
crossref_primary_10_1007_s00170_021_08066_3
crossref_primary_10_1016_j_jmapro_2018_11_004
crossref_primary_10_1007_s00170_020_06486_1
crossref_primary_10_1177_0954405419843754
crossref_primary_10_1016_j_surfcoat_2015_12_031
crossref_primary_10_1016_j_optlastec_2022_108639
crossref_primary_10_1007_s12204_020_2225_9
crossref_primary_10_1016_j_matpr_2021_01_529
crossref_primary_10_1016_j_optlaseng_2017_07_008
crossref_primary_10_1016_j_jmapro_2020_10_008
crossref_primary_10_1007_s40516_017_0043_1
crossref_primary_10_1016_j_matdes_2022_110666
crossref_primary_10_1007_s00170_019_04060_y
crossref_primary_10_1007_s00170_018_2107_6
crossref_primary_10_1016_j_matpr_2019_05_163
crossref_primary_10_1007_s11665_021_06267_1
crossref_primary_10_1016_j_jmatprotec_2018_03_007
crossref_primary_10_2351_1_4983238
crossref_primary_10_2351_7_0001115
crossref_primary_10_1016_j_optlastec_2015_07_014
crossref_primary_10_1007_s00170_017_0066_y
crossref_primary_10_1007_s00339_022_06175_8
crossref_primary_10_3390_met10081109
crossref_primary_10_1016_j_msea_2021_141825
crossref_primary_10_1016_j_optlastec_2015_08_019
crossref_primary_10_1016_j_jmapro_2021_04_065
crossref_primary_10_3390_ma17225636
crossref_primary_10_4028_p_kRJm2D
crossref_primary_10_1007_s00170_015_7696_8
crossref_primary_10_1007_s12666_023_02972_8
crossref_primary_10_1016_S1875_5372_17_30006_1
crossref_primary_10_1007_s00170_019_03755_6
crossref_primary_10_1016_j_surfcoat_2021_127822
crossref_primary_10_1016_j_jmapro_2020_04_045
crossref_primary_10_1016_j_surfcoat_2021_127942
crossref_primary_10_1016_j_jmapro_2023_07_063
crossref_primary_10_1016_j_matdes_2017_10_020
crossref_primary_10_1016_j_surfcoat_2021_127706
crossref_primary_10_1088_1742_6596_2519_1_012039
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_164
crossref_primary_10_1016_j_ijoes_2023_100213
crossref_primary_10_1016_j_optlaseng_2017_02_008
crossref_primary_10_1108_RPJ_05_2024_0216
crossref_primary_10_1016_j_rcim_2018_03_007
crossref_primary_10_1016_j_optlastec_2016_01_015
crossref_primary_10_1016_j_phpro_2016_08_074
crossref_primary_10_3390_coatings9060356
crossref_primary_10_1007_s00170_019_04893_7
crossref_primary_10_1177_09544089211044558
crossref_primary_10_1080_02670844_2018_1548416
crossref_primary_10_1016_j_jmapro_2022_12_036
crossref_primary_10_1007_s11465_016_0397_7
Cites_doi 10.1016/j.optlaseng.2012.01.018
10.1016/j.optlastec.2012.03.033
10.1179/1362171813Y.0000000108
10.1007/s00170-012-4308-8
10.1016/j.apsusc.2005.08.118
10.1016/j.jmatprotec.2006.01.005
10.1080/09507116.2010.540880
10.1080/10426914.2012.677908
10.2207/qjjws.29.58s
10.1016/j.optlastec.2007.03.009
10.1016/j.msea.2012.05.095
10.1016/j.optlastec.2006.09.008
10.1016/S0257-8972(00)00735-0
10.1007/s11668-013-9691-4
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7U5
8BQ
8FD
F28
FR3
H8D
JG9
L7M
DOI 10.1016/j.optlastec.2014.07.017
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
EndPage 188
ExternalDocumentID 10_1016_j_optlastec_2014_07_017
S0030399214001972
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7U5
8BQ
8FD
F28
FR3
H8D
JG9
L7M
ID FETCH-LOGICAL-c414t-408d1829919ffc18b5fab413f7690edbc6238dd8d551cfbf51f98a0ca8a126d83
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Fri Jul 11 03:50:04 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Tue Jul 01 01:38:24 EDT 2025
Fri Feb 23 02:29:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Martensite stainless steel
Response surface methodology
Laser cladding
Hot wire
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-408d1829919ffc18b5fab413f7690edbc6238dd8d551cfbf51f98a0ca8a126d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651415246
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1651415246
crossref_citationtrail_10_1016_j_optlastec_2014_07_017
crossref_primary_10_1016_j_optlastec_2014_07_017
elsevier_sciencedirect_doi_10_1016_j_optlastec_2014_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Optics and laser technology
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ohnishi, Kawahito, Katayama (bib6) 2013; 18
Kadoi, Shinozaki, Yamamoto, Takayanagi, Nishimoto, Owaki (bib9) 2010; 39
Prabu Balu, Hamid, Kovacevic (bib17) 2013; 28
Zhou, Zhai (bib19) 2009; 45
Kathuria (bib3) 2000; 132
Yamamoto, Shinozaki, Kadoi, Fujita, Inoue, Fukahori (bib8) 2011; 29
Mondal, Paul, Kukreja, Bandyopadhyay, Pal (bib13) 2013; 66
Yang, Li, He, Nie, Huang (bib14) 2012; 44
Benyounis, Olabi, MSJ. (bib18) 2008; 40
Kannan, Amirthagadeswaran, Christopher, Rao (bib2) 2013; 13
Birger, Moskvitin, Polyakov, Arkhipov (bib4) 2011; 25
Janne Nurminen, Näkki, Vuoristo (bib11) 2006
Capello, Previtali (bib12) 2006; 174
Jones, Erikson (bib7) 2004
Godfrey, Paulo D, O, Cardoso (bib16) 2007; 39
Zheng, Wen, Shan, Feng (bib10) 2013
Sun, Hao (bib15) 2012; 50
Syed, Pinkerton, Li (bib5) 2006; 252
Lin, Cao, Wu, Yang, Chen, Huang (bib1) 2012; 553
Kadoi (10.1016/j.optlastec.2014.07.017_bib9) 2010; 39
Mondal (10.1016/j.optlastec.2014.07.017_bib13) 2013; 66
Jones (10.1016/j.optlastec.2014.07.017_bib7) 2004
Kathuria (10.1016/j.optlastec.2014.07.017_bib3) 2000; 132
Kannan (10.1016/j.optlastec.2014.07.017_bib2) 2013; 13
Prabu Balu (10.1016/j.optlastec.2014.07.017_bib17) 2013; 28
Birger (10.1016/j.optlastec.2014.07.017_bib4) 2011; 25
Godfrey (10.1016/j.optlastec.2014.07.017_bib16) 2007; 39
Capello (10.1016/j.optlastec.2014.07.017_bib12) 2006; 174
Zhou (10.1016/j.optlastec.2014.07.017_bib19) 2009; 45
Zheng (10.1016/j.optlastec.2014.07.017_bib10) 2013
Yang (10.1016/j.optlastec.2014.07.017_bib14) 2012; 44
Yamamoto (10.1016/j.optlastec.2014.07.017_bib8) 2011; 29
Syed (10.1016/j.optlastec.2014.07.017_bib5) 2006; 252
Lin (10.1016/j.optlastec.2014.07.017_bib1) 2012; 553
Janne Nurminen (10.1016/j.optlastec.2014.07.017_bib11) 2006
Sun (10.1016/j.optlastec.2014.07.017_bib15) 2012; 50
Benyounis (10.1016/j.optlastec.2014.07.017_bib18) 2008; 40
Ohnishi (10.1016/j.optlastec.2014.07.017_bib6) 2013; 18
References_xml – volume: 132
  start-page: 262
  year: 2000
  end-page: 269
  ident: bib3
  article-title: Some aspects of laser surface cladding in the turbine industry
  publication-title: Surf Coat Technol
– volume: 252
  start-page: 4803
  year: 2006
  end-page: 4808
  ident: bib5
  article-title: Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping
  publication-title: Appl Surf Sci
– volume: 40
  start-page: 76
  year: 2008
  end-page: 87
  ident: bib18
  article-title: Multi-response optimization of CO
  publication-title: Opt Laser Technol
– volume: 553
  start-page: 80
  year: 2012
  end-page: 88
  ident: bib1
  article-title: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel
  publication-title: Mater Sci Eng, A
– volume: 29
  start-page: 58
  year: 2011
  end-page: 61
  ident: bib8
  article-title: Development of hot wire laser welding method for lap joint of steel sheet with wide gap
  publication-title: Q J Jpn Weld Soc
– volume: 13
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib2
  article-title: Failures of high-temperature critical components in combined cycle power plants
  publication-title: J Fail Anal Prev
– volume: 66
  start-page: 91
  year: 2013
  end-page: 94
  ident: bib13
  article-title: Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface
  publication-title: Int J Adv Manuf Technol
– volume: 28
  start-page: 173
  year: 2013
  end-page: 182
  ident: bib17
  article-title: Multi-response optimization of laser-based powder deposition of multi-pass single layer Hastelloy C-276
  publication-title: Mater Manuf Proc
– volume: 45
  start-page: 1249
  year: 2009
  end-page: 1254
  ident: bib19
  article-title: Aging process optimization for a high trength and toughness of FV520B martensitic steel
  publication-title: Acta Metall. Sinica
– volume: 39
  start-page: 1130
  year: 2007
  end-page: 1134
  ident: bib16
  article-title: Prediction of clad angle in laser cladding by power using response surface methodology and scatter search
  publication-title: Opt Laser Technol
– volume: 25
  start-page: 234
  year: 2011
  end-page: 243
  ident: bib4
  article-title: Industrial laser cladding: current state and future
  publication-title: Weld Int
– volume: 50
  start-page: 985
  year: 2012
  end-page: 995
  ident: bib15
  article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser
  publication-title: Opt Laser Technol
– start-page: 1
  year: 2004
  end-page: 8
  ident: bib7
  article-title: Laser hot wire welding for minimizing defects
  publication-title: In: ICALEO Congress Proceedings; 2004 Oct 03-07
– volume: 174
  start-page: 223
  year: 2006
  end-page: 232
  ident: bib12
  article-title: The influence of operator skills, process parameters and materials on clad shape in repair using laser cladding by wire
  publication-title: J Mater Proc Technol
– start-page: 947
  year: 2013
  end-page: 952
  ident: bib10
  article-title: Numerical simulation of wire temperature field for prediction of wire transfer stability in laser hot wire welding
  publication-title: ICALEO Congress Proceedings; 2013 Oct 6-10
– volume: 18
  start-page: 314
  year: 2013
  end-page: 322
  ident: bib6
  article-title: Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content
  publication-title: Sci Technol Weld Joining
– volume: 44
  start-page: 2020
  year: 2012
  end-page: 2025
  ident: bib14
  article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach
  publication-title: Opt Laser Technol
– volume: 39
  start-page: 47
  year: 2010
  end-page: 49
  ident: bib9
  article-title: Development of a high-efficiency/high-quality hot wire laser fillet welding process
  publication-title: Trans JWRI
– start-page: 634
  year: 2006
  end-page: 637
  ident: bib11
  article-title: Comparison of laser cladding with powder and hot and cold wire techniques
  publication-title: ICALEO Congress Proceedings; 2006 Oct 30-Nov 02
– volume: 50
  start-page: 985
  year: 2012
  ident: 10.1016/j.optlastec.2014.07.017_bib15
  article-title: Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlaseng.2012.01.018
– volume: 44
  start-page: 2020
  year: 2012
  ident: 10.1016/j.optlastec.2014.07.017_bib14
  article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2012.03.033
– volume: 18
  start-page: 314
  issue: 4
  year: 2013
  ident: 10.1016/j.optlastec.2014.07.017_bib6
  article-title: Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content
  publication-title: Sci Technol Weld Joining
  doi: 10.1179/1362171813Y.0000000108
– start-page: 1
  year: 2004
  ident: 10.1016/j.optlastec.2014.07.017_bib7
  article-title: Laser hot wire welding for minimizing defects
– volume: 66
  start-page: 91
  year: 2013
  ident: 10.1016/j.optlastec.2014.07.017_bib13
  article-title: Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4308-8
– volume: 252
  start-page: 4803
  year: 2006
  ident: 10.1016/j.optlastec.2014.07.017_bib5
  article-title: Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2005.08.118
– volume: 174
  start-page: 223
  year: 2006
  ident: 10.1016/j.optlastec.2014.07.017_bib12
  article-title: The influence of operator skills, process parameters and materials on clad shape in repair using laser cladding by wire
  publication-title: J Mater Proc Technol
  doi: 10.1016/j.jmatprotec.2006.01.005
– volume: 25
  start-page: 234
  year: 2011
  ident: 10.1016/j.optlastec.2014.07.017_bib4
  article-title: Industrial laser cladding: current state and future
  publication-title: Weld Int
  doi: 10.1080/09507116.2010.540880
– volume: 28
  start-page: 173
  year: 2013
  ident: 10.1016/j.optlastec.2014.07.017_bib17
  article-title: Multi-response optimization of laser-based powder deposition of multi-pass single layer Hastelloy C-276
  publication-title: Mater Manuf Proc
  doi: 10.1080/10426914.2012.677908
– volume: 45
  start-page: 1249
  year: 2009
  ident: 10.1016/j.optlastec.2014.07.017_bib19
  article-title: Aging process optimization for a high trength and toughness of FV520B martensitic steel
  publication-title: Acta Metall. Sinica
– volume: 29
  start-page: 58
  year: 2011
  ident: 10.1016/j.optlastec.2014.07.017_bib8
  article-title: Development of hot wire laser welding method for lap joint of steel sheet with wide gap
  publication-title: Q J Jpn Weld Soc
  doi: 10.2207/qjjws.29.58s
– volume: 39
  start-page: 47
  year: 2010
  ident: 10.1016/j.optlastec.2014.07.017_bib9
  article-title: Development of a high-efficiency/high-quality hot wire laser fillet welding process
  publication-title: Trans JWRI
– volume: 40
  start-page: 76
  year: 2008
  ident: 10.1016/j.optlastec.2014.07.017_bib18
  article-title: Multi-response optimization of CO2 laser-welding process of austenitic stainless steel
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2007.03.009
– volume: 553
  start-page: 80
  year: 2012
  ident: 10.1016/j.optlastec.2014.07.017_bib1
  article-title: Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2012.05.095
– start-page: 947
  year: 2013
  ident: 10.1016/j.optlastec.2014.07.017_bib10
  article-title: Numerical simulation of wire temperature field for prediction of wire transfer stability in laser hot wire welding
– volume: 39
  start-page: 1130
  year: 2007
  ident: 10.1016/j.optlastec.2014.07.017_bib16
  article-title: Prediction of clad angle in laser cladding by power using response surface methodology and scatter search
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2006.09.008
– start-page: 634
  year: 2006
  ident: 10.1016/j.optlastec.2014.07.017_bib11
  article-title: Comparison of laser cladding with powder and hot and cold wire techniques
– volume: 132
  start-page: 262
  year: 2000
  ident: 10.1016/j.optlastec.2014.07.017_bib3
  article-title: Some aspects of laser surface cladding in the turbine industry
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(00)00735-0
– volume: 13
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.optlastec.2014.07.017_bib2
  article-title: Failures of high-temperature critical components in combined cycle power plants
  publication-title: J Fail Anal Prev
  doi: 10.1007/s11668-013-9691-4
SSID ssj0004653
Score 2.3465905
Snippet Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 180
SubjectTerms Cladding
Feed rate
Formations
Hot wire
Laser cladding
Lasers
Maintenance
Martensite
Martensite stainless steel
Precipitation hardening
Response surface methodology
Wire
Title Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel
URI https://dx.doi.org/10.1016/j.optlastec.2014.07.017
https://www.proquest.com/docview/1651415246
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KIuhBtCrWj7KC12iSbtKtt1IsVbEnBW_LZj-00iahTQ968Lc7k2yKiuDBWxKyyZLZzLxJ5r0h5BxAZwRhUXs2NtxjKrFeEmrfCyMNwcAmMi7bvd2P49Eju32KnhpkUHNhsKzS-f7Kp5fe2h25dE_zMp9MkOML7rfXCyFF8LF5FjLYWRdX-cVH8IUb6ZQoO-Bv4OxvNV5ZXgBGLQxqGQasVPEsO5f9GqF--OoyAA13yLZDjrRfTW6XNEzaJFtf9ASbZKOs51SLPfI-rEmJtKJNvlGYxWTmWJc0sxSmZOb0JSsoyhVTNcXSovSZAoqlcwhSE7wmnWHNZ4q_mGmOQhi50_SmyNYy-FGFlgysKXhM2DJmuk8eh9cPg5Hn2ix4igWsgAySa8gyACj2rFUBTyIrE4httguZs9GJAnNxrbkGcKVsYqPA9rj0leQyCGPNOwdkLc1Sc0goKut0Qq6MNGBorSVTUSiZhZwl7NogbpG4frRCufliK4ypqIvNXsXKJgJtIvyuAJu0iL8amFcyHH8PuaptJ76tKAHB4u_BZ7W1Bbxv-BNFpiZbLkQQA8QE0MPio__c4Jhswl5Ufcw5IWvFfGlOAd4USbtcv22y3r-5G40_AU5Q_1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEBQQ5WkkOIYmXifrReKAgNWWPk6t1Jtx_IBF2yTaTYXKgT_FH-Rz4lQtQuoB9RYlsjPy2DPfJDPfEL0C6MzhFm3iCycTYUqflNymCc8tnIEvddG1e9vbL2aH4vNRfrRGv4damJBWGW1_b9M7ax3vbMXV3Grm81DjC_M7mXCECGlonhUzK3fc6Q_Ebat32x-h5NecTz8dfJglsbVAYkQmWkRN0gJZAxxNvDeZLHOvS9hzP0a06GxpIKK0VloACuNLn2d-InVqtNQZL6wcYd5rdF3AXIS2CW9-ZeeKMSP15QgGDuJdSCqrmxaguHWBPDETHW1o1yrtny7xL-fQebzpXboToSp736_GPVpz1QbdPkdguEE3ugRSs7pPP6dDFSTr6zRPGaSYH8cyT1Z7BpHckn2rWxb4kZlZhFym6isDbGZLeMV5mJMdhyTTKvzTZk1g3mgiiTgL5WEufMVhXcnXAiYaV84tHtDhlSz-Q1qv6so9IhaofEZcGqcddpa1Wpica-ERJPGxz4pNKoalVSbKG3pvLNSQ3fZdnelEBZ2odKygk01KzwY2Pe_H5UPeDrpTF7awgne6fPDLQdsKBzz8tdGVq09WKiuAaYGyRPH4f17wgm7ODvZ21e72_s4TuoUnef8l6Smtt8sT9wzYqi2fd3uZ0ZerPjx_AIvQO6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+quality+optimization+of+laser+hot+wire+cladding+for+repairing+martensite+precipitation+hardening+stainless+steel&rft.jtitle=Optics+and+laser+technology&rft.au=Wen%2C+Peng&rft.au=Feng%2C+Zhenhua&rft.au=Zheng%2C+Shiqing&rft.date=2015-01-01&rft.issn=0030-3992&rft.volume=65&rft.spage=180&rft.epage=188&rft_id=info:doi/10.1016%2Fj.optlastec.2014.07.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon