Artificial intelligence in drug discovery: applications and techniques
Abstract Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
17.01.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated. |
---|---|
AbstractList | Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated. Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated.Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated. Abstract Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated. |
Author | Deng, Jianyuan Wang, Fusheng Yang, Zhibo Samaras, Dimitris Ojima, Iwao |
Author_xml | – sequence: 1 givenname: Jianyuan surname: Deng fullname: Deng, Jianyuan – sequence: 2 givenname: Zhibo surname: Yang fullname: Yang, Zhibo – sequence: 3 givenname: Iwao surname: Ojima fullname: Ojima, Iwao – sequence: 4 givenname: Dimitris surname: Samaras fullname: Samaras, Dimitris – sequence: 5 givenname: Fusheng surname: Wang fullname: Wang, Fusheng email: fusheng.wang@stonybrook.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34734228$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LAzEQhoNUrK2evMuCIIKsTTZfu95KsSoUvPQekmy2pmyza7Ir9N-b2vZSROYwM_DMzMu8IzBwjTMA3CD4hGCBJ8qqiVJSEQzPwCUinKcEUjLY1YynlDA8BKMQ1hBmkOfoAgwx4ZhkWX4J5lPf2cpqK-vEus7UtV0Zp01sktL3q6S0QTffxm-fE9m2tdWys40LiXRl0hn96exXb8IVOK9kHcz1IY_Bcv6ynL2li4_X99l0kWqCSJdiBanERSaphLhiyhQlxTivCNMZVhpSxjk3GheEalIhxpDJtOGkYCXOIzIGD_u1rW92ZzuxifKiaOlM0weR0QIziAuII3p3gq6b3rsoTmQsBoSEwkjdHqhebUwpWm830m_F8UERQHtA-yYEbyqhbff7gs5LWwsExc4EEU0QBxPizOPJzHHt3_T9nm769l_wB5hylOU |
CitedBy_id | crossref_primary_10_1038_s41467_023_39120_1 crossref_primary_10_1038_s41598_023_32703_4 crossref_primary_10_1002_minf_202300327 crossref_primary_10_1093_bib_bbae565 crossref_primary_10_3389_fphar_2023_1205144 crossref_primary_10_1007_s41060_022_00371_8 crossref_primary_10_1080_17460441_2024_2367014 crossref_primary_10_1186_s43094_024_00632_2 crossref_primary_10_3390_molecules29040903 crossref_primary_10_3390_molecules29071499 crossref_primary_10_3389_fmolb_2023_1248885 crossref_primary_10_2298_CSIS240327039D crossref_primary_10_1016_j_csbj_2024_04_030 crossref_primary_10_1016_j_compbiolchem_2024_108056 crossref_primary_10_5465_amr_2021_0421 crossref_primary_10_1177_17470161241261044 crossref_primary_10_1039_D4SC04107K crossref_primary_10_1093_bib_bbac577 crossref_primary_10_1016_j_jtcme_2025_02_009 crossref_primary_10_1093_bib_bbae438 crossref_primary_10_1016_j_nocx_2023_100185 crossref_primary_10_1016_j_omtn_2024_102295 crossref_primary_10_3390_ph16030332 crossref_primary_10_1016_j_csbj_2024_06_009 crossref_primary_10_1021_acs_jcim_4c01320 crossref_primary_10_1089_genbio_2023_0014 crossref_primary_10_1109_JBHI_2024_3383221 crossref_primary_10_1021_acs_jcim_3c00685 crossref_primary_10_1093_bib_bbad467 crossref_primary_10_1021_acs_jcim_4c00159 crossref_primary_10_1093_bib_bbad419 crossref_primary_10_1016_j_artmed_2022_102439 crossref_primary_10_1016_j_engappai_2024_108783 crossref_primary_10_1038_s41467_023_41948_6 crossref_primary_10_48175_IJARSCT_22854 crossref_primary_10_1021_acs_jcim_4c00747 crossref_primary_10_1038_s41467_023_43597_1 crossref_primary_10_2174_0929867330666230403100008 crossref_primary_10_1186_s12859_024_05904_5 crossref_primary_10_1016_j_ejmech_2023_115796 crossref_primary_10_1038_s41598_025_91190_x crossref_primary_10_1016_j_compbiomed_2022_106380 crossref_primary_10_1016_j_isci_2024_110875 crossref_primary_10_1080_17460441_2025_2458666 crossref_primary_10_1111_cbdd_14262 crossref_primary_10_1016_j_patrec_2023_10_001 crossref_primary_10_15388_24_INFOR558 crossref_primary_10_1016_j_jpha_2024_101161 crossref_primary_10_3390_catal14120894 crossref_primary_10_1007_s44230_024_00070_6 crossref_primary_10_1021_acs_jcim_3c01519 crossref_primary_10_1016_j_drudis_2023_103795 crossref_primary_10_23950_jcmk_13541 crossref_primary_10_3390_pharmaceutics16101328 crossref_primary_10_1016_j_aej_2024_11_063 crossref_primary_10_1016_j_heliyon_2023_e17575 crossref_primary_10_1016_j_molstruc_2023_136668 crossref_primary_10_1021_acs_jcim_4c01669 crossref_primary_10_1021_acs_jpclett_4c01751 crossref_primary_10_1016_j_jhip_2024_12_002 crossref_primary_10_1093_bib_bbae294 crossref_primary_10_1109_TAI_2023_3251977 crossref_primary_10_3389_fphar_2024_1389293 crossref_primary_10_1016_j_biopha_2024_116709 crossref_primary_10_1093_bib_bbac621 crossref_primary_10_1007_s10822_022_00457_2 crossref_primary_10_1007_s10489_023_04915_8 crossref_primary_10_1007_s44254_023_00047_x crossref_primary_10_1007_s11696_024_03499_y crossref_primary_10_1109_ACCESS_2024_3373195 crossref_primary_10_1021_acs_jcim_2c01088 |
Cites_doi | 10.1038/s41587-019-0224-x 10.1093/nar/gkw1074 10.1016/j.drudis.2020.10.010 10.1021/acscentsci.8b00507 10.1021/acs.jcim.5b00559 10.1021/acs.jcim.9b00195 10.1016/j.tox.2005.08.019 10.1021/acs.jcim.9b00410 10.1016/j.drudis.2014.12.004 10.1021/acs.jcim.9b00266 10.1021/acs.jmedchem.0c00385 10.1021/acs.jcim.8b00338 10.1016/j.cell.2020.01.021 10.1038/nrd941 10.1016/j.drudis.2014.10.012 10.1021/ci500747n 10.1021/ci060164k 10.1080/17460441.2016.1216967 10.1021/c160017a018 10.1002/minf.202000203 10.1016/j.drudis.2018.01.039 10.1021/ci034160g 10.1093/bioinformatics/btq628 10.1038/s41572-019-0105-0 10.1109/MSP.2017.2743240 10.1016/j.ddtec.2013.02.001 10.1021/acscentsci.6b00367 10.1021/acs.jcim.7b00274 10.1093/nar/gkaa971 10.1021/mp100444g 10.1021/acs.jcim.8b00751 10.1021/acs.jcim.8b00839 10.1021/acs.jcim.0c00517 10.1038/nrd.2017.232 10.1021/acs.jcim.9b00325 10.1109/TKDE.2021.3090866 10.1517/17460441.2014.866943 10.1038/nrd3139 10.1038/nature03192 10.1145/3295748 10.1021/acs.jcim.8b00669 10.1007/s00894-021-04674-8 10.1016/j.drudis.2020.12.009 10.1021/acs.jcim.9b01101 10.1016/j.drudis.2013.03.002 10.1021/acs.jcim.9b00236 10.1007/s10822-007-9142-y 10.1021/acs.jcim.8b00672 10.1002/ail2.18 10.1038/d41573-019-00074-z 10.1016/j.cels.2020.08.016 10.1021/acs.jcim.7b00650 10.1080/17460441.2019.1593371 10.1561/2200000019 10.1021/acs.jcim.9b00237 10.1124/pr.112.007336 10.1093/nar/gkw1118 10.1038/nrd.2018.168 10.1039/C8SC00148K 10.1093/bib/bby061 10.1021/acs.jcim.7b00558 10.1021/acs.jcim.6b00625 10.1021/acscentsci.7b00512 10.1109/ICASSP.2011.5947611 10.1021/acscentsci.7b00572 10.1155/2019/2903252 10.1145/3386252 10.1021/acs.jcim.8b00670 10.1111/j.1476-5381.2010.01127.x 10.1021/ci00057a005 10.1007/s10822-016-9938-8 10.1039/C9SC03414E 10.1038/nrd1799 10.1145/3394486.3403104 10.1016/j.drudis.2020.11.037 10.1038/nature14539 10.1016/j.drudis.2014.01.005 10.1016/j.drudis.2017.12.002 10.1038/s41587-020-0418-2 10.1039/D0CP02709J 10.1145/3307339.3342186 10.1021/acs.jcim.0c00915 10.1016/j.jsps.2016.07.002 10.1021/acs.jcim.8b00706 10.1093/bib/bbz122 10.1021/acs.jcim.8b00803 10.1021/ci700351y 10.1021/acs.jcim.5b00090 10.1016/j.drudis.2020.01.020 10.1162/neco.1997.9.8.1735 10.1186/s13321-021-00561-9 10.1021/acs.jcim.9b00387 10.1186/s13321-019-0407-y 10.1021/acs.jcim.9b01162 10.1038/s41598-020-79682-4 10.1021/acs.jcim.6b00740 10.3389/fphar.2020.565644 10.1021/acs.molpharmaceut.8b00839 10.1021/ci00062a008 10.1021/mp0700413 10.1021/acs.jmedchem.9b00959 10.1021/acs.molpharmaceut.7b00346 10.1038/s41573-019-0050-3 10.1016/j.drudis.2016.02.015 10.1038/s42256-021-00301-6 10.1021/ci7002076 10.1016/j.chembiol.2018.01.015 10.1038/nrd.2018.116 10.1039/C7SC02664A 10.1021/acs.jcim.6b00290 10.1021/acs.jcim.8b00263 10.1021/acs.jcim.8b00769 10.1093/nar/gkv352 10.1021/jm401120g 10.1016/S0169-409X(02)00003-0 10.1039/D0CS00098A 10.1016/j.jmgm.2007.06.005 10.1039/C9ME00039A 10.1038/sj.bjp.0707373 10.1093/bib/bby004 10.1124/dmd.108.023507 10.1038/s41573-019-0024-5 10.1021/acs.jcim.7b00690 10.1126/sciadv.aap7885 10.1021/ci200528d 10.1021/acs.jcim.8b00832 10.3389/fenvs.2015.00080 10.1145/3394486.3403117 10.1038/s42256-020-00236-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbab430 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 34734228 10_1093_bib_bbab430 10.1093/bib/bbab430 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c414t-3b05a392a5a03f6be9d5338f46c23bc056777ec3945c4f1661e2ce7496d38c23 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 11:29:02 EDT 2025 Mon Jun 30 08:48:39 EDT 2025 Mon Jul 21 05:59:07 EDT 2025 Thu Apr 24 23:10:34 EDT 2025 Tue Jul 01 03:39:37 EDT 2025 Fri May 23 09:42:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | learning paradigm drug discovery molecule generation model architecture artificial intelligence molecular property prediction |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-3b05a392a5a03f6be9d5338f46c23bc056777ec3945c4f1661e2ce7496d38c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 34734228 |
PQID | 2626200450 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2593603903 proquest_journals_2626200450 pubmed_primary_34734228 crossref_citationtrail_10_1093_bib_bbab430 crossref_primary_10_1093_bib_bbab430 oup_primary_10_1093_bib_bbab430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-17 |
PublicationDateYYYYMMDD | 2022-01-17 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Xu (2022011921340194000_ref151) 2018 Landrum (2022011921340194000_ref153) 2016 Polykovskiy (2022011921340194000_ref64) 2020; 11 You (2022011921340194000_ref140) 2018 Hernandez (2022011921340194000_ref83) 2019; 59 Carion (2022011921340194000_ref213) 2020 Defferrard (2022011921340194000_ref146) 2016 Lagarde (2022011921340194000_ref65) 2015; 55 Li (2022011921340194000_ref145) 2016 David (2022011921340194000_ref67) 2020; 12 Gao (2022011921340194000_ref121) 2017 Weininger (2022011921340194000_ref74) 1988; 28 Hochreiter (2022011921340194000_ref129) 1997; 9 Kipf (2022011921340194000_ref147) 2017 Zhao (2022011921340194000_ref110) 2006; 217 Zheng (2022011921340194000_ref135) 2019; 59 Deng (2022011921340194000_ref243) 2020; 2020 Radford (2022011921340194000_ref208) 2018 Cai (2022011921340194000_ref161) 2019; 59 Schneider (2022011921340194000_ref27) 2005; 4 Blaschke (2022011921340194000_ref98) 2020; 60 Xu (2022011921340194000_ref171) 2020 Elton (2022011921340194000_ref50) 2019; 4 LeCun (2022011921340194000_ref114) 2015; 521 Zhou (2022011921340194000_ref169) 2019; 9 Yang (2022011921340194000_ref224) 2021 Morgan (2022011921340194000_ref68) 1965; 5 Nguyen (2022011921340194000_ref165) 2020 Scior (2022011921340194000_ref21) 2012; 52 Wu (2022011921340194000_ref144) 2020 Kingma (2022011921340194000_ref173) 2019 Guimaraes (2022011921340194000_ref142) 2017 Heikamp (2022011921340194000_ref111) 2014; 9 Schulman (2022011921340194000_ref232) 2017 Lavecchia (2022011921340194000_ref40) 2015; 20 Tsigelny (2022011921340194000_ref13) 2019; 20 Staker (2022011921340194000_ref124) 2019; 59 Altae-Tran (2022011921340194000_ref158) 2017; 3 Schneider (2022011921340194000_ref102) 2008; 48 Wang (2022011921340194000_ref162) 2019; 59 Schneider (2022011921340194000_ref33) 2010; 9 Bender (2022011921340194000_ref17) 2008; 11 Devlin (2022011921340194000_ref209) 2019 Wang (2022011921340194000_ref220) 2021 Schulman (2022011921340194000_ref233) 2015 Stumpfe (2022011921340194000_ref8) 2020; 60 Kingma (2022011921340194000_ref172) 2013 Luo (2022011921340194000_ref206) 2021 Chuang (2022011921340194000_ref47) 2020; 63 Strokach (2022011921340194000_ref11) 2020; 11 Nicolaou (2022011921340194000_ref25) 2013; 10 Li (2022011921340194000_ref137) 2018 Rajan (2022011921340194000_ref125) 2020; 12 Mercado (2022011921340194000_ref72) 2021; 2 Hofmarcher (2022011921340194000_ref116) 2019; 59 (2022011921340194000_ref103) 2007; 47 Zang (2022011921340194000_ref205) 2020 Pushpakom (2022011921340194000_ref12) 2019; 18 Na (2022011921340194000_ref226) 2020; 22 Yu (2022011921340194000_ref195) 2017 Wu (2022011921340194000_ref84) 2018; 58 Lim (2022011921340194000_ref177) 2018; 10 Brown (2022011921340194000_ref212) 2020 Kearnes (2022011921340194000_ref152) 2016; 30 Chithrananda (2022011921340194000_ref59) 2020 Kusner (2022011921340194000_ref174) 2017 Riddick (2022011921340194000_ref109) 2011; 27 Bradshaw (2022011921340194000_ref217) 2019 Olivecrona (2022011921340194000_ref97) 2017; 9 Ramsundar (2022011921340194000_ref94) 2019 Brown (2022011921340194000_ref99) 2019; 59 Chen (2022011921340194000_ref4) 2018; 23 Liu (2022011921340194000_ref219) 2021 Kim (2022011921340194000_ref20) 2016; 11 Svetnik (2022011921340194000_ref112) 2003; 43 Ramsundar (2022011921340194000_ref117) 2015 Muratov (2022011921340194000_ref26) 2020; 49 Dobson (2022011921340194000_ref28) 2004; 432 Paananen (2022011921340194000_ref14) 2020; 21 Popova (2022011921340194000_ref79) 2018; 4 Salahudeen (2022011921340194000_ref22) 2017; 25 Putin (2022011921340194000_ref196) 2018; 58 Weininger (2022011921340194000_ref75) 1989; 29 Dosovitskiy (2022011921340194000_ref214) 2021 Walters (2022011921340194000_ref55) 2021 Mikolov (2022011921340194000_ref127) 2011 Chung (2022011921340194000_ref130) 2014 Neil (2022011921340194000_ref132) 2018 Sambasivan (2022011921340194000_ref240) 2021 Andrade (2022011921340194000_ref49) 2019; 5 Honda (2022011921340194000_ref216) 2019 Grechishnikova (2022011921340194000_ref218) 2021; 11 Rong (2022011921340194000_ref63) 2020 Jiang (2022011921340194000_ref244) 2021; 13 Paul (2022011921340194000_ref7) 2020; 26 He (2022011921340194000_ref122) 2016 Popova (2022011921340194000_ref139) 2019 Ma (2022011921340194000_ref187) 2018 Rifaioglu (2022011921340194000_ref91) 2020; 11 Duvenaud (2022011921340194000_ref118) 2015 Hu (2022011921340194000_ref23) 2013; 18 Jiménez-Luna (2022011921340194000_ref31) 2020; 2 Dahl (2022011921340194000_ref113) 2012 Subramanian (2022011921340194000_ref69) 2016; 56 Jiménez (2022011921340194000_ref81) 2018; 58 Stokes (2022011921340194000_ref46) 2020; 180 Hou (2022011921340194000_ref105) 2007; 47 Veličković (2022011921340194000_ref150) 2017 Simm (2022011921340194000_ref86) 2020 Simm (2022011921340194000_ref115) 2018; 25 Segler (2022011921340194000_ref100) 2018; 4 Goh (2022011921340194000_ref120) 2017 Sliwoski (2022011921340194000_ref29) 2014; 66 Vaswani (2022011921340194000_ref207) 2017 Pathak (2022011921340194000_ref168) 2020 Sterling (2022011921340194000_ref19) 2015; 55 Jin (2022011921340194000_ref73) 2020 Lim (2022011921340194000_ref190) 2020 Yasonik (2022011921340194000_ref235) 2020; 12 Kulis (2022011921340194000_ref223) 2012; 5 Simonyan (2022011921340194000_ref123) 2015 Shen (2022011921340194000_ref96) 2021; 3 Movshovitz-Attias (2022011921340194000_ref225) 2017 Van Hasselt (2022011921340194000_ref230) 2016; 30 Singh (2022011921340194000_ref241) 2018; 23 Xiong (2022011921340194000_ref77) 2019; 63 Deng (2022011921340194000_ref234) 2020 Chenthamarakshan (2022011921340194000_ref180) 2020 Feinberg (2022011921340194000_ref156) 2018; 4 (2022011921340194000_ref231) 1992; 8 Mater (2022011921340194000_ref5) 2019; 59 Gilmer (2022011921340194000_ref148) 2017 Gómez-Bombarelli (2022011921340194000_ref78) 2018; 4 Skalic (2022011921340194000_ref85) 2019; 59 Yang (2022011921340194000_ref71) 2019; 59 Hao (2022011921340194000_ref164) 2020 Dinh (2022011921340194000_ref201) 2017 Öztürk (2022011921340194000_ref43) 2020; 25 Vamathevan (2022011921340194000_ref6) 2019; 18 Radford (2022011921340194000_ref210) 2019; 1 Lu (2022011921340194000_ref160) 2019 Liu (2022011921340194000_ref178) 2018 Rifaioglu (2022011921340194000_ref56) 2019; 20 Chen (2022011921340194000_ref66) 2016; 21 Schütt (2022011921340194000_ref155) 2017 Davies (2022011921340194000_ref61) 2015; 43 You (2022011921340194000_ref136) 2018 Bender (2022011921340194000_ref54) 2021; 26 Mayr (2022011921340194000_ref48) 2016; 3 Withnall (2022011921340194000_ref154) 2020; 12 Dinh (2022011921340194000_ref200) 2015 Vanschoren (2022011921340194000_ref221) 2018 Goodfellow (2022011921340194000_ref194) 2017 Van Drie (2022011921340194000_ref30) 2007; 21 Honda (2022011921340194000_ref203) 2019 Wu (2022011921340194000_ref93) 2018; 9 Hughes (2022011921340194000_ref15) 2011; 162 Koge (2022011921340194000_ref227) 2021; 40 Lim (2022011921340194000_ref82) 2019; 59 Kang (2022011921340194000_ref176) 2018; 59 Hossain (2022011921340194000_ref126) 2019; 51 Meyer (2022011921340194000_ref89) 2019; 59 Schaduangrat (2022011921340194000_ref52) 2020; 12 Bajorath (2022011921340194000_ref32) 2002; 1 Liu (2022011921340194000_ref211) 2019 Patrick (2022011921340194000_ref101) 2002; 54 Ragoza (2022011921340194000_ref80) 2017; 57 Cortés-Ciriano (2022011921340194000_ref90) 2019; 11 Kadurin (2022011921340194000_ref182) 2017; 14 Klicpera (2022011921340194000_ref157) 2020 Walters (2022011921340194000_ref239) 2020; 38 Mullard (2022011921340194000_ref1) 2014; 13 Mercado (2022011921340194000_ref51) 2020; 1 Wang (2022011921340194000_ref222) 2020; 53 Hamilton (2022011921340194000_ref149) 2017 Stumpfe (2022011921340194000_ref37) 2014; 57 Sydow (2022011921340194000_ref35) 2019; 59 Wang (2022011921340194000_ref215) 2019 Fernandez (2022011921340194000_ref88) 2018; 58 Ståhl (2022011921340194000_ref134) 2019; 59 Dowden (2022011921340194000_ref2) 2019; 18 Shi (2022011921340194000_ref204) 2020 Liu (2022011921340194000_ref159) 2019 Gaulton (2022011921340194000_ref60) 2017; 45 Alom (2022011921340194000_ref42) 2018 Kim (2022011921340194000_ref57) 2021; 49 Boström (2022011921340194000_ref10) 2018; 17 Madhawa (2022011921340194000_ref202) 2019 Boulanger-Lewandowski (2022011921340194000_ref128) 2012 Kobyzev (2022011921340194000_ref199) 2020 Blaschke (2022011921340194000_ref183) 2018; 37 Sakiyama (2022011921340194000_ref107) 2008; 26 Sutton (2022011921340194000_ref228) 2018 Goh (2022011921340194000_ref131) 2017 Yusof (2022011921340194000_ref24) 2014; 19 Bian (2022011921340194000_ref76) 2021; 27 Polykovskiy (2022011921340194000_ref184) 2018; 15 Jin (2022011921340194000_ref186) 2018 Kajino (2022011921340194000_ref188) 2019 Maggiora (2022011921340194000_ref36) 2006 Schroeter (2022011921340194000_ref104) 2007; 4 Simonovsky (2022011921340194000_ref185) 2018 Reker (2022011921340194000_ref238) 2015; 20 Tianfan (2022011921340194000_ref191) 2020 Hemmerich (2022011921340194000_ref87) 2020; 12 Samanta (2022011921340194000_ref179) 2020; 21 Polishchuk (2022011921340194000_ref34) 2017; 57 Kwon (2022011921340194000_ref189) 2019; 11 Glen (2022011921340194000_ref119) 2006; 9 Schneider (2022011921340194000_ref9) 2020; 19 Li (2022011921340194000_ref166) 2019; 59 Zang (2022011921340194000_ref70) 2017; 57 Sattarov (2022011921340194000_ref141) 2019; 59 Pereira (2022011921340194000_ref16) 2007; 152 Mayr (2022011921340194000_ref62) 2018; 9 Schneider (2022011921340194000_ref3) 2018; 17 Jiménez-Luna (2022011921340194000_ref44) 2021 Deng (2022011921340194000_ref242) 2021 Makhzani (2022011921340194000_ref181) 2015 Sanchez-Lengeling (2022011921340194000_ref143) 2017 Tang (2022011921340194000_ref167) 2020; 12 Zhavoronkov (2022011921340194000_ref45) 2019; 37 Wang (2022011921340194000_ref18) 2017; 45 Salimans (2022011921340194000_ref198) 2016 Bajorath (2022011921340194000_ref38) 2019; 14 Jin (2022011921340194000_ref193) 2020 Hu (2022011921340194000_ref163) 2020 Vasanthanathan (2022011921340194000_ref108) 2009; 37 Dai (2022011921340194000_ref175) 2018 Kwon (2022011921340194000_ref192) 2020; 12 Korkmaz (2022011921340194000_ref58) 2020; 60 Krizhevsky (2022011921340194000_ref41) 2012; 25 Bender (2022011921340194000_ref53) 2021; 26 Tian (2022011921340194000_ref106) 2011; 8 Ma (2022011921340194000_ref39) 2015; 55 Rajan (2022011921340194000_ref92) 2021; 13 Joulin (2022011921340194 |
References_xml | – volume: 37 start-page: 1038 issue: 9 year: 2019 ident: 2022011921340194000_ref45 article-title: Deep learning enables rapid identification of potent ddr1 kinase inhibitors publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0224-x – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref125 article-title: Decimer: towards deep learning for chemical image recognition publication-title: J Chem – volume-title: Proceedings of the 29th International Coference on International Conference on Machine Learning year: 2012 ident: 2022011921340194000_ref128 – year: 2018 ident: 2022011921340194000_ref221 article-title: Meta-learning: A survey – volume-title: Proceedings of NAACL-HLT year: 2019 ident: 2022011921340194000_ref209 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – volume: 1 start-page: 9 issue: 8 year: 2019 ident: 2022011921340194000_ref210 article-title: Language models are unsupervised multitask learners publication-title: OpenAI blog – volume: 45 start-page: D945 issue: D1 year: 2017 ident: 2022011921340194000_ref60 article-title: The chembl database in 2017 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1074 – volume: 26 start-page: 80 issue: 1 year: 2020 ident: 2022011921340194000_ref7 article-title: Artificial intelligence in drug discovery and development publication-title: Drug Discov Today doi: 10.1016/j.drudis.2020.10.010 – volume: 4 start-page: 1520 issue: 11 year: 2018 ident: 2022011921340194000_ref156 article-title: Potentialnet for molecular property prediction publication-title: ACS Cent Sci doi: 10.1021/acscentsci.8b00507 – volume: 55 start-page: 2324 issue: 11 year: 2015 ident: 2022011921340194000_ref19 article-title: Zinc 15–ligand discovery for everyone publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00559 – volume: 59 start-page: 4475 issue: 10 year: 2019 ident: 2022011921340194000_ref83 article-title: A quantum-inspired method for three-dimensional ligand-based virtual screening publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00195 – volume: 217 start-page: 105 issue: 2–3 year: 2006 ident: 2022011921340194000_ref110 article-title: Application of support vector machine (svm) for prediction toxic activity of different data sets publication-title: Toxicology doi: 10.1016/j.tox.2005.08.019 – start-page: 360 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2017 ident: 2022011921340194000_ref225 – start-page: 1 year: 2021 ident: 2022011921340194000_ref55 article-title: Critical assessment of ai in drug discovery publication-title: Expert Opin Drug Discov – volume: 59 start-page: 3817 issue: 9 year: 2019 ident: 2022011921340194000_ref162 article-title: Molecule property prediction based on spatial graph embedding publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00410 – volume: 20 start-page: 458 issue: 4 year: 2015 ident: 2022011921340194000_ref238 article-title: Active-learning strategies in computer-assisted drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2014.12.004 – volume: 59 start-page: 2545 issue: 6 year: 2019 ident: 2022011921340194000_ref5 article-title: Deep learning in chemistry publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00266 – volume: 63 start-page: 8705 issue: 16 year: 2020 ident: 2022011921340194000_ref47 article-title: Learning molecular representations for medicinal chemistry: Miniperspective publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c00385 – volume: 58 start-page: 1533 issue: 8 year: 2018 ident: 2022011921340194000_ref88 article-title: Toxic colors: the use of deep learning for predicting toxicity of compounds merely from their graphic images publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00338 – volume: 180 start-page: 688 issue: 4 year: 2020 ident: 2022011921340194000_ref46 article-title: A deep learning approach to antibiotic discovery publication-title: Cell doi: 10.1016/j.cell.2020.01.021 – volume: 1 start-page: 882 issue: 11 year: 2002 ident: 2022011921340194000_ref32 article-title: Integration of virtual and high-throughput screening publication-title: Nat Rev Drug Discov doi: 10.1038/nrd941 – volume: 20 start-page: 318 issue: 3 year: 2015 ident: 2022011921340194000_ref40 article-title: Machine-learning approaches in drug discovery: methods and applications publication-title: Drug Discov Today doi: 10.1016/j.drudis.2014.10.012 – volume: 12 issue: 1 year: 2020 ident: 2022011921340194000_ref52 article-title: Towards reproducible computational drug discovery publication-title: J Chem – start-page: 3183 volume-title: International Conference on Machine Learning year: 2019 ident: 2022011921340194000_ref188 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref235 article-title: Multiobjective de novo drug design with recurrent neural networks and nondominated sorting publication-title: J Chem – volume: 55 start-page: 263 issue: 2 year: 2015 ident: 2022011921340194000_ref39 article-title: Deep neural nets as a method for quantitative structure–activity relationships publication-title: J Chem Inf Model doi: 10.1021/ci500747n – volume: 47 start-page: 150 issue: 1 year: 2007 ident: 2022011921340194000_ref103 article-title: Palmer, Noel M O’Boyle, Robert C Glen, and John BO Mitchell. Random forest models to predict aqueous solubility publication-title: J Chem Inf Model doi: 10.1021/ci060164k – volume: 11 start-page: 843 issue: 9 year: 2016 ident: 2022011921340194000_ref20 article-title: Getting the most out of pubchem for virtual screening publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2016.1216967 – volume-title: International Conference on Learning Representations year: 2020 ident: 2022011921340194000_ref157 article-title: Directional message passing for molecular graphs – start-page: 8959 volume-title: International Conference on Machine Learning year: 2020 ident: 2022011921340194000_ref86 – volume: 5 start-page: 107 issue: 2 year: 1965 ident: 2022011921340194000_ref68 article-title: The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service publication-title: J Chem Doc doi: 10.1021/c160017a018 – volume: 40 issue: 2 year: 2021 ident: 2022011921340194000_ref227 article-title: Embedding of molecular structure using molecular hypergraph variational autoencoder with metric learning publication-title: Mol Inform doi: 10.1002/minf.202000203 – volume: 23 start-page: 1241 issue: 6 year: 2018 ident: 2022011921340194000_ref4 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.01.039 – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 2022011921340194000_ref112 article-title: Random forest: a classification and regression tool for compound classification and qsar modeling publication-title: J Chem Inform Comput Sci doi: 10.1021/ci034160g – volume: 27 start-page: 220 issue: 2 year: 2011 ident: 2022011921340194000_ref109 article-title: Predicting in vitro drug sensitivity using random forests publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq628 – volume-title: NeurIPS 2014 Workshop on Deep Learning, December 2014 year: 2014 ident: 2022011921340194000_ref130 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: 2022011921340194000_ref217 article-title: A model to search for synthesizable molecules – volume: 5 start-page: 1 issue: 1 year: 2019 ident: 2022011921340194000_ref49 article-title: Drug-induced liver injury publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-019-0105-0 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 2022011921340194000_ref169 article-title: Optimization of molecules via deep reinforcement learning publication-title: Sci Rep – year: 2017 ident: 2022011921340194000_ref229 article-title: A brief survey of deep reinforcement learning doi: 10.1109/MSP.2017.2743240 – volume: 10 start-page: e427 issue: 3 year: 2013 ident: 2022011921340194000_ref25 article-title: Multi-objective optimization methods in drug design publication-title: Drug Discov Today: Technologies doi: 10.1016/j.ddtec.2013.02.001 – start-page: 7795 volume-title: Advances in Neural Information Processing Systems year: 2018 ident: 2022011921340194000_ref178 article-title: Constrained graph variational autoencoders for molecule design – volume: 3 start-page: 283 issue: 4 year: 2017 ident: 2022011921340194000_ref158 article-title: Low data drug discovery with one-shot learning publication-title: ACS Cent Sci doi: 10.1021/acscentsci.6b00367 – start-page: 2017 year: 2017 ident: 2022011921340194000_ref143 article-title: Optimizing distributions over molecular space. an objective-reinforced generative adversarial network for inverse-design chemistry (organic) publication-title: ChemRxiv – volume: 57 start-page: 2618 issue: 11 year: 2017 ident: 2022011921340194000_ref34 article-title: Interpretation of quantitative structure–activity relationship models: past, present, and future publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00274 – year: 2015 ident: 2022011921340194000_ref181 article-title: Adversarial autoencoders – start-page: 2224 volume-title: Advances in Neural Information Processing Systems year: 2015 ident: 2022011921340194000_ref118 article-title: Convolutional networks on graphs for learning molecular fingerprints – volume: 49 start-page: D1388 issue: D1 year: 2021 ident: 2022011921340194000_ref57 article-title: Pubchem in 2021: new data content and improved web interfaces publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa971 – volume-title: Advances in neural information processing systems year: 2016 ident: 2022011921340194000_ref146 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – year: 2012 ident: 2022011921340194000_ref113 – volume: 8 start-page: 841 issue: 3 year: 2011 ident: 2022011921340194000_ref106 article-title: Adme evaluation in drug discovery. 9. prediction of oral bioavailability in humans based on molecular properties and structural fingerprints publication-title: Mol Pharm doi: 10.1021/mp100444g – volume: 59 start-page: 1182 issue: 3 year: 2019 ident: 2022011921340194000_ref141 article-title: De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00751 – year: 2021 ident: 2022011921340194000_ref220 article-title: Molclr: Molecular contrastive learning of representations via graph neural networks – volume-title: Proceedings of The International Conference on Learning Representations year: 2018 ident: 2022011921340194000_ref132 – volume-title: International Conference on Learning Representations year: 2016 ident: 2022011921340194000_ref145 article-title: Gated graph sequence neural networks – volume: 59 start-page: 1096 issue: 3 year: 2019 ident: 2022011921340194000_ref99 article-title: Guacamol: benchmarking models for de novo molecular design publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00839 – volume: 60 start-page: 4582 issue: 10 year: 2020 ident: 2022011921340194000_ref236 article-title: De novo drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00517 – volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2022011921340194000_ref155 article-title: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions – year: 2019 ident: 2022011921340194000_ref139 article-title: Molecularrnn: Generating realistic molecular graphs with optimized properties – volume: 17 start-page: 97 issue: 2 year: 2018 ident: 2022011921340194000_ref3 article-title: Automating drug discovery publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2017.232 – volume: 59 start-page: 3166 issue: 7 year: 2019 ident: 2022011921340194000_ref134 article-title: Deep reinforcement learning for multiparameter optimization in de novo drug design publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00325 – volume-title: IEEE Trans Knowl Data Eng year: 2021 ident: 2022011921340194000_ref219 article-title: Self-supervised learning: Generative or contrastive doi: 10.1109/TKDE.2021.3090866 – start-page: 412 volume-title: International Conference on Artificial Neural Networks year: 2018 ident: 2022011921340194000_ref185 – year: 2019 ident: 2022011921340194000_ref203 article-title: Graph residual flow for molecular graph generation – volume: 9 start-page: 93 issue: 1 year: 2014 ident: 2022011921340194000_ref111 article-title: Support vector machines for drug discovery publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2014.866943 – volume: 10 start-page: 1 issue: 1 year: 2018 ident: 2022011921340194000_ref177 article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design publication-title: J Chem – volume-title: Proceedings of The International Conference on Learning Representations year: 2017 ident: 2022011921340194000_ref201 article-title: Density estimation using real NVP – start-page: 4700 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2017 ident: 2022011921340194000_ref121 – volume-title: Rdkit: Open-source cheminformatics software year: 2016 ident: 2022011921340194000_ref153 – volume: 25 start-page: 1097 year: 2012 ident: 2022011921340194000_ref41 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 9 start-page: 273 issue: 4 year: 2010 ident: 2022011921340194000_ref33 article-title: Virtual screening: an endless staircase? publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3139 – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 2022011921340194000_ref92 article-title: Decimer-segmentation: Automated extraction of chemical structure depictions from scientific literature publication-title: J Chem – volume: 432 start-page: 824 issue: 7019 year: 2004 ident: 2022011921340194000_ref28 article-title: Chemical space and biology publication-title: Nature doi: 10.1038/nature03192 – start-page: 1889 volume-title: International Conference on Machine Learning year: 2015 ident: 2022011921340194000_ref233 – volume: 51 start-page: 1 issue: 6 year: 2019 ident: 2022011921340194000_ref126 article-title: A comprehensive survey of deep learning for image captioning publication-title: ACM Computing Surveys (CsUR) doi: 10.1145/3295748 – year: 2019 ident: 2022011921340194000_ref202 article-title: Graphnvp: An invertible flow model for generating molecular graphs – volume: 59 start-page: 1017 issue: 3 year: 2019 ident: 2022011921340194000_ref124 article-title: Molecular structure extraction from documents using deep learning publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00669 – volume: 27 start-page: 1 issue: 3 year: 2021 ident: 2022011921340194000_ref76 article-title: Generative chemistry: drug discovery with deep learning generative models publication-title: J Mol Model doi: 10.1007/s00894-021-04674-8 – year: 2015 ident: 2022011921340194000_ref117 article-title: Massively multitask networks for drug discovery – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref170 article-title: Deepgraphmolgen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach publication-title: J Chem – volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2022011921340194000_ref198 article-title: Improved techniques for training GANs – year: 2017 ident: 2022011921340194000_ref150 article-title: Graph attention networks – volume: 26 issue: 2 year: 2021 ident: 2022011921340194000_ref53 article-title: Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet publication-title: Drug Discov Today doi: 10.1016/j.drudis.2020.12.009 – volume-title: IEEE transactions on neural networks and learning systems year: 2020 ident: 2022011921340194000_ref144 – volume-title: International Conference on Learning Representations year: 2018 ident: 2022011921340194000_ref151 article-title: How powerful are graph neural networks? – volume: 60 start-page: 4112 issue: 9 year: 2020 ident: 2022011921340194000_ref8 article-title: Current trends, overlooked issues, and unmet challenges in virtual screening publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b01101 – volume-title: Deep Learning for the Life Sciences year: 2019 ident: 2022011921340194000_ref94 – volume-title: Chem Sci year: 2020 ident: 2022011921340194000_ref190 article-title: Scaffold-based molecular design using graph generative model – volume: 18 start-page: 644 issue: 13–14 year: 2013 ident: 2022011921340194000_ref23 article-title: Compound promiscuity: what can we learn from current data? publication-title: Drug Discov Today doi: 10.1016/j.drudis.2013.03.002 – start-page: 4849 volume-title: International Conference on Machine Learning year: 2020 ident: 2022011921340194000_ref73 – volume: 59 start-page: 4438 issue: 10 year: 2019 ident: 2022011921340194000_ref89 article-title: Learning drug functions from chemical structures with convolutional neural networks and random forests publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00236 – start-page: 873 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2020 ident: 2022011921340194000_ref168 – volume: 21 start-page: 591 issue: 10 year: 2007 ident: 2022011921340194000_ref30 article-title: Computer-aided drug design: the next 20 years publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-007-9142-y – volume: 37 issue: 1–2 year: 2018 ident: 2022011921340194000_ref183 article-title: Application of generative autoencoder in de novo molecular design publication-title: Mol Inform – volume-title: Reinforcement learning: An introduction year: 2018 ident: 2022011921340194000_ref228 – volume: 59 start-page: 1044 issue: 3 year: 2019 ident: 2022011921340194000_ref166 article-title: Deepchemstable: Chemical stability prediction with an attention-based graph convolution network publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00672 – year: 2013 ident: 2022011921340194000_ref172 article-title: Auto-encoding variational bayes – year: 2017 ident: 2022011921340194000_ref142 article-title: Objective-reinforced generative adversarial networks (organ) for sequence generation models – volume-title: Advances in Neural Information Processing Systems year: 2020 ident: 2022011921340194000_ref63 article-title: Grover: Self-supervised message passing transformer on large-scale molecular data – year: 2017 ident: 2022011921340194000_ref149 article-title: Inductive representation learning on large graphs – volume-title: Proceedings of The International Conference on Learning Representations year: 2020 ident: 2022011921340194000_ref163 article-title: Strategies for pre-training graph neural networks – volume: 1 issue: 2 year: 2020 ident: 2022011921340194000_ref51 article-title: Practical notes on building molecular graph generative models publication-title: Applied AI Letters doi: 10.1002/ail2.18 – volume: 18 start-page: 495 issue: 7 year: 2019 ident: 2022011921340194000_ref2 article-title: Trends in clinical success rates and therapeutic focus publication-title: Nat Rev Drug Discov doi: 10.1038/d41573-019-00074-z – volume: 11 start-page: 402 issue: 4 year: 2020 ident: 2022011921340194000_ref11 article-title: Fast and flexible protein design using deep graph neural networks publication-title: Cell Syst doi: 10.1016/j.cels.2020.08.016 – volume: 58 start-page: 287 issue: 2 year: 2018 ident: 2022011921340194000_ref81 article-title: K deep: protein–ligand absolute binding affinity prediction via 3d-convolutional neural networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00650 – volume: 30 year: 2016 ident: 2022011921340194000_ref230 article-title: Deep reinforcement learning with double q-learning publication-title: In Proceedings of the AAAI Conference on Artificial Intelligence, volume – volume: 13 start-page: 877 issue: 12 year: 2014 ident: 2022011921340194000_ref1 article-title: New drugs cost us $2.6 billion to develop publication-title: Nat Rev Drug Discov – volume: 14 start-page: 517 issue: 6 year: 2019 ident: 2022011921340194000_ref38 article-title: Duality of activity cliffs in drug discovery publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2019.1593371 – year: 2019 ident: 2022011921340194000_ref211 article-title: Roberta: A robustly optimized bert pretraining approach – volume: 5 start-page: 287 issue: 4 year: 2012 ident: 2022011921340194000_ref223 article-title: Metric learning: A survey publication-title: Foundations and trends in machine learning doi: 10.1561/2200000019 – start-page: 1 year: 2021 ident: 2022011921340194000_ref44 article-title: Artificial intelligence in drug discovery: Recent advances and future perspectives publication-title: Expert Opin Drug Discov – volume: 59 start-page: 3370 issue: 8 year: 2019 ident: 2022011921340194000_ref71 article-title: Analyzing learned molecular representations for property prediction publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00237 – year: 2018 ident: 2022011921340194000_ref137 article-title: Learning deep generative models of graphs – year: 2020 ident: 2022011921340194000_ref95 article-title: Molecular representation learning with language models and domain-relevant auxiliary tasks – year: 2019 ident: 2022011921340194000_ref216 article-title: Smiles transformer: pre-trained molecular fingerprint for low data drug discovery – start-page: 2323 volume-title: International Conference on Machine Learning year: 2018 ident: 2022011921340194000_ref186 – start-page: 1535 volume-title: J Chem Inf Model year: 2006 ident: 2022011921340194000_ref36 article-title: On outliers and activity cliffs–why QSAR often disappoints – volume: 66 start-page: 334 issue: 1 year: 2014 ident: 2022011921340194000_ref29 article-title: Computational methods in drug discovery publication-title: Pharmacol Rev doi: 10.1124/pr.112.007336 – volume: 45 start-page: D955 issue: D1 year: 2017 ident: 2022011921340194000_ref18 article-title: Pubchem bioassay: 2017 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1118 – volume: 18 start-page: 41 issue: 1 year: 2019 ident: 2022011921340194000_ref12 article-title: Drug repurposing: progress, challenges and recommendations publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2018.168 – start-page: 5708 volume-title: International Conference on Machine Learning year: 2018 ident: 2022011921340194000_ref136 – volume: 9 start-page: 5441 issue: 24 year: 2018 ident: 2022011921340194000_ref62 article-title: Large-scale comparison of machine learning methods for drug target prediction on chembl publication-title: Chem Sci doi: 10.1039/C8SC00148K – volume: 20 start-page: 1878 issue: 5 year: 2019 ident: 2022011921340194000_ref56 article-title: Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases publication-title: Brief Bioinformatics doi: 10.1093/bib/bby061 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref167 article-title: A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility publication-title: J Chem – year: 2017 ident: 2022011921340194000_ref232 article-title: Proximal policy optimization algorithms – volume: 2 issue: 2 year: 2021 ident: 2022011921340194000_ref72 article-title: Graph networks for molecular design publication-title: Mach Learn: Sci Technol – volume: 58 start-page: 520 issue: 2 year: 2018 ident: 2022011921340194000_ref84 article-title: Quantitative toxicity prediction using topology based multitask deep neural networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00558 – volume: 57 start-page: 36 issue: 1 year: 2017 ident: 2022011921340194000_ref70 article-title: In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00625 – volume: 4 start-page: 120 issue: 1 year: 2018 ident: 2022011921340194000_ref100 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00512 – volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2017 ident: 2022011921340194000_ref195 – start-page: 5528 volume-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2011 ident: 2022011921340194000_ref127 doi: 10.1109/ICASSP.2011.5947611 – year: 2017 ident: 2022011921340194000_ref207 article-title: Attention is all you need – volume: 4 start-page: 268 issue: 2 year: 2018 ident: 2022011921340194000_ref78 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent. Sci doi: 10.1021/acscentsci.7b00572 – year: 2018 ident: 2022011921340194000_ref208 article-title: Improving language understanding by generative pre-training publication-title: OpenAI – start-page: 638 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2020 ident: 2022011921340194000_ref191 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 2022011921340194000_ref189 article-title: Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation publication-title: J Chem doi: 10.1155/2019/2903252 – volume: 53 start-page: 1 issue: 3 year: 2020 ident: 2022011921340194000_ref222 article-title: Generalizing from a few examples: A survey on few-shot learning publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3386252 – volume: 59 start-page: 1163 issue: 3 year: 2019 ident: 2022011921340194000_ref116 article-title: Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00670 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref67 article-title: Molecular representations in ai-driven drug discovery: a review and practical guide publication-title: J Chem – volume: 162 start-page: 1239 issue: 6 year: 2011 ident: 2022011921340194000_ref15 article-title: Principles of early drug discovery publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2010.01127.x – volume-title: Proceedings of The International Conference on Learning Representations Workshops year: 2015 ident: 2022011921340194000_ref200 article-title: Nice: Non-linear independent components estimation – start-page: 1 volume-title: proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages year: 2021 ident: 2022011921340194000_ref240 – volume: 28 start-page: 31 issue: 1 year: 1988 ident: 2022011921340194000_ref74 article-title: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules publication-title: Chem Inform Comput Sci doi: 10.1021/ci00057a005 – volume: 30 start-page: 595 issue: 8 year: 2016 ident: 2022011921340194000_ref152 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9938-8 – volume: 11 start-page: 2531 issue: 9 year: 2020 ident: 2022011921340194000_ref91 article-title: Deepscreen: high performance drug–target interaction prediction with convolutional neural networks using 2-d structural compound representations publication-title: Chem Sci doi: 10.1039/C9SC03414E – volume: 21 start-page: 1 year: 2020 ident: 2022011921340194000_ref179 article-title: NEVAE: A deep generative model for molecular graphs publication-title: J Mach Learn Res – year: 2017 ident: 2022011921340194000_ref131 article-title: Smiles2vec: An interpretable general-purpose deep neural network for predicting chemical properties – volume: 4 start-page: 649 issue: 8 year: 2005 ident: 2022011921340194000_ref27 article-title: Computer-based de novo design of drug-like molecules publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1799 – start-page: 1945 volume-title: International Conference on Machine Learning year: 2017 ident: 2022011921340194000_ref174 – start-page: 617 volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2020 ident: 2022011921340194000_ref205 doi: 10.1145/3394486.3403104 – volume: 26 issue: 4 year: 2021 ident: 2022011921340194000_ref54 article-title: Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data used for AI in drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2020.11.037 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2022011921340194000_ref114 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 19 start-page: 680 issue: 5 year: 2014 ident: 2022011921340194000_ref24 article-title: Finding the rules for successful drug optimisation publication-title: Drug Discov Today doi: 10.1016/j.drudis.2014.01.005 – volume: 23 start-page: 652 issue: 3 year: 2018 ident: 2022011921340194000_ref241 article-title: Real world big data for clinical research and drug development publication-title: Drug Discov Today doi: 10.1016/j.drudis.2017.12.002 – volume: 38 start-page: 143 issue: 2 year: 2020 ident: 2022011921340194000_ref239 article-title: Assessing the impact of generative ai on medicinal chemistry publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0418-2 – volume: 22 start-page: 18526 issue: 33 year: 2020 ident: 2022011921340194000_ref226 article-title: Machine-guided representation for accurate graph-based molecular machine learning publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP02709J – volume-title: ICML year: 2021 ident: 2022011921340194000_ref206 article-title: Graphdf: A discrete flow model for molecular graph generation – start-page: 429 volume-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics year: 2019 ident: 2022011921340194000_ref215 doi: 10.1145/3307339.3342186 – volume: 60 start-page: 5918 issue: 12 year: 2020 ident: 2022011921340194000_ref98 article-title: REINVENT 2.0: an AI tool for de novo drug design publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00915 – volume: 25 start-page: 165 issue: 2 year: 2017 ident: 2022011921340194000_ref22 article-title: An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice publication-title: Saudi Pharm J doi: 10.1016/j.jsps.2016.07.002 – volume: 59 start-page: 1205 issue: 3 year: 2019 ident: 2022011921340194000_ref85 article-title: Shape-based generative modeling for de novo drug design publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00706 – start-page: 1263 volume-title: International Conference on Machine Learning year: 2017 ident: 2022011921340194000_ref148 – start-page: 770 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: 2022011921340194000_ref122 – volume: 8 start-page: 229 issue: 3–4 year: 1992 ident: 2022011921340194000_ref231 article-title: Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Machine learning – volume: 21 start-page: 1937 issue: 6 year: 2020 ident: 2022011921340194000_ref14 article-title: An omics perspective on drug target discovery platforms publication-title: Brief Bioinformatics doi: 10.1093/bib/bbz122 – year: 2021 ident: 2022011921340194000_ref224 article-title: Hierarchical proxy-based loss for deep metric learning – volume: 59 start-page: 914 issue: 2 year: 2019 ident: 2022011921340194000_ref135 article-title: Identifying structure–property relationships through smiles syntax analysis with self-attention mechanism publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00803 – volume: 48 start-page: 613 issue: 3 year: 2008 ident: 2022011921340194000_ref102 article-title: Gradual in silico filtering for druglike substances publication-title: J Chem Inf Model doi: 10.1021/ci700351y – volume: 55 start-page: 1297 issue: 7 year: 2015 ident: 2022011921340194000_ref65 article-title: Benchmarking data sets for the evaluation of virtual ligand screening methods: review and perspectives publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00090 – volume: 25 start-page: 689 issue: 4 year: 2020 ident: 2022011921340194000_ref43 article-title: Exploring chemical space using natural language processing methodologies for drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2020.01.020 – start-page: 190 volume-title: Advances in Neural Information Processing Systems year: 2015 ident: 2022011921340194000_ref133 article-title: Inferring algorithmic patterns with stack-augmented recurrent nets – start-page: 1 year: 2021 ident: 2022011921340194000_ref242 article-title: A large-scale observational study on the temporal trends and risk factors of opioid overdose: Real-world evidence for better opioids publication-title: Drugs – Real World Outcomes – year: 2018 ident: 2022011921340194000_ref42 article-title: The history began from alexnet: A comprehensive survey on deep learning approaches – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 2022011921340194000_ref129 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume-title: International Conference on Learning Representations year: 2015 ident: 2022011921340194000_ref123 article-title: Very deep convolutional networks for large-scale image recognition – year: 2021 ident: 2022011921340194000_ref237 article-title: Drugex v2: De novo design of drug molecule by pareto-based multi-objective reinforcement learning in polypharmacology doi: 10.1186/s13321-021-00561-9 – volume: 59 start-page: 3981 issue: 9 year: 2019 ident: 2022011921340194000_ref82 article-title: Predicting drug–target interaction using a novel graph neural network with 3d structure-embedded graph representation publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00387 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref154 article-title: Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction publication-title: J Chem doi: 10.1186/s13321-019-0407-y – volume: 60 start-page: 4180 issue: 9 year: 2020 ident: 2022011921340194000_ref58 article-title: Deep learning-based imbalanced data classification for drug discovery publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b01162 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 2022011921340194000_ref218 article-title: Transformer neural network for protein-specific de novo drug generation as a machine translation problem publication-title: Sci Rep doi: 10.1038/s41598-020-79682-4 – start-page: 4320 volume-title: Advances in Neural Information Processing Systems year: 2020 ident: 2022011921340194000_ref180 article-title: CogMol: target-specific and selective drug design for COVID-19 using deep generative models – volume: 57 start-page: 942 issue: 4 year: 2017 ident: 2022011921340194000_ref80 article-title: Protein–ligand scoring with convolutional neural networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00740 – volume: 11 year: 2020 ident: 2022011921340194000_ref64 article-title: Molecular sets (moses): a benchmarking platform for molecular generation models publication-title: Front Pharmacol doi: 10.3389/fphar.2020.565644 – volume: 15 start-page: 4398 issue: 10 year: 2018 ident: 2022011921340194000_ref184 article-title: Entangled conditional adversarial autoencoder for de novo drug discovery publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.8b00839 – year: 2020 ident: 2022011921340194000_ref59 article-title: Chemberta: Large-scale self-supervised pretraining for molecular property prediction – volume: 29 start-page: 97 issue: 2 year: 1989 ident: 2022011921340194000_ref75 article-title: Smiles. 2. algorithm for generation of unique smiles notation publication-title: J Chem Inform Comput Sci doi: 10.1021/ci00062a008 – volume: 4 start-page: 524 issue: 4 year: 2007 ident: 2022011921340194000_ref104 article-title: Machine learning models for lipophilicity and their domain of applicability publication-title: Mol Pharm doi: 10.1021/mp0700413 – volume: 63 start-page: 8749 issue: 16 year: 2019 ident: 2022011921340194000_ref77 article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism publication-title: J Med Chem doi: 10.1021/acs.jmedchem.9b00959 – volume: 14 start-page: 3098 issue: 9 year: 2017 ident: 2022011921340194000_ref182 article-title: drugan: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.7b00346 – volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems year: 2017 ident: 2022011921340194000_ref194 article-title: Generative adversarial nets – volume: 19 start-page: 353 issue: 5 year: 2020 ident: 2022011921340194000_ref9 article-title: Rethinking drug design in the artificial intelligence era publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0050-3 – volume: 21 start-page: 648 issue: 4 year: 2016 ident: 2022011921340194000_ref66 article-title: Dilirank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans publication-title: Drug Discov Today doi: 10.1016/j.drudis.2016.02.015 – volume: 3 start-page: 334 issue: 4 year: 2021 ident: 2022011921340194000_ref96 article-title: Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00301-6 – volume-title: Proceedings of The International Conference on Learning Representations year: 2017 ident: 2022011921340194000_ref147 article-title: Semi-supervised classification with graph convolutional networks – volume: 47 start-page: 2408 issue: 6 year: 2007 ident: 2022011921340194000_ref105 article-title: Adme evaluation in drug discovery. 8. the prediction of human intestinal absorption by a support vector machine publication-title: J Chem Inf Model doi: 10.1021/ci7002076 – volume: 25 start-page: 611 issue: 5 year: 2018 ident: 2022011921340194000_ref115 article-title: Repurposing high-throughput image assays enables biological activity prediction for drug discovery publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2018.01.015 – volume: 17 start-page: 709 issue: 10 year: 2018 ident: 2022011921340194000_ref10 article-title: Expanding the medicinal chemistry synthetic toolbox publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2018.116 – volume: 9 start-page: 513 issue: 2 year: 2018 ident: 2022011921340194000_ref93 article-title: Moleculenet: a benchmark for molecular machine learning publication-title: Chem Sci doi: 10.1039/C7SC02664A – volume-title: Advances in Neural Information Processing Systems year: 2018 ident: 2022011921340194000_ref187 article-title: Constrained generation of semantically valid graphs via regularizing variational autoencoders – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref192 article-title: Compressed graph representation for scalable molecular graph generation publication-title: J Chem – start-page: 213 volume-title: European Conference on Computer Vision year: 2020 ident: 2022011921340194000_ref213 – start-page: 1052 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2019 ident: 2022011921340194000_ref160 – volume: 56 start-page: 1936 issue: 10 year: 2016 ident: 2022011921340194000_ref69 article-title: Computational modeling of $\beta$-secretase 1 (bace-1) inhibitors using ligand based approaches publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00290 – year: 2017 ident: 2022011921340194000_ref120 article-title: Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed qsar/qspr models – volume: 9 start-page: 1 issue: 1 year: 2017 ident: 2022011921340194000_ref97 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J Chem – volume: 59 start-page: 43 issue: 1 year: 2018 ident: 2022011921340194000_ref176 article-title: Conditional molecular design with deep generative models publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00263 – year: 2020 ident: 2022011921340194000_ref234 article-title: Towards better opioid antagonists using deep reinforcement learning – start-page: 1 issue: 1 year: 2020 ident: 2022011921340194000_ref199 article-title: Normalizing flows: an introduction and review of current methods publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 59 start-page: 1073 issue: 3 year: 2019 ident: 2022011921340194000_ref161 article-title: Deep learning-based prediction of drug-induced cardiotoxicity publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00769 – volume: 11 start-page: 327 issue: 3 year: 2008 ident: 2022011921340194000_ref17 article-title: Which aspects of hts are empirically correlated with downstream success? publication-title: Curr Opin Drug Discov Devel – volume: 10 start-page: 1 issue: 1 year: 2018 ident: 2022011921340194000_ref138 article-title: Multi-objective de novo drug design with conditional graph generative model publication-title: J Chem – year: 2018 ident: 2022011921340194000_ref175 article-title: Syntax-directed variational autoencoder for structured data – year: 2020 ident: 2022011921340194000_ref212 article-title: Language models are few-shot learners – volume: 2020 start-page: 142 year: 2020 ident: 2022011921340194000_ref243 article-title: An informatics-based approach to identify key pharmacological components in drug-drug interactions publication-title: AMIA Summits on Translational Science Proceedings – year: 2020 ident: 2022011921340194000_ref165 article-title: Meta-learning initializations for low-resource drug discovery publication-title: arXiv preprint arXiv:200305996 – volume: 43 start-page: W612 issue: W1 year: 2015 ident: 2022011921340194000_ref61 article-title: Chembl web services: streamlining access to drug discovery data and utilities publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv352 – volume: 57 start-page: 18 issue: 1 year: 2014 ident: 2022011921340194000_ref37 article-title: Recent progress in understanding activity cliffs and their utility in medicinal chemistry: miniperspective publication-title: J Med Chem doi: 10.1021/jm401120g – volume: 54 start-page: 255 issue: 3 year: 2002 ident: 2022011921340194000_ref101 article-title: Walters and Mark A Murcko. Prediction of ‘drug-likeness’ publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(02)00003-0 – year: 2018 ident: 2022011921340194000_ref197 article-title: Molgan: An implicit generative model for small molecular graphs – volume: 49 start-page: 3525 issue: 11 year: 2020 ident: 2022011921340194000_ref26 article-title: Qsar without borders publication-title: Chem Soc Rev doi: 10.1039/D0CS00098A – volume: 26 start-page: 907 issue: 6 year: 2008 ident: 2022011921340194000_ref107 article-title: Predicting human liver microsomal stability with machine learning techniques publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2007.06.005 – volume: 4 start-page: 828 issue: 4 year: 2019 ident: 2022011921340194000_ref50 article-title: Deep learning for molecular design-a review of the state of the art publication-title: Mol Syst Des Eng doi: 10.1039/C9ME00039A – volume: 152 start-page: 53 issue: 1 year: 2007 ident: 2022011921340194000_ref16 article-title: Origin and evolution of high throughput screening publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0707373 – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: 2022011921340194000_ref159 article-title: N-gram graph: simple unsupervised representation for graphs, with applications to molecules – volume: 20 start-page: 1434 issue: 4 year: 2019 ident: 2022011921340194000_ref13 article-title: Artificial intelligence in drug combination therapy publication-title: Brief. Bioinformatics doi: 10.1093/bib/bby004 – volume: 37 start-page: 658 issue: 3 year: 2009 ident: 2022011921340194000_ref108 article-title: Classification of cytochrome p450 1a2 inhibitors and noninhibitors by machine learning techniques publication-title: Drug Metab Dispos doi: 10.1124/dmd.108.023507 – volume: 18 start-page: 463 issue: 6 year: 2019 ident: 2022011921340194000_ref6 article-title: Applications of machine learning in drug discovery and development publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0024-5 – volume-title: International Conference on Learning Representations year: 2020 ident: 2022011921340194000_ref204 article-title: GraphAF: a flow-based autoregressive model for molecular graph generation – volume-title: NeurIPS year: 2018 ident: 2022011921340194000_ref140 article-title: Graph convolutional policy network for goal-directed molecular graph generation – volume: 58 start-page: 1194 issue: 6 year: 2018 ident: 2022011921340194000_ref196 article-title: Reinforced adversarial neural computer for de novo molecular design publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00690 – volume-title: Advances in Neural Information Processing Systems year: 2020 ident: 2022011921340194000_ref171 article-title: Reinforced molecular optimization with neighborhood-controlled grammars – volume: 12 issue: 1 year: 2020 ident: 2022011921340194000_ref87 article-title: Cover: conformational oversampling as data augmentation for molecules publication-title: J Chem – volume: 9 start-page: 199 issue: 3 year: 2006 ident: 2022011921340194000_ref119 article-title: Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to adme publication-title: IDrugs – volume: 4 issue: 7 year: 2018 ident: 2022011921340194000_ref79 article-title: Deep reinforcement learning for de novo drug design publication-title: Sci Adv doi: 10.1126/sciadv.aap7885 – volume-title: Proceedings of The International Conference on Learning Representations year: 2021 ident: 2022011921340194000_ref214 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 2022011921340194000_ref244 article-title: Could graph neural networks learn better molecular representation for drug discovery? a comparison study of descriptor-based and graph-based models publication-title: J Chem – volume: 52 start-page: 867 issue: 4 year: 2012 ident: 2022011921340194000_ref21 article-title: Recognizing pitfalls in virtual screening: a critical review publication-title: J Chem Inf Model doi: 10.1021/ci200528d – start-page: 4839 volume-title: International Conference on Machine Learning year: 2020 ident: 2022011921340194000_ref193 – volume: 59 start-page: 1728 issue: 5 year: 2019 ident: 2022011921340194000_ref35 article-title: Advances and challenges in computational target prediction publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00832 – start-page: 307 volume-title: Found Trends Mach Learn year: 2019 ident: 2022011921340194000_ref173 article-title: An introduction to variational autoencoders – volume: 3 start-page: 80 year: 2016 ident: 2022011921340194000_ref48 article-title: Deeptox: toxicity prediction using deep learning publication-title: Front Environ Sci doi: 10.3389/fenvs.2015.00080 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 2022011921340194000_ref90 article-title: Kekulescope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images publication-title: J Chem – start-page: 731 volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2020 ident: 2022011921340194000_ref164 doi: 10.1145/3394486.3403117 – volume: 2 start-page: 573 issue: 10 year: 2020 ident: 2022011921340194000_ref31 article-title: Drug discovery with explainable artificial intelligence publication-title: Nat Mach Intell doi: 10.1038/s42256-020-00236-4 |
SSID | ssj0020781 |
Score | 2.6299944 |
SecondaryResourceType | review_article |
Snippet | Abstract
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many... Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Artificial Intelligence Drug Design Drug development Drug discovery Drug Discovery - methods Learning Polls & surveys |
Title | Artificial intelligence in drug discovery: applications and techniques |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34734228 https://www.proquest.com/docview/2626200450 https://www.proquest.com/docview/2593603903 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRfzudGmFPQliapEnjm4hjCOrLhL2VJE1lIJ1s68P-ey9rVzYd-ljuSuAu4b5w-b5DqKu0c7mQlGRCOiIip4ilMSM00QkVylidB4Lzy6scvIvnUTyqH8jOtrTwNe_Zse1Za6zg4WoO5TdI5A_fRs29KujVVCQiRYK6e03D-_HvRuHZILP9wpTL2tI_QPs1KMQPVRYP0Y4vjtBuNSZycYz6wVApPeDxmoQmfOBsWn7gQK0NTzEX93i9IY1NkeFGpHV2gob9p-HjgNTzD4gTkZgTDlEzgF9MbCjPpfU6A3CWQGgd49YBdFFKece1iJ3II6i0njmvhJYZT8DlFLWKSeHPEZaKKmZzlhsbC597q2iWMZ8YD2hCedlGd6vYpK7WBg8jKj7TqkfNUwhkWgeyjbqN81clibHd7QaC_LdHZ5WAtD45s5TJIJEPQBPMt40Z9nxoZJjCT0rwCWMIKdeUt9FZlbhmHS4UD7JmF_8uf4n2WOAy0IhEqoNa82nprwBhzO31cn99AzKAzTo |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+drug+discovery%3A+applications+and+techniques&rft.jtitle=Briefings+in+bioinformatics&rft.au=Deng%2C+Jianyuan&rft.au=Yang%2C+Zhibo&rft.au=Ojima%2C+Iwao&rft.au=Samaras%2C+Dimitris&rft.date=2022-01-17&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbab430&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |