Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions

In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB). SF33, with the boiling point of 33.4 °C, is chosen as the liquid for the immersion cooling. Comparison of the SF33 immersion cooling and forced a...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 34; p. 102034
Main Authors Li, Yang, Zhou, Zhifu, Hu, Leiming, Bai, Minli, Gao, Linsong, Li, Yulong, Liu, Xuanyu, Li, Yubai, Song, Yongchen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2214-157X
2214-157X
DOI10.1016/j.csite.2022.102034

Cover

Loading…
Abstract In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB). SF33, with the boiling point of 33.4 °C, is chosen as the liquid for the immersion cooling. Comparison of the SF33 immersion cooling and forced air cooling (FAC) for the 18650 LIB under 2C, 4C and dynamic load conditions are made. It is found that the immersion cooling better cools the battery under all these conditions. Under 4C discharging, the maximum cell temperature rise is 14.06 °C for the FAC, while is 4.97 °C for the SF33 immersion cooling. As the temperature of SF33 basically governs the cell temperature, the SF33 temperature should not be too low. This study demonstrates that the LIB has non-negligible power losses under SF33 temperature of 10 °C and 15 °C, compared with the temperatures above 20 °C. Lastly, the two-phase boiling heat transfer mechanisms associated with immersion cooling are discussed with bubble dynamics analysis. It is found under a higher C rate, more aggressive boiling heat transfer is induced. The battery temperature is controlled to be below 34.5 °C even under 7C discharging condition.
AbstractList In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB). SF33, with the boiling point of 33.4 °C, is chosen as the liquid for the immersion cooling. Comparison of the SF33 immersion cooling and forced air cooling (FAC) for the 18650 LIB under 2C, 4C and dynamic load conditions are made. It is found that the immersion cooling better cools the battery under all these conditions. Under 4C discharging, the maximum cell temperature rise is 14.06 °C for the FAC, while is 4.97 °C for the SF33 immersion cooling. As the temperature of SF33 basically governs the cell temperature, the SF33 temperature should not be too low. This study demonstrates that the LIB has non-negligible power losses under SF33 temperature of 10 °C and 15 °C, compared with the temperatures above 20 °C. Lastly, the two-phase boiling heat transfer mechanisms associated with immersion cooling are discussed with bubble dynamics analysis. It is found under a higher C rate, more aggressive boiling heat transfer is induced. The battery temperature is controlled to be below 34.5 °C even under 7C discharging condition.
ArticleNumber 102034
Author Li, Yulong
Bai, Minli
Zhou, Zhifu
Gao, Linsong
Li, Yang
Li, Yubai
Hu, Leiming
Liu, Xuanyu
Song, Yongchen
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
– sequence: 2
  givenname: Zhifu
  surname: Zhou
  fullname: Zhou, Zhifu
  organization: State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
– sequence: 3
  givenname: Leiming
  surname: Hu
  fullname: Hu, Leiming
  organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, USA
– sequence: 4
  givenname: Minli
  surname: Bai
  fullname: Bai, Minli
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
– sequence: 5
  givenname: Linsong
  surname: Gao
  fullname: Gao, Linsong
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
– sequence: 6
  givenname: Yulong
  surname: Li
  fullname: Li, Yulong
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
– sequence: 7
  givenname: Xuanyu
  surname: Liu
  fullname: Liu, Xuanyu
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
– sequence: 8
  givenname: Yubai
  orcidid: 0000-0001-8949-1122
  surname: Li
  fullname: Li, Yubai
  email: liyubai2021@126.com
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
– sequence: 9
  givenname: Yongchen
  surname: Song
  fullname: Song, Yongchen
  email: songyc@dlut.edu.cn
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
BookMark eNqFkV1rFTEQhoNUsNb-Am_yB_aYz_248EJK1UKhNxW8C9nJ7Okc9mxqkhX77832iIgXepVhMs8DM-9rdrbEBRl7K8VOCtm-O-wgU8GdEkrVjhLavGDnSknTSNt9PfujfsUucz4IIWSne2nMOVuvfzxioiMuxc88lzUQZh4nPtO3lQKn4xFTprhwiHGmZc-nmLjsWyvqSHmg9dhsv6MvBdMTX5eAiQeaJkzVWasMDz7tNxLiEqjU6fyGvZz8nPHy13vBvny8vr_63Nzefbq5-nDbgJGmNBpsmGAYpR28Da2QqO2ojR3NoHrhQwtS-CFYazyYYDEMfWdtp9p-RIk46gt2c_KG6A_use7p05OLntxzI6a986kQzOi0UK1SrQTrB9N3oh9FG0bEyWKnrYfq0icXpJhzwum3Twq3BeEO7jkItwXhTkFUaviLAip-O0JJnub_sO9PLNYTfSdMLgPhAhgoIZS6A_2T_wkJPKji
CitedBy_id crossref_primary_10_1155_2023_6661693
crossref_primary_10_3390_batteries11020059
crossref_primary_10_1016_j_mtsust_2023_100443
crossref_primary_10_1016_j_enconman_2024_119149
crossref_primary_10_1080_15435075_2023_2195921
crossref_primary_10_1016_j_apenergy_2024_124083
crossref_primary_10_3390_batteries10100363
crossref_primary_10_1002_ente_202301646
crossref_primary_10_1016_j_est_2024_112799
crossref_primary_10_1016_j_csite_2023_103749
crossref_primary_10_1016_j_est_2023_110050
crossref_primary_10_1016_j_csite_2024_104837
crossref_primary_10_1016_j_rineng_2025_104377
crossref_primary_10_3390_wevj15040147
crossref_primary_10_1016_j_tsep_2023_101877
crossref_primary_10_1016_j_est_2024_111061
crossref_primary_10_1016_j_csite_2024_104759
crossref_primary_10_3390_en17102418
crossref_primary_10_1002_ente_202401930
crossref_primary_10_1016_j_applthermaleng_2023_121737
crossref_primary_10_1016_j_est_2022_105952
crossref_primary_10_3390_batteries9080400
crossref_primary_10_1016_j_rser_2023_114052
crossref_primary_10_1016_j_est_2025_116010
crossref_primary_10_1016_j_est_2025_115400
crossref_primary_10_3390_sym15010092
crossref_primary_10_1016_j_est_2025_115445
crossref_primary_10_1016_j_est_2023_109410
crossref_primary_10_1088_2631_8695_ad734d
crossref_primary_10_3390_electronics12244931
crossref_primary_10_1016_j_est_2024_115072
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126824
crossref_primary_10_1063_5_0201438
crossref_primary_10_2298_TSCI240506201X
crossref_primary_10_1016_j_csite_2023_103880
crossref_primary_10_1007_s10973_025_14040_y
crossref_primary_10_1016_j_energy_2023_129962
crossref_primary_10_1016_j_molliq_2023_122044
crossref_primary_10_1016_j_rser_2024_114989
crossref_primary_10_1016_j_renene_2024_120187
crossref_primary_10_1016_j_applthermaleng_2024_124453
crossref_primary_10_1016_j_est_2024_111289
crossref_primary_10_1007_s40997_024_00759_w
crossref_primary_10_1016_j_csite_2024_105509
crossref_primary_10_1016_j_ijthermalsci_2024_109636
crossref_primary_10_1115_1_4063848
crossref_primary_10_1016_j_est_2023_108751
crossref_primary_10_3390_sym14102126
crossref_primary_10_1016_j_est_2023_106732
crossref_primary_10_1007_s10973_024_13044_4
crossref_primary_10_1016_j_applthermaleng_2023_121184
crossref_primary_10_1016_j_csite_2024_104930
crossref_primary_10_1088_1742_6596_2811_1_012008
crossref_primary_10_1016_j_est_2023_108636
crossref_primary_10_1016_j_rser_2024_115268
crossref_primary_10_1016_j_est_2023_108748
crossref_primary_10_1016_j_applthermaleng_2023_120303
crossref_primary_10_1016_j_psep_2024_04_015
crossref_primary_10_1016_j_apenergy_2024_124173
crossref_primary_10_1007_s11630_024_2010_4
crossref_primary_10_1016_j_est_2024_111814
crossref_primary_10_3390_app13052775
crossref_primary_10_1016_j_jtice_2023_104671
crossref_primary_10_1016_j_est_2024_112588
crossref_primary_10_1080_15435075_2023_2300376
crossref_primary_10_12688_materialsopenres_17559_1
crossref_primary_10_1016_j_est_2023_110184
crossref_primary_10_1016_j_applthermaleng_2024_123475
crossref_primary_10_3390_batteries9110559
crossref_primary_10_3390_sym15071322
crossref_primary_10_1016_j_csite_2023_102960
crossref_primary_10_1016_j_csite_2023_103697
crossref_primary_10_1016_j_energy_2025_135343
crossref_primary_10_1016_j_tsep_2022_101569
crossref_primary_10_1615_JEnhHeatTransf_2024051598
crossref_primary_10_1007_s11431_024_2690_7
crossref_primary_10_1016_j_applthermaleng_2023_120187
crossref_primary_10_1016_j_est_2023_107499
crossref_primary_10_1016_j_jclepro_2023_136024
crossref_primary_10_1016_j_icheatmasstransfer_2024_107980
Cites_doi 10.3390/pr9122263
10.1016/j.enconman.2020.112569
10.1016/j.jpowsour.2004.09.033
10.1016/j.ijheatmasstransfer.2018.04.157
10.1016/j.ijheatmasstransfer.2018.12.024
10.1016/S0378-7753(02)00618-3
10.1016/j.applthermaleng.2021.117586
10.1016/j.electacta.2017.06.162
10.1002/er.5497
10.1016/j.ijheatmasstransfer.2019.02.021
10.3390/batteries8020019
10.1016/j.jpowsour.2014.10.007
10.1016/j.ijheatmasstransfer.2017.09.092
10.1016/j.jpowsour.2015.05.055
10.1016/j.jpowsour.2017.07.067
10.1016/j.applthermaleng.2019.04.033
10.1002/er.5402
10.1016/j.jpowsour.2019.226879
10.1016/j.enconman.2015.06.056
10.1149/1.1393888
10.1016/j.enconman.2019.112280
10.1016/j.applthermaleng.2015.02.068
10.1016/j.jpowsour.2014.01.006
10.1016/j.est.2022.104113
10.1016/j.jpowsour.2013.01.095
10.1016/j.jpowsour.2014.07.086
10.1016/j.jpowsour.2020.228545
10.1016/j.enconman.2013.12.006
10.1016/j.energy.2014.04.046
10.1016/j.enconman.2019.112205
10.1016/j.ijthermalsci.2015.11.005
10.1016/S0378-7753(02)00048-4
10.1016/j.ijheatmasstransfer.2017.04.026
10.3390/en6052709
10.1016/S0378-7753(02)00363-4
10.1016/j.csite.2020.100655
10.1016/j.est.2021.103234
10.1016/j.jpowsour.2022.231094
10.1016/j.applthermaleng.2018.12.020
10.1016/j.jpowsour.2011.02.076
10.1016/j.ijheatmasstransfer.2017.02.057
10.1016/j.energy.2015.12.064
10.1016/j.jpowsour.2011.06.090
10.1016/j.enconman.2018.09.025
10.1016/j.icheatmasstransfer.2018.12.020
10.1149/2.0721810jes
10.1016/j.enconman.2017.02.022
10.1016/j.applthermaleng.2018.11.009
10.1016/j.electacta.2003.10.016
10.1016/j.jpowsour.2013.09.060
10.1016/j.applthermaleng.2015.10.015
10.1016/j.applthermaleng.2013.11.048
10.1016/j.apenergy.2014.01.075
10.1016/S0378-7753(02)00473-1
10.1016/j.applthermaleng.2015.01.009
10.1016/j.enconman.2020.113145
10.1016/j.applthermaleng.2017.06.059
10.1016/S0378-7753(02)00200-8
10.1016/j.applthermaleng.2017.05.060
10.1016/S0378-7753(02)00474-3
10.1016/j.jpowsour.2020.229116
10.1016/j.enconman.2017.08.016
10.1016/j.solener.2016.01.011
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.102034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_30262261c5a948708b06dbeef5e735ac
10_1016_j_csite_2022_102034
S2214157X22002805
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-3c5dfc9b159a5d601e35b345b49280ad6c10a9d554ac4d5ed987557268be1eeb3
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:30:03 EDT 2025
Tue Jul 01 02:28:33 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Tue Jul 25 20:58:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Thermal management
Two-phase heat transfer
Pool boiling
Immersion cooling
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-3c5dfc9b159a5d601e35b345b49280ad6c10a9d554ac4d5ed987557268be1eeb3
ORCID 0000-0001-8949-1122
OpenAccessLink https://doaj.org/article/30262261c5a948708b06dbeef5e735ac
ParticipantIDs doaj_primary_oai_doaj_org_article_30262261c5a948708b06dbeef5e735ac
crossref_primary_10_1016_j_csite_2022_102034
crossref_citationtrail_10_1016_j_csite_2022_102034
elsevier_sciencedirect_doi_10_1016_j_csite_2022_102034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Qu, He, Tao (bib4) 2014; 255
Zhao, Gu, Liu (bib19) 2015; 273
Wang, Rao, Huo, Wang (bib52) 2016; 102
Chopra, Pathak, Tyagi, Pandey, Anand, Sari (bib39) 2020; 203
Zhou, Dai, Liu, Fu, Du (bib57) 2020; 473
Zhao, Rao, Li (bib31) 2015; 103
van Gils, Danilov, Notten, Speetjens, Nijmeijer (bib56) 2014; 79
Hong, Zhang, Chen, Wang (bib13) 2018; 116
Tran, Harmand, Desmet, Filangi (bib20) 2014; 63
Chen, Wang, Song, Chen (bib1) 2017; 111
Ouyang, Liu, Chen, Weng, Wang (bib3) 2018; 165
Li, Zhao, Duan, Panchal, Yuan, Fraser, Fowler, Chen (bib33) 2022; 49
Babapoor, Azizi, Karimi (bib45) 2015; 82
Kong, Peng, Ping, Du, Chen, Wen (bib59) 2020; 204
Zhao, Liu, Gu, Zhai, Ma (bib12) 2020; 44
Huo, Pang, Rao (bib18) 2020; 44
Huang, Mei, Lu, Huang, Yu, Chen, Roskilly (bib32) 2019; 157
Al-Zareer, Dincer, Rosen (bib55) 2017; 363
Shim, Kostecki, Richardson, Song, Striebel (bib63) 2002; 112
Al Hallaj, Selman (bib40) 2000; 147
Akkaldevi, Chitta, Jaidi, Panchal, Fowler, Fraser (bib34) 2021; 2
Liao, Zhang, Li, Zhang, Habetler (bib10) 2019; 436
Mahamud, Park (bib26) 2011; 196
Al-Zareer, Dincer, Rosen (bib22) 2018; 126
Liu, Wei, He, Zhao (bib28) 2017; 150
Wei, Qu, Qiu, Wang, Cao (bib51) 2019; 135
Pesaran (bib5) 2002; 110
Wang, Zhang, Jia, Yang (bib43) 2015; 78
Kim, Oh, Lee (bib8) 2019; 149
Siahkamari, Rahimi, Azimi, Banibayat (bib38) 2019; 100
Ramadass, Haran, White, Popov (bib7) 2002; 112
Tran, Cunanan, Panchal, Fraser, Fowler (bib36) 2021; 9
Wang, Zhang, Xia (bib42) 2017; 109
Samimi, Babapoor, Azizi, Karimi (bib46) 2016; 96
Mohammadian, He, Zhang (bib49) 2015; 293
Roe, Feng, White, Li, Wang, Rui, Li, Zhang, Null, Parkes, Patel, Wang, Wang, Ouyang, Offer, Wu (bib67) 2022; 525
Ramadass, Haran, White, Popov (bib6) 2002; 112
Chen, Jiang, Kim, Yang, Pesaran (bib14) 2016; 94
Zhang, Xu, Jow (bib64) 2003; 115
Tian, Yang, Luo, Wang, Zhang, Fan, Wu, Xing (bib47) 2016; 127
Choudhari, Dhoble, Panchal, Fowler, Fraser (bib41) 2021; 43
Wang, Wu (bib53) 2020; 207
Al-Zareer, Dincer, Rosen (bib54) 2017; 247
Manh-Kien, Satyam, Tran Dinh, Kirti, Roydon, Michael (bib35) 2022; 8
Chen, Wang, Song, Chen (bib24) 2017; 123
Zhang, Xu, Jow (bib65) 2004; 49
bib61
bib62
Rao, Qian, Kuang, Li (bib29) 2017; 123
Chen, Song, Wei, Wang (bib9) 2019; 132
Li, Zhou, Wu (bib15) 2019; 147
Wu, Liu, Liu, Rao, Deng, Wang, Qi, Wang (bib17) 2020; 221
Khateeb, Amiruddin, Farid, Selman, Al-Hallaj (bib48) 2005; 142
Chen, Li (bib60) 2014; 247
El-Genk, Pourghasemi (bib66) 2020; 15
Putra, Sandi, Ariantara, Abdullah, Mahlia (bib21) 2020; 21
Yu, Yang, Cheng, Li (bib25) 2014; 270
Ping, Peng, Kong, Chen, Wen (bib37) 2018; 176
Jarrett, Kim (bib30) 2011; 196
Fathabadi (bib2) 2014; 70
Wu, Liu, Wang, Wan (bib27) 2002; 109
Wu, Yang, Zhang, Chen, Wang (bib50) 2017; 138
Zhang, Li, Zhang, Wu, Rao, Guo, Zhou (bib11) 2020; 480
Yang, Hu, Qing, Chen (bib58) 2013; 6
Ling, Chen, Fang, Zhang, Xu, Gao, Wang (bib44) 2014; 121
Chitta, Akkaldevi, Jaidi, Panchal, Fowler, Fraser (bib16) 2021; 199
Xun, Liu, Jiao (bib23) 2013; 233
Putra (10.1016/j.csite.2022.102034_bib21) 2020; 21
Chen (10.1016/j.csite.2022.102034_bib24) 2017; 123
Wu (10.1016/j.csite.2022.102034_bib50) 2017; 138
Wu (10.1016/j.csite.2022.102034_bib27) 2002; 109
Al-Zareer (10.1016/j.csite.2022.102034_bib55) 2017; 363
Chen (10.1016/j.csite.2022.102034_bib14) 2016; 94
Chen (10.1016/j.csite.2022.102034_bib60) 2014; 247
Kong (10.1016/j.csite.2022.102034_bib59) 2020; 204
Hong (10.1016/j.csite.2022.102034_bib13) 2018; 116
Ramadass (10.1016/j.csite.2022.102034_bib6) 2002; 112
Huang (10.1016/j.csite.2022.102034_bib32) 2019; 157
Tian (10.1016/j.csite.2022.102034_bib47) 2016; 127
Al Hallaj (10.1016/j.csite.2022.102034_bib40) 2000; 147
Wang (10.1016/j.csite.2022.102034_bib53) 2020; 207
Zhao (10.1016/j.csite.2022.102034_bib19) 2015; 273
Roe (10.1016/j.csite.2022.102034_bib67) 2022; 525
Zhao (10.1016/j.csite.2022.102034_bib31) 2015; 103
Jarrett (10.1016/j.csite.2022.102034_bib30) 2011; 196
Wang (10.1016/j.csite.2022.102034_bib52) 2016; 102
Kim (10.1016/j.csite.2022.102034_bib8) 2019; 149
Akkaldevi (10.1016/j.csite.2022.102034_bib34) 2021; 2
Mohammadian (10.1016/j.csite.2022.102034_bib49) 2015; 293
Wang (10.1016/j.csite.2022.102034_bib42) 2017; 109
Shim (10.1016/j.csite.2022.102034_bib63) 2002; 112
Li (10.1016/j.csite.2022.102034_bib15) 2019; 147
Li (10.1016/j.csite.2022.102034_bib33) 2022; 49
Siahkamari (10.1016/j.csite.2022.102034_bib38) 2019; 100
Xun (10.1016/j.csite.2022.102034_bib23) 2013; 233
Tran (10.1016/j.csite.2022.102034_bib36) 2021; 9
Liao (10.1016/j.csite.2022.102034_bib10) 2019; 436
Ouyang (10.1016/j.csite.2022.102034_bib3) 2018; 165
Zhang (10.1016/j.csite.2022.102034_bib11) 2020; 480
Zhao (10.1016/j.csite.2022.102034_bib12) 2020; 44
Ling (10.1016/j.csite.2022.102034_bib44) 2014; 121
Mahamud (10.1016/j.csite.2022.102034_bib26) 2011; 196
Rao (10.1016/j.csite.2022.102034_bib29) 2017; 123
Chen (10.1016/j.csite.2022.102034_bib9) 2019; 132
Ping (10.1016/j.csite.2022.102034_bib37) 2018; 176
Choudhari (10.1016/j.csite.2022.102034_bib41) 2021; 43
Manh-Kien (10.1016/j.csite.2022.102034_bib35) 2022; 8
Zhang (10.1016/j.csite.2022.102034_bib64) 2003; 115
Zhang (10.1016/j.csite.2022.102034_bib65) 2004; 49
Pesaran (10.1016/j.csite.2022.102034_bib5) 2002; 110
Samimi (10.1016/j.csite.2022.102034_bib46) 2016; 96
Huo (10.1016/j.csite.2022.102034_bib18) 2020; 44
Chen (10.1016/j.csite.2022.102034_bib1) 2017; 111
Chitta (10.1016/j.csite.2022.102034_bib16) 2021; 199
Chopra (10.1016/j.csite.2022.102034_bib39) 2020; 203
Yang (10.1016/j.csite.2022.102034_bib58) 2013; 6
Wei (10.1016/j.csite.2022.102034_bib51) 2019; 135
van Gils (10.1016/j.csite.2022.102034_bib56) 2014; 79
Babapoor (10.1016/j.csite.2022.102034_bib45) 2015; 82
El-Genk (10.1016/j.csite.2022.102034_bib66) 2020; 15
Khateeb (10.1016/j.csite.2022.102034_bib48) 2005; 142
Al-Zareer (10.1016/j.csite.2022.102034_bib22) 2018; 126
Al-Zareer (10.1016/j.csite.2022.102034_bib54) 2017; 247
Fathabadi (10.1016/j.csite.2022.102034_bib2) 2014; 70
Li (10.1016/j.csite.2022.102034_bib4) 2014; 255
Wu (10.1016/j.csite.2022.102034_bib17) 2020; 221
Wang (10.1016/j.csite.2022.102034_bib43) 2015; 78
Yu (10.1016/j.csite.2022.102034_bib25) 2014; 270
Liu (10.1016/j.csite.2022.102034_bib28) 2017; 150
Tran (10.1016/j.csite.2022.102034_bib20) 2014; 63
Ramadass (10.1016/j.csite.2022.102034_bib7) 2002; 112
Zhou (10.1016/j.csite.2022.102034_bib57) 2020; 473
References_xml – volume: 203
  year: 2020
  ident: bib39
  article-title: Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: an experimental assessment
  publication-title: Energy Convers. Manag.
– volume: 147
  start-page: 3231
  year: 2000
  end-page: 3236
  ident: bib40
  article-title: A novel thermal management system for electric vehicle batteries using phase-change material
  publication-title: J. Electrochem. Soc.
– volume: 207
  year: 2020
  ident: bib53
  article-title: Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles
  publication-title: Energy Convers. Manag.
– ident: bib61
– volume: 21
  year: 2020
  ident: bib21
  article-title: Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles
  publication-title: Case Stud. Therm. Eng.
– volume: 204
  year: 2020
  ident: bib59
  article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures
  publication-title: Energy Convers. Manag.
– volume: 123
  start-page: 1514
  year: 2017
  end-page: 1522
  ident: bib29
  article-title: Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface
  publication-title: Appl. Therm. Eng.
– volume: 135
  start-page: 746
  year: 2019
  end-page: 760
  ident: bib51
  article-title: Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management
  publication-title: Int. J. Heat Mass Tran.
– volume: 121
  start-page: 104
  year: 2014
  end-page: 113
  ident: bib44
  article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system
  publication-title: Appl. Energy
– volume: 43
  year: 2021
  ident: bib41
  article-title: Numerical investigation on thermal behaviour of 5 x 5 cell configured battery pack using phase change material and fin structure layout
  publication-title: J. Energy Storage
– volume: 221
  year: 2020
  ident: bib17
  article-title: An innovative battery thermal management with thermally induced flexible phase change material
  publication-title: Energy Convers. Manag.
– volume: 100
  start-page: 60
  year: 2019
  end-page: 66
  ident: bib38
  article-title: Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 142
  start-page: 345
  year: 2005
  end-page: 353
  ident: bib48
  article-title: Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation
  publication-title: J. Power Sources
– volume: 196
  start-page: 10359
  year: 2011
  end-page: 10368
  ident: bib30
  article-title: Design optimization of electric vehicle battery cooling plates for thermal performance
  publication-title: J. Power Sources
– volume: 138
  start-page: 486
  year: 2017
  end-page: 492
  ident: bib50
  article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system
  publication-title: Energy Convers. Manag.
– volume: 8
  start-page: 19
  year: 2022
  ident: bib35
  article-title: Concept review of a cloud-based smart battery management system for lithium-ion batteries: feasibility, logistics, and functionality
  publication-title: Batteries (Basel)
– volume: 147
  start-page: 829
  year: 2019
  end-page: 840
  ident: bib15
  article-title: Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate
  publication-title: Appl. Therm. Eng.
– volume: 176
  start-page: 131
  year: 2018
  end-page: 146
  ident: bib37
  article-title: Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment
  publication-title: Energy Convers. Manag.
– volume: 127
  start-page: 48
  year: 2016
  end-page: 55
  ident: bib47
  article-title: Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials
  publication-title: Sol. Energy
– volume: 115
  start-page: 137
  year: 2003
  end-page: 140
  ident: bib64
  article-title: The low temperature performance of Li-ion batteries
  publication-title: J. Power Sources
– volume: 473
  year: 2020
  ident: bib57
  article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid
  publication-title: J. Power Sources
– volume: 363
  start-page: 291
  year: 2017
  end-page: 303
  ident: bib55
  article-title: Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles
  publication-title: J. Power Sources
– volume: 112
  start-page: 606
  year: 2002
  end-page: 613
  ident: bib6
  article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance
  publication-title: J. Power Sources
– volume: 111
  start-page: 943
  year: 2017
  end-page: 952
  ident: bib1
  article-title: Structure optimization of parallel air-cooled battery thermal management system
  publication-title: Int. J. Heat Mass Tran.
– volume: 103
  start-page: 157
  year: 2015
  end-page: 165
  ident: bib31
  article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery
  publication-title: Energy Convers. Manag.
– volume: 109
  start-page: 160
  year: 2002
  end-page: 166
  ident: bib27
  article-title: Heat dissipation design for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 123
  start-page: 177
  year: 2017
  end-page: 186
  ident: bib24
  article-title: Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy
  publication-title: Appl. Therm. Eng.
– volume: 6
  start-page: 2709
  year: 2013
  end-page: 2725
  ident: bib58
  article-title: Arrhenius equation-based cell-health assessment: application to thermal energy management design of a HEV NiMH battery pack
  publication-title: Energies
– volume: 49
  year: 2022
  ident: bib33
  article-title: Simulation of cooling plate effect on a battery module with different channel arrangement
  publication-title: J. Energy Storage
– volume: 112
  start-page: 222
  year: 2002
  end-page: 230
  ident: bib63
  article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature
  publication-title: J. Power Sources
– volume: 44
  start-page: 7660
  year: 2020
  end-page: 7673
  ident: bib18
  article-title: Investigation on the effects of temperature equilibrium strategy in battery thermal management using phase change material
  publication-title: Int. J. Energy Res.
– volume: 247
  start-page: 171
  year: 2017
  end-page: 182
  ident: bib54
  article-title: Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles
  publication-title: Electrochim. Acta
– volume: 82
  start-page: 281
  year: 2015
  end-page: 290
  ident: bib45
  article-title: Thermal management of a Li-ion battery using carbon fiber-PCM composites
  publication-title: Appl. Therm. Eng.
– volume: 132
  start-page: 309
  year: 2019
  end-page: 321
  ident: bib9
  article-title: Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement
  publication-title: Int. J. Heat Mass Tran.
– volume: 49
  start-page: 1057
  year: 2004
  end-page: 1061
  ident: bib65
  article-title: Electrochemical impedance study on the low temperature of Li-ion batteries
  publication-title: Electrochim. Acta
– volume: 270
  start-page: 193
  year: 2014
  end-page: 200
  ident: bib25
  article-title: Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack
  publication-title: J. Power Sources
– volume: 247
  start-page: 961
  year: 2014
  end-page: 966
  ident: bib60
  article-title: Accurate determination of battery discharge characteristics - a comparison between two battery temperature control methods
  publication-title: J. Power Sources
– volume: 94
  start-page: 846
  year: 2016
  end-page: 854
  ident: bib14
  article-title: Comparison of different cooling methods for lithium ion battery cells
  publication-title: Appl. Therm. Eng.
– volume: 150
  start-page: 304
  year: 2017
  end-page: 330
  ident: bib28
  article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review
  publication-title: Energy Convers. Manag.
– volume: 199
  year: 2021
  ident: bib16
  article-title: Comparison of lumped and 1D electrochemical models for prismatic 20Ah LiFePO4 battery sandwiched between minichannel cold-plates
  publication-title: Appl. Therm. Eng.
– volume: 102
  start-page: 9
  year: 2016
  end-page: 16
  ident: bib52
  article-title: Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system
  publication-title: Int. J. Therm. Sci.
– volume: 110
  start-page: 377
  year: 2002
  end-page: 382
  ident: bib5
  article-title: Battery thermal models for hybrid vehicle simulations
  publication-title: J. Power Sources
– volume: 63
  start-page: 551
  year: 2014
  end-page: 558
  ident: bib20
  article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery
  publication-title: Appl. Therm. Eng.
– volume: 233
  start-page: 47
  year: 2013
  end-page: 61
  ident: bib23
  article-title: Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs
  publication-title: J. Power Sources
– volume: 9
  start-page: 2263
  year: 2021
  ident: bib36
  article-title: Investigation of individual cells replacement concept in lithium-ion battery packs with analysis on economic feasibility and pack design requirements
  publication-title: Processes
– volume: 109
  start-page: 958
  year: 2017
  end-page: 970
  ident: bib42
  article-title: Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure
  publication-title: Int. J. Heat Mass Tran.
– volume: 2
  start-page: 643
  year: 2021
  end-page: 663
  ident: bib34
  article-title: Coupled electrochemical-thermal simulations and validation of minichannel cold-plate water-cooled prismatic 20 Ah LiFePO4 battery
  publication-title: Electrochemistry
– volume: 149
  start-page: 192
  year: 2019
  end-page: 212
  ident: bib8
  article-title: Review on battery thermal management system for electric vehicles
  publication-title: Appl. Therm. Eng.
– volume: 44
  start-page: 6660
  year: 2020
  end-page: 6673
  ident: bib12
  article-title: Experimental study of a direct evaporative cooling approach for Li-ion battery thermal management
  publication-title: Int. J. Energy Res.
– volume: 116
  start-page: 1204
  year: 2018
  end-page: 1212
  ident: bib13
  article-title: Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent
  publication-title: Int. J. Heat Mass Tran.
– volume: 293
  start-page: 458
  year: 2015
  end-page: 466
  ident: bib49
  article-title: Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes
  publication-title: J. Power Sources
– volume: 157
  year: 2019
  ident: bib32
  article-title: A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates
  publication-title: Appl. Therm. Eng.
– volume: 15
  year: 2020
  ident: bib66
  article-title: Experimental investigation of saturation boiling of HFE-7000 dielectric liquid on rough copper surfaces
  publication-title: Therm. Sci. Eng. Prog.
– volume: 255
  start-page: 9
  year: 2014
  end-page: 15
  ident: bib4
  article-title: Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials
  publication-title: J. Power Sources
– volume: 525
  year: 2022
  ident: bib67
  article-title: Immersion cooling for lithium-ion batteries – a review
  publication-title: J. Power Sources
– volume: 480
  year: 2020
  ident: bib11
  article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system
  publication-title: J. Power Sources
– volume: 196
  start-page: 5685
  year: 2011
  end-page: 5696
  ident: bib26
  article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity
  publication-title: J. Power Sources
– volume: 436
  year: 2019
  ident: bib10
  article-title: A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 126
  start-page: 765
  year: 2018
  end-page: 778
  ident: bib22
  article-title: Heat and mass transfer modeling and assessment of a new battery cooling system
  publication-title: Int. J. Heat Mass Tran.
– volume: 70
  start-page: 529
  year: 2014
  end-page: 538
  ident: bib2
  article-title: High thermal performance lithium-ion battery pack including hybrid active passive thermal management system for using in hybrid/electric vehicles
  publication-title: Energy
– volume: 96
  start-page: 355
  year: 2016
  end-page: 371
  ident: bib46
  article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers
  publication-title: Energy
– volume: 78
  start-page: 428
  year: 2015
  end-page: 436
  ident: bib43
  article-title: Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery
  publication-title: Appl. Therm. Eng.
– volume: 273
  start-page: 1089
  year: 2015
  end-page: 1097
  ident: bib19
  article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries
  publication-title: J. Power Sources
– ident: bib62
  article-title: Manuals: electric vehicle battery test procedures manual
– volume: 165
  start-page: A2184
  year: 2018
  end-page: A2193
  ident: bib3
  article-title: An experimental study on the thermal failure propagation in lithium-ion battery pack
  publication-title: J. Electrochem. Soc.
– volume: 112
  start-page: 614
  year: 2002
  end-page: 620
  ident: bib7
  article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis
  publication-title: J. Power Sources
– volume: 79
  start-page: 9
  year: 2014
  end-page: 17
  ident: bib56
  article-title: Battery thermal management by boiling heat-transfer
  publication-title: Energy Convers. Manag.
– volume: 9
  start-page: 2263
  year: 2021
  ident: 10.1016/j.csite.2022.102034_bib36
  article-title: Investigation of individual cells replacement concept in lithium-ion battery packs with analysis on economic feasibility and pack design requirements
  publication-title: Processes
  doi: 10.3390/pr9122263
– volume: 207
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib53
  article-title: Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112569
– volume: 142
  start-page: 345
  year: 2005
  ident: 10.1016/j.csite.2022.102034_bib48
  article-title: Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.09.033
– volume: 126
  start-page: 765
  year: 2018
  ident: 10.1016/j.csite.2022.102034_bib22
  article-title: Heat and mass transfer modeling and assessment of a new battery cooling system
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.157
– volume: 132
  start-page: 309
  year: 2019
  ident: 10.1016/j.csite.2022.102034_bib9
  article-title: Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.024
– volume: 115
  start-page: 137
  year: 2003
  ident: 10.1016/j.csite.2022.102034_bib64
  article-title: The low temperature performance of Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00618-3
– volume: 199
  year: 2021
  ident: 10.1016/j.csite.2022.102034_bib16
  article-title: Comparison of lumped and 1D electrochemical models for prismatic 20Ah LiFePO4 battery sandwiched between minichannel cold-plates
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117586
– volume: 247
  start-page: 171
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib54
  article-title: Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.162
– volume: 44
  start-page: 7660
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib18
  article-title: Investigation on the effects of temperature equilibrium strategy in battery thermal management using phase change material
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5497
– volume: 135
  start-page: 746
  year: 2019
  ident: 10.1016/j.csite.2022.102034_bib51
  article-title: Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.02.021
– volume: 8
  start-page: 19
  year: 2022
  ident: 10.1016/j.csite.2022.102034_bib35
  article-title: Concept review of a cloud-based smart battery management system for lithium-ion batteries: feasibility, logistics, and functionality
  publication-title: Batteries (Basel)
  doi: 10.3390/batteries8020019
– volume: 273
  start-page: 1089
  year: 2015
  ident: 10.1016/j.csite.2022.102034_bib19
  article-title: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.007
– volume: 116
  start-page: 1204
  year: 2018
  ident: 10.1016/j.csite.2022.102034_bib13
  article-title: Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.09.092
– volume: 293
  start-page: 458
  year: 2015
  ident: 10.1016/j.csite.2022.102034_bib49
  article-title: Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.05.055
– volume: 363
  start-page: 291
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib55
  article-title: Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.067
– volume: 157
  year: 2019
  ident: 10.1016/j.csite.2022.102034_bib32
  article-title: A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.033
– volume: 44
  start-page: 6660
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib12
  article-title: Experimental study of a direct evaporative cooling approach for Li-ion battery thermal management
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5402
– volume: 436
  year: 2019
  ident: 10.1016/j.csite.2022.102034_bib10
  article-title: A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226879
– volume: 103
  start-page: 157
  year: 2015
  ident: 10.1016/j.csite.2022.102034_bib31
  article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.06.056
– volume: 147
  start-page: 3231
  year: 2000
  ident: 10.1016/j.csite.2022.102034_bib40
  article-title: A novel thermal management system for electric vehicle batteries using phase-change material
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393888
– volume: 204
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib59
  article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112280
– volume: 82
  start-page: 281
  year: 2015
  ident: 10.1016/j.csite.2022.102034_bib45
  article-title: Thermal management of a Li-ion battery using carbon fiber-PCM composites
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.02.068
– volume: 255
  start-page: 9
  year: 2014
  ident: 10.1016/j.csite.2022.102034_bib4
  article-title: Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.006
– volume: 49
  year: 2022
  ident: 10.1016/j.csite.2022.102034_bib33
  article-title: Simulation of cooling plate effect on a battery module with different channel arrangement
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104113
– volume: 233
  start-page: 47
  year: 2013
  ident: 10.1016/j.csite.2022.102034_bib23
  article-title: Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.095
– volume: 270
  start-page: 193
  year: 2014
  ident: 10.1016/j.csite.2022.102034_bib25
  article-title: Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.086
– volume: 473
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib57
  article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228545
– volume: 79
  start-page: 9
  year: 2014
  ident: 10.1016/j.csite.2022.102034_bib56
  article-title: Battery thermal management by boiling heat-transfer
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.12.006
– volume: 70
  start-page: 529
  year: 2014
  ident: 10.1016/j.csite.2022.102034_bib2
  article-title: High thermal performance lithium-ion battery pack including hybrid active passive thermal management system for using in hybrid/electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.046
– volume: 203
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib39
  article-title: Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: an experimental assessment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112205
– volume: 102
  start-page: 9
  year: 2016
  ident: 10.1016/j.csite.2022.102034_bib52
  article-title: Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.11.005
– volume: 109
  start-page: 160
  year: 2002
  ident: 10.1016/j.csite.2022.102034_bib27
  article-title: Heat dissipation design for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00048-4
– volume: 111
  start-page: 943
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib1
  article-title: Structure optimization of parallel air-cooled battery thermal management system
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.04.026
– volume: 6
  start-page: 2709
  year: 2013
  ident: 10.1016/j.csite.2022.102034_bib58
  article-title: Arrhenius equation-based cell-health assessment: application to thermal energy management design of a HEV NiMH battery pack
  publication-title: Energies
  doi: 10.3390/en6052709
– volume: 112
  start-page: 222
  year: 2002
  ident: 10.1016/j.csite.2022.102034_bib63
  article-title: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00363-4
– volume: 21
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib21
  article-title: Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100655
– volume: 43
  year: 2021
  ident: 10.1016/j.csite.2022.102034_bib41
  article-title: Numerical investigation on thermal behaviour of 5 x 5 cell configured battery pack using phase change material and fin structure layout
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103234
– volume: 525
  year: 2022
  ident: 10.1016/j.csite.2022.102034_bib67
  article-title: Immersion cooling for lithium-ion batteries – a review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231094
– volume: 149
  start-page: 192
  year: 2019
  ident: 10.1016/j.csite.2022.102034_bib8
  article-title: Review on battery thermal management system for electric vehicles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.12.020
– volume: 196
  start-page: 5685
  year: 2011
  ident: 10.1016/j.csite.2022.102034_bib26
  article-title: Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.02.076
– volume: 109
  start-page: 958
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib42
  article-title: Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.02.057
– volume: 15
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib66
  article-title: Experimental investigation of saturation boiling of HFE-7000 dielectric liquid on rough copper surfaces
  publication-title: Therm. Sci. Eng. Prog.
– volume: 96
  start-page: 355
  year: 2016
  ident: 10.1016/j.csite.2022.102034_bib46
  article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.064
– volume: 196
  start-page: 10359
  year: 2011
  ident: 10.1016/j.csite.2022.102034_bib30
  article-title: Design optimization of electric vehicle battery cooling plates for thermal performance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.06.090
– volume: 176
  start-page: 131
  year: 2018
  ident: 10.1016/j.csite.2022.102034_bib37
  article-title: Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.09.025
– volume: 100
  start-page: 60
  year: 2019
  ident: 10.1016/j.csite.2022.102034_bib38
  article-title: Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2018.12.020
– volume: 165
  start-page: A2184
  year: 2018
  ident: 10.1016/j.csite.2022.102034_bib3
  article-title: An experimental study on the thermal failure propagation in lithium-ion battery pack
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0721810jes
– volume: 2
  start-page: 643
  year: 2021
  ident: 10.1016/j.csite.2022.102034_bib34
  article-title: Coupled electrochemical-thermal simulations and validation of minichannel cold-plate water-cooled prismatic 20 Ah LiFePO4 battery
  publication-title: Electrochemistry
– volume: 138
  start-page: 486
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib50
  article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.02.022
– volume: 147
  start-page: 829
  year: 2019
  ident: 10.1016/j.csite.2022.102034_bib15
  article-title: Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.009
– volume: 49
  start-page: 1057
  year: 2004
  ident: 10.1016/j.csite.2022.102034_bib65
  article-title: Electrochemical impedance study on the low temperature of Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2003.10.016
– volume: 247
  start-page: 961
  year: 2014
  ident: 10.1016/j.csite.2022.102034_bib60
  article-title: Accurate determination of battery discharge characteristics - a comparison between two battery temperature control methods
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.060
– volume: 94
  start-page: 846
  year: 2016
  ident: 10.1016/j.csite.2022.102034_bib14
  article-title: Comparison of different cooling methods for lithium ion battery cells
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.10.015
– volume: 63
  start-page: 551
  year: 2014
  ident: 10.1016/j.csite.2022.102034_bib20
  article-title: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.11.048
– volume: 121
  start-page: 104
  year: 2014
  ident: 10.1016/j.csite.2022.102034_bib44
  article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.01.075
– volume: 112
  start-page: 614
  year: 2002
  ident: 10.1016/j.csite.2022.102034_bib7
  article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00473-1
– volume: 78
  start-page: 428
  year: 2015
  ident: 10.1016/j.csite.2022.102034_bib43
  article-title: Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.01.009
– volume: 221
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib17
  article-title: An innovative battery thermal management with thermally induced flexible phase change material
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113145
– volume: 123
  start-page: 1514
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib29
  article-title: Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.06.059
– volume: 110
  start-page: 377
  year: 2002
  ident: 10.1016/j.csite.2022.102034_bib5
  article-title: Battery thermal models for hybrid vehicle simulations
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00200-8
– volume: 123
  start-page: 177
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib24
  article-title: Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.060
– volume: 112
  start-page: 606
  year: 2002
  ident: 10.1016/j.csite.2022.102034_bib6
  article-title: Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00474-3
– volume: 480
  year: 2020
  ident: 10.1016/j.csite.2022.102034_bib11
  article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229116
– volume: 150
  start-page: 304
  year: 2017
  ident: 10.1016/j.csite.2022.102034_bib28
  article-title: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.08.016
– volume: 127
  start-page: 48
  year: 2016
  ident: 10.1016/j.csite.2022.102034_bib47
  article-title: Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.01.011
SSID ssj0001738144
Score 2.5395079
Snippet In this study, fluorinated liquid immersion cooling as a new cooling scheme has been tested and discussed for cooling the 18650 lithium-ion battery (LIB)....
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102034
SubjectTerms Immersion cooling
Lithium-ion battery
Pool boiling
Thermal management
Two-phase heat transfer
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwyIp3jLAyNWk9hO4pEiUIUECyB1i_wsQaUpJR3495ydpISlA2Occ2KdLd939t13CF054QCkGkEMNYowzS3JdcqIFWCv08xxF8p0Pj6lo1f2MObjDXTb5cL4sMp272_29LBbty2DVpuDeVkOnpMkBuuTjZMk3A_6RHPK8pDENx7-nrNkYJNCTVcvT3yHjnwohHnpcEmbgCnzLAYRZX8MVODx79mpnu2530U7LWjEN8249tCGne2j7R6V4AFa3vWo-vFXEx2IK4en5eeyNLgMB9QwCVhXvk7PBANaxXEO0AlE6rdy-UH8WxX4Nr-xzy1b4K58So199q4nVfI9wYU2TaTXIXq9v3u5HZG2pALRLGY1oZobp4UCECO5AWfMUq4o44oJUKE0qY4jKQxgDKmZ4dYI8Gd4lqS5srEFx_sIbc6qmT1GWAjGI0BXGeMOvB4nmQYtyiiSic1jqk9Q0umx0C3fuC97MS26wLL3Iii_8MovGuWfoOtVp3lDt7FefOgnaCXqubJDQ7WYFO1iKSi4mQAyY82lgIFGuYpSo6x13GaUSxho2k1v8WfpwafKdX8__W_HM7Tln5qIs3O0WS-W9gKwTa0uw-L9AXFc9ww
  priority: 102
  providerName: Elsevier
Title Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions
URI https://dx.doi.org/10.1016/j.csite.2022.102034
https://doaj.org/article/30262261c5a948708b06dbeef5e735ac
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCIRR52Eo8UtSpIMFGpW-QnBJUWSjrw7znbSRWWsrBkSPyIzqfc9znn7xC6stwCSNWc6FRLQhUzpFAZJYZDvM5yy6wv0_n4lI0n9GHKpp1SXy4nLMgDB8PdpEASACLEigkO4DoqZJRpaYxlJk-ZUO7rCzGvQ6b87koOkchXck2SmJKY5dNWcsgndyn_axaIf-K0C6KU_gpLXr2_E506EWe0h3YbqIhvwyvuoy0zP0A7HQHBQ7QadgT68VfICcQLi2fV56rSuPLb0mB6rBauOs8LBoyK4wIAEzSpX6vVO3FPpVfZ_MbuRNkSt0VTauzO7DopJdcTiLMO-V1HaDIaPt-NSVNIgSga05qkimmruAToIpgGCmZSJlPKJOVJEQmdqTgSXAOyEIpqZjQHFsPyJCukiQ3Q7WPUmy_m5gRhzimLAFPllFlYDiuoAiuKKBKJKeJU9VHS2rFUjcq4K3YxK9t0srfSG790xi-D8fvoet3pI4hsbG4-cAu0buoUsv0N8Juy8ZvyL7_po6xd3rIBGwFEwFDVptlP_2P2M7Tthgw5Z-eoVy9X5gLQTS0vvSPD9X46-AF0EPcH
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3HhixmoedxCNFoPJcAKmb5ScElRZKOvDvOTsJlIWB1fYl1tnyfWfffYfQseMOQKrhxKRGEaqZJYXOKLEc7HWWO-ZCmc7bu6z_SK8GbDCHztpcGB9W2Zz99ZkeTuumpdtos_tWlt37JInB-uSDJAnvg2weLQAayH39hstB7-eiJQejFIq6egHiJVr2oRDnpcMrbQK2zNMYRCn9ZaECkf-MoZoxPheraKVBjfi0ntgamrOjdbQ8wyW4gabnM1z9-KMOD8Rjh4fl-7Q0uAw31LAKWI99oZ4nDHAVxwVgJxhSPZfTV-J7VSDc_MQ-uWyC2_opFfbpu55VyUuCD23qUK9N9Hhx_nDWJ01NBaJpTCuSamac5gpQjGQGvDGbMpVSpigHHUqT6TiS3ADIkJoaZg0Hh4blSVYoG1vwvLdQZzQe2W2EOacsAniVU-bA7XGSatCijCKZ2CJO9Q5KWj0K3RCO-7oXQ9FGlr2IoHzhlS9q5e-gk2-ht5pv4-_hPb9A30M9WXZoGE-eRLNbRAp-JqDMWDPJYaJRoaLMKGsds3nKJEw0a5dX_Np78Knyr7_v_lfwCC32H25vxM3l3fUeWvI9dfjZPupUk6k9AKBTqcOwkb8A4JX6Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+studies+of+liquid+immersion+cooling+for+18650+lithium-ion+battery+under+different+discharging+conditions&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Yang+Li&rft.au=Zhifu+Zhou&rft.au=Leiming+Hu&rft.au=Minli+Bai&rft.date=2022-06-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=34&rft.spage=102034&rft_id=info:doi/10.1016%2Fj.csite.2022.102034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_30262261c5a948708b06dbeef5e735ac
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon