Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions
In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB). SF33, with the boiling point of 33.4 °C, is chosen as the liquid for the immersion cooling. Comparison of the SF33 immersion cooling and forced a...
Saved in:
Published in | Case studies in thermal engineering Vol. 34; p. 102034 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2022.102034 |
Cover
Loading…
Abstract | In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB). SF33, with the boiling point of 33.4 °C, is chosen as the liquid for the immersion cooling. Comparison of the SF33 immersion cooling and forced air cooling (FAC) for the 18650 LIB under 2C, 4C and dynamic load conditions are made. It is found that the immersion cooling better cools the battery under all these conditions. Under 4C discharging, the maximum cell temperature rise is 14.06 °C for the FAC, while is 4.97 °C for the SF33 immersion cooling. As the temperature of SF33 basically governs the cell temperature, the SF33 temperature should not be too low. This study demonstrates that the LIB has non-negligible power losses under SF33 temperature of 10 °C and 15 °C, compared with the temperatures above 20 °C. Lastly, the two-phase boiling heat transfer mechanisms associated with immersion cooling are discussed with bubble dynamics analysis. It is found under a higher C rate, more aggressive boiling heat transfer is induced. The battery temperature is controlled to be below 34.5 °C even under 7C discharging condition. |
---|---|
AbstractList | In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB). SF33, with the boiling point of 33.4 °C, is chosen as the liquid for the immersion cooling. Comparison of the SF33 immersion cooling and forced air cooling (FAC) for the 18650 LIB under 2C, 4C and dynamic load conditions are made. It is found that the immersion cooling better cools the battery under all these conditions. Under 4C discharging, the maximum cell temperature rise is 14.06 °C for the FAC, while is 4.97 °C for the SF33 immersion cooling. As the temperature of SF33 basically governs the cell temperature, the SF33 temperature should not be too low. This study demonstrates that the LIB has non-negligible power losses under SF33 temperature of 10 °C and 15 °C, compared with the temperatures above 20 °C. Lastly, the two-phase boiling heat transfer mechanisms associated with immersion cooling are discussed with bubble dynamics analysis. It is found under a higher C rate, more aggressive boiling heat transfer is induced. The battery temperature is controlled to be below 34.5 °C even under 7C discharging condition. |
ArticleNumber | 102034 |
Author | Li, Yulong Bai, Minli Zhou, Zhifu Gao, Linsong Li, Yang Li, Yubai Hu, Leiming Liu, Xuanyu Song, Yongchen |
Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China – sequence: 2 givenname: Zhifu surname: Zhou fullname: Zhou, Zhifu organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 3 givenname: Leiming surname: Hu fullname: Hu, Leiming organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, USA – sequence: 4 givenname: Minli surname: Bai fullname: Bai, Minli organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China – sequence: 5 givenname: Linsong surname: Gao fullname: Gao, Linsong organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China – sequence: 6 givenname: Yulong surname: Li fullname: Li, Yulong organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China – sequence: 7 givenname: Xuanyu surname: Liu fullname: Liu, Xuanyu organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China – sequence: 8 givenname: Yubai orcidid: 0000-0001-8949-1122 surname: Li fullname: Li, Yubai email: liyubai2021@126.com organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China – sequence: 9 givenname: Yongchen surname: Song fullname: Song, Yongchen email: songyc@dlut.edu.cn organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China |
BookMark | eNqFkV1rFTEQhoNUsNb-Am_yB_aYz_248EJK1UKhNxW8C9nJ7Okc9mxqkhX77832iIgXepVhMs8DM-9rdrbEBRl7K8VOCtm-O-wgU8GdEkrVjhLavGDnSknTSNt9PfujfsUucz4IIWSne2nMOVuvfzxioiMuxc88lzUQZh4nPtO3lQKn4xFTprhwiHGmZc-nmLjsWyvqSHmg9dhsv6MvBdMTX5eAiQeaJkzVWasMDz7tNxLiEqjU6fyGvZz8nPHy13vBvny8vr_63Nzefbq5-nDbgJGmNBpsmGAYpR28Da2QqO2ojR3NoHrhQwtS-CFYazyYYDEMfWdtp9p-RIk46gt2c_KG6A_use7p05OLntxzI6a986kQzOi0UK1SrQTrB9N3oh9FG0bEyWKnrYfq0icXpJhzwum3Twq3BeEO7jkItwXhTkFUaviLAip-O0JJnub_sO9PLNYTfSdMLgPhAhgoIZS6A_2T_wkJPKji |
CitedBy_id | crossref_primary_10_1155_2023_6661693 crossref_primary_10_3390_batteries11020059 crossref_primary_10_1016_j_mtsust_2023_100443 crossref_primary_10_1016_j_enconman_2024_119149 crossref_primary_10_1080_15435075_2023_2195921 crossref_primary_10_1016_j_apenergy_2024_124083 crossref_primary_10_3390_batteries10100363 crossref_primary_10_1002_ente_202301646 crossref_primary_10_1016_j_est_2024_112799 crossref_primary_10_1016_j_csite_2023_103749 crossref_primary_10_1016_j_est_2023_110050 crossref_primary_10_1016_j_csite_2024_104837 crossref_primary_10_1016_j_rineng_2025_104377 crossref_primary_10_3390_wevj15040147 crossref_primary_10_1016_j_tsep_2023_101877 crossref_primary_10_1016_j_est_2024_111061 crossref_primary_10_1016_j_csite_2024_104759 crossref_primary_10_3390_en17102418 crossref_primary_10_1002_ente_202401930 crossref_primary_10_1016_j_applthermaleng_2023_121737 crossref_primary_10_1016_j_est_2022_105952 crossref_primary_10_3390_batteries9080400 crossref_primary_10_1016_j_rser_2023_114052 crossref_primary_10_1016_j_est_2025_116010 crossref_primary_10_1016_j_est_2025_115400 crossref_primary_10_3390_sym15010092 crossref_primary_10_1016_j_est_2025_115445 crossref_primary_10_1016_j_est_2023_109410 crossref_primary_10_1088_2631_8695_ad734d crossref_primary_10_3390_electronics12244931 crossref_primary_10_1016_j_est_2024_115072 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126824 crossref_primary_10_1063_5_0201438 crossref_primary_10_2298_TSCI240506201X crossref_primary_10_1016_j_csite_2023_103880 crossref_primary_10_1007_s10973_025_14040_y crossref_primary_10_1016_j_energy_2023_129962 crossref_primary_10_1016_j_molliq_2023_122044 crossref_primary_10_1016_j_rser_2024_114989 crossref_primary_10_1016_j_renene_2024_120187 crossref_primary_10_1016_j_applthermaleng_2024_124453 crossref_primary_10_1016_j_est_2024_111289 crossref_primary_10_1007_s40997_024_00759_w crossref_primary_10_1016_j_csite_2024_105509 crossref_primary_10_1016_j_ijthermalsci_2024_109636 crossref_primary_10_1115_1_4063848 crossref_primary_10_1016_j_est_2023_108751 crossref_primary_10_3390_sym14102126 crossref_primary_10_1016_j_est_2023_106732 crossref_primary_10_1007_s10973_024_13044_4 crossref_primary_10_1016_j_applthermaleng_2023_121184 crossref_primary_10_1016_j_csite_2024_104930 crossref_primary_10_1088_1742_6596_2811_1_012008 crossref_primary_10_1016_j_est_2023_108636 crossref_primary_10_1016_j_rser_2024_115268 crossref_primary_10_1016_j_est_2023_108748 crossref_primary_10_1016_j_applthermaleng_2023_120303 crossref_primary_10_1016_j_psep_2024_04_015 crossref_primary_10_1016_j_apenergy_2024_124173 crossref_primary_10_1007_s11630_024_2010_4 crossref_primary_10_1016_j_est_2024_111814 crossref_primary_10_3390_app13052775 crossref_primary_10_1016_j_jtice_2023_104671 crossref_primary_10_1016_j_est_2024_112588 crossref_primary_10_1080_15435075_2023_2300376 crossref_primary_10_12688_materialsopenres_17559_1 crossref_primary_10_1016_j_est_2023_110184 crossref_primary_10_1016_j_applthermaleng_2024_123475 crossref_primary_10_3390_batteries9110559 crossref_primary_10_3390_sym15071322 crossref_primary_10_1016_j_csite_2023_102960 crossref_primary_10_1016_j_csite_2023_103697 crossref_primary_10_1016_j_energy_2025_135343 crossref_primary_10_1016_j_tsep_2022_101569 crossref_primary_10_1615_JEnhHeatTransf_2024051598 crossref_primary_10_1007_s11431_024_2690_7 crossref_primary_10_1016_j_applthermaleng_2023_120187 crossref_primary_10_1016_j_est_2023_107499 crossref_primary_10_1016_j_jclepro_2023_136024 crossref_primary_10_1016_j_icheatmasstransfer_2024_107980 |
Cites_doi | 10.3390/pr9122263 10.1016/j.enconman.2020.112569 10.1016/j.jpowsour.2004.09.033 10.1016/j.ijheatmasstransfer.2018.04.157 10.1016/j.ijheatmasstransfer.2018.12.024 10.1016/S0378-7753(02)00618-3 10.1016/j.applthermaleng.2021.117586 10.1016/j.electacta.2017.06.162 10.1002/er.5497 10.1016/j.ijheatmasstransfer.2019.02.021 10.3390/batteries8020019 10.1016/j.jpowsour.2014.10.007 10.1016/j.ijheatmasstransfer.2017.09.092 10.1016/j.jpowsour.2015.05.055 10.1016/j.jpowsour.2017.07.067 10.1016/j.applthermaleng.2019.04.033 10.1002/er.5402 10.1016/j.jpowsour.2019.226879 10.1016/j.enconman.2015.06.056 10.1149/1.1393888 10.1016/j.enconman.2019.112280 10.1016/j.applthermaleng.2015.02.068 10.1016/j.jpowsour.2014.01.006 10.1016/j.est.2022.104113 10.1016/j.jpowsour.2013.01.095 10.1016/j.jpowsour.2014.07.086 10.1016/j.jpowsour.2020.228545 10.1016/j.enconman.2013.12.006 10.1016/j.energy.2014.04.046 10.1016/j.enconman.2019.112205 10.1016/j.ijthermalsci.2015.11.005 10.1016/S0378-7753(02)00048-4 10.1016/j.ijheatmasstransfer.2017.04.026 10.3390/en6052709 10.1016/S0378-7753(02)00363-4 10.1016/j.csite.2020.100655 10.1016/j.est.2021.103234 10.1016/j.jpowsour.2022.231094 10.1016/j.applthermaleng.2018.12.020 10.1016/j.jpowsour.2011.02.076 10.1016/j.ijheatmasstransfer.2017.02.057 10.1016/j.energy.2015.12.064 10.1016/j.jpowsour.2011.06.090 10.1016/j.enconman.2018.09.025 10.1016/j.icheatmasstransfer.2018.12.020 10.1149/2.0721810jes 10.1016/j.enconman.2017.02.022 10.1016/j.applthermaleng.2018.11.009 10.1016/j.electacta.2003.10.016 10.1016/j.jpowsour.2013.09.060 10.1016/j.applthermaleng.2015.10.015 10.1016/j.applthermaleng.2013.11.048 10.1016/j.apenergy.2014.01.075 10.1016/S0378-7753(02)00473-1 10.1016/j.applthermaleng.2015.01.009 10.1016/j.enconman.2020.113145 10.1016/j.applthermaleng.2017.06.059 10.1016/S0378-7753(02)00200-8 10.1016/j.applthermaleng.2017.05.060 10.1016/S0378-7753(02)00474-3 10.1016/j.jpowsour.2020.229116 10.1016/j.enconman.2017.08.016 10.1016/j.solener.2016.01.011 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2022.102034 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_30262261c5a948708b06dbeef5e735ac 10_1016_j_csite_2022_102034 S2214157X22002805 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-3c5dfc9b159a5d601e35b345b49280ad6c10a9d554ac4d5ed987557268be1eeb3 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:30:03 EDT 2025 Tue Jul 01 02:28:33 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Tue Jul 25 20:58:48 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Thermal management Two-phase heat transfer Pool boiling Immersion cooling |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-3c5dfc9b159a5d601e35b345b49280ad6c10a9d554ac4d5ed987557268be1eeb3 |
ORCID | 0000-0001-8949-1122 |
OpenAccessLink | https://doaj.org/article/30262261c5a948708b06dbeef5e735ac |
ParticipantIDs | doaj_primary_oai_doaj_org_article_30262261c5a948708b06dbeef5e735ac crossref_primary_10_1016_j_csite_2022_102034 crossref_citationtrail_10_1016_j_csite_2022_102034 elsevier_sciencedirect_doi_10_1016_j_csite_2022_102034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Qu, He, Tao (bib4) 2014; 255 Zhao, Gu, Liu (bib19) 2015; 273 Wang, Rao, Huo, Wang (bib52) 2016; 102 Chopra, Pathak, Tyagi, Pandey, Anand, Sari (bib39) 2020; 203 Zhou, Dai, Liu, Fu, Du (bib57) 2020; 473 Zhao, Rao, Li (bib31) 2015; 103 van Gils, Danilov, Notten, Speetjens, Nijmeijer (bib56) 2014; 79 Hong, Zhang, Chen, Wang (bib13) 2018; 116 Tran, Harmand, Desmet, Filangi (bib20) 2014; 63 Chen, Wang, Song, Chen (bib1) 2017; 111 Ouyang, Liu, Chen, Weng, Wang (bib3) 2018; 165 Li, Zhao, Duan, Panchal, Yuan, Fraser, Fowler, Chen (bib33) 2022; 49 Babapoor, Azizi, Karimi (bib45) 2015; 82 Kong, Peng, Ping, Du, Chen, Wen (bib59) 2020; 204 Zhao, Liu, Gu, Zhai, Ma (bib12) 2020; 44 Huo, Pang, Rao (bib18) 2020; 44 Huang, Mei, Lu, Huang, Yu, Chen, Roskilly (bib32) 2019; 157 Al-Zareer, Dincer, Rosen (bib55) 2017; 363 Shim, Kostecki, Richardson, Song, Striebel (bib63) 2002; 112 Al Hallaj, Selman (bib40) 2000; 147 Akkaldevi, Chitta, Jaidi, Panchal, Fowler, Fraser (bib34) 2021; 2 Liao, Zhang, Li, Zhang, Habetler (bib10) 2019; 436 Mahamud, Park (bib26) 2011; 196 Al-Zareer, Dincer, Rosen (bib22) 2018; 126 Liu, Wei, He, Zhao (bib28) 2017; 150 Wei, Qu, Qiu, Wang, Cao (bib51) 2019; 135 Pesaran (bib5) 2002; 110 Wang, Zhang, Jia, Yang (bib43) 2015; 78 Kim, Oh, Lee (bib8) 2019; 149 Siahkamari, Rahimi, Azimi, Banibayat (bib38) 2019; 100 Ramadass, Haran, White, Popov (bib7) 2002; 112 Tran, Cunanan, Panchal, Fraser, Fowler (bib36) 2021; 9 Wang, Zhang, Xia (bib42) 2017; 109 Samimi, Babapoor, Azizi, Karimi (bib46) 2016; 96 Mohammadian, He, Zhang (bib49) 2015; 293 Roe, Feng, White, Li, Wang, Rui, Li, Zhang, Null, Parkes, Patel, Wang, Wang, Ouyang, Offer, Wu (bib67) 2022; 525 Ramadass, Haran, White, Popov (bib6) 2002; 112 Chen, Jiang, Kim, Yang, Pesaran (bib14) 2016; 94 Zhang, Xu, Jow (bib64) 2003; 115 Tian, Yang, Luo, Wang, Zhang, Fan, Wu, Xing (bib47) 2016; 127 Choudhari, Dhoble, Panchal, Fowler, Fraser (bib41) 2021; 43 Wang, Wu (bib53) 2020; 207 Al-Zareer, Dincer, Rosen (bib54) 2017; 247 Manh-Kien, Satyam, Tran Dinh, Kirti, Roydon, Michael (bib35) 2022; 8 Chen, Wang, Song, Chen (bib24) 2017; 123 Zhang, Xu, Jow (bib65) 2004; 49 bib61 bib62 Rao, Qian, Kuang, Li (bib29) 2017; 123 Chen, Song, Wei, Wang (bib9) 2019; 132 Li, Zhou, Wu (bib15) 2019; 147 Wu, Liu, Liu, Rao, Deng, Wang, Qi, Wang (bib17) 2020; 221 Khateeb, Amiruddin, Farid, Selman, Al-Hallaj (bib48) 2005; 142 Chen, Li (bib60) 2014; 247 El-Genk, Pourghasemi (bib66) 2020; 15 Putra, Sandi, Ariantara, Abdullah, Mahlia (bib21) 2020; 21 Yu, Yang, Cheng, Li (bib25) 2014; 270 Ping, Peng, Kong, Chen, Wen (bib37) 2018; 176 Jarrett, Kim (bib30) 2011; 196 Fathabadi (bib2) 2014; 70 Wu, Liu, Wang, Wan (bib27) 2002; 109 Wu, Yang, Zhang, Chen, Wang (bib50) 2017; 138 Zhang, Li, Zhang, Wu, Rao, Guo, Zhou (bib11) 2020; 480 Yang, Hu, Qing, Chen (bib58) 2013; 6 Ling, Chen, Fang, Zhang, Xu, Gao, Wang (bib44) 2014; 121 Chitta, Akkaldevi, Jaidi, Panchal, Fowler, Fraser (bib16) 2021; 199 Xun, Liu, Jiao (bib23) 2013; 233 Putra (10.1016/j.csite.2022.102034_bib21) 2020; 21 Chen (10.1016/j.csite.2022.102034_bib24) 2017; 123 Wu (10.1016/j.csite.2022.102034_bib50) 2017; 138 Wu (10.1016/j.csite.2022.102034_bib27) 2002; 109 Al-Zareer (10.1016/j.csite.2022.102034_bib55) 2017; 363 Chen (10.1016/j.csite.2022.102034_bib14) 2016; 94 Chen (10.1016/j.csite.2022.102034_bib60) 2014; 247 Kong (10.1016/j.csite.2022.102034_bib59) 2020; 204 Hong (10.1016/j.csite.2022.102034_bib13) 2018; 116 Ramadass (10.1016/j.csite.2022.102034_bib6) 2002; 112 Huang (10.1016/j.csite.2022.102034_bib32) 2019; 157 Tian (10.1016/j.csite.2022.102034_bib47) 2016; 127 Al Hallaj (10.1016/j.csite.2022.102034_bib40) 2000; 147 Wang (10.1016/j.csite.2022.102034_bib53) 2020; 207 Zhao (10.1016/j.csite.2022.102034_bib19) 2015; 273 Roe (10.1016/j.csite.2022.102034_bib67) 2022; 525 Zhao (10.1016/j.csite.2022.102034_bib31) 2015; 103 Jarrett (10.1016/j.csite.2022.102034_bib30) 2011; 196 Wang (10.1016/j.csite.2022.102034_bib52) 2016; 102 Kim (10.1016/j.csite.2022.102034_bib8) 2019; 149 Akkaldevi (10.1016/j.csite.2022.102034_bib34) 2021; 2 Mohammadian (10.1016/j.csite.2022.102034_bib49) 2015; 293 Wang (10.1016/j.csite.2022.102034_bib42) 2017; 109 Shim (10.1016/j.csite.2022.102034_bib63) 2002; 112 Li (10.1016/j.csite.2022.102034_bib15) 2019; 147 Li (10.1016/j.csite.2022.102034_bib33) 2022; 49 Siahkamari (10.1016/j.csite.2022.102034_bib38) 2019; 100 Xun (10.1016/j.csite.2022.102034_bib23) 2013; 233 Tran (10.1016/j.csite.2022.102034_bib36) 2021; 9 Liao (10.1016/j.csite.2022.102034_bib10) 2019; 436 Ouyang (10.1016/j.csite.2022.102034_bib3) 2018; 165 Zhang (10.1016/j.csite.2022.102034_bib11) 2020; 480 Zhao (10.1016/j.csite.2022.102034_bib12) 2020; 44 Ling (10.1016/j.csite.2022.102034_bib44) 2014; 121 Mahamud (10.1016/j.csite.2022.102034_bib26) 2011; 196 Rao (10.1016/j.csite.2022.102034_bib29) 2017; 123 Chen (10.1016/j.csite.2022.102034_bib9) 2019; 132 Ping (10.1016/j.csite.2022.102034_bib37) 2018; 176 Choudhari (10.1016/j.csite.2022.102034_bib41) 2021; 43 Manh-Kien (10.1016/j.csite.2022.102034_bib35) 2022; 8 Zhang (10.1016/j.csite.2022.102034_bib64) 2003; 115 Zhang (10.1016/j.csite.2022.102034_bib65) 2004; 49 Pesaran (10.1016/j.csite.2022.102034_bib5) 2002; 110 Samimi (10.1016/j.csite.2022.102034_bib46) 2016; 96 Huo (10.1016/j.csite.2022.102034_bib18) 2020; 44 Chen (10.1016/j.csite.2022.102034_bib1) 2017; 111 Chitta (10.1016/j.csite.2022.102034_bib16) 2021; 199 Chopra (10.1016/j.csite.2022.102034_bib39) 2020; 203 Yang (10.1016/j.csite.2022.102034_bib58) 2013; 6 Wei (10.1016/j.csite.2022.102034_bib51) 2019; 135 van Gils (10.1016/j.csite.2022.102034_bib56) 2014; 79 Babapoor (10.1016/j.csite.2022.102034_bib45) 2015; 82 El-Genk (10.1016/j.csite.2022.102034_bib66) 2020; 15 Khateeb (10.1016/j.csite.2022.102034_bib48) 2005; 142 Al-Zareer (10.1016/j.csite.2022.102034_bib22) 2018; 126 Al-Zareer (10.1016/j.csite.2022.102034_bib54) 2017; 247 Fathabadi (10.1016/j.csite.2022.102034_bib2) 2014; 70 Li (10.1016/j.csite.2022.102034_bib4) 2014; 255 Wu (10.1016/j.csite.2022.102034_bib17) 2020; 221 Wang (10.1016/j.csite.2022.102034_bib43) 2015; 78 Yu (10.1016/j.csite.2022.102034_bib25) 2014; 270 Liu (10.1016/j.csite.2022.102034_bib28) 2017; 150 Tran (10.1016/j.csite.2022.102034_bib20) 2014; 63 Ramadass (10.1016/j.csite.2022.102034_bib7) 2002; 112 Zhou (10.1016/j.csite.2022.102034_bib57) 2020; 473 |
References_xml | – volume: 203 year: 2020 ident: bib39 article-title: Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: an experimental assessment publication-title: Energy Convers. Manag. – volume: 147 start-page: 3231 year: 2000 end-page: 3236 ident: bib40 article-title: A novel thermal management system for electric vehicle batteries using phase-change material publication-title: J. Electrochem. Soc. – volume: 207 year: 2020 ident: bib53 article-title: Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles publication-title: Energy Convers. Manag. – ident: bib61 – volume: 21 year: 2020 ident: bib21 article-title: Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles publication-title: Case Stud. Therm. Eng. – volume: 204 year: 2020 ident: bib59 article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures publication-title: Energy Convers. Manag. – volume: 123 start-page: 1514 year: 2017 end-page: 1522 ident: bib29 article-title: Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface publication-title: Appl. Therm. Eng. – volume: 135 start-page: 746 year: 2019 end-page: 760 ident: bib51 article-title: Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management publication-title: Int. J. Heat Mass Tran. – volume: 121 start-page: 104 year: 2014 end-page: 113 ident: bib44 article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system publication-title: Appl. Energy – volume: 43 year: 2021 ident: bib41 article-title: Numerical investigation on thermal behaviour of 5 x 5 cell configured battery pack using phase change material and fin structure layout publication-title: J. Energy Storage – volume: 221 year: 2020 ident: bib17 article-title: An innovative battery thermal management with thermally induced flexible phase change material publication-title: Energy Convers. Manag. – volume: 100 start-page: 60 year: 2019 end-page: 66 ident: bib38 article-title: Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system publication-title: Int. Commun. Heat Mass Tran. – volume: 142 start-page: 345 year: 2005 end-page: 353 ident: bib48 article-title: Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation publication-title: J. Power Sources – volume: 196 start-page: 10359 year: 2011 end-page: 10368 ident: bib30 article-title: Design optimization of electric vehicle battery cooling plates for thermal performance publication-title: J. Power Sources – volume: 138 start-page: 486 year: 2017 end-page: 492 ident: bib50 article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system publication-title: Energy Convers. Manag. – volume: 8 start-page: 19 year: 2022 ident: bib35 article-title: Concept review of a cloud-based smart battery management system for lithium-ion batteries: feasibility, logistics, and functionality publication-title: Batteries (Basel) – volume: 147 start-page: 829 year: 2019 end-page: 840 ident: bib15 article-title: Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate publication-title: Appl. Therm. Eng. – volume: 176 start-page: 131 year: 2018 end-page: 146 ident: bib37 article-title: Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment publication-title: Energy Convers. Manag. – volume: 127 start-page: 48 year: 2016 end-page: 55 ident: bib47 article-title: Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials publication-title: Sol. Energy – volume: 115 start-page: 137 year: 2003 end-page: 140 ident: bib64 article-title: The low temperature performance of Li-ion batteries publication-title: J. Power Sources – volume: 473 year: 2020 ident: bib57 article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid publication-title: J. Power Sources – volume: 363 start-page: 291 year: 2017 end-page: 303 ident: bib55 article-title: Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles publication-title: J. Power Sources – volume: 112 start-page: 606 year: 2002 end-page: 613 ident: bib6 article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance publication-title: J. Power Sources – volume: 111 start-page: 943 year: 2017 end-page: 952 ident: bib1 article-title: Structure optimization of parallel air-cooled battery thermal management system publication-title: Int. J. Heat Mass Tran. – volume: 103 start-page: 157 year: 2015 end-page: 165 ident: bib31 article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery publication-title: Energy Convers. Manag. – volume: 109 start-page: 160 year: 2002 end-page: 166 ident: bib27 article-title: Heat dissipation design for lithium-ion batteries publication-title: J. Power Sources – volume: 123 start-page: 177 year: 2017 end-page: 186 ident: bib24 article-title: Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy publication-title: Appl. Therm. Eng. – volume: 6 start-page: 2709 year: 2013 end-page: 2725 ident: bib58 article-title: Arrhenius equation-based cell-health assessment: application to thermal energy management design of a HEV NiMH battery pack publication-title: Energies – volume: 49 year: 2022 ident: bib33 article-title: Simulation of cooling plate effect on a battery module with different channel arrangement publication-title: J. Energy Storage – volume: 112 start-page: 222 year: 2002 end-page: 230 ident: bib63 article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature publication-title: J. Power Sources – volume: 44 start-page: 7660 year: 2020 end-page: 7673 ident: bib18 article-title: Investigation on the effects of temperature equilibrium strategy in battery thermal management using phase change material publication-title: Int. J. Energy Res. – volume: 247 start-page: 171 year: 2017 end-page: 182 ident: bib54 article-title: Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles publication-title: Electrochim. Acta – volume: 82 start-page: 281 year: 2015 end-page: 290 ident: bib45 article-title: Thermal management of a Li-ion battery using carbon fiber-PCM composites publication-title: Appl. Therm. Eng. – volume: 132 start-page: 309 year: 2019 end-page: 321 ident: bib9 article-title: Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement publication-title: Int. J. Heat Mass Tran. – volume: 49 start-page: 1057 year: 2004 end-page: 1061 ident: bib65 article-title: Electrochemical impedance study on the low temperature of Li-ion batteries publication-title: Electrochim. Acta – volume: 270 start-page: 193 year: 2014 end-page: 200 ident: bib25 article-title: Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack publication-title: J. Power Sources – volume: 247 start-page: 961 year: 2014 end-page: 966 ident: bib60 article-title: Accurate determination of battery discharge characteristics - a comparison between two battery temperature control methods publication-title: J. Power Sources – volume: 94 start-page: 846 year: 2016 end-page: 854 ident: bib14 article-title: Comparison of different cooling methods for lithium ion battery cells publication-title: Appl. Therm. Eng. – volume: 150 start-page: 304 year: 2017 end-page: 330 ident: bib28 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energy Convers. Manag. – volume: 199 year: 2021 ident: bib16 article-title: Comparison of lumped and 1D electrochemical models for prismatic 20Ah LiFePO4 battery sandwiched between minichannel cold-plates publication-title: Appl. Therm. Eng. – volume: 102 start-page: 9 year: 2016 end-page: 16 ident: bib52 article-title: Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system publication-title: Int. J. Therm. Sci. – volume: 110 start-page: 377 year: 2002 end-page: 382 ident: bib5 article-title: Battery thermal models for hybrid vehicle simulations publication-title: J. Power Sources – volume: 63 start-page: 551 year: 2014 end-page: 558 ident: bib20 article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery publication-title: Appl. Therm. Eng. – volume: 233 start-page: 47 year: 2013 end-page: 61 ident: bib23 article-title: Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs publication-title: J. Power Sources – volume: 9 start-page: 2263 year: 2021 ident: bib36 article-title: Investigation of individual cells replacement concept in lithium-ion battery packs with analysis on economic feasibility and pack design requirements publication-title: Processes – volume: 109 start-page: 958 year: 2017 end-page: 970 ident: bib42 article-title: Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure publication-title: Int. J. Heat Mass Tran. – volume: 2 start-page: 643 year: 2021 end-page: 663 ident: bib34 article-title: Coupled electrochemical-thermal simulations and validation of minichannel cold-plate water-cooled prismatic 20 Ah LiFePO4 battery publication-title: Electrochemistry – volume: 149 start-page: 192 year: 2019 end-page: 212 ident: bib8 article-title: Review on battery thermal management system for electric vehicles publication-title: Appl. Therm. Eng. – volume: 44 start-page: 6660 year: 2020 end-page: 6673 ident: bib12 article-title: Experimental study of a direct evaporative cooling approach for Li-ion battery thermal management publication-title: Int. J. Energy Res. – volume: 116 start-page: 1204 year: 2018 end-page: 1212 ident: bib13 article-title: Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent publication-title: Int. J. Heat Mass Tran. – volume: 293 start-page: 458 year: 2015 end-page: 466 ident: bib49 article-title: Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes publication-title: J. Power Sources – volume: 157 year: 2019 ident: bib32 article-title: A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates publication-title: Appl. Therm. Eng. – volume: 15 year: 2020 ident: bib66 article-title: Experimental investigation of saturation boiling of HFE-7000 dielectric liquid on rough copper surfaces publication-title: Therm. Sci. Eng. Prog. – volume: 255 start-page: 9 year: 2014 end-page: 15 ident: bib4 article-title: Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials publication-title: J. Power Sources – volume: 525 year: 2022 ident: bib67 article-title: Immersion cooling for lithium-ion batteries – a review publication-title: J. Power Sources – volume: 480 year: 2020 ident: bib11 article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system publication-title: J. Power Sources – volume: 196 start-page: 5685 year: 2011 end-page: 5696 ident: bib26 article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity publication-title: J. Power Sources – volume: 436 year: 2019 ident: bib10 article-title: A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries publication-title: J. Power Sources – volume: 126 start-page: 765 year: 2018 end-page: 778 ident: bib22 article-title: Heat and mass transfer modeling and assessment of a new battery cooling system publication-title: Int. J. Heat Mass Tran. – volume: 70 start-page: 529 year: 2014 end-page: 538 ident: bib2 article-title: High thermal performance lithium-ion battery pack including hybrid active passive thermal management system for using in hybrid/electric vehicles publication-title: Energy – volume: 96 start-page: 355 year: 2016 end-page: 371 ident: bib46 article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers publication-title: Energy – volume: 78 start-page: 428 year: 2015 end-page: 436 ident: bib43 article-title: Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery publication-title: Appl. Therm. Eng. – volume: 273 start-page: 1089 year: 2015 end-page: 1097 ident: bib19 article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries publication-title: J. Power Sources – ident: bib62 article-title: Manuals: electric vehicle battery test procedures manual – volume: 165 start-page: A2184 year: 2018 end-page: A2193 ident: bib3 article-title: An experimental study on the thermal failure propagation in lithium-ion battery pack publication-title: J. Electrochem. Soc. – volume: 112 start-page: 614 year: 2002 end-page: 620 ident: bib7 article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis publication-title: J. Power Sources – volume: 79 start-page: 9 year: 2014 end-page: 17 ident: bib56 article-title: Battery thermal management by boiling heat-transfer publication-title: Energy Convers. Manag. – volume: 9 start-page: 2263 year: 2021 ident: 10.1016/j.csite.2022.102034_bib36 article-title: Investigation of individual cells replacement concept in lithium-ion battery packs with analysis on economic feasibility and pack design requirements publication-title: Processes doi: 10.3390/pr9122263 – volume: 207 year: 2020 ident: 10.1016/j.csite.2022.102034_bib53 article-title: Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112569 – volume: 142 start-page: 345 year: 2005 ident: 10.1016/j.csite.2022.102034_bib48 article-title: Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.09.033 – volume: 126 start-page: 765 year: 2018 ident: 10.1016/j.csite.2022.102034_bib22 article-title: Heat and mass transfer modeling and assessment of a new battery cooling system publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.04.157 – volume: 132 start-page: 309 year: 2019 ident: 10.1016/j.csite.2022.102034_bib9 article-title: Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.12.024 – volume: 115 start-page: 137 year: 2003 ident: 10.1016/j.csite.2022.102034_bib64 article-title: The low temperature performance of Li-ion batteries publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00618-3 – volume: 199 year: 2021 ident: 10.1016/j.csite.2022.102034_bib16 article-title: Comparison of lumped and 1D electrochemical models for prismatic 20Ah LiFePO4 battery sandwiched between minichannel cold-plates publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117586 – volume: 247 start-page: 171 year: 2017 ident: 10.1016/j.csite.2022.102034_bib54 article-title: Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.162 – volume: 44 start-page: 7660 year: 2020 ident: 10.1016/j.csite.2022.102034_bib18 article-title: Investigation on the effects of temperature equilibrium strategy in battery thermal management using phase change material publication-title: Int. J. Energy Res. doi: 10.1002/er.5497 – volume: 135 start-page: 746 year: 2019 ident: 10.1016/j.csite.2022.102034_bib51 article-title: Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.02.021 – volume: 8 start-page: 19 year: 2022 ident: 10.1016/j.csite.2022.102034_bib35 article-title: Concept review of a cloud-based smart battery management system for lithium-ion batteries: feasibility, logistics, and functionality publication-title: Batteries (Basel) doi: 10.3390/batteries8020019 – volume: 273 start-page: 1089 year: 2015 ident: 10.1016/j.csite.2022.102034_bib19 article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.007 – volume: 116 start-page: 1204 year: 2018 ident: 10.1016/j.csite.2022.102034_bib13 article-title: Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.09.092 – volume: 293 start-page: 458 year: 2015 ident: 10.1016/j.csite.2022.102034_bib49 article-title: Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.05.055 – volume: 363 start-page: 291 year: 2017 ident: 10.1016/j.csite.2022.102034_bib55 article-title: Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.067 – volume: 157 year: 2019 ident: 10.1016/j.csite.2022.102034_bib32 article-title: A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.033 – volume: 44 start-page: 6660 year: 2020 ident: 10.1016/j.csite.2022.102034_bib12 article-title: Experimental study of a direct evaporative cooling approach for Li-ion battery thermal management publication-title: Int. J. Energy Res. doi: 10.1002/er.5402 – volume: 436 year: 2019 ident: 10.1016/j.csite.2022.102034_bib10 article-title: A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226879 – volume: 103 start-page: 157 year: 2015 ident: 10.1016/j.csite.2022.102034_bib31 article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.06.056 – volume: 147 start-page: 3231 year: 2000 ident: 10.1016/j.csite.2022.102034_bib40 article-title: A novel thermal management system for electric vehicle batteries using phase-change material publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393888 – volume: 204 year: 2020 ident: 10.1016/j.csite.2022.102034_bib59 article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112280 – volume: 82 start-page: 281 year: 2015 ident: 10.1016/j.csite.2022.102034_bib45 article-title: Thermal management of a Li-ion battery using carbon fiber-PCM composites publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.02.068 – volume: 255 start-page: 9 year: 2014 ident: 10.1016/j.csite.2022.102034_bib4 article-title: Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.006 – volume: 49 year: 2022 ident: 10.1016/j.csite.2022.102034_bib33 article-title: Simulation of cooling plate effect on a battery module with different channel arrangement publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104113 – volume: 233 start-page: 47 year: 2013 ident: 10.1016/j.csite.2022.102034_bib23 article-title: Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.095 – volume: 270 start-page: 193 year: 2014 ident: 10.1016/j.csite.2022.102034_bib25 article-title: Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.086 – volume: 473 year: 2020 ident: 10.1016/j.csite.2022.102034_bib57 article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228545 – volume: 79 start-page: 9 year: 2014 ident: 10.1016/j.csite.2022.102034_bib56 article-title: Battery thermal management by boiling heat-transfer publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.12.006 – volume: 70 start-page: 529 year: 2014 ident: 10.1016/j.csite.2022.102034_bib2 article-title: High thermal performance lithium-ion battery pack including hybrid active passive thermal management system for using in hybrid/electric vehicles publication-title: Energy doi: 10.1016/j.energy.2014.04.046 – volume: 203 year: 2020 ident: 10.1016/j.csite.2022.102034_bib39 article-title: Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: an experimental assessment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112205 – volume: 102 start-page: 9 year: 2016 ident: 10.1016/j.csite.2022.102034_bib52 article-title: Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.11.005 – volume: 109 start-page: 160 year: 2002 ident: 10.1016/j.csite.2022.102034_bib27 article-title: Heat dissipation design for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00048-4 – volume: 111 start-page: 943 year: 2017 ident: 10.1016/j.csite.2022.102034_bib1 article-title: Structure optimization of parallel air-cooled battery thermal management system publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.04.026 – volume: 6 start-page: 2709 year: 2013 ident: 10.1016/j.csite.2022.102034_bib58 article-title: Arrhenius equation-based cell-health assessment: application to thermal energy management design of a HEV NiMH battery pack publication-title: Energies doi: 10.3390/en6052709 – volume: 112 start-page: 222 year: 2002 ident: 10.1016/j.csite.2022.102034_bib63 article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00363-4 – volume: 21 year: 2020 ident: 10.1016/j.csite.2022.102034_bib21 article-title: Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100655 – volume: 43 year: 2021 ident: 10.1016/j.csite.2022.102034_bib41 article-title: Numerical investigation on thermal behaviour of 5 x 5 cell configured battery pack using phase change material and fin structure layout publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103234 – volume: 525 year: 2022 ident: 10.1016/j.csite.2022.102034_bib67 article-title: Immersion cooling for lithium-ion batteries – a review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231094 – volume: 149 start-page: 192 year: 2019 ident: 10.1016/j.csite.2022.102034_bib8 article-title: Review on battery thermal management system for electric vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.12.020 – volume: 196 start-page: 5685 year: 2011 ident: 10.1016/j.csite.2022.102034_bib26 article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.02.076 – volume: 109 start-page: 958 year: 2017 ident: 10.1016/j.csite.2022.102034_bib42 article-title: Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.02.057 – volume: 15 year: 2020 ident: 10.1016/j.csite.2022.102034_bib66 article-title: Experimental investigation of saturation boiling of HFE-7000 dielectric liquid on rough copper surfaces publication-title: Therm. Sci. Eng. Prog. – volume: 96 start-page: 355 year: 2016 ident: 10.1016/j.csite.2022.102034_bib46 article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers publication-title: Energy doi: 10.1016/j.energy.2015.12.064 – volume: 196 start-page: 10359 year: 2011 ident: 10.1016/j.csite.2022.102034_bib30 article-title: Design optimization of electric vehicle battery cooling plates for thermal performance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.06.090 – volume: 176 start-page: 131 year: 2018 ident: 10.1016/j.csite.2022.102034_bib37 article-title: Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.09.025 – volume: 100 start-page: 60 year: 2019 ident: 10.1016/j.csite.2022.102034_bib38 article-title: Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2018.12.020 – volume: 165 start-page: A2184 year: 2018 ident: 10.1016/j.csite.2022.102034_bib3 article-title: An experimental study on the thermal failure propagation in lithium-ion battery pack publication-title: J. Electrochem. Soc. doi: 10.1149/2.0721810jes – volume: 2 start-page: 643 year: 2021 ident: 10.1016/j.csite.2022.102034_bib34 article-title: Coupled electrochemical-thermal simulations and validation of minichannel cold-plate water-cooled prismatic 20 Ah LiFePO4 battery publication-title: Electrochemistry – volume: 138 start-page: 486 year: 2017 ident: 10.1016/j.csite.2022.102034_bib50 article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.02.022 – volume: 147 start-page: 829 year: 2019 ident: 10.1016/j.csite.2022.102034_bib15 article-title: Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.009 – volume: 49 start-page: 1057 year: 2004 ident: 10.1016/j.csite.2022.102034_bib65 article-title: Electrochemical impedance study on the low temperature of Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2003.10.016 – volume: 247 start-page: 961 year: 2014 ident: 10.1016/j.csite.2022.102034_bib60 article-title: Accurate determination of battery discharge characteristics - a comparison between two battery temperature control methods publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.060 – volume: 94 start-page: 846 year: 2016 ident: 10.1016/j.csite.2022.102034_bib14 article-title: Comparison of different cooling methods for lithium ion battery cells publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.015 – volume: 63 start-page: 551 year: 2014 ident: 10.1016/j.csite.2022.102034_bib20 article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.11.048 – volume: 121 start-page: 104 year: 2014 ident: 10.1016/j.csite.2022.102034_bib44 article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.01.075 – volume: 112 start-page: 614 year: 2002 ident: 10.1016/j.csite.2022.102034_bib7 article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00473-1 – volume: 78 start-page: 428 year: 2015 ident: 10.1016/j.csite.2022.102034_bib43 article-title: Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.01.009 – volume: 221 year: 2020 ident: 10.1016/j.csite.2022.102034_bib17 article-title: An innovative battery thermal management with thermally induced flexible phase change material publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113145 – volume: 123 start-page: 1514 year: 2017 ident: 10.1016/j.csite.2022.102034_bib29 article-title: Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.06.059 – volume: 110 start-page: 377 year: 2002 ident: 10.1016/j.csite.2022.102034_bib5 article-title: Battery thermal models for hybrid vehicle simulations publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00200-8 – volume: 123 start-page: 177 year: 2017 ident: 10.1016/j.csite.2022.102034_bib24 article-title: Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.05.060 – volume: 112 start-page: 606 year: 2002 ident: 10.1016/j.csite.2022.102034_bib6 article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00474-3 – volume: 480 year: 2020 ident: 10.1016/j.csite.2022.102034_bib11 article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229116 – volume: 150 start-page: 304 year: 2017 ident: 10.1016/j.csite.2022.102034_bib28 article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.08.016 – volume: 127 start-page: 48 year: 2016 ident: 10.1016/j.csite.2022.102034_bib47 article-title: Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials publication-title: Sol. Energy doi: 10.1016/j.solener.2016.01.011 |
SSID | ssj0001738144 |
Score | 2.5395079 |
Snippet | In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB).... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 102034 |
SubjectTerms | Immersion cooling Lithium-ion battery Pool boiling Thermal management Two-phase heat transfer |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwyIp3jLAyNWk9hO4pEiUIUECyB1i_wsQaUpJR3495ydpISlA2Occ2KdLd939t13CF054QCkGkEMNYowzS3JdcqIFWCv08xxF8p0Pj6lo1f2MObjDXTb5cL4sMp272_29LBbty2DVpuDeVkOnpMkBuuTjZMk3A_6RHPK8pDENx7-nrNkYJNCTVcvT3yHjnwohHnpcEmbgCnzLAYRZX8MVODx79mpnu2530U7LWjEN8249tCGne2j7R6V4AFa3vWo-vFXEx2IK4en5eeyNLgMB9QwCVhXvk7PBANaxXEO0AlE6rdy-UH8WxX4Nr-xzy1b4K58So199q4nVfI9wYU2TaTXIXq9v3u5HZG2pALRLGY1oZobp4UCECO5AWfMUq4o44oJUKE0qY4jKQxgDKmZ4dYI8Gd4lqS5srEFx_sIbc6qmT1GWAjGI0BXGeMOvB4nmQYtyiiSic1jqk9Q0umx0C3fuC97MS26wLL3Iii_8MovGuWfoOtVp3lDt7FefOgnaCXqubJDQ7WYFO1iKSi4mQAyY82lgIFGuYpSo6x13GaUSxho2k1v8WfpwafKdX8__W_HM7Tln5qIs3O0WS-W9gKwTa0uw-L9AXFc9ww priority: 102 providerName: Elsevier |
Title | Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions |
URI | https://dx.doi.org/10.1016/j.csite.2022.102034 https://doaj.org/article/30262261c5a948708b06dbeef5e735ac |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCIRR52Eo8UtSpIMFGpW-QnBJUWSjrw7znbSRWWsrBkSPyIzqfc9znn7xC6stwCSNWc6FRLQhUzpFAZJYZDvM5yy6wv0_n4lI0n9GHKpp1SXy4nLMgDB8PdpEASACLEigkO4DoqZJRpaYxlJk-ZUO7rCzGvQ6b87koOkchXck2SmJKY5dNWcsgndyn_axaIf-K0C6KU_gpLXr2_E506EWe0h3YbqIhvwyvuoy0zP0A7HQHBQ7QadgT68VfICcQLi2fV56rSuPLb0mB6rBauOs8LBoyK4wIAEzSpX6vVO3FPpVfZ_MbuRNkSt0VTauzO7DopJdcTiLMO-V1HaDIaPt-NSVNIgSga05qkimmruAToIpgGCmZSJlPKJOVJEQmdqTgSXAOyEIpqZjQHFsPyJCukiQ3Q7WPUmy_m5gRhzimLAFPllFlYDiuoAiuKKBKJKeJU9VHS2rFUjcq4K3YxK9t0srfSG790xi-D8fvoet3pI4hsbG4-cAu0buoUsv0N8Juy8ZvyL7_po6xd3rIBGwFEwFDVptlP_2P2M7Tthgw5Z-eoVy9X5gLQTS0vvSPD9X46-AF0EPcH |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3HhixmoedxCNFoPJcAKmb5ScElRZKOvDvOTsJlIWB1fYl1tnyfWfffYfQseMOQKrhxKRGEaqZJYXOKLEc7HWWO-ZCmc7bu6z_SK8GbDCHztpcGB9W2Zz99ZkeTuumpdtos_tWlt37JInB-uSDJAnvg2weLQAayH39hstB7-eiJQejFIq6egHiJVr2oRDnpcMrbQK2zNMYRCn9ZaECkf-MoZoxPheraKVBjfi0ntgamrOjdbQ8wyW4gabnM1z9-KMOD8Rjh4fl-7Q0uAw31LAKWI99oZ4nDHAVxwVgJxhSPZfTV-J7VSDc_MQ-uWyC2_opFfbpu55VyUuCD23qUK9N9Hhx_nDWJ01NBaJpTCuSamac5gpQjGQGvDGbMpVSpigHHUqT6TiS3ADIkJoaZg0Hh4blSVYoG1vwvLdQZzQe2W2EOacsAniVU-bA7XGSatCijCKZ2CJO9Q5KWj0K3RCO-7oXQ9FGlr2IoHzhlS9q5e-gk2-ht5pv4-_hPb9A30M9WXZoGE-eRLNbRAp-JqDMWDPJYaJRoaLMKGsds3nKJEw0a5dX_Np78Knyr7_v_lfwCC32H25vxM3l3fUeWvI9dfjZPupUk6k9AKBTqcOwkb8A4JX6Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+studies+of+liquid+immersion+cooling+for+18650+lithium-ion+battery+under+different+discharging+conditions&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Yang+Li&rft.au=Zhifu+Zhou&rft.au=Leiming+Hu&rft.au=Minli+Bai&rft.date=2022-06-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=34&rft.spage=102034&rft_id=info:doi/10.1016%2Fj.csite.2022.102034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_30262261c5a948708b06dbeef5e735ac |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |