Artificial intelligence in drug discovery: applications and techniques

Abstract Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 1
Main Authors Deng, Jianyuan, Yang, Zhibo, Ojima, Iwao, Samaras, Dimitris, Wang, Fusheng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 17.01.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated.
AbstractList Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated.
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated.Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated.
Abstract Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated.
Author Deng, Jianyuan
Wang, Fusheng
Yang, Zhibo
Samaras, Dimitris
Ojima, Iwao
Author_xml – sequence: 1
  givenname: Jianyuan
  surname: Deng
  fullname: Deng, Jianyuan
– sequence: 2
  givenname: Zhibo
  surname: Yang
  fullname: Yang, Zhibo
– sequence: 3
  givenname: Iwao
  surname: Ojima
  fullname: Ojima, Iwao
– sequence: 4
  givenname: Dimitris
  surname: Samaras
  fullname: Samaras, Dimitris
– sequence: 5
  givenname: Fusheng
  surname: Wang
  fullname: Wang, Fusheng
  email: fusheng.wang@stonybrook.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34734228$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEQhoNUrK2evMuCIIKsTTZfu95KsSoUvPQekmy2pmyza7Ir9N-b2vZSROYwM_DMzMu8IzBwjTMA3CD4hGCBJ8qqiVJSEQzPwCUinKcEUjLY1YynlDA8BKMQ1hBmkOfoAgwx4ZhkWX4J5lPf2cpqK-vEus7UtV0Zp01sktL3q6S0QTffxm-fE9m2tdWys40LiXRl0hn96exXb8IVOK9kHcz1IY_Bcv6ynL2li4_X99l0kWqCSJdiBanERSaphLhiyhQlxTivCNMZVhpSxjk3GheEalIhxpDJtOGkYCXOIzIGD_u1rW92ZzuxifKiaOlM0weR0QIziAuII3p3gq6b3rsoTmQsBoSEwkjdHqhebUwpWm830m_F8UERQHtA-yYEbyqhbff7gs5LWwsExc4EEU0QBxPizOPJzHHt3_T9nm769l_wB5hylOU
CitedBy_id crossref_primary_10_1038_s41467_023_39120_1
crossref_primary_10_1038_s41598_023_32703_4
crossref_primary_10_1002_minf_202300327
crossref_primary_10_1093_bib_bbae565
crossref_primary_10_3389_fphar_2023_1205144
crossref_primary_10_1007_s41060_022_00371_8
crossref_primary_10_1080_17460441_2024_2367014
crossref_primary_10_1186_s43094_024_00632_2
crossref_primary_10_3390_molecules29040903
crossref_primary_10_3390_molecules29071499
crossref_primary_10_3389_fmolb_2023_1248885
crossref_primary_10_2298_CSIS240327039D
crossref_primary_10_1016_j_csbj_2024_04_030
crossref_primary_10_1016_j_compbiolchem_2024_108056
crossref_primary_10_5465_amr_2021_0421
crossref_primary_10_1177_17470161241261044
crossref_primary_10_1039_D4SC04107K
crossref_primary_10_1093_bib_bbac577
crossref_primary_10_1016_j_jtcme_2025_02_009
crossref_primary_10_1093_bib_bbae438
crossref_primary_10_1016_j_nocx_2023_100185
crossref_primary_10_1016_j_omtn_2024_102295
crossref_primary_10_3390_ph16030332
crossref_primary_10_1016_j_csbj_2024_06_009
crossref_primary_10_1021_acs_jcim_4c01320
crossref_primary_10_1089_genbio_2023_0014
crossref_primary_10_1109_JBHI_2024_3383221
crossref_primary_10_1021_acs_jcim_3c00685
crossref_primary_10_1093_bib_bbad467
crossref_primary_10_1021_acs_jcim_4c00159
crossref_primary_10_1093_bib_bbad419
crossref_primary_10_1016_j_artmed_2022_102439
crossref_primary_10_1016_j_engappai_2024_108783
crossref_primary_10_1038_s41467_023_41948_6
crossref_primary_10_48175_IJARSCT_22854
crossref_primary_10_1021_acs_jcim_4c00747
crossref_primary_10_1038_s41467_023_43597_1
crossref_primary_10_2174_0929867330666230403100008
crossref_primary_10_1186_s12859_024_05904_5
crossref_primary_10_1016_j_ejmech_2023_115796
crossref_primary_10_1038_s41598_025_91190_x
crossref_primary_10_1016_j_compbiomed_2022_106380
crossref_primary_10_1016_j_isci_2024_110875
crossref_primary_10_1080_17460441_2025_2458666
crossref_primary_10_1111_cbdd_14262
crossref_primary_10_1016_j_patrec_2023_10_001
crossref_primary_10_15388_24_INFOR558
crossref_primary_10_1016_j_jpha_2024_101161
crossref_primary_10_3390_catal14120894
crossref_primary_10_1007_s44230_024_00070_6
crossref_primary_10_1021_acs_jcim_3c01519
crossref_primary_10_1016_j_drudis_2023_103795
crossref_primary_10_23950_jcmk_13541
crossref_primary_10_3390_pharmaceutics16101328
crossref_primary_10_1016_j_aej_2024_11_063
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_1016_j_molstruc_2023_136668
crossref_primary_10_1021_acs_jcim_4c01669
crossref_primary_10_1021_acs_jpclett_4c01751
crossref_primary_10_1016_j_jhip_2024_12_002
crossref_primary_10_1093_bib_bbae294
crossref_primary_10_1109_TAI_2023_3251977
crossref_primary_10_3389_fphar_2024_1389293
crossref_primary_10_1016_j_biopha_2024_116709
crossref_primary_10_1093_bib_bbac621
crossref_primary_10_1007_s10822_022_00457_2
crossref_primary_10_1007_s10489_023_04915_8
crossref_primary_10_1007_s44254_023_00047_x
crossref_primary_10_1007_s11696_024_03499_y
crossref_primary_10_1109_ACCESS_2024_3373195
crossref_primary_10_1021_acs_jcim_2c01088
Cites_doi 10.1038/s41587-019-0224-x
10.1093/nar/gkw1074
10.1016/j.drudis.2020.10.010
10.1021/acscentsci.8b00507
10.1021/acs.jcim.5b00559
10.1021/acs.jcim.9b00195
10.1016/j.tox.2005.08.019
10.1021/acs.jcim.9b00410
10.1016/j.drudis.2014.12.004
10.1021/acs.jcim.9b00266
10.1021/acs.jmedchem.0c00385
10.1021/acs.jcim.8b00338
10.1016/j.cell.2020.01.021
10.1038/nrd941
10.1016/j.drudis.2014.10.012
10.1021/ci500747n
10.1021/ci060164k
10.1080/17460441.2016.1216967
10.1021/c160017a018
10.1002/minf.202000203
10.1016/j.drudis.2018.01.039
10.1021/ci034160g
10.1093/bioinformatics/btq628
10.1038/s41572-019-0105-0
10.1109/MSP.2017.2743240
10.1016/j.ddtec.2013.02.001
10.1021/acscentsci.6b00367
10.1021/acs.jcim.7b00274
10.1093/nar/gkaa971
10.1021/mp100444g
10.1021/acs.jcim.8b00751
10.1021/acs.jcim.8b00839
10.1021/acs.jcim.0c00517
10.1038/nrd.2017.232
10.1021/acs.jcim.9b00325
10.1109/TKDE.2021.3090866
10.1517/17460441.2014.866943
10.1038/nrd3139
10.1038/nature03192
10.1145/3295748
10.1021/acs.jcim.8b00669
10.1007/s00894-021-04674-8
10.1016/j.drudis.2020.12.009
10.1021/acs.jcim.9b01101
10.1016/j.drudis.2013.03.002
10.1021/acs.jcim.9b00236
10.1007/s10822-007-9142-y
10.1021/acs.jcim.8b00672
10.1002/ail2.18
10.1038/d41573-019-00074-z
10.1016/j.cels.2020.08.016
10.1021/acs.jcim.7b00650
10.1080/17460441.2019.1593371
10.1561/2200000019
10.1021/acs.jcim.9b00237
10.1124/pr.112.007336
10.1093/nar/gkw1118
10.1038/nrd.2018.168
10.1039/C8SC00148K
10.1093/bib/bby061
10.1021/acs.jcim.7b00558
10.1021/acs.jcim.6b00625
10.1021/acscentsci.7b00512
10.1109/ICASSP.2011.5947611
10.1021/acscentsci.7b00572
10.1155/2019/2903252
10.1145/3386252
10.1021/acs.jcim.8b00670
10.1111/j.1476-5381.2010.01127.x
10.1021/ci00057a005
10.1007/s10822-016-9938-8
10.1039/C9SC03414E
10.1038/nrd1799
10.1145/3394486.3403104
10.1016/j.drudis.2020.11.037
10.1038/nature14539
10.1016/j.drudis.2014.01.005
10.1016/j.drudis.2017.12.002
10.1038/s41587-020-0418-2
10.1039/D0CP02709J
10.1145/3307339.3342186
10.1021/acs.jcim.0c00915
10.1016/j.jsps.2016.07.002
10.1021/acs.jcim.8b00706
10.1093/bib/bbz122
10.1021/acs.jcim.8b00803
10.1021/ci700351y
10.1021/acs.jcim.5b00090
10.1016/j.drudis.2020.01.020
10.1162/neco.1997.9.8.1735
10.1186/s13321-021-00561-9
10.1021/acs.jcim.9b00387
10.1186/s13321-019-0407-y
10.1021/acs.jcim.9b01162
10.1038/s41598-020-79682-4
10.1021/acs.jcim.6b00740
10.3389/fphar.2020.565644
10.1021/acs.molpharmaceut.8b00839
10.1021/ci00062a008
10.1021/mp0700413
10.1021/acs.jmedchem.9b00959
10.1021/acs.molpharmaceut.7b00346
10.1038/s41573-019-0050-3
10.1016/j.drudis.2016.02.015
10.1038/s42256-021-00301-6
10.1021/ci7002076
10.1016/j.chembiol.2018.01.015
10.1038/nrd.2018.116
10.1039/C7SC02664A
10.1021/acs.jcim.6b00290
10.1021/acs.jcim.8b00263
10.1021/acs.jcim.8b00769
10.1093/nar/gkv352
10.1021/jm401120g
10.1016/S0169-409X(02)00003-0
10.1039/D0CS00098A
10.1016/j.jmgm.2007.06.005
10.1039/C9ME00039A
10.1038/sj.bjp.0707373
10.1093/bib/bby004
10.1124/dmd.108.023507
10.1038/s41573-019-0024-5
10.1021/acs.jcim.7b00690
10.1126/sciadv.aap7885
10.1021/ci200528d
10.1021/acs.jcim.8b00832
10.3389/fenvs.2015.00080
10.1145/3394486.3403117
10.1038/s42256-020-00236-4
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbab430
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 34734228
10_1093_bib_bbab430
10.1093/bib/bbab430
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c414t-3b05a392a5a03f6be9d5338f46c23bc056777ec3945c4f1661e2ce7496d38c23
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 11:29:02 EDT 2025
Mon Jun 30 08:48:39 EDT 2025
Mon Jul 21 05:59:07 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Tue Jul 01 03:39:37 EDT 2025
Fri May 23 09:42:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords learning paradigm
drug discovery
molecule generation
model architecture
artificial intelligence
molecular property prediction
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-3b05a392a5a03f6be9d5338f46c23bc056777ec3945c4f1661e2ce7496d38c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 34734228
PQID 2626200450
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2593603903
proquest_journals_2626200450
pubmed_primary_34734228
crossref_citationtrail_10_1093_bib_bbab430
crossref_primary_10_1093_bib_bbab430
oup_primary_10_1093_bib_bbab430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-17
PublicationDateYYYYMMDD 2022-01-17
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Xu (2022011921340194000_ref151) 2018
Landrum (2022011921340194000_ref153) 2016
Polykovskiy (2022011921340194000_ref64) 2020; 11
You (2022011921340194000_ref140) 2018
Hernandez (2022011921340194000_ref83) 2019; 59
Carion (2022011921340194000_ref213) 2020
Defferrard (2022011921340194000_ref146) 2016
Lagarde (2022011921340194000_ref65) 2015; 55
Li (2022011921340194000_ref145) 2016
David (2022011921340194000_ref67) 2020; 12
Gao (2022011921340194000_ref121) 2017
Weininger (2022011921340194000_ref74) 1988; 28
Hochreiter (2022011921340194000_ref129) 1997; 9
Kipf (2022011921340194000_ref147) 2017
Zhao (2022011921340194000_ref110) 2006; 217
Zheng (2022011921340194000_ref135) 2019; 59
Deng (2022011921340194000_ref243) 2020; 2020
Radford (2022011921340194000_ref208) 2018
Cai (2022011921340194000_ref161) 2019; 59
Schneider (2022011921340194000_ref27) 2005; 4
Blaschke (2022011921340194000_ref98) 2020; 60
Xu (2022011921340194000_ref171) 2020
Elton (2022011921340194000_ref50) 2019; 4
LeCun (2022011921340194000_ref114) 2015; 521
Zhou (2022011921340194000_ref169) 2019; 9
Yang (2022011921340194000_ref224) 2021
Morgan (2022011921340194000_ref68) 1965; 5
Nguyen (2022011921340194000_ref165) 2020
Scior (2022011921340194000_ref21) 2012; 52
Wu (2022011921340194000_ref144) 2020
Kingma (2022011921340194000_ref173) 2019
Guimaraes (2022011921340194000_ref142) 2017
Heikamp (2022011921340194000_ref111) 2014; 9
Schulman (2022011921340194000_ref232) 2017
Lavecchia (2022011921340194000_ref40) 2015; 20
Tsigelny (2022011921340194000_ref13) 2019; 20
Staker (2022011921340194000_ref124) 2019; 59
Altae-Tran (2022011921340194000_ref158) 2017; 3
Schneider (2022011921340194000_ref102) 2008; 48
Wang (2022011921340194000_ref162) 2019; 59
Schneider (2022011921340194000_ref33) 2010; 9
Bender (2022011921340194000_ref17) 2008; 11
Devlin (2022011921340194000_ref209) 2019
Wang (2022011921340194000_ref220) 2021
Schulman (2022011921340194000_ref233) 2015
Stumpfe (2022011921340194000_ref8) 2020; 60
Kingma (2022011921340194000_ref172) 2013
Luo (2022011921340194000_ref206) 2021
Chuang (2022011921340194000_ref47) 2020; 63
Strokach (2022011921340194000_ref11) 2020; 11
Nicolaou (2022011921340194000_ref25) 2013; 10
Li (2022011921340194000_ref137) 2018
Rajan (2022011921340194000_ref125) 2020; 12
Mercado (2022011921340194000_ref72) 2021; 2
Hofmarcher (2022011921340194000_ref116) 2019; 59
(2022011921340194000_ref103) 2007; 47
Zang (2022011921340194000_ref205) 2020
Pushpakom (2022011921340194000_ref12) 2019; 18
Na (2022011921340194000_ref226) 2020; 22
Yu (2022011921340194000_ref195) 2017
Wu (2022011921340194000_ref84) 2018; 58
Lim (2022011921340194000_ref177) 2018; 10
Brown (2022011921340194000_ref212) 2020
Kearnes (2022011921340194000_ref152) 2016; 30
Chithrananda (2022011921340194000_ref59) 2020
Kusner (2022011921340194000_ref174) 2017
Riddick (2022011921340194000_ref109) 2011; 27
Bradshaw (2022011921340194000_ref217) 2019
Olivecrona (2022011921340194000_ref97) 2017; 9
Ramsundar (2022011921340194000_ref94) 2019
Brown (2022011921340194000_ref99) 2019; 59
Chen (2022011921340194000_ref4) 2018; 23
Liu (2022011921340194000_ref219) 2021
Kim (2022011921340194000_ref20) 2016; 11
Svetnik (2022011921340194000_ref112) 2003; 43
Ramsundar (2022011921340194000_ref117) 2015
Muratov (2022011921340194000_ref26) 2020; 49
Dobson (2022011921340194000_ref28) 2004; 432
Paananen (2022011921340194000_ref14) 2020; 21
Popova (2022011921340194000_ref79) 2018; 4
Salahudeen (2022011921340194000_ref22) 2017; 25
Putin (2022011921340194000_ref196) 2018; 58
Weininger (2022011921340194000_ref75) 1989; 29
Dosovitskiy (2022011921340194000_ref214) 2021
Walters (2022011921340194000_ref55) 2021
Mikolov (2022011921340194000_ref127) 2011
Chung (2022011921340194000_ref130) 2014
Neil (2022011921340194000_ref132) 2018
Sambasivan (2022011921340194000_ref240) 2021
Andrade (2022011921340194000_ref49) 2019; 5
Honda (2022011921340194000_ref216) 2019
Grechishnikova (2022011921340194000_ref218) 2021; 11
Rong (2022011921340194000_ref63) 2020
Jiang (2022011921340194000_ref244) 2021; 13
Paul (2022011921340194000_ref7) 2020; 26
He (2022011921340194000_ref122) 2016
Popova (2022011921340194000_ref139) 2019
Ma (2022011921340194000_ref187) 2018
Rifaioglu (2022011921340194000_ref91) 2020; 11
Duvenaud (2022011921340194000_ref118) 2015
Hu (2022011921340194000_ref23) 2013; 18
Jiménez-Luna (2022011921340194000_ref31) 2020; 2
Dahl (2022011921340194000_ref113) 2012
Subramanian (2022011921340194000_ref69) 2016; 56
Jiménez (2022011921340194000_ref81) 2018; 58
Stokes (2022011921340194000_ref46) 2020; 180
Hou (2022011921340194000_ref105) 2007; 47
Veličković (2022011921340194000_ref150) 2017
Simm (2022011921340194000_ref86) 2020
Simm (2022011921340194000_ref115) 2018; 25
Segler (2022011921340194000_ref100) 2018; 4
Goh (2022011921340194000_ref120) 2017
Sliwoski (2022011921340194000_ref29) 2014; 66
Vaswani (2022011921340194000_ref207) 2017
Pathak (2022011921340194000_ref168) 2020
Sterling (2022011921340194000_ref19) 2015; 55
Jin (2022011921340194000_ref73) 2020
Lim (2022011921340194000_ref190) 2020
Yasonik (2022011921340194000_ref235) 2020; 12
Kulis (2022011921340194000_ref223) 2012; 5
Simonyan (2022011921340194000_ref123) 2015
Shen (2022011921340194000_ref96) 2021; 3
Movshovitz-Attias (2022011921340194000_ref225) 2017
Van Hasselt (2022011921340194000_ref230) 2016; 30
Singh (2022011921340194000_ref241) 2018; 23
Xiong (2022011921340194000_ref77) 2019; 63
Deng (2022011921340194000_ref234) 2020
Chenthamarakshan (2022011921340194000_ref180) 2020
Feinberg (2022011921340194000_ref156) 2018; 4
(2022011921340194000_ref231) 1992; 8
Mater (2022011921340194000_ref5) 2019; 59
Gilmer (2022011921340194000_ref148) 2017
Gómez-Bombarelli (2022011921340194000_ref78) 2018; 4
Skalic (2022011921340194000_ref85) 2019; 59
Yang (2022011921340194000_ref71) 2019; 59
Hao (2022011921340194000_ref164) 2020
Dinh (2022011921340194000_ref201) 2017
Öztürk (2022011921340194000_ref43) 2020; 25
Vamathevan (2022011921340194000_ref6) 2019; 18
Radford (2022011921340194000_ref210) 2019; 1
Lu (2022011921340194000_ref160) 2019
Liu (2022011921340194000_ref178) 2018
Rifaioglu (2022011921340194000_ref56) 2019; 20
Chen (2022011921340194000_ref66) 2016; 21
Schütt (2022011921340194000_ref155) 2017
Davies (2022011921340194000_ref61) 2015; 43
You (2022011921340194000_ref136) 2018
Bender (2022011921340194000_ref54) 2021; 26
Mayr (2022011921340194000_ref48) 2016; 3
Withnall (2022011921340194000_ref154) 2020; 12
Dinh (2022011921340194000_ref200) 2015
Vanschoren (2022011921340194000_ref221) 2018
Goodfellow (2022011921340194000_ref194) 2017
Van Drie (2022011921340194000_ref30) 2007; 21
Honda (2022011921340194000_ref203) 2019
Wu (2022011921340194000_ref93) 2018; 9
Hughes (2022011921340194000_ref15) 2011; 162
Koge (2022011921340194000_ref227) 2021; 40
Lim (2022011921340194000_ref82) 2019; 59
Kang (2022011921340194000_ref176) 2018; 59
Hossain (2022011921340194000_ref126) 2019; 51
Meyer (2022011921340194000_ref89) 2019; 59
Schaduangrat (2022011921340194000_ref52) 2020; 12
Bajorath (2022011921340194000_ref32) 2002; 1
Liu (2022011921340194000_ref211) 2019
Patrick (2022011921340194000_ref101) 2002; 54
Ragoza (2022011921340194000_ref80) 2017; 57
Cortés-Ciriano (2022011921340194000_ref90) 2019; 11
Kadurin (2022011921340194000_ref182) 2017; 14
Klicpera (2022011921340194000_ref157) 2020
Walters (2022011921340194000_ref239) 2020; 38
Mullard (2022011921340194000_ref1) 2014; 13
Mercado (2022011921340194000_ref51) 2020; 1
Wang (2022011921340194000_ref222) 2020; 53
Hamilton (2022011921340194000_ref149) 2017
Stumpfe (2022011921340194000_ref37) 2014; 57
Sydow (2022011921340194000_ref35) 2019; 59
Wang (2022011921340194000_ref215) 2019
Fernandez (2022011921340194000_ref88) 2018; 58
Ståhl (2022011921340194000_ref134) 2019; 59
Dowden (2022011921340194000_ref2) 2019; 18
Shi (2022011921340194000_ref204) 2020
Liu (2022011921340194000_ref159) 2019
Gaulton (2022011921340194000_ref60) 2017; 45
Alom (2022011921340194000_ref42) 2018
Kim (2022011921340194000_ref57) 2021; 49
Boström (2022011921340194000_ref10) 2018; 17
Madhawa (2022011921340194000_ref202) 2019
Boulanger-Lewandowski (2022011921340194000_ref128) 2012
Kobyzev (2022011921340194000_ref199) 2020
Blaschke (2022011921340194000_ref183) 2018; 37
Sakiyama (2022011921340194000_ref107) 2008; 26
Sutton (2022011921340194000_ref228) 2018
Goh (2022011921340194000_ref131) 2017
Yusof (2022011921340194000_ref24) 2014; 19
Bian (2022011921340194000_ref76) 2021; 27
Polykovskiy (2022011921340194000_ref184) 2018; 15
Jin (2022011921340194000_ref186) 2018
Kajino (2022011921340194000_ref188) 2019
Maggiora (2022011921340194000_ref36) 2006
Schroeter (2022011921340194000_ref104) 2007; 4
Simonovsky (2022011921340194000_ref185) 2018
Reker (2022011921340194000_ref238) 2015; 20
Tianfan (2022011921340194000_ref191) 2020
Hemmerich (2022011921340194000_ref87) 2020; 12
Samanta (2022011921340194000_ref179) 2020; 21
Polishchuk (2022011921340194000_ref34) 2017; 57
Kwon (2022011921340194000_ref189) 2019; 11
Glen (2022011921340194000_ref119) 2006; 9
Schneider (2022011921340194000_ref9) 2020; 19
Li (2022011921340194000_ref166) 2019; 59
Zang (2022011921340194000_ref70) 2017; 57
Sattarov (2022011921340194000_ref141) 2019; 59
Pereira (2022011921340194000_ref16) 2007; 152
Mayr (2022011921340194000_ref62) 2018; 9
Schneider (2022011921340194000_ref3) 2018; 17
Jiménez-Luna (2022011921340194000_ref44) 2021
Deng (2022011921340194000_ref242) 2021
Makhzani (2022011921340194000_ref181) 2015
Sanchez-Lengeling (2022011921340194000_ref143) 2017
Tang (2022011921340194000_ref167) 2020; 12
Zhavoronkov (2022011921340194000_ref45) 2019; 37
Wang (2022011921340194000_ref18) 2017; 45
Salimans (2022011921340194000_ref198) 2016
Bajorath (2022011921340194000_ref38) 2019; 14
Jin (2022011921340194000_ref193) 2020
Hu (2022011921340194000_ref163) 2020
Vasanthanathan (2022011921340194000_ref108) 2009; 37
Dai (2022011921340194000_ref175) 2018
Kwon (2022011921340194000_ref192) 2020; 12
Korkmaz (2022011921340194000_ref58) 2020; 60
Krizhevsky (2022011921340194000_ref41) 2012; 25
Bender (2022011921340194000_ref53) 2021; 26
Tian (2022011921340194000_ref106) 2011; 8
Ma (2022011921340194000_ref39) 2015; 55
Rajan (2022011921340194000_ref92) 2021; 13
Joulin (2022011921340194
References_xml – volume: 37
  start-page: 1038
  issue: 9
  year: 2019
  ident: 2022011921340194000_ref45
  article-title: Deep learning enables rapid identification of potent ddr1 kinase inhibitors
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0224-x
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref125
  article-title: Decimer: towards deep learning for chemical image recognition
  publication-title: J Chem
– volume-title: Proceedings of the 29th International Coference on International Conference on Machine Learning
  year: 2012
  ident: 2022011921340194000_ref128
– year: 2018
  ident: 2022011921340194000_ref221
  article-title: Meta-learning: A survey
– volume-title: Proceedings of NAACL-HLT
  year: 2019
  ident: 2022011921340194000_ref209
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  ident: 2022011921340194000_ref210
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI blog
– volume: 45
  start-page: D945
  issue: D1
  year: 2017
  ident: 2022011921340194000_ref60
  article-title: The chembl database in 2017
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1074
– volume: 26
  start-page: 80
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref7
  article-title: Artificial intelligence in drug discovery and development
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2020.10.010
– volume: 4
  start-page: 1520
  issue: 11
  year: 2018
  ident: 2022011921340194000_ref156
  article-title: Potentialnet for molecular property prediction
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.8b00507
– volume: 55
  start-page: 2324
  issue: 11
  year: 2015
  ident: 2022011921340194000_ref19
  article-title: Zinc 15–ligand discovery for everyone
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00559
– volume: 59
  start-page: 4475
  issue: 10
  year: 2019
  ident: 2022011921340194000_ref83
  article-title: A quantum-inspired method for three-dimensional ligand-based virtual screening
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00195
– volume: 217
  start-page: 105
  issue: 2–3
  year: 2006
  ident: 2022011921340194000_ref110
  article-title: Application of support vector machine (svm) for prediction toxic activity of different data sets
  publication-title: Toxicology
  doi: 10.1016/j.tox.2005.08.019
– start-page: 360
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: 2022011921340194000_ref225
– start-page: 1
  year: 2021
  ident: 2022011921340194000_ref55
  article-title: Critical assessment of ai in drug discovery
  publication-title: Expert Opin Drug Discov
– volume: 59
  start-page: 3817
  issue: 9
  year: 2019
  ident: 2022011921340194000_ref162
  article-title: Molecule property prediction based on spatial graph embedding
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00410
– volume: 20
  start-page: 458
  issue: 4
  year: 2015
  ident: 2022011921340194000_ref238
  article-title: Active-learning strategies in computer-assisted drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2014.12.004
– volume: 59
  start-page: 2545
  issue: 6
  year: 2019
  ident: 2022011921340194000_ref5
  article-title: Deep learning in chemistry
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00266
– volume: 63
  start-page: 8705
  issue: 16
  year: 2020
  ident: 2022011921340194000_ref47
  article-title: Learning molecular representations for medicinal chemistry: Miniperspective
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.0c00385
– volume: 58
  start-page: 1533
  issue: 8
  year: 2018
  ident: 2022011921340194000_ref88
  article-title: Toxic colors: the use of deep learning for predicting toxicity of compounds merely from their graphic images
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00338
– volume: 180
  start-page: 688
  issue: 4
  year: 2020
  ident: 2022011921340194000_ref46
  article-title: A deep learning approach to antibiotic discovery
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.021
– volume: 1
  start-page: 882
  issue: 11
  year: 2002
  ident: 2022011921340194000_ref32
  article-title: Integration of virtual and high-throughput screening
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd941
– volume: 20
  start-page: 318
  issue: 3
  year: 2015
  ident: 2022011921340194000_ref40
  article-title: Machine-learning approaches in drug discovery: methods and applications
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2014.10.012
– volume: 12
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref52
  article-title: Towards reproducible computational drug discovery
  publication-title: J Chem
– start-page: 3183
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: 2022011921340194000_ref188
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref235
  article-title: Multiobjective de novo drug design with recurrent neural networks and nondominated sorting
  publication-title: J Chem
– volume: 55
  start-page: 263
  issue: 2
  year: 2015
  ident: 2022011921340194000_ref39
  article-title: Deep neural nets as a method for quantitative structure–activity relationships
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500747n
– volume: 47
  start-page: 150
  issue: 1
  year: 2007
  ident: 2022011921340194000_ref103
  article-title: Palmer, Noel M O’Boyle, Robert C Glen, and John BO Mitchell. Random forest models to predict aqueous solubility
  publication-title: J Chem Inf Model
  doi: 10.1021/ci060164k
– volume: 11
  start-page: 843
  issue: 9
  year: 2016
  ident: 2022011921340194000_ref20
  article-title: Getting the most out of pubchem for virtual screening
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2016.1216967
– volume-title: International Conference on Learning Representations
  year: 2020
  ident: 2022011921340194000_ref157
  article-title: Directional message passing for molecular graphs
– start-page: 8959
  volume-title: International Conference on Machine Learning
  year: 2020
  ident: 2022011921340194000_ref86
– volume: 5
  start-page: 107
  issue: 2
  year: 1965
  ident: 2022011921340194000_ref68
  article-title: The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service
  publication-title: J Chem Doc
  doi: 10.1021/c160017a018
– volume: 40
  issue: 2
  year: 2021
  ident: 2022011921340194000_ref227
  article-title: Embedding of molecular structure using molecular hypergraph variational autoencoder with metric learning
  publication-title: Mol Inform
  doi: 10.1002/minf.202000203
– volume: 23
  start-page: 1241
  issue: 6
  year: 2018
  ident: 2022011921340194000_ref4
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 2022011921340194000_ref112
  article-title: Random forest: a classification and regression tool for compound classification and qsar modeling
  publication-title: J Chem Inform Comput Sci
  doi: 10.1021/ci034160g
– volume: 27
  start-page: 220
  issue: 2
  year: 2011
  ident: 2022011921340194000_ref109
  article-title: Predicting in vitro drug sensitivity using random forests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq628
– volume-title: NeurIPS 2014 Workshop on Deep Learning, December 2014
  year: 2014
  ident: 2022011921340194000_ref130
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: 2022011921340194000_ref217
  article-title: A model to search for synthesizable molecules
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: 2022011921340194000_ref49
  article-title: Drug-induced liver injury
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-019-0105-0
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 2022011921340194000_ref169
  article-title: Optimization of molecules via deep reinforcement learning
  publication-title: Sci Rep
– year: 2017
  ident: 2022011921340194000_ref229
  article-title: A brief survey of deep reinforcement learning
  doi: 10.1109/MSP.2017.2743240
– volume: 10
  start-page: e427
  issue: 3
  year: 2013
  ident: 2022011921340194000_ref25
  article-title: Multi-objective optimization methods in drug design
  publication-title: Drug Discov Today: Technologies
  doi: 10.1016/j.ddtec.2013.02.001
– start-page: 7795
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: 2022011921340194000_ref178
  article-title: Constrained graph variational autoencoders for molecule design
– volume: 3
  start-page: 283
  issue: 4
  year: 2017
  ident: 2022011921340194000_ref158
  article-title: Low data drug discovery with one-shot learning
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.6b00367
– start-page: 2017
  year: 2017
  ident: 2022011921340194000_ref143
  article-title: Optimizing distributions over molecular space. an objective-reinforced generative adversarial network for inverse-design chemistry (organic)
  publication-title: ChemRxiv
– volume: 57
  start-page: 2618
  issue: 11
  year: 2017
  ident: 2022011921340194000_ref34
  article-title: Interpretation of quantitative structure–activity relationship models: past, present, and future
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00274
– year: 2015
  ident: 2022011921340194000_ref181
  article-title: Adversarial autoencoders
– start-page: 2224
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: 2022011921340194000_ref118
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– volume: 49
  start-page: D1388
  issue: D1
  year: 2021
  ident: 2022011921340194000_ref57
  article-title: Pubchem in 2021: new data content and improved web interfaces
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa971
– volume-title: Advances in neural information processing systems
  year: 2016
  ident: 2022011921340194000_ref146
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– year: 2012
  ident: 2022011921340194000_ref113
– volume: 8
  start-page: 841
  issue: 3
  year: 2011
  ident: 2022011921340194000_ref106
  article-title: Adme evaluation in drug discovery. 9. prediction of oral bioavailability in humans based on molecular properties and structural fingerprints
  publication-title: Mol Pharm
  doi: 10.1021/mp100444g
– volume: 59
  start-page: 1182
  issue: 3
  year: 2019
  ident: 2022011921340194000_ref141
  article-title: De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00751
– year: 2021
  ident: 2022011921340194000_ref220
  article-title: Molclr: Molecular contrastive learning of representations via graph neural networks
– volume-title: Proceedings of The International Conference on Learning Representations
  year: 2018
  ident: 2022011921340194000_ref132
– volume-title: International Conference on Learning Representations
  year: 2016
  ident: 2022011921340194000_ref145
  article-title: Gated graph sequence neural networks
– volume: 59
  start-page: 1096
  issue: 3
  year: 2019
  ident: 2022011921340194000_ref99
  article-title: Guacamol: benchmarking models for de novo molecular design
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00839
– volume: 60
  start-page: 4582
  issue: 10
  year: 2020
  ident: 2022011921340194000_ref236
  article-title: De novo drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00517
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2022011921340194000_ref155
  article-title: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions
– year: 2019
  ident: 2022011921340194000_ref139
  article-title: Molecularrnn: Generating realistic molecular graphs with optimized properties
– volume: 17
  start-page: 97
  issue: 2
  year: 2018
  ident: 2022011921340194000_ref3
  article-title: Automating drug discovery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2017.232
– volume: 59
  start-page: 3166
  issue: 7
  year: 2019
  ident: 2022011921340194000_ref134
  article-title: Deep reinforcement learning for multiparameter optimization in de novo drug design
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00325
– volume-title: IEEE Trans Knowl Data Eng
  year: 2021
  ident: 2022011921340194000_ref219
  article-title: Self-supervised learning: Generative or contrastive
  doi: 10.1109/TKDE.2021.3090866
– start-page: 412
  volume-title: International Conference on Artificial Neural Networks
  year: 2018
  ident: 2022011921340194000_ref185
– year: 2019
  ident: 2022011921340194000_ref203
  article-title: Graph residual flow for molecular graph generation
– volume: 9
  start-page: 93
  issue: 1
  year: 2014
  ident: 2022011921340194000_ref111
  article-title: Support vector machines for drug discovery
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2014.866943
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 2022011921340194000_ref177
  article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design
  publication-title: J Chem
– volume-title: Proceedings of The International Conference on Learning Representations
  year: 2017
  ident: 2022011921340194000_ref201
  article-title: Density estimation using real NVP
– start-page: 4700
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: 2022011921340194000_ref121
– volume-title: Rdkit: Open-source cheminformatics software
  year: 2016
  ident: 2022011921340194000_ref153
– volume: 25
  start-page: 1097
  year: 2012
  ident: 2022011921340194000_ref41
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  start-page: 273
  issue: 4
  year: 2010
  ident: 2022011921340194000_ref33
  article-title: Virtual screening: an endless staircase?
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3139
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 2022011921340194000_ref92
  article-title: Decimer-segmentation: Automated extraction of chemical structure depictions from scientific literature
  publication-title: J Chem
– volume: 432
  start-page: 824
  issue: 7019
  year: 2004
  ident: 2022011921340194000_ref28
  article-title: Chemical space and biology
  publication-title: Nature
  doi: 10.1038/nature03192
– start-page: 1889
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: 2022011921340194000_ref233
– volume: 51
  start-page: 1
  issue: 6
  year: 2019
  ident: 2022011921340194000_ref126
  article-title: A comprehensive survey of deep learning for image captioning
  publication-title: ACM Computing Surveys (CsUR)
  doi: 10.1145/3295748
– year: 2019
  ident: 2022011921340194000_ref202
  article-title: Graphnvp: An invertible flow model for generating molecular graphs
– volume: 59
  start-page: 1017
  issue: 3
  year: 2019
  ident: 2022011921340194000_ref124
  article-title: Molecular structure extraction from documents using deep learning
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00669
– volume: 27
  start-page: 1
  issue: 3
  year: 2021
  ident: 2022011921340194000_ref76
  article-title: Generative chemistry: drug discovery with deep learning generative models
  publication-title: J Mol Model
  doi: 10.1007/s00894-021-04674-8
– year: 2015
  ident: 2022011921340194000_ref117
  article-title: Massively multitask networks for drug discovery
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref170
  article-title: Deepgraphmolgen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach
  publication-title: J Chem
– volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2022011921340194000_ref198
  article-title: Improved techniques for training GANs
– year: 2017
  ident: 2022011921340194000_ref150
  article-title: Graph attention networks
– volume: 26
  issue: 2
  year: 2021
  ident: 2022011921340194000_ref53
  article-title: Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2020.12.009
– volume-title: IEEE transactions on neural networks and learning systems
  year: 2020
  ident: 2022011921340194000_ref144
– volume-title: International Conference on Learning Representations
  year: 2018
  ident: 2022011921340194000_ref151
  article-title: How powerful are graph neural networks?
– volume: 60
  start-page: 4112
  issue: 9
  year: 2020
  ident: 2022011921340194000_ref8
  article-title: Current trends, overlooked issues, and unmet challenges in virtual screening
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b01101
– volume-title: Deep Learning for the Life Sciences
  year: 2019
  ident: 2022011921340194000_ref94
– volume-title: Chem Sci
  year: 2020
  ident: 2022011921340194000_ref190
  article-title: Scaffold-based molecular design using graph generative model
– volume: 18
  start-page: 644
  issue: 13–14
  year: 2013
  ident: 2022011921340194000_ref23
  article-title: Compound promiscuity: what can we learn from current data?
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2013.03.002
– start-page: 4849
  volume-title: International Conference on Machine Learning
  year: 2020
  ident: 2022011921340194000_ref73
– volume: 59
  start-page: 4438
  issue: 10
  year: 2019
  ident: 2022011921340194000_ref89
  article-title: Learning drug functions from chemical structures with convolutional neural networks and random forests
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00236
– start-page: 873
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2020
  ident: 2022011921340194000_ref168
– volume: 21
  start-page: 591
  issue: 10
  year: 2007
  ident: 2022011921340194000_ref30
  article-title: Computer-aided drug design: the next 20 years
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-007-9142-y
– volume: 37
  issue: 1–2
  year: 2018
  ident: 2022011921340194000_ref183
  article-title: Application of generative autoencoder in de novo molecular design
  publication-title: Mol Inform
– volume-title: Reinforcement learning: An introduction
  year: 2018
  ident: 2022011921340194000_ref228
– volume: 59
  start-page: 1044
  issue: 3
  year: 2019
  ident: 2022011921340194000_ref166
  article-title: Deepchemstable: Chemical stability prediction with an attention-based graph convolution network
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00672
– year: 2013
  ident: 2022011921340194000_ref172
  article-title: Auto-encoding variational bayes
– year: 2017
  ident: 2022011921340194000_ref142
  article-title: Objective-reinforced generative adversarial networks (organ) for sequence generation models
– volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: 2022011921340194000_ref63
  article-title: Grover: Self-supervised message passing transformer on large-scale molecular data
– year: 2017
  ident: 2022011921340194000_ref149
  article-title: Inductive representation learning on large graphs
– volume-title: Proceedings of The International Conference on Learning Representations
  year: 2020
  ident: 2022011921340194000_ref163
  article-title: Strategies for pre-training graph neural networks
– volume: 1
  issue: 2
  year: 2020
  ident: 2022011921340194000_ref51
  article-title: Practical notes on building molecular graph generative models
  publication-title: Applied AI Letters
  doi: 10.1002/ail2.18
– volume: 18
  start-page: 495
  issue: 7
  year: 2019
  ident: 2022011921340194000_ref2
  article-title: Trends in clinical success rates and therapeutic focus
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/d41573-019-00074-z
– volume: 11
  start-page: 402
  issue: 4
  year: 2020
  ident: 2022011921340194000_ref11
  article-title: Fast and flexible protein design using deep graph neural networks
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2020.08.016
– volume: 58
  start-page: 287
  issue: 2
  year: 2018
  ident: 2022011921340194000_ref81
  article-title: K deep: protein–ligand absolute binding affinity prediction via 3d-convolutional neural networks
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00650
– volume: 30
  year: 2016
  ident: 2022011921340194000_ref230
  article-title: Deep reinforcement learning with double q-learning
  publication-title: In Proceedings of the AAAI Conference on Artificial Intelligence, volume
– volume: 13
  start-page: 877
  issue: 12
  year: 2014
  ident: 2022011921340194000_ref1
  article-title: New drugs cost us $2.6 billion to develop
  publication-title: Nat Rev Drug Discov
– volume: 14
  start-page: 517
  issue: 6
  year: 2019
  ident: 2022011921340194000_ref38
  article-title: Duality of activity cliffs in drug discovery
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2019.1593371
– year: 2019
  ident: 2022011921340194000_ref211
  article-title: Roberta: A robustly optimized bert pretraining approach
– volume: 5
  start-page: 287
  issue: 4
  year: 2012
  ident: 2022011921340194000_ref223
  article-title: Metric learning: A survey
  publication-title: Foundations and trends in machine learning
  doi: 10.1561/2200000019
– start-page: 1
  year: 2021
  ident: 2022011921340194000_ref44
  article-title: Artificial intelligence in drug discovery: Recent advances and future perspectives
  publication-title: Expert Opin Drug Discov
– volume: 59
  start-page: 3370
  issue: 8
  year: 2019
  ident: 2022011921340194000_ref71
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00237
– year: 2018
  ident: 2022011921340194000_ref137
  article-title: Learning deep generative models of graphs
– year: 2020
  ident: 2022011921340194000_ref95
  article-title: Molecular representation learning with language models and domain-relevant auxiliary tasks
– year: 2019
  ident: 2022011921340194000_ref216
  article-title: Smiles transformer: pre-trained molecular fingerprint for low data drug discovery
– start-page: 2323
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: 2022011921340194000_ref186
– start-page: 1535
  volume-title: J Chem Inf Model
  year: 2006
  ident: 2022011921340194000_ref36
  article-title: On outliers and activity cliffs–why QSAR often disappoints
– volume: 66
  start-page: 334
  issue: 1
  year: 2014
  ident: 2022011921340194000_ref29
  article-title: Computational methods in drug discovery
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.112.007336
– volume: 45
  start-page: D955
  issue: D1
  year: 2017
  ident: 2022011921340194000_ref18
  article-title: Pubchem bioassay: 2017 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1118
– volume: 18
  start-page: 41
  issue: 1
  year: 2019
  ident: 2022011921340194000_ref12
  article-title: Drug repurposing: progress, challenges and recommendations
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2018.168
– start-page: 5708
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: 2022011921340194000_ref136
– volume: 9
  start-page: 5441
  issue: 24
  year: 2018
  ident: 2022011921340194000_ref62
  article-title: Large-scale comparison of machine learning methods for drug target prediction on chembl
  publication-title: Chem Sci
  doi: 10.1039/C8SC00148K
– volume: 20
  start-page: 1878
  issue: 5
  year: 2019
  ident: 2022011921340194000_ref56
  article-title: Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bby061
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref167
  article-title: A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility
  publication-title: J Chem
– year: 2017
  ident: 2022011921340194000_ref232
  article-title: Proximal policy optimization algorithms
– volume: 2
  issue: 2
  year: 2021
  ident: 2022011921340194000_ref72
  article-title: Graph networks for molecular design
  publication-title: Mach Learn: Sci Technol
– volume: 58
  start-page: 520
  issue: 2
  year: 2018
  ident: 2022011921340194000_ref84
  article-title: Quantitative toxicity prediction using topology based multitask deep neural networks
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00558
– volume: 57
  start-page: 36
  issue: 1
  year: 2017
  ident: 2022011921340194000_ref70
  article-title: In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00625
– volume: 4
  start-page: 120
  issue: 1
  year: 2018
  ident: 2022011921340194000_ref100
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00512
– volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2017
  ident: 2022011921340194000_ref195
– start-page: 5528
  volume-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2011
  ident: 2022011921340194000_ref127
  doi: 10.1109/ICASSP.2011.5947611
– year: 2017
  ident: 2022011921340194000_ref207
  article-title: Attention is all you need
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  ident: 2022011921340194000_ref78
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent. Sci
  doi: 10.1021/acscentsci.7b00572
– year: 2018
  ident: 2022011921340194000_ref208
  article-title: Improving language understanding by generative pre-training
  publication-title: OpenAI
– start-page: 638
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2020
  ident: 2022011921340194000_ref191
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 2022011921340194000_ref189
  article-title: Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
  publication-title: J Chem
  doi: 10.1155/2019/2903252
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  ident: 2022011921340194000_ref222
  article-title: Generalizing from a few examples: A survey on few-shot learning
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3386252
– volume: 59
  start-page: 1163
  issue: 3
  year: 2019
  ident: 2022011921340194000_ref116
  article-title: Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00670
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref67
  article-title: Molecular representations in ai-driven drug discovery: a review and practical guide
  publication-title: J Chem
– volume: 162
  start-page: 1239
  issue: 6
  year: 2011
  ident: 2022011921340194000_ref15
  article-title: Principles of early drug discovery
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2010.01127.x
– volume-title: Proceedings of The International Conference on Learning Representations Workshops
  year: 2015
  ident: 2022011921340194000_ref200
  article-title: Nice: Non-linear independent components estimation
– start-page: 1
  volume-title: proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages
  year: 2021
  ident: 2022011921340194000_ref240
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  ident: 2022011921340194000_ref74
  article-title: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules
  publication-title: Chem Inform Comput Sci
  doi: 10.1021/ci00057a005
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 2022011921340194000_ref152
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9938-8
– volume: 11
  start-page: 2531
  issue: 9
  year: 2020
  ident: 2022011921340194000_ref91
  article-title: Deepscreen: high performance drug–target interaction prediction with convolutional neural networks using 2-d structural compound representations
  publication-title: Chem Sci
  doi: 10.1039/C9SC03414E
– volume: 21
  start-page: 1
  year: 2020
  ident: 2022011921340194000_ref179
  article-title: NEVAE: A deep generative model for molecular graphs
  publication-title: J Mach Learn Res
– year: 2017
  ident: 2022011921340194000_ref131
  article-title: Smiles2vec: An interpretable general-purpose deep neural network for predicting chemical properties
– volume: 4
  start-page: 649
  issue: 8
  year: 2005
  ident: 2022011921340194000_ref27
  article-title: Computer-based de novo design of drug-like molecules
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1799
– start-page: 1945
  volume-title: International Conference on Machine Learning
  year: 2017
  ident: 2022011921340194000_ref174
– start-page: 617
  volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2020
  ident: 2022011921340194000_ref205
  doi: 10.1145/3394486.3403104
– volume: 26
  issue: 4
  year: 2021
  ident: 2022011921340194000_ref54
  article-title: Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data used for AI in drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2020.11.037
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2022011921340194000_ref114
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 19
  start-page: 680
  issue: 5
  year: 2014
  ident: 2022011921340194000_ref24
  article-title: Finding the rules for successful drug optimisation
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2014.01.005
– volume: 23
  start-page: 652
  issue: 3
  year: 2018
  ident: 2022011921340194000_ref241
  article-title: Real world big data for clinical research and drug development
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2017.12.002
– volume: 38
  start-page: 143
  issue: 2
  year: 2020
  ident: 2022011921340194000_ref239
  article-title: Assessing the impact of generative ai on medicinal chemistry
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0418-2
– volume: 22
  start-page: 18526
  issue: 33
  year: 2020
  ident: 2022011921340194000_ref226
  article-title: Machine-guided representation for accurate graph-based molecular machine learning
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D0CP02709J
– volume-title: ICML
  year: 2021
  ident: 2022011921340194000_ref206
  article-title: Graphdf: A discrete flow model for molecular graph generation
– start-page: 429
  volume-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
  year: 2019
  ident: 2022011921340194000_ref215
  doi: 10.1145/3307339.3342186
– volume: 60
  start-page: 5918
  issue: 12
  year: 2020
  ident: 2022011921340194000_ref98
  article-title: REINVENT 2.0: an AI tool for de novo drug design
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00915
– volume: 25
  start-page: 165
  issue: 2
  year: 2017
  ident: 2022011921340194000_ref22
  article-title: An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice
  publication-title: Saudi Pharm J
  doi: 10.1016/j.jsps.2016.07.002
– volume: 59
  start-page: 1205
  issue: 3
  year: 2019
  ident: 2022011921340194000_ref85
  article-title: Shape-based generative modeling for de novo drug design
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00706
– start-page: 1263
  volume-title: International Conference on Machine Learning
  year: 2017
  ident: 2022011921340194000_ref148
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: 2022011921340194000_ref122
– volume: 8
  start-page: 229
  issue: 3–4
  year: 1992
  ident: 2022011921340194000_ref231
  article-title: Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Machine learning
– volume: 21
  start-page: 1937
  issue: 6
  year: 2020
  ident: 2022011921340194000_ref14
  article-title: An omics perspective on drug target discovery platforms
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbz122
– year: 2021
  ident: 2022011921340194000_ref224
  article-title: Hierarchical proxy-based loss for deep metric learning
– volume: 59
  start-page: 914
  issue: 2
  year: 2019
  ident: 2022011921340194000_ref135
  article-title: Identifying structure–property relationships through smiles syntax analysis with self-attention mechanism
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00803
– volume: 48
  start-page: 613
  issue: 3
  year: 2008
  ident: 2022011921340194000_ref102
  article-title: Gradual in silico filtering for druglike substances
  publication-title: J Chem Inf Model
  doi: 10.1021/ci700351y
– volume: 55
  start-page: 1297
  issue: 7
  year: 2015
  ident: 2022011921340194000_ref65
  article-title: Benchmarking data sets for the evaluation of virtual ligand screening methods: review and perspectives
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00090
– volume: 25
  start-page: 689
  issue: 4
  year: 2020
  ident: 2022011921340194000_ref43
  article-title: Exploring chemical space using natural language processing methodologies for drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2020.01.020
– start-page: 190
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: 2022011921340194000_ref133
  article-title: Inferring algorithmic patterns with stack-augmented recurrent nets
– start-page: 1
  year: 2021
  ident: 2022011921340194000_ref242
  article-title: A large-scale observational study on the temporal trends and risk factors of opioid overdose: Real-world evidence for better opioids
  publication-title: Drugs – Real World Outcomes
– year: 2018
  ident: 2022011921340194000_ref42
  article-title: The history began from alexnet: A comprehensive survey on deep learning approaches
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 2022011921340194000_ref129
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: International Conference on Learning Representations
  year: 2015
  ident: 2022011921340194000_ref123
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2021
  ident: 2022011921340194000_ref237
  article-title: Drugex v2: De novo design of drug molecule by pareto-based multi-objective reinforcement learning in polypharmacology
  doi: 10.1186/s13321-021-00561-9
– volume: 59
  start-page: 3981
  issue: 9
  year: 2019
  ident: 2022011921340194000_ref82
  article-title: Predicting drug–target interaction using a novel graph neural network with 3d structure-embedded graph representation
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00387
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref154
  article-title: Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction
  publication-title: J Chem
  doi: 10.1186/s13321-019-0407-y
– volume: 60
  start-page: 4180
  issue: 9
  year: 2020
  ident: 2022011921340194000_ref58
  article-title: Deep learning-based imbalanced data classification for drug discovery
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b01162
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 2022011921340194000_ref218
  article-title: Transformer neural network for protein-specific de novo drug generation as a machine translation problem
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79682-4
– start-page: 4320
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: 2022011921340194000_ref180
  article-title: CogMol: target-specific and selective drug design for COVID-19 using deep generative models
– volume: 57
  start-page: 942
  issue: 4
  year: 2017
  ident: 2022011921340194000_ref80
  article-title: Protein–ligand scoring with convolutional neural networks
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00740
– volume: 11
  year: 2020
  ident: 2022011921340194000_ref64
  article-title: Molecular sets (moses): a benchmarking platform for molecular generation models
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.565644
– volume: 15
  start-page: 4398
  issue: 10
  year: 2018
  ident: 2022011921340194000_ref184
  article-title: Entangled conditional adversarial autoencoder for de novo drug discovery
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.8b00839
– year: 2020
  ident: 2022011921340194000_ref59
  article-title: Chemberta: Large-scale self-supervised pretraining for molecular property prediction
– volume: 29
  start-page: 97
  issue: 2
  year: 1989
  ident: 2022011921340194000_ref75
  article-title: Smiles. 2. algorithm for generation of unique smiles notation
  publication-title: J Chem Inform Comput Sci
  doi: 10.1021/ci00062a008
– volume: 4
  start-page: 524
  issue: 4
  year: 2007
  ident: 2022011921340194000_ref104
  article-title: Machine learning models for lipophilicity and their domain of applicability
  publication-title: Mol Pharm
  doi: 10.1021/mp0700413
– volume: 63
  start-page: 8749
  issue: 16
  year: 2019
  ident: 2022011921340194000_ref77
  article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.9b00959
– volume: 14
  start-page: 3098
  issue: 9
  year: 2017
  ident: 2022011921340194000_ref182
  article-title: drugan: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.7b00346
– volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems
  year: 2017
  ident: 2022011921340194000_ref194
  article-title: Generative adversarial nets
– volume: 19
  start-page: 353
  issue: 5
  year: 2020
  ident: 2022011921340194000_ref9
  article-title: Rethinking drug design in the artificial intelligence era
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-019-0050-3
– volume: 21
  start-page: 648
  issue: 4
  year: 2016
  ident: 2022011921340194000_ref66
  article-title: Dilirank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2016.02.015
– volume: 3
  start-page: 334
  issue: 4
  year: 2021
  ident: 2022011921340194000_ref96
  article-title: Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00301-6
– volume-title: Proceedings of The International Conference on Learning Representations
  year: 2017
  ident: 2022011921340194000_ref147
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 47
  start-page: 2408
  issue: 6
  year: 2007
  ident: 2022011921340194000_ref105
  article-title: Adme evaluation in drug discovery. 8. the prediction of human intestinal absorption by a support vector machine
  publication-title: J Chem Inf Model
  doi: 10.1021/ci7002076
– volume: 25
  start-page: 611
  issue: 5
  year: 2018
  ident: 2022011921340194000_ref115
  article-title: Repurposing high-throughput image assays enables biological activity prediction for drug discovery
  publication-title: Cell Chem Biol
  doi: 10.1016/j.chembiol.2018.01.015
– volume: 17
  start-page: 709
  issue: 10
  year: 2018
  ident: 2022011921340194000_ref10
  article-title: Expanding the medicinal chemistry synthetic toolbox
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2018.116
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 2022011921340194000_ref93
  article-title: Moleculenet: a benchmark for molecular machine learning
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: 2022011921340194000_ref187
  article-title: Constrained generation of semantically valid graphs via regularizing variational autoencoders
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref192
  article-title: Compressed graph representation for scalable molecular graph generation
  publication-title: J Chem
– start-page: 213
  volume-title: European Conference on Computer Vision
  year: 2020
  ident: 2022011921340194000_ref213
– start-page: 1052
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2019
  ident: 2022011921340194000_ref160
– volume: 56
  start-page: 1936
  issue: 10
  year: 2016
  ident: 2022011921340194000_ref69
  article-title: Computational modeling of $\beta$-secretase 1 (bace-1) inhibitors using ligand based approaches
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00290
– year: 2017
  ident: 2022011921340194000_ref120
  article-title: Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed qsar/qspr models
– volume: 9
  start-page: 1
  issue: 1
  year: 2017
  ident: 2022011921340194000_ref97
  article-title: Molecular de-novo design through deep reinforcement learning
  publication-title: J Chem
– volume: 59
  start-page: 43
  issue: 1
  year: 2018
  ident: 2022011921340194000_ref176
  article-title: Conditional molecular design with deep generative models
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00263
– year: 2020
  ident: 2022011921340194000_ref234
  article-title: Towards better opioid antagonists using deep reinforcement learning
– start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref199
  article-title: Normalizing flows: an introduction and review of current methods
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 59
  start-page: 1073
  issue: 3
  year: 2019
  ident: 2022011921340194000_ref161
  article-title: Deep learning-based prediction of drug-induced cardiotoxicity
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00769
– volume: 11
  start-page: 327
  issue: 3
  year: 2008
  ident: 2022011921340194000_ref17
  article-title: Which aspects of hts are empirically correlated with downstream success?
  publication-title: Curr Opin Drug Discov Devel
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 2022011921340194000_ref138
  article-title: Multi-objective de novo drug design with conditional graph generative model
  publication-title: J Chem
– year: 2018
  ident: 2022011921340194000_ref175
  article-title: Syntax-directed variational autoencoder for structured data
– year: 2020
  ident: 2022011921340194000_ref212
  article-title: Language models are few-shot learners
– volume: 2020
  start-page: 142
  year: 2020
  ident: 2022011921340194000_ref243
  article-title: An informatics-based approach to identify key pharmacological components in drug-drug interactions
  publication-title: AMIA Summits on Translational Science Proceedings
– year: 2020
  ident: 2022011921340194000_ref165
  article-title: Meta-learning initializations for low-resource drug discovery
  publication-title: arXiv preprint arXiv:200305996
– volume: 43
  start-page: W612
  issue: W1
  year: 2015
  ident: 2022011921340194000_ref61
  article-title: Chembl web services: streamlining access to drug discovery data and utilities
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv352
– volume: 57
  start-page: 18
  issue: 1
  year: 2014
  ident: 2022011921340194000_ref37
  article-title: Recent progress in understanding activity cliffs and their utility in medicinal chemistry: miniperspective
  publication-title: J Med Chem
  doi: 10.1021/jm401120g
– volume: 54
  start-page: 255
  issue: 3
  year: 2002
  ident: 2022011921340194000_ref101
  article-title: Walters and Mark A Murcko. Prediction of ‘drug-likeness’
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(02)00003-0
– year: 2018
  ident: 2022011921340194000_ref197
  article-title: Molgan: An implicit generative model for small molecular graphs
– volume: 49
  start-page: 3525
  issue: 11
  year: 2020
  ident: 2022011921340194000_ref26
  article-title: Qsar without borders
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS00098A
– volume: 26
  start-page: 907
  issue: 6
  year: 2008
  ident: 2022011921340194000_ref107
  article-title: Predicting human liver microsomal stability with machine learning techniques
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2007.06.005
– volume: 4
  start-page: 828
  issue: 4
  year: 2019
  ident: 2022011921340194000_ref50
  article-title: Deep learning for molecular design-a review of the state of the art
  publication-title: Mol Syst Des Eng
  doi: 10.1039/C9ME00039A
– volume: 152
  start-page: 53
  issue: 1
  year: 2007
  ident: 2022011921340194000_ref16
  article-title: Origin and evolution of high throughput screening
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0707373
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: 2022011921340194000_ref159
  article-title: N-gram graph: simple unsupervised representation for graphs, with applications to molecules
– volume: 20
  start-page: 1434
  issue: 4
  year: 2019
  ident: 2022011921340194000_ref13
  article-title: Artificial intelligence in drug combination therapy
  publication-title: Brief. Bioinformatics
  doi: 10.1093/bib/bby004
– volume: 37
  start-page: 658
  issue: 3
  year: 2009
  ident: 2022011921340194000_ref108
  article-title: Classification of cytochrome p450 1a2 inhibitors and noninhibitors by machine learning techniques
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.108.023507
– volume: 18
  start-page: 463
  issue: 6
  year: 2019
  ident: 2022011921340194000_ref6
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-019-0024-5
– volume-title: International Conference on Learning Representations
  year: 2020
  ident: 2022011921340194000_ref204
  article-title: GraphAF: a flow-based autoregressive model for molecular graph generation
– volume-title: NeurIPS
  year: 2018
  ident: 2022011921340194000_ref140
  article-title: Graph convolutional policy network for goal-directed molecular graph generation
– volume: 58
  start-page: 1194
  issue: 6
  year: 2018
  ident: 2022011921340194000_ref196
  article-title: Reinforced adversarial neural computer for de novo molecular design
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00690
– volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: 2022011921340194000_ref171
  article-title: Reinforced molecular optimization with neighborhood-controlled grammars
– volume: 12
  issue: 1
  year: 2020
  ident: 2022011921340194000_ref87
  article-title: Cover: conformational oversampling as data augmentation for molecules
  publication-title: J Chem
– volume: 9
  start-page: 199
  issue: 3
  year: 2006
  ident: 2022011921340194000_ref119
  article-title: Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to adme
  publication-title: IDrugs
– volume: 4
  issue: 7
  year: 2018
  ident: 2022011921340194000_ref79
  article-title: Deep reinforcement learning for de novo drug design
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aap7885
– volume-title: Proceedings of The International Conference on Learning Representations
  year: 2021
  ident: 2022011921340194000_ref214
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 2022011921340194000_ref244
  article-title: Could graph neural networks learn better molecular representation for drug discovery? a comparison study of descriptor-based and graph-based models
  publication-title: J Chem
– volume: 52
  start-page: 867
  issue: 4
  year: 2012
  ident: 2022011921340194000_ref21
  article-title: Recognizing pitfalls in virtual screening: a critical review
  publication-title: J Chem Inf Model
  doi: 10.1021/ci200528d
– start-page: 4839
  volume-title: International Conference on Machine Learning
  year: 2020
  ident: 2022011921340194000_ref193
– volume: 59
  start-page: 1728
  issue: 5
  year: 2019
  ident: 2022011921340194000_ref35
  article-title: Advances and challenges in computational target prediction
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00832
– start-page: 307
  volume-title: Found Trends Mach Learn
  year: 2019
  ident: 2022011921340194000_ref173
  article-title: An introduction to variational autoencoders
– volume: 3
  start-page: 80
  year: 2016
  ident: 2022011921340194000_ref48
  article-title: Deeptox: toxicity prediction using deep learning
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2015.00080
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 2022011921340194000_ref90
  article-title: Kekulescope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
  publication-title: J Chem
– start-page: 731
  volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2020
  ident: 2022011921340194000_ref164
  doi: 10.1145/3394486.3403117
– volume: 2
  start-page: 573
  issue: 10
  year: 2020
  ident: 2022011921340194000_ref31
  article-title: Drug discovery with explainable artificial intelligence
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00236-4
SSID ssj0020781
Score 2.6299944
SecondaryResourceType review_article
Snippet Abstract Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many...
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Artificial Intelligence
Drug Design
Drug development
Drug discovery
Drug Discovery - methods
Learning
Polls & surveys
Title Artificial intelligence in drug discovery: applications and techniques
URI https://www.ncbi.nlm.nih.gov/pubmed/34734228
https://www.proquest.com/docview/2626200450
https://www.proquest.com/docview/2593603903
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRfzudGmFPQliapEnjm4hjCOrLhL2VJE1lIJ1s68P-ey9rVzYd-ljuSuAu4b5w-b5DqKu0c7mQlGRCOiIip4ilMSM00QkVylidB4Lzy6scvIvnUTyqH8jOtrTwNe_Zse1Za6zg4WoO5TdI5A_fRs29KujVVCQiRYK6e03D-_HvRuHZILP9wpTL2tI_QPs1KMQPVRYP0Y4vjtBuNSZycYz6wVApPeDxmoQmfOBsWn7gQK0NTzEX93i9IY1NkeFGpHV2gob9p-HjgNTzD4gTkZgTDlEzgF9MbCjPpfU6A3CWQGgd49YBdFFKece1iJ3II6i0njmvhJYZT8DlFLWKSeHPEZaKKmZzlhsbC597q2iWMZ8YD2hCedlGd6vYpK7WBg8jKj7TqkfNUwhkWgeyjbqN81clibHd7QaC_LdHZ5WAtD45s5TJIJEPQBPMt40Z9nxoZJjCT0rwCWMIKdeUt9FZlbhmHS4UD7JmF_8uf4n2WOAy0IhEqoNa82nprwBhzO31cn99AzKAzTo
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+drug+discovery%3A+applications+and+techniques&rft.jtitle=Briefings+in+bioinformatics&rft.au=Deng%2C+Jianyuan&rft.au=Yang%2C+Zhibo&rft.au=Ojima%2C+Iwao&rft.au=Samaras%2C+Dimitris&rft.date=2022-01-17&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbab430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon