Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles' coating, parabolic solar concentrator, and phase change material
It is known to us that the problem of freshwater shortage is constantly exacerbated by the rapid population increase and the great diversity of different industries that need water to continue their work. It is also well known that solar stills are one of the thermal solutions to this problem, but t...
Saved in:
Published in | Case studies in thermal engineering Vol. 29; p. 101705 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is known to us that the problem of freshwater shortage is constantly exacerbated by the rapid population increase and the great diversity of different industries that need water to continue their work. It is also well known that solar stills are one of the thermal solutions to this problem, but they are disadvantaged by their low productivity. So, this study presents an experimental study to improve the performance of the tubular solar still with rotating drum (TDSS) using nanoparticles' coating, parabolic solar concentrator (PSC), and phase change material (PCM). Different operating variables were tested in this study. This combination of using PSC and PCM is investigated for the first time in TDSS. PSC was used to concentrate the solar rays on the back side of the drum, which raised the evaporation rate. The nanoparticles coating was used to paint the surfaces of the drum and basin still to change the film-wise mechanism of water to drop-wise. In addition, the effect of various rotating speeds of drum on the performance of TDSS was investigated. The experimental results revealed that using the rotating cylinder inside the tubular solar still (TSS) increased the productivity of the distiller as compared to that of the conventional solar still (CSS). Furthermore, the TDSS with nanoparticles’ coating provided a productivity of 6650 mL/m2.day compared to 2800 mL/m2.day for the CSS with an enhancement by 137%. Besides, the maximum increase in productivity of TDSS when using PSC and PCM was obtained at 0.3 rpm, where the productivity improvement was around 195% and 218%, respectively. The thermal efficiency of the CSS was around 32–34%. Highest thermal efficiency of the TDSS with PCM was 63.8% at 0.3 rpm. Also, the cost of distilled water of TDSS with nanoparticles' coating, PSC, and PCM is 0.024 $/L compared to 0.029 $/L for the CSS, and the payback time was around 5 and 3 months, respectively. |
---|---|
AbstractList | It is known to us that the problem of freshwater shortage is constantly exacerbated by the rapid population increase and the great diversity of different industries that need water to continue their work. It is also well known that solar stills are one of the thermal solutions to this problem, but they are disadvantaged by their low productivity. So, this study presents an experimental study to improve the performance of the tubular solar still with rotating drum (TDSS) using nanoparticles' coating, parabolic solar concentrator (PSC), and phase change material (PCM). Different operating variables were tested in this study. This combination of using PSC and PCM is investigated for the first time in TDSS. PSC was used to concentrate the solar rays on the back side of the drum, which raised the evaporation rate. The nanoparticles coating was used to paint the surfaces of the drum and basin still to change the film-wise mechanism of water to drop-wise. In addition, the effect of various rotating speeds of drum on the performance of TDSS was investigated. The experimental results revealed that using the rotating cylinder inside the tubular solar still (TSS) increased the productivity of the distiller as compared to that of the conventional solar still (CSS). Furthermore, the TDSS with nanoparticles’ coating provided a productivity of 6650 mL/m2.day compared to 2800 mL/m2.day for the CSS with an enhancement by 137%. Besides, the maximum increase in productivity of TDSS when using PSC and PCM was obtained at 0.3 rpm, where the productivity improvement was around 195% and 218%, respectively. The thermal efficiency of the CSS was around 32–34%. Highest thermal efficiency of the TDSS with PCM was 63.8% at 0.3 rpm. Also, the cost of distilled water of TDSS with nanoparticles' coating, PSC, and PCM is 0.024 $/L compared to 0.029 $/L for the CSS, and the payback time was around 5 and 3 months, respectively. |
ArticleNumber | 101705 |
Author | Essa, F.A. Younes, M.M. Omara, Z.M. Alarjani, A. Alawee, Wissam H. Shanmugan, S. Abdullah, A.S. Alqsair, Umar F. |
Author_xml | – sequence: 1 givenname: F.A. surname: Essa fullname: Essa, F.A. organization: Kafrelsheikh University, Faculty of Engineering, Department of Mechanical Engineering, Kafrelsheikh, 33516, Egypt – sequence: 2 givenname: A.S. surname: Abdullah fullname: Abdullah, A.S. email: a.abdullah@psau.edu.sa organization: Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Mechanical Engineering, Alkharj, 16273, Saudi Arabia – sequence: 3 givenname: Wissam H. surname: Alawee fullname: Alawee, Wissam H. organization: Control and Systems Engineering Department, University of Technology, Baghdad, Iraq – sequence: 4 givenname: A. surname: Alarjani fullname: Alarjani, A. organization: Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Mechanical Engineering, Alkharj, 16273, Saudi Arabia – sequence: 5 givenname: Umar F. surname: Alqsair fullname: Alqsair, Umar F. organization: Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Mechanical Engineering, Alkharj, 16273, Saudi Arabia – sequence: 6 givenname: S. surname: Shanmugan fullname: Shanmugan, S. organization: Research Center for Solar Energy, Department of Physics, Koneru Lakshmaiah Education Foundation, Green Fields, Guntur District, Vaddeswaram, Andhra Pradesh, 522502, India – sequence: 7 givenname: Z.M. surname: Omara fullname: Omara, Z.M. organization: Kafrelsheikh University, Faculty of Engineering, Department of Mechanical Engineering, Kafrelsheikh, 33516, Egypt – sequence: 8 givenname: M.M. surname: Younes fullname: Younes, M.M. organization: Kafrelsheikh University, Faculty of Engineering, Department of Mechanical Engineering, Kafrelsheikh, 33516, Egypt |
BookMark | eNqFUcGOFCEQ7Zg1cV33C7xw87IzQkM39MGD2ay6ySZeNPFGqulilgkDE2CM-z9-qDAzMcaDXqCovPeoeu9ldxFiwK57zeiaUTa-3a5NdgXXPe1Z60g6POsu-56JFRvkt4s_6hfddc5bSiuIKybEZffz7scek9thKOAJhkcIBtuLREvKYT54SCTH41mc96SibUy7BiOH7MKGpFigtMI8eRcWTDckQIh7SMUZj_kNMfEIuCG1B3P0zpwlTawyoSQosbIgLGT_CBmJqWNskOyg1NnAv-qeW_AZr8_3Vff1w92X20-rh88f72_fP6yMYKKs-KJgVga5paOVk50Zl7YHNVHazxSR9sKIcQKk48KUEgOnE7BpVnKQXKLiV939SXeJsNX7agukJx3B6WMjpo0-L6X5Ins5KqX4MAmrQA3T0L7lODA6mrlq8ZOWSTHnhPa3HqO65aa3-pibbrnpU26VNf3FMq65G5tJzv-H--7ExWrRd4dJZ-OwGry4hKbUHdw_-b8ABT26Lg |
CitedBy_id | crossref_primary_10_1007_s10973_024_13953_4 crossref_primary_10_1016_j_rineng_2024_102984 crossref_primary_10_1016_j_csite_2024_104032 crossref_primary_10_1016_j_est_2022_105462 crossref_primary_10_1080_15567036_2022_2120932 crossref_primary_10_1016_j_est_2022_106030 crossref_primary_10_1016_j_est_2025_115557 crossref_primary_10_1007_s11356_024_32272_7 crossref_primary_10_1007_s11042_023_17887_1 crossref_primary_10_1007_s11356_022_24238_4 crossref_primary_10_1016_j_csite_2022_102256 crossref_primary_10_1016_j_desal_2022_116276 crossref_primary_10_1016_j_rineng_2023_101301 crossref_primary_10_1007_s10973_023_12589_0 crossref_primary_10_1016_j_csite_2023_102782 crossref_primary_10_1016_j_ecmx_2025_100984 crossref_primary_10_1016_j_rineng_2024_102406 crossref_primary_10_1016_j_solener_2024_112453 crossref_primary_10_3390_su142113831 crossref_primary_10_1016_j_jece_2023_110930 crossref_primary_10_1016_j_solener_2023_06_011 crossref_primary_10_18311_jmmf_2022_31991 crossref_primary_10_1186_s42834_023_00183_w crossref_primary_10_1016_j_est_2024_114598 crossref_primary_10_1016_j_solener_2024_112852 crossref_primary_10_1080_15567036_2023_2258081 crossref_primary_10_1007_s11356_022_25071_5 crossref_primary_10_1016_j_rineng_2024_102771 crossref_primary_10_1002_ep_14270 crossref_primary_10_1016_j_desal_2024_117388 crossref_primary_10_1016_j_est_2023_109569 crossref_primary_10_1016_j_csite_2024_104561 crossref_primary_10_3390_w15183239 crossref_primary_10_1080_15567036_2023_2205358 crossref_primary_10_1515_cmb_2024_0014 crossref_primary_10_1016_j_apmt_2024_102196 crossref_primary_10_1016_j_rineng_2024_103049 crossref_primary_10_1016_j_aej_2023_07_002 crossref_primary_10_1016_j_desal_2024_117836 crossref_primary_10_1016_j_est_2024_113430 crossref_primary_10_1007_s11356_022_20285_z crossref_primary_10_1016_j_rineng_2023_101251 crossref_primary_10_1016_j_est_2023_107377 crossref_primary_10_1016_j_rineng_2024_103210 crossref_primary_10_5004_dwt_2023_29381 crossref_primary_10_1016_j_dwt_2024_100683 crossref_primary_10_1080_15567036_2024_2304100 crossref_primary_10_1016_j_energy_2024_131064 crossref_primary_10_1016_j_est_2022_105660 crossref_primary_10_1002_clen_202200384 crossref_primary_10_1016_j_seta_2023_103576 crossref_primary_10_1093_ijlct_ctad060 crossref_primary_10_1016_j_solener_2023_112237 crossref_primary_10_1016_j_est_2024_113168 crossref_primary_10_1016_j_est_2024_111262 crossref_primary_10_1016_j_csite_2024_104912 crossref_primary_10_1016_j_csite_2023_103822 crossref_primary_10_1016_j_jclepro_2022_131761 crossref_primary_10_51646_jsesd_v14i1_359 crossref_primary_10_1016_j_asej_2024_103088 crossref_primary_10_1016_j_csite_2024_105273 crossref_primary_10_1007_s11356_021_18295_4 crossref_primary_10_1016_j_est_2024_110500 crossref_primary_10_1016_j_solener_2024_113033 crossref_primary_10_1016_j_tsep_2024_103006 crossref_primary_10_1007_s41939_023_00309_y crossref_primary_10_1016_j_tsep_2023_101922 crossref_primary_10_1016_j_csite_2023_103310 crossref_primary_10_1016_j_psep_2022_04_044 crossref_primary_10_1080_15567036_2022_2108169 crossref_primary_10_1016_j_dwt_2024_100344 crossref_primary_10_1016_j_heliyon_2024_e37693 crossref_primary_10_1016_j_solener_2024_113060 crossref_primary_10_1016_j_rineng_2024_101996 crossref_primary_10_1016_j_jclepro_2024_140746 crossref_primary_10_1016_j_csite_2024_105184 crossref_primary_10_1016_j_csite_2024_105187 crossref_primary_10_1016_j_csite_2024_104890 crossref_primary_10_1016_j_jer_2024_01_007 crossref_primary_10_1016_j_rineng_2025_104348 crossref_primary_10_1016_j_applthermaleng_2024_123408 crossref_primary_10_1016_j_solmat_2023_112308 crossref_primary_10_1007_s10973_024_13820_2 crossref_primary_10_1016_j_solener_2023_112216 crossref_primary_10_1016_j_est_2023_109362 crossref_primary_10_1016_j_est_2024_113462 crossref_primary_10_1016_j_csite_2024_105109 crossref_primary_10_1016_j_rineng_2024_102574 crossref_primary_10_1016_j_seppur_2024_127119 crossref_primary_10_1016_j_desal_2024_117744 crossref_primary_10_1007_s11356_022_23964_z crossref_primary_10_1016_j_est_2022_105647 crossref_primary_10_1016_j_est_2023_106897 crossref_primary_10_1007_s11356_022_22220_8 crossref_primary_10_1016_j_csite_2022_101984 crossref_primary_10_1016_j_est_2023_106899 crossref_primary_10_1016_j_rineng_2023_101722 crossref_primary_10_1016_j_rineng_2024_101983 crossref_primary_10_1016_j_est_2022_104284 crossref_primary_10_3390_pr11061734 crossref_primary_10_1016_j_dwt_2024_100051 crossref_primary_10_1016_j_psep_2024_05_024 crossref_primary_10_1016_j_rser_2023_113663 crossref_primary_10_1016_j_rser_2024_115106 crossref_primary_10_1016_j_est_2023_109075 crossref_primary_10_1016_j_solmat_2024_113125 crossref_primary_10_3390_en16104165 crossref_primary_10_1016_j_psep_2023_11_076 crossref_primary_10_1016_j_tsep_2023_101981 crossref_primary_10_1016_j_desal_2024_117756 crossref_primary_10_1016_j_jtice_2024_105908 crossref_primary_10_1016_j_est_2022_104448 crossref_primary_10_1007_s11356_022_20207_z crossref_primary_10_1016_j_csite_2024_104489 crossref_primary_10_1016_j_csite_2023_102841 crossref_primary_10_1016_j_jclepro_2023_137431 crossref_primary_10_1016_j_rineng_2025_104360 |
Cites_doi | 10.1016/j.renene.2018.07.147 10.1016/j.applthermaleng.2019.114723 10.1016/j.desal.2004.08.038 10.1016/j.aej.2017.08.014 10.1016/j.desal.2007.04.060 10.5004/dwt.2018.23188 10.1016/0011-9164(91)85188-Z 10.1016/j.gsd.2019.100299 10.1016/j.desal.2012.09.014 10.1016/j.solener.2015.12.025 10.1016/j.csite.2021.101368 10.1016/j.desal.2021.115019 10.1016/j.enconman.2019.112024 10.1016/j.apenergy.2017.01.067 10.1016/j.est.2021.102564 10.1016/j.jclepro.2018.12.015 10.1016/j.jclepro.2020.120329 10.1016/j.desal.2019.114182 10.1016/j.apenergy.2017.05.047 10.1016/j.applthermaleng.2016.11.085 10.1016/j.enconman.2014.05.050 10.1016/j.gsd.2017.08.003 10.1016/S0196-8904(01)00120-0 10.1016/j.desal.2019.114165 10.1016/j.desal.2015.12.001 10.1016/j.desal.2011.04.042 10.1016/j.enconman.2015.07.035 10.1016/j.enconman.2018.06.096 10.1016/j.ijheatmasstransfer.2020.119917 10.1016/j.est.2021.102782 10.1016/j.rser.2017.04.085 10.1016/j.psep.2021.04.036 10.1016/j.applthermaleng.2016.07.179 10.1016/j.desal.2008.03.036 10.1016/j.est.2020.102008 10.1016/j.rser.2017.10.108 10.1016/S0196-8904(99)00047-3 10.1016/j.csite.2021.101222 10.1016/j.desal.2007.02.047 10.1016/j.applthermaleng.2021.116652 10.1016/j.renene.2019.07.160 10.1016/j.est.2020.101522 10.1016/j.solener.2020.04.039 10.1016/j.enconman.2016.10.013 10.1016/j.applthermaleng.2020.115020 10.1016/j.desal.2017.05.030 10.1016/j.psep.2020.07.044 10.1016/j.psep.2021.02.004 10.1016/j.est.2020.101744 10.1016/j.apenergy.2018.05.014 10.1016/j.solener.2015.01.021 10.1016/j.jclepro.2020.123200 10.1016/j.desal.2013.03.029 10.1016/j.renene.2015.11.051 10.1016/j.jclepro.2020.121758 10.1016/j.csite.2021.100905 10.1016/j.desal.2013.09.011 10.1016/j.desal.2018.04.024 10.1016/j.csite.2021.100850 10.1016/j.psep.2021.02.022 10.1016/0360-5442(92)90023-S 10.1016/j.desal.2017.03.035 10.1016/j.solener.2021.01.038 10.1016/j.rser.2017.07.004 10.1016/S0960-1481(01)00094-5 10.1016/j.enconman.2013.11.013 10.1016/j.jclepro.2020.123468 10.1016/j.csite.2021.100978 10.1016/j.renene.2020.02.095 10.1016/j.solener.2017.03.041 10.1016/j.aej.2019.11.018 10.1016/j.est.2020.101204 10.1016/j.psep.2020.11.039 10.1016/j.desal.2015.10.010 10.1016/j.jtice.2017.01.017 10.1016/j.enconman.2018.05.011 |
ContentType | Journal Article |
Copyright | 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2021.101705 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_3d72768883594f8a8595f06f3e5106cb 10_1016_j_csite_2021_101705 S2214157X21008686 |
GroupedDBID | 0R~ 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OK1 RIG ROL SSZ AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c414t-3d8ab8ce3f06f79fb137f2a89002b0ee024c469ae06d18845309a19b875737e83 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:30:21 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Tue Jul 01 02:28:32 EDT 2025 Sun May 18 06:42:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Parabolic solar concentrator PCM Tubular solar still Drum distiller Nanoparticle coating |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-3d8ab8ce3f06f79fb137f2a89002b0ee024c469ae06d18845309a19b875737e83 |
OpenAccessLink | https://doaj.org/article/3d72768883594f8a8595f06f3e5106cb |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d72768883594f8a8595f06f3e5106cb crossref_primary_10_1016_j_csite_2021_101705 crossref_citationtrail_10_1016_j_csite_2021_101705 elsevier_sciencedirect_doi_10_1016_j_csite_2021_101705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Attia, Kabeel, Abdelgaied, Essa, Omara (bib40) 2021; 216 Manokar, Taamneh, Kabeel, Sathyamurthy, Winston, Chamkha (bib41) 2018; 136 Sharshir, Peng, Wu, Yang, Essa, Elsheikh, Mohamed, Kabeel (bib75) 2017; 113 Yadav (bib60) 1991; 82 Abdallah, Badran (bib73) 2008; 220 Valsaraj (bib68) 2002; 25 Fukuhara, Terasaki, Yamaji, Ahsan (bib78) 2013 El-Said, Elshamy, Kabeel (bib91) 2020; 474 Kumar, Anand (bib92) 1992; 17 Kabeel, Omara, Essa, Abdullah, Arunkumar, Sathyamurthy (bib35) 2017; 56 Moh’d A (bib84) 2015; 114 Yan, Xie, Liu, Wu, Sun (bib93) 2020; 156 Essa, Abdullah, Omara, Kabeel, El-Maghlany (bib3) 2020 Essa, Abd Elaziz, Elsheikh (bib11) 2020; 144 Kabeel, Abdelgaied, Eisa (bib90) 2019; 132 Liang, Fan, You, Zheng, Zhang, Ye, Zheng (bib70) 2017; 201 Nayi, Modi (bib57) 2018; 81 Essa, Abd Elaziz, Elsheikh (bib14) 2020; 170 Abdullah, Alarjani, Al-sood, Omara, Kabeel, Essa (bib51) 2019; 58 Suneja, Tiwari (bib59) 1999; 40 Omara, Hamed, Kabeel (bib46) 2011; 277 Srithar (bib87) 2003 Thamizharasu, Shanmugan, Gorjian, Pruncu, Essa, Panchal, Harish (bib64) 2020 Arunkumar, Kabeel (bib80) 2017; 414 Modi, Nayi (bib58) 2020; 153 Upadhyay, Patel, Sadasivuni, Mistry, Ramana, Panchal, Ponnamma, Essa (bib72) 2021; 26 Abd Elaziz, Essa, Elsheikh (bib13) 2021; 47 Younes, Abdullah, Essa, Omara, Amro (bib12) 2021; 150 Essa, Omara, Abdullah, Shanmugan, Panchal, Kabeel, Sathyamurthy, Athikesavan, Elsheikh, Abdelgaied, Saleh (bib16) 2021 El-Sebaii (bib49) 2005; 174 Malaeb, Aboughali, Ayoub (bib82) 2016; 125 Abdullah, Omara, Alarjani, Essa (bib21) 2021; 24 Abdullah, Omara, Essa, Younes, Shanmugan, Abdelgaied, Amro, Kabeel, Farouk (bib27) 2021; 40 Panchal, Sadasivuni, Essa, Shanmugan, Sathyamurthy (bib8) 2020 Essa, Alawee, Mohammed, Abdullah, Omara (bib43) 2021; 506 Omara, Abdullah, Essa, Younes (bib31) 2021; 148 Alawee, Mohammed, Dhahad, Abdullah, Omara, Essa (bib42) 2021; 148 Tiwari, Sahota (bib1) 2017 Abdullah, Essa, Omara, Rashid, Hadj-Taieb, Abdelaziz, Kabeel (bib20) 2019; 199 Essa, Alawee, Mohammed, Dhahad, Abdullah, Omara (bib39) 2021; 27 Rajaseenivasan, Kalidasa Murugavel (bib55) 2013; 319 Kabeel, Omara, Essa (bib10) 2014; 78 Sharshir, El-Samadony, Peng, Yang, Essa, Hamed, Kabeel (bib4) 2016; 108 Diab, Essa, Abou-Taleb, Omara (bib19) 2021 Essa, Abdullah, Omara, Kabeel, Gamiel (bib28) 2021; 188 Essa, Omara, Abdullah, Shanmugan, Panchal, Kabeel, Sathyamurthy, Alawee, Manokar, Elsheikh (bib15) 2020; 32 Alaian, Elnegiry, Hamed (bib44) 2016; 379 Abderachid, Abdenacer (bib54) 2013; 329 Omara, Hamed, Kabeel (bib74) 2011; 277 Omara, Abdullah, Kabeel, Essa (bib7) 2017; 78 Omara, Kabeel, Abdullah, Essa (bib48) 2016; 381 Scrivani, Bardi (bib76) 2008; 220 Abdallah, Abu-Khader, Badran (bib67) 2009; 242 Elsheikh, Sharshir, Mostafa, Essa, Ali (bib6) 2018; 82 Zanganeh, Goharrizi, Ayatollahi, Feilizadeh (bib88) 2020 Rajaseenivasan, Elango, Kalidasa Murugavel (bib56) 2013; 309 Essa, Abdullah, Omara (bib22) 2021; 148 Elashmawy (bib81) 2020; 473 Omara, Abdullah, Dakrory (bib83) 2017; 147 Kumar, Manokar, Madhu, Kabeel, Arunkumar, Panchal, Sathyamurthy (bib34) 2017; 5 Modi, Shukla (bib66) 2018; 171 Abdullah, Essa, Omara (bib5) 2019 Abdullah, Omara, Bek, Essa (bib2) 2020; 167 Haddad, Chaker, Rahmani (bib30) 2017; 418 Modi, Nayi, Sharma (bib53) 2020; 10 Yılmaz, Mwesigye (bib85) 2018; 225 Al-Hinai, Al-Nassri, Jubran (bib69) 2002; 43 Kabeel, Sathyamurthy, Manokar, Sharshir, Essa, Elshiekh (bib25) 2020; 28 Sharshir, Peng, Wu, Essa, Kabeel, Yang (bib65) 2017; 191 Zheng, Yang, Zhang, You, Zhu (bib71) 2016; 129 Elashmawy, Alshammari (bib77) 2020; 256 Essa, Omara, Abdullah, Kabeel, Abdelaziz (bib29) 2021 Essa, Abou-Taleb, Diab (bib18) 2021 Essa, Abdullah, Omara (bib17) 2020; 275 Kabeel, Omara, Essa (bib36) 2017; 75 Omara, Kabeel, Essa (bib47) 2015; 103 Omara, Kabeel, Essa (bib50) 2015; 103 Shanmugan, Essa, Gorjian, Kabeel, Sathyamurthy, Muthu Manokar (bib38) 2020; 30 Essa, Elsheikh, Sathyamurthy, Manokar, Kandeal, Shanmugan, Kabeel, Sharshir, Panchal, Younes (bib61) 2020; 39 Abdullah, Essa, Bacha, Omara (bib62) 2020; 31 Arunkumar, Velraj, Denkenberger, Sathyamurthy, Kumar, Ahsan (bib79) 2016; 88 Hedayati-Mehdiabadi, Sarhaddi, Sobhnamayan (bib33) 2020; 145 Arani, Sathyamurthy, Chamkha, Kabeel, Deverajan, Kamalakannan, Balasubramanian, Manokar, Essa, Saravanan (bib24) 2021 Pounraj, Winston, Kabeel, Kumar, Manokar, Sathyamurthy, Christabel (bib32) 2018; 168 Panchal, Nurdiyanto, Sadasivuni, Hishan, Essa, Khalid, Dharaskar, Shanmugan (bib37) 2021; 25 Bait (bib89) 2019; 212 Abdullah, Essa, Omara, Bek (bib52) 2018; 441 Manokar, Winston (bib45) 2017; 4 Holman (bib86) 2012 Kabeel, Omara, Essa (bib9) 2014; 86 Sharshir, Peng, Wu, Essa, Kabeel, Yang (bib63) 2017; 191 Abdelgaied, Zakaria, Kabeel, Essa (bib23) 2021; 38 Abdullah, Younes, Omara, Essa (bib26) 2020; 203 Abdullah (10.1016/j.csite.2021.101705_bib21) 2021; 24 Omara (10.1016/j.csite.2021.101705_bib50) 2015; 103 Attia (10.1016/j.csite.2021.101705_bib40) 2021; 216 Omara (10.1016/j.csite.2021.101705_bib46) 2011; 277 Abd Elaziz (10.1016/j.csite.2021.101705_bib13) 2021; 47 Fukuhara (10.1016/j.csite.2021.101705_bib78) 2013 Malaeb (10.1016/j.csite.2021.101705_bib82) 2016; 125 Holman (10.1016/j.csite.2021.101705_bib86) 2012 Essa (10.1016/j.csite.2021.101705_bib18) 2021 Modi (10.1016/j.csite.2021.101705_bib66) 2018; 171 Yılmaz (10.1016/j.csite.2021.101705_bib85) 2018; 225 Essa (10.1016/j.csite.2021.101705_bib11) 2020; 144 Sharshir (10.1016/j.csite.2021.101705_bib63) 2017; 191 Kabeel (10.1016/j.csite.2021.101705_bib90) 2019; 132 Abdullah (10.1016/j.csite.2021.101705_bib52) 2018; 441 Essa (10.1016/j.csite.2021.101705_bib39) 2021; 27 Rajaseenivasan (10.1016/j.csite.2021.101705_bib56) 2013; 309 Modi (10.1016/j.csite.2021.101705_bib58) 2020; 153 Omara (10.1016/j.csite.2021.101705_bib74) 2011; 277 Abdullah (10.1016/j.csite.2021.101705_bib2) 2020; 167 Pounraj (10.1016/j.csite.2021.101705_bib32) 2018; 168 Essa (10.1016/j.csite.2021.101705_bib14) 2020; 170 Sharshir (10.1016/j.csite.2021.101705_bib4) 2016; 108 Abderachid (10.1016/j.csite.2021.101705_bib54) 2013; 329 Abdallah (10.1016/j.csite.2021.101705_bib67) 2009; 242 Liang (10.1016/j.csite.2021.101705_bib70) 2017; 201 Kumar (10.1016/j.csite.2021.101705_bib34) 2017; 5 Elashmawy (10.1016/j.csite.2021.101705_bib77) 2020; 256 Kabeel (10.1016/j.csite.2021.101705_bib10) 2014; 78 Rajaseenivasan (10.1016/j.csite.2021.101705_bib55) 2013; 319 Arani (10.1016/j.csite.2021.101705_bib24) 2021 Essa (10.1016/j.csite.2021.101705_bib3) 2020 Valsaraj (10.1016/j.csite.2021.101705_bib68) 2002; 25 Elsheikh (10.1016/j.csite.2021.101705_bib6) 2018; 82 Modi (10.1016/j.csite.2021.101705_bib53) 2020; 10 Manokar (10.1016/j.csite.2021.101705_bib45) 2017; 4 Younes (10.1016/j.csite.2021.101705_bib12) 2021; 150 Upadhyay (10.1016/j.csite.2021.101705_bib72) 2021; 26 Al-Hinai (10.1016/j.csite.2021.101705_bib69) 2002; 43 Abdullah (10.1016/j.csite.2021.101705_bib62) 2020; 31 Suneja (10.1016/j.csite.2021.101705_bib59) 1999; 40 Sharshir (10.1016/j.csite.2021.101705_bib65) 2017; 191 Essa (10.1016/j.csite.2021.101705_bib15) 2020; 32 Essa (10.1016/j.csite.2021.101705_bib16) 2021 Srithar (10.1016/j.csite.2021.101705_bib87) 2003 Essa (10.1016/j.csite.2021.101705_bib43) 2021; 506 Moh’d A (10.1016/j.csite.2021.101705_bib84) 2015; 114 Bait (10.1016/j.csite.2021.101705_bib89) 2019; 212 Zanganeh (10.1016/j.csite.2021.101705_bib88) 2020 Essa (10.1016/j.csite.2021.101705_bib29) 2021 Kabeel (10.1016/j.csite.2021.101705_bib25) 2020; 28 Sharshir (10.1016/j.csite.2021.101705_bib75) 2017; 113 Kabeel (10.1016/j.csite.2021.101705_bib9) 2014; 86 Diab (10.1016/j.csite.2021.101705_bib19) 2021 Manokar (10.1016/j.csite.2021.101705_bib41) 2018; 136 Panchal (10.1016/j.csite.2021.101705_bib37) 2021; 25 Alaian (10.1016/j.csite.2021.101705_bib44) 2016; 379 Yan (10.1016/j.csite.2021.101705_bib93) 2020; 156 Abdullah (10.1016/j.csite.2021.101705_bib20) 2019; 199 El-Said (10.1016/j.csite.2021.101705_bib91) 2020; 474 Omara (10.1016/j.csite.2021.101705_bib48) 2016; 381 Panchal (10.1016/j.csite.2021.101705_bib8) 2020 Abdallah (10.1016/j.csite.2021.101705_bib73) 2008; 220 Abdullah (10.1016/j.csite.2021.101705_bib26) 2020; 203 Tiwari (10.1016/j.csite.2021.101705_bib1) 2017 Essa (10.1016/j.csite.2021.101705_bib61) 2020; 39 Essa (10.1016/j.csite.2021.101705_bib17) 2020; 275 Kumar (10.1016/j.csite.2021.101705_bib92) 1992; 17 Omara (10.1016/j.csite.2021.101705_bib7) 2017; 78 Abdelgaied (10.1016/j.csite.2021.101705_bib23) 2021; 38 Omara (10.1016/j.csite.2021.101705_bib31) 2021; 148 Shanmugan (10.1016/j.csite.2021.101705_bib38) 2020; 30 Essa (10.1016/j.csite.2021.101705_bib28) 2021; 188 Elashmawy (10.1016/j.csite.2021.101705_bib81) 2020; 473 Abdullah (10.1016/j.csite.2021.101705_bib27) 2021; 40 Kabeel (10.1016/j.csite.2021.101705_bib36) 2017; 75 Abdullah (10.1016/j.csite.2021.101705_bib51) 2019; 58 Abdullah (10.1016/j.csite.2021.101705_bib5) 2019 Alawee (10.1016/j.csite.2021.101705_bib42) 2021; 148 El-Sebaii (10.1016/j.csite.2021.101705_bib49) 2005; 174 Nayi (10.1016/j.csite.2021.101705_bib57) 2018; 81 Scrivani (10.1016/j.csite.2021.101705_bib76) 2008; 220 Yadav (10.1016/j.csite.2021.101705_bib60) 1991; 82 Omara (10.1016/j.csite.2021.101705_bib83) 2017; 147 Essa (10.1016/j.csite.2021.101705_bib22) 2021; 148 Haddad (10.1016/j.csite.2021.101705_bib30) 2017; 418 Kabeel (10.1016/j.csite.2021.101705_bib35) 2017; 56 Thamizharasu (10.1016/j.csite.2021.101705_bib64) 2020 Zheng (10.1016/j.csite.2021.101705_bib71) 2016; 129 Hedayati-Mehdiabadi (10.1016/j.csite.2021.101705_bib33) 2020; 145 Arunkumar (10.1016/j.csite.2021.101705_bib80) 2017; 414 Omara (10.1016/j.csite.2021.101705_bib47) 2015; 103 Arunkumar (10.1016/j.csite.2021.101705_bib79) 2016; 88 |
References_xml | – start-page: n/a year: 2020 ident: bib8 article-title: Enhancement of the yield of solar still with the use of solar pond: a review publication-title: Heat Transfer – volume: 27 start-page: 101368 year: 2021 ident: bib39 article-title: Experimental investigation of convex tubular solar still performance using wick and nanocomposites publication-title: Case Stud. Therm. Eng. – volume: 58 start-page: 1449 year: 2019 end-page: 1459 ident: bib51 article-title: Rotating-wick solar still with mended evaporation technics: experimental approach publication-title: Alexandria Eng. J. – volume: 148 start-page: 796 year: 2021 end-page: 804 ident: bib31 article-title: Performance evaluation of a vertical rotating wick solar still publication-title: Process Saf. Environ. Protect. – year: 2020 ident: bib64 article-title: Improvement of Thermal Performance of a Solar Box Type Cooker Using SiO – volume: 418 start-page: 71 year: 2017 end-page: 78 ident: bib30 article-title: Improving the basin type solar still performances using a vertical rotating wick publication-title: Desalination – volume: 129 start-page: 11 year: 2016 end-page: 22 ident: bib71 article-title: Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector publication-title: Energy Convers. Manag. – volume: 47 start-page: 101405 year: 2021 ident: bib13 article-title: Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles publication-title: Sustain. Energy Technol. Asses. – volume: 216 start-page: 295 year: 2021 end-page: 302 ident: bib40 article-title: Enhancement of hemispherical solar still productivity using iron, zinc and copper trays publication-title: Sol. Energy – volume: 82 start-page: 3483 year: 2018 end-page: 3502 ident: bib6 article-title: Applications of nanofluids in solar energy: a review of recent advances publication-title: Renew. Sustain. Energy Rev. – volume: 203 start-page: 164 year: 2020 end-page: 174 ident: bib26 article-title: New design of trays solar still with enhanced evaporation methods–Comprehensive study publication-title: Sol. Energy – volume: 40 start-page: 1885 year: 1999 end-page: 1897 ident: bib59 article-title: Effect of water depth on the performance of an inverted absorber double basin solar still publication-title: Energy Convers. Manag. – start-page: 121758 year: 2020 ident: bib88 article-title: Nano-coated condensation surfaces ٍenhanced the productivity of the single-slope solar still by changing the condensation mechanism publication-title: J. Clean. Prod. – volume: 188 start-page: 116652 year: 2021 ident: bib28 article-title: Experimental study on the performance of trays solar still with cracks and reflectors publication-title: Appl. Therm. Eng. – volume: 144 start-page: 322 year: 2020 end-page: 329 ident: bib11 article-title: Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization publication-title: Process Saf. Environ. Protect. – volume: 86 start-page: 268 year: 2014 end-page: 274 ident: bib9 article-title: Improving the performance of solar still by using nanofluids and providing vacuum publication-title: Energy Convers. Manag. – volume: 30 start-page: 101522 year: 2020 ident: bib38 article-title: Experimental study on single slope single basin solar still using TiO2 nano layer for natural clean water invention publication-title: J. Energy Stor. – volume: 81 start-page: 136 year: 2018 end-page: 148 ident: bib57 article-title: Pyramid solar still: a comprehensive review publication-title: Renew. Sustain. Energy Rev. – start-page: 9 year: 2013 end-page: 14 ident: bib78 article-title: Cost and production performance of a tubular solar still publication-title: 2013 1st International Conference & Exhibition on the Applications of Information Technology to Renewable Energy Processes and Systems – volume: 78 start-page: 176 year: 2017 end-page: 193 ident: bib7 article-title: The cooling techniques of the solar stills' glass covers–a review publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2019 end-page: 28 ident: bib5 article-title: Effect of different wick materials on solar still performance–a review publication-title: Int. J. Ambient Energy – volume: 103 start-page: 965 year: 2015 end-page: 972 ident: bib47 article-title: Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still publication-title: Energy Convers. Manag. – volume: 170 start-page: 115020 year: 2020 ident: bib14 article-title: An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer publication-title: Appl. Therm. Eng. – volume: 75 start-page: 77 year: 2017 end-page: 86 ident: bib36 article-title: Numerical investigation of modified solar still using nanofluids and external condenser publication-title: J. Taiwan Inst. Chem. Eng. – volume: 43 start-page: 1639 year: 2002 end-page: 1650 ident: bib69 article-title: Effect of climatic, design and operational parameters on the yield of a simple solar still publication-title: Energy Convers. Manag. – volume: 379 start-page: 10 year: 2016 end-page: 15 ident: bib44 article-title: Experimental investigation on the performance of solar still augmented with pin-finned wick publication-title: Desalination – year: 2003 ident: bib87 article-title: Studies on Solar Augmented Evaporation Systems for Tannery Effluent (Soak Liquor), PhD Thesis – volume: 113 start-page: 684 year: 2017 end-page: 693 ident: bib75 article-title: Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study publication-title: Appl. Therm. Eng. – volume: 174 start-page: 23 year: 2005 end-page: 37 ident: bib49 article-title: Thermal performance of a triple-basin solar still publication-title: Desalination – volume: 17 start-page: 1067 year: 1992 end-page: 1071 ident: bib92 article-title: Modelling and performance of a tubular multiwick solar still publication-title: Energy – volume: 78 start-page: 493 year: 2014 end-page: 498 ident: bib10 article-title: Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach publication-title: Energy Convers. Manag. – volume: 39 start-page: 100712 year: 2020 ident: bib61 article-title: Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions publication-title: Sustain. Energy Technol. Asses. – volume: 199 start-page: 112024 year: 2019 ident: bib20 article-title: Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study publication-title: Energy Convers. Manag. – volume: 329 start-page: 68 year: 2013 end-page: 77 ident: bib54 article-title: Effect of orientation on the performance of a symmetric solar still with a double effect solar still (comparison study) publication-title: Desalination – start-page: 123468 year: 2020 ident: bib3 article-title: On the different packing materials of humidification–dehumidification thermal desalination techniques – a review publication-title: J. Clean. Prod. – volume: 147 start-page: 181 year: 2017 end-page: 188 ident: bib83 article-title: Improving the productivity of solar still by using water fan and wind turbine publication-title: Sol. Energy – volume: 108 start-page: 1268 year: 2016 end-page: 1278 ident: bib4 article-title: Performance enhancement of wick solar still using rejected water from humidification-dehumidification unit and film cooling publication-title: Appl. Therm. Eng. – volume: 277 start-page: 281 year: 2011 end-page: 287 ident: bib46 article-title: Performance of finned and corrugated absorbers solar stills under Egyptian conditions publication-title: Desalination – year: 2021 ident: bib19 article-title: Solar Still with Rotating Parts: a Review – volume: 38 start-page: 102564 year: 2021 ident: bib23 article-title: Improving the tubular solar still performance using square and circular hollow fins with phase change materials publication-title: J. Energy Stor. – start-page: 1 year: 2021 end-page: 21 ident: bib18 article-title: Experimental Investigation of Vertical Solar Still with Rotating Discs, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects – volume: 56 start-page: 433 year: 2017 end-page: 438 ident: bib35 article-title: Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles publication-title: Alexandria Eng. J. – volume: 212 start-page: 630 year: 2019 end-page: 646 ident: bib89 article-title: Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still publication-title: J. Clean. Prod. – volume: 132 start-page: 119 year: 2019 end-page: 128 ident: bib90 article-title: Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still publication-title: Renew. Energy – volume: 168 start-page: 371 year: 2018 end-page: 381 ident: bib32 article-title: Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance publication-title: Energy Convers. Manag. – volume: 220 start-page: 592 year: 2008 end-page: 599 ident: bib76 article-title: A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region publication-title: Desalination – volume: 24 start-page: 100850 year: 2021 ident: bib21 article-title: Experimental investigation of a new design of drum solar still with reflectors under different conditions publication-title: Case Stud. Therm. Eng. – volume: 473 start-page: 114182 year: 2020 ident: bib81 article-title: Improving the performance of a parabolic concentrator solar tracking-tubular solar still (PCST-TSS) using gravel as a sensible heat storage material publication-title: Desalination – year: 2017 ident: bib1 article-title: Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling, and its Application – volume: 25 start-page: 100905 year: 2021 ident: bib37 article-title: Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber publication-title: Case Stud. Therm. Eng. – volume: 225 start-page: 135 year: 2018 end-page: 174 ident: bib85 article-title: Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review publication-title: Appl. Energy – volume: 10 start-page: 100299 year: 2020 ident: bib53 article-title: Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector publication-title: Groundwater Sust. Develop – volume: 82 start-page: 243 year: 1991 ident: bib60 article-title: Performance analysis of a solar still coupled to a heat exchanger publication-title: Desalination – volume: 156 start-page: 119917 year: 2020 ident: bib93 article-title: CFD investigation of vapor transportation in a tubular solar still operating under vacuum publication-title: Int. J. Heat Mass Tran. – volume: 31 start-page: 101744 year: 2020 ident: bib62 article-title: Improving the trays solar still performance using reflectors and phase change material with nanoparticles publication-title: J. Energy Stor. – volume: 125 start-page: 360 year: 2016 end-page: 372 ident: bib82 article-title: Modeling of a modified solar still system with enhanced productivity publication-title: Sol. Energy – volume: 167 start-page: 114723 year: 2020 ident: bib2 article-title: An augmented productivity of solar distillers integrated to HDH unit: experimental implementation publication-title: Appl. Therm. Eng. – volume: 150 start-page: 440 year: 2021 end-page: 452 ident: bib12 article-title: Enhancing the wick solar still performance using half barrel and corrugated absorbers publication-title: Process Saf. Environ. Protect. – volume: 32 start-page: 102008 year: 2020 ident: bib15 article-title: Wall-suspended trays inside stepped distiller with Al publication-title: J. Energy Stor. – year: 2021 ident: bib24 article-title: Effect of Fins and Silicon Dioxide Nanoparticle Black Paint on the Absorber Plate for Augmenting Yield from Tubular Solar Still – volume: 309 start-page: 27 year: 2013 end-page: 31 ident: bib56 article-title: Comparative study of double basin and single basin solar stills publication-title: Desalination – volume: 191 start-page: 358 year: 2017 end-page: 366 ident: bib63 article-title: The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance publication-title: Appl. Energy – volume: 414 start-page: 46 year: 2017 end-page: 50 ident: bib80 article-title: Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement publication-title: Desalination – volume: 148 start-page: 950 year: 2021 end-page: 958 ident: bib42 article-title: Improving the performance of pyramid solar still using rotating four cylinders and three electric heaters publication-title: Process Saf. Environ. Protect. – volume: 277 start-page: 281 year: 2011 end-page: 287 ident: bib74 article-title: Performance of finned and corrugated absorbers solar stills under Egyptian conditions publication-title: Desalination – volume: 5 start-page: 229 year: 2017 end-page: 234 ident: bib34 article-title: Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still publication-title: Groundwater Sust. Develop – volume: 381 start-page: 111 year: 2016 end-page: 116 ident: bib48 article-title: Experimental investigation of corrugated absorber solar still with wick and reflectors publication-title: Desalination – year: 2021 ident: bib16 article-title: Augmenting the Productivity of Stepped Distiller by Corrugated and Curved Liners, CuO/paraffin Wax, Wick, and Vapor Suctioning – volume: 136 start-page: 20 year: 2018 end-page: 30 ident: bib41 article-title: Review of different methods employed in pyramidal solar still desalination to augment the yield of freshwater publication-title: Desalin Water Treat – volume: 26 start-page: 100978 year: 2021 ident: bib72 article-title: Design, development and techno economic analysis of novel parabolic trough collector for low-temperature water heating applications publication-title: Case Stud. Therm. Eng. – volume: 275 start-page: 123200 year: 2020 ident: bib17 article-title: Rotating discs solar still: new mechanism of desalination publication-title: J. Clean. Prod. – volume: 25 start-page: 607 year: 2002 end-page: 612 ident: bib68 article-title: An experimental study on solar distillation in a single slope basin still by surface heating the water mass publication-title: Renew. Energy – volume: 201 start-page: 60 year: 2017 end-page: 68 ident: bib70 article-title: A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors publication-title: Appl. Energy – volume: 103 start-page: 965 year: 2015 end-page: 972 ident: bib50 article-title: Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still publication-title: Energy Convers. Manag. – volume: 88 start-page: 391 year: 2016 end-page: 400 ident: bib79 article-title: Productivity enhancements of compound parabolic concentrator tubular solar stills publication-title: Renew. Energy – volume: 4 start-page: 7234 year: 2017 end-page: 7239 ident: bib45 article-title: Experimental analysis of single basin single slope finned acrylic solar still publication-title: Mater. Today: Proceedings – volume: 191 start-page: 358 year: 2017 end-page: 366 ident: bib65 article-title: The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance publication-title: Appl. Energy – volume: 220 start-page: 669 year: 2008 end-page: 676 ident: bib73 article-title: Sun tracking system for productivity enhancement of solar still publication-title: Desalination – volume: 114 start-page: 8 year: 2015 end-page: 16 ident: bib84 article-title: Modeling of a novel concentrated solar still enhanced with a porous evaporator and an internal condenser publication-title: Sol. Energy – volume: 256 start-page: 120329 year: 2020 ident: bib77 article-title: Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system publication-title: J. Clean. Prod. – volume: 40 start-page: 102782 year: 2021 ident: bib27 article-title: Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters publication-title: J. Energy Stor. – volume: 148 start-page: 579 year: 2021 end-page: 589 ident: bib22 article-title: Improving the performance of tubular solar still using rotating drum–Experimental and theoretical investigation publication-title: Process Saf. Environ. Protect. – volume: 145 start-page: 2409 year: 2020 end-page: 2425 ident: bib33 article-title: Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector publication-title: Renew. Energy – volume: 319 start-page: 25 year: 2013 end-page: 32 ident: bib55 article-title: Theoretical and experimental investigation on double basin double slope solar still publication-title: Desalination – start-page: 101222 year: 2021 ident: bib29 article-title: Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid publication-title: Case Stud. Therm. Eng. – volume: 28 start-page: 101204 year: 2020 ident: bib25 article-title: Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM's) for fresh water production publication-title: J. Energy Stor. – volume: 171 start-page: 1598 year: 2018 end-page: 1616 ident: bib66 article-title: Regeneration of liquid desiccant for solar air-conditioning and desalination using hybrid solar still publication-title: Energy Convers. Manag. – volume: 153 start-page: 1307 year: 2020 end-page: 1319 ident: bib58 article-title: Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still publication-title: Renew. Energy – volume: 441 start-page: 52 year: 2018 end-page: 61 ident: bib52 article-title: Performance evaluation of a humidification–dehumidification unit integrated with wick solar stills under different operating conditions publication-title: Desalination – year: 2012 ident: bib86 article-title: Experimental Methods for Engineers – volume: 506 start-page: 115019 year: 2021 ident: bib43 article-title: Enhancement of pyramid solar distiller performance using reflectors, cooling cycle, and dangled cords of wicks publication-title: Desalination – volume: 242 start-page: 128 year: 2009 end-page: 137 ident: bib67 article-title: Effect of various absorbing materials on the thermal performance of solar stills publication-title: Desalination – volume: 474 start-page: 114165 year: 2020 ident: bib91 article-title: Performance enhancement of a tubular solar still by utilizing wire mesh packing under harmonic motion publication-title: Desalination – year: 2021 ident: 10.1016/j.csite.2021.101705_bib16 – volume: 132 start-page: 119 year: 2019 ident: 10.1016/j.csite.2021.101705_bib90 article-title: Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.147 – volume: 167 start-page: 114723 year: 2020 ident: 10.1016/j.csite.2021.101705_bib2 article-title: An augmented productivity of solar distillers integrated to HDH unit: experimental implementation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114723 – volume: 174 start-page: 23 year: 2005 ident: 10.1016/j.csite.2021.101705_bib49 article-title: Thermal performance of a triple-basin solar still publication-title: Desalination doi: 10.1016/j.desal.2004.08.038 – volume: 56 start-page: 433 year: 2017 ident: 10.1016/j.csite.2021.101705_bib35 article-title: Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2017.08.014 – volume: 220 start-page: 592 year: 2008 ident: 10.1016/j.csite.2021.101705_bib76 article-title: A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region publication-title: Desalination doi: 10.1016/j.desal.2007.04.060 – volume: 136 start-page: 20 year: 2018 ident: 10.1016/j.csite.2021.101705_bib41 article-title: Review of different methods employed in pyramidal solar still desalination to augment the yield of freshwater publication-title: Desalin Water Treat doi: 10.5004/dwt.2018.23188 – volume: 82 start-page: 243 year: 1991 ident: 10.1016/j.csite.2021.101705_bib60 article-title: Performance analysis of a solar still coupled to a heat exchanger publication-title: Desalination doi: 10.1016/0011-9164(91)85188-Z – volume: 10 start-page: 100299 year: 2020 ident: 10.1016/j.csite.2021.101705_bib53 article-title: Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector publication-title: Groundwater Sust. Develop doi: 10.1016/j.gsd.2019.100299 – volume: 309 start-page: 27 year: 2013 ident: 10.1016/j.csite.2021.101705_bib56 article-title: Comparative study of double basin and single basin solar stills publication-title: Desalination doi: 10.1016/j.desal.2012.09.014 – volume: 125 start-page: 360 year: 2016 ident: 10.1016/j.csite.2021.101705_bib82 article-title: Modeling of a modified solar still system with enhanced productivity publication-title: Sol. Energy doi: 10.1016/j.solener.2015.12.025 – volume: 27 start-page: 101368 year: 2021 ident: 10.1016/j.csite.2021.101705_bib39 article-title: Experimental investigation of convex tubular solar still performance using wick and nanocomposites publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101368 – volume: 506 start-page: 115019 year: 2021 ident: 10.1016/j.csite.2021.101705_bib43 article-title: Enhancement of pyramid solar distiller performance using reflectors, cooling cycle, and dangled cords of wicks publication-title: Desalination doi: 10.1016/j.desal.2021.115019 – volume: 199 start-page: 112024 year: 2019 ident: 10.1016/j.csite.2021.101705_bib20 article-title: Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112024 – volume: 191 start-page: 358 year: 2017 ident: 10.1016/j.csite.2021.101705_bib63 article-title: The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.067 – volume: 38 start-page: 102564 year: 2021 ident: 10.1016/j.csite.2021.101705_bib23 article-title: Improving the tubular solar still performance using square and circular hollow fins with phase change materials publication-title: J. Energy Stor. doi: 10.1016/j.est.2021.102564 – volume: 212 start-page: 630 year: 2019 ident: 10.1016/j.csite.2021.101705_bib89 article-title: Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.015 – volume: 256 start-page: 120329 year: 2020 ident: 10.1016/j.csite.2021.101705_bib77 article-title: Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120329 – volume: 473 start-page: 114182 year: 2020 ident: 10.1016/j.csite.2021.101705_bib81 article-title: Improving the performance of a parabolic concentrator solar tracking-tubular solar still (PCST-TSS) using gravel as a sensible heat storage material publication-title: Desalination doi: 10.1016/j.desal.2019.114182 – volume: 201 start-page: 60 year: 2017 ident: 10.1016/j.csite.2021.101705_bib70 article-title: A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.047 – volume: 113 start-page: 684 year: 2017 ident: 10.1016/j.csite.2021.101705_bib75 article-title: Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.085 – start-page: 1 year: 2019 ident: 10.1016/j.csite.2021.101705_bib5 article-title: Effect of different wick materials on solar still performance–a review publication-title: Int. J. Ambient Energy – volume: 86 start-page: 268 year: 2014 ident: 10.1016/j.csite.2021.101705_bib9 article-title: Improving the performance of solar still by using nanofluids and providing vacuum publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.05.050 – volume: 5 start-page: 229 year: 2017 ident: 10.1016/j.csite.2021.101705_bib34 article-title: Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still publication-title: Groundwater Sust. Develop doi: 10.1016/j.gsd.2017.08.003 – volume: 43 start-page: 1639 year: 2002 ident: 10.1016/j.csite.2021.101705_bib69 article-title: Effect of climatic, design and operational parameters on the yield of a simple solar still publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(01)00120-0 – volume: 474 start-page: 114165 year: 2020 ident: 10.1016/j.csite.2021.101705_bib91 article-title: Performance enhancement of a tubular solar still by utilizing wire mesh packing under harmonic motion publication-title: Desalination doi: 10.1016/j.desal.2019.114165 – volume: 381 start-page: 111 year: 2016 ident: 10.1016/j.csite.2021.101705_bib48 article-title: Experimental investigation of corrugated absorber solar still with wick and reflectors publication-title: Desalination doi: 10.1016/j.desal.2015.12.001 – start-page: 9 year: 2013 ident: 10.1016/j.csite.2021.101705_bib78 article-title: Cost and production performance of a tubular solar still – year: 2017 ident: 10.1016/j.csite.2021.101705_bib1 – volume: 277 start-page: 281 year: 2011 ident: 10.1016/j.csite.2021.101705_bib46 article-title: Performance of finned and corrugated absorbers solar stills under Egyptian conditions publication-title: Desalination doi: 10.1016/j.desal.2011.04.042 – volume: 103 start-page: 965 year: 2015 ident: 10.1016/j.csite.2021.101705_bib47 article-title: Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.07.035 – volume: 171 start-page: 1598 year: 2018 ident: 10.1016/j.csite.2021.101705_bib66 article-title: Regeneration of liquid desiccant for solar air-conditioning and desalination using hybrid solar still publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.06.096 – volume: 156 start-page: 119917 year: 2020 ident: 10.1016/j.csite.2021.101705_bib93 article-title: CFD investigation of vapor transportation in a tubular solar still operating under vacuum publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.119917 – volume: 40 start-page: 102782 year: 2021 ident: 10.1016/j.csite.2021.101705_bib27 article-title: Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters publication-title: J. Energy Stor. doi: 10.1016/j.est.2021.102782 – year: 2012 ident: 10.1016/j.csite.2021.101705_bib86 – volume: 78 start-page: 176 year: 2017 ident: 10.1016/j.csite.2021.101705_bib7 article-title: The cooling techniques of the solar stills' glass covers–a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.085 – volume: 150 start-page: 440 year: 2021 ident: 10.1016/j.csite.2021.101705_bib12 article-title: Enhancing the wick solar still performance using half barrel and corrugated absorbers publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2021.04.036 – year: 2021 ident: 10.1016/j.csite.2021.101705_bib24 – volume: 4 start-page: 7234 year: 2017 ident: 10.1016/j.csite.2021.101705_bib45 article-title: Experimental analysis of single basin single slope finned acrylic solar still publication-title: Mater. Today: Proceedings – volume: 108 start-page: 1268 year: 2016 ident: 10.1016/j.csite.2021.101705_bib4 article-title: Performance enhancement of wick solar still using rejected water from humidification-dehumidification unit and film cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.179 – volume: 242 start-page: 128 year: 2009 ident: 10.1016/j.csite.2021.101705_bib67 article-title: Effect of various absorbing materials on the thermal performance of solar stills publication-title: Desalination doi: 10.1016/j.desal.2008.03.036 – year: 2003 ident: 10.1016/j.csite.2021.101705_bib87 – volume: 32 start-page: 102008 year: 2020 ident: 10.1016/j.csite.2021.101705_bib15 article-title: Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: experimental implementation publication-title: J. Energy Stor. doi: 10.1016/j.est.2020.102008 – volume: 82 start-page: 3483 year: 2018 ident: 10.1016/j.csite.2021.101705_bib6 article-title: Applications of nanofluids in solar energy: a review of recent advances publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.108 – volume: 40 start-page: 1885 year: 1999 ident: 10.1016/j.csite.2021.101705_bib59 article-title: Effect of water depth on the performance of an inverted absorber double basin solar still publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(99)00047-3 – start-page: 101222 year: 2021 ident: 10.1016/j.csite.2021.101705_bib29 article-title: Enhancing the solar still performance via rotating wick belt and quantum dots nanofluid publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101222 – volume: 103 start-page: 965 year: 2015 ident: 10.1016/j.csite.2021.101705_bib50 article-title: Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.07.035 – volume: 220 start-page: 669 year: 2008 ident: 10.1016/j.csite.2021.101705_bib73 article-title: Sun tracking system for productivity enhancement of solar still publication-title: Desalination doi: 10.1016/j.desal.2007.02.047 – volume: 188 start-page: 116652 year: 2021 ident: 10.1016/j.csite.2021.101705_bib28 article-title: Experimental study on the performance of trays solar still with cracks and reflectors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116652 – volume: 145 start-page: 2409 year: 2020 ident: 10.1016/j.csite.2021.101705_bib33 article-title: Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.160 – volume: 30 start-page: 101522 year: 2020 ident: 10.1016/j.csite.2021.101705_bib38 article-title: Experimental study on single slope single basin solar still using TiO2 nano layer for natural clean water invention publication-title: J. Energy Stor. doi: 10.1016/j.est.2020.101522 – volume: 203 start-page: 164 year: 2020 ident: 10.1016/j.csite.2021.101705_bib26 article-title: New design of trays solar still with enhanced evaporation methods–Comprehensive study publication-title: Sol. Energy doi: 10.1016/j.solener.2020.04.039 – volume: 129 start-page: 11 year: 2016 ident: 10.1016/j.csite.2021.101705_bib71 article-title: Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.10.013 – volume: 170 start-page: 115020 year: 2020 ident: 10.1016/j.csite.2021.101705_bib14 article-title: An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115020 – volume: 418 start-page: 71 year: 2017 ident: 10.1016/j.csite.2021.101705_bib30 article-title: Improving the basin type solar still performances using a vertical rotating wick publication-title: Desalination doi: 10.1016/j.desal.2017.05.030 – start-page: 1 year: 2021 ident: 10.1016/j.csite.2021.101705_bib18 – volume: 144 start-page: 322 year: 2020 ident: 10.1016/j.csite.2021.101705_bib11 article-title: Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2020.07.044 – volume: 148 start-page: 796 year: 2021 ident: 10.1016/j.csite.2021.101705_bib31 article-title: Performance evaluation of a vertical rotating wick solar still publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2021.02.004 – volume: 31 start-page: 101744 year: 2020 ident: 10.1016/j.csite.2021.101705_bib62 article-title: Improving the trays solar still performance using reflectors and phase change material with nanoparticles publication-title: J. Energy Stor. doi: 10.1016/j.est.2020.101744 – volume: 225 start-page: 135 year: 2018 ident: 10.1016/j.csite.2021.101705_bib85 article-title: Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.014 – volume: 114 start-page: 8 year: 2015 ident: 10.1016/j.csite.2021.101705_bib84 article-title: Modeling of a novel concentrated solar still enhanced with a porous evaporator and an internal condenser publication-title: Sol. Energy doi: 10.1016/j.solener.2015.01.021 – volume: 275 start-page: 123200 year: 2020 ident: 10.1016/j.csite.2021.101705_bib17 article-title: Rotating discs solar still: new mechanism of desalination publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123200 – volume: 319 start-page: 25 year: 2013 ident: 10.1016/j.csite.2021.101705_bib55 article-title: Theoretical and experimental investigation on double basin double slope solar still publication-title: Desalination doi: 10.1016/j.desal.2013.03.029 – volume: 88 start-page: 391 year: 2016 ident: 10.1016/j.csite.2021.101705_bib79 article-title: Productivity enhancements of compound parabolic concentrator tubular solar stills publication-title: Renew. Energy doi: 10.1016/j.renene.2015.11.051 – start-page: 121758 year: 2020 ident: 10.1016/j.csite.2021.101705_bib88 article-title: Nano-coated condensation surfaces ٍenhanced the productivity of the single-slope solar still by changing the condensation mechanism publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121758 – volume: 25 start-page: 100905 year: 2021 ident: 10.1016/j.csite.2021.101705_bib37 article-title: Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100905 – volume: 329 start-page: 68 year: 2013 ident: 10.1016/j.csite.2021.101705_bib54 article-title: Effect of orientation on the performance of a symmetric solar still with a double effect solar still (comparison study) publication-title: Desalination doi: 10.1016/j.desal.2013.09.011 – volume: 47 start-page: 101405 year: 2021 ident: 10.1016/j.csite.2021.101705_bib13 article-title: Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles publication-title: Sustain. Energy Technol. Asses. – volume: 277 start-page: 281 year: 2011 ident: 10.1016/j.csite.2021.101705_bib74 article-title: Performance of finned and corrugated absorbers solar stills under Egyptian conditions publication-title: Desalination doi: 10.1016/j.desal.2011.04.042 – volume: 441 start-page: 52 year: 2018 ident: 10.1016/j.csite.2021.101705_bib52 article-title: Performance evaluation of a humidification–dehumidification unit integrated with wick solar stills under different operating conditions publication-title: Desalination doi: 10.1016/j.desal.2018.04.024 – volume: 24 start-page: 100850 year: 2021 ident: 10.1016/j.csite.2021.101705_bib21 article-title: Experimental investigation of a new design of drum solar still with reflectors under different conditions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100850 – volume: 148 start-page: 950 year: 2021 ident: 10.1016/j.csite.2021.101705_bib42 article-title: Improving the performance of pyramid solar still using rotating four cylinders and three electric heaters publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2021.02.022 – volume: 191 start-page: 358 year: 2017 ident: 10.1016/j.csite.2021.101705_bib65 article-title: The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.067 – volume: 17 start-page: 1067 year: 1992 ident: 10.1016/j.csite.2021.101705_bib92 article-title: Modelling and performance of a tubular multiwick solar still publication-title: Energy doi: 10.1016/0360-5442(92)90023-S – volume: 39 start-page: 100712 year: 2020 ident: 10.1016/j.csite.2021.101705_bib61 article-title: Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions publication-title: Sustain. Energy Technol. Asses. – volume: 414 start-page: 46 year: 2017 ident: 10.1016/j.csite.2021.101705_bib80 article-title: Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement publication-title: Desalination doi: 10.1016/j.desal.2017.03.035 – volume: 216 start-page: 295 year: 2021 ident: 10.1016/j.csite.2021.101705_bib40 article-title: Enhancement of hemispherical solar still productivity using iron, zinc and copper trays publication-title: Sol. Energy doi: 10.1016/j.solener.2021.01.038 – volume: 81 start-page: 136 year: 2018 ident: 10.1016/j.csite.2021.101705_bib57 article-title: Pyramid solar still: a comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.07.004 – volume: 25 start-page: 607 year: 2002 ident: 10.1016/j.csite.2021.101705_bib68 article-title: An experimental study on solar distillation in a single slope basin still by surface heating the water mass publication-title: Renew. Energy doi: 10.1016/S0960-1481(01)00094-5 – volume: 78 start-page: 493 year: 2014 ident: 10.1016/j.csite.2021.101705_bib10 article-title: Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.11.013 – year: 2021 ident: 10.1016/j.csite.2021.101705_bib19 – start-page: 123468 year: 2020 ident: 10.1016/j.csite.2021.101705_bib3 article-title: On the different packing materials of humidification–dehumidification thermal desalination techniques – a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123468 – volume: 26 start-page: 100978 year: 2021 ident: 10.1016/j.csite.2021.101705_bib72 article-title: Design, development and techno economic analysis of novel parabolic trough collector for low-temperature water heating applications publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100978 – volume: 153 start-page: 1307 year: 2020 ident: 10.1016/j.csite.2021.101705_bib58 article-title: Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still publication-title: Renew. Energy doi: 10.1016/j.renene.2020.02.095 – volume: 147 start-page: 181 year: 2017 ident: 10.1016/j.csite.2021.101705_bib83 article-title: Improving the productivity of solar still by using water fan and wind turbine publication-title: Sol. Energy doi: 10.1016/j.solener.2017.03.041 – volume: 58 start-page: 1449 year: 2019 ident: 10.1016/j.csite.2021.101705_bib51 article-title: Rotating-wick solar still with mended evaporation technics: experimental approach publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2019.11.018 – volume: 28 start-page: 101204 year: 2020 ident: 10.1016/j.csite.2021.101705_bib25 article-title: Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM's) for fresh water production publication-title: J. Energy Stor. doi: 10.1016/j.est.2020.101204 – volume: 148 start-page: 579 year: 2021 ident: 10.1016/j.csite.2021.101705_bib22 article-title: Improving the performance of tubular solar still using rotating drum–Experimental and theoretical investigation publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2020.11.039 – volume: 379 start-page: 10 year: 2016 ident: 10.1016/j.csite.2021.101705_bib44 article-title: Experimental investigation on the performance of solar still augmented with pin-finned wick publication-title: Desalination doi: 10.1016/j.desal.2015.10.010 – start-page: n/a year: 2020 ident: 10.1016/j.csite.2021.101705_bib8 article-title: Enhancement of the yield of solar still with the use of solar pond: a review publication-title: Heat Transfer – volume: 75 start-page: 77 year: 2017 ident: 10.1016/j.csite.2021.101705_bib36 article-title: Numerical investigation of modified solar still using nanofluids and external condenser publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2017.01.017 – volume: 168 start-page: 371 year: 2018 ident: 10.1016/j.csite.2021.101705_bib32 article-title: Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.05.011 – year: 2020 ident: 10.1016/j.csite.2021.101705_bib64 |
SSID | ssj0001738144 |
Score | 2.5486577 |
Snippet | It is known to us that the problem of freshwater shortage is constantly exacerbated by the rapid population increase and the great diversity of different... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101705 |
SubjectTerms | Drum distiller Nanoparticle coating Parabolic solar concentrator PCM Tubular solar still |
SummonAdditionalLinks | – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwyIpygveUBiadQkdhxnBASqkGABpG6R7dpQVCVVCQP_hx_KneOUsDCwRElk5-G73Hfn3H0m5ByijMKA5xBlTkCAwuBT1JplEXeJygDxnfJcevcPYvzM7ybZZI1cd7UwmFYZbH9r0721DmdGYTRHi9ls9JimCaBPPkmRn0ZIpN1mXPoivsnVzzxLDpjk13TF9hF26MiHfJqX8T9pU4A6TzmEy9j1AMrz-Pdwqoc9t9tkKziN9LJ9rh2yZqtdstmjEtwjXzc9qn5qq1eUJh7R2tHmQ2O2KX2v_baZzed08VMxQDH5_YUua_wtDzvmc44kisshrVQFQXXInbugpvYNhhQJwzUyCodLGix-xGliiOCHVFVTungFeKRtWTEFr9gr-j55vr15uh5HYQWGyPCENxGbSqWlsczFwuWF0wnLXapkAXZUx9YCwBuIr5WNxTSRkmcsLlRSaGTJZ7mV7ICsV3VlDwnllovYgMZocMGQ1M8ZabSwyiYuk7EdkLQb9tIEenJcJWNednlob6WXVYmyKltZDchw1WnRsnP83fwK5blqitTa_kS9fCnDYJZsCi6dkBIUteBOKiSAw9dnFsyXMHpARKcN5S9NhUvN_rr70X87HpONFIsu_MTPCVlvlh_2FFyhRp95Xf8GZHMI8g priority: 102 providerName: Elsevier |
Title | Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles' coating, parabolic solar concentrator, and phase change material |
URI | https://dx.doi.org/10.1016/j.csite.2021.101705 https://doaj.org/article/3d72768883594f8a8595f06f3e5106cb |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveUBiaUQcO44zUlRUkGACqVtkuzYtqpKqpAP_hx_KnZNCJlhYrCRy7Mh38Xdnn78j5BK8jNyC5RClXoKDwuFXNIankfBMp4D4XgcuvccnOXoRD-N03En1hTFhDT1wM3DXfAIIK8FP42kuvNLIx-Vj6bkDbZLW4OwLmNdxpsLqSgZIFDK5JgkTEUuz8ZpyKAR32bA1C44_C0RDmLyuA0uBvb-DTh3EudslO62pSG-aT9wjG67cJ9sdAsED8jnsEPRTV05RhnhHK0_rlcEYU_pehbKezed08XNOgGLI-ytdVrgZDxf2Y47Uics-LXUJrnQbMXdFbRUq9CnShBvkEW6btHjkEReHwW_vU11O6GIKoEibw8QUbOGg3ofk5W74fDuK2rwLkRVM1BGfKG2UdRzHOcu9YTzziVY5zJ4mdg5g3YJXrV0sJ0wpkfI41yw3yI3PM6f4Edksq9IdEyqckLEFPTFgeCGVn7fKGum0Yz5VseuRZD3shW1JyTE3xrxYR5-9FUFWBcqqaGTVI_3vlxYNJ8fv1Qcoz--qSKgdHoCaFe1gFn-pWY_ItTYUrW3S2BzQ1Oy33k_-o_dTspXgsYuw9HNGNuvlyp2DMVSbi6D3UN6PB19AcwgA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeEE-xUMAHJC4bbRInjnNsq1ZbaHuhlfZm2V67XbRKVtv0wP_hhzLjOG249MAlSiI7D89kvhln5jPAV4wyaoueQ1J6gQEKx0_RGF4mhc90iYjvdeDSO78Q86vi-6Jc7MDRUAtDaZXR9vc2PVjreGYWR3O2Wa1mP_M8Q_SpFjnx0wgpnsBT9AYq-jpPF4cPEy0VglJY1JU6JNRjYB8KeV42_KXNEesC5xCtYzdCqEDkPwKqEficvIQX0WtkB_2DvYId17yGvRGX4Bv4czzi6meuuSFx0hFrPevuDKWbsts2bLvVes02DyUDjLLfr9m2pf_yuGN_r4lFcTtljW4wqo7Jc9-YbUODKSPGcEOUwvGSlqofaZ4YQ_gp082SbW4QH1lfV8zQLQ6a_hauTo4vj-ZJXIIhsUVWdAlfSm2kddynwle1NxmvfK5ljYbUpM4hwlsMsLVLxTKTsih5WuusNkSTzysn-TvYbdrGvQdWuEKkFlXGoA9GrH7eSmuE0y7zpUzdBPJh2JWN_OS0TMZaDYlov1SQlSJZqV5WE5jed9r09ByPNz8ked43JW7tcKLdXqs4mIov0acTUqKm1oWXmhjg6PW5Q_slrJmAGLRB_aOqeKnVY3f_8L8dv8Cz-eX5mTo7vfjxEZ7nVIERZoH2Ybfb3rlP6Bd15nPQ-7-18wwS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+enhancement+of+tubular+solar+still+performance+using+rotating+cylinder%2C+nanoparticles%27+coating%2C+parabolic+solar+concentrator%2C+and+phase+change+material&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=F.A.+Essa&rft.au=A.S.+Abdullah&rft.au=Wissam+H.+Alawee&rft.au=A.+Alarjani&rft.date=2022-01-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=29&rft.spage=101705&rft_id=info:doi/10.1016%2Fj.csite.2021.101705&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3d72768883594f8a8595f06f3e5106cb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |