Identifying drug–target interactions based on graph convolutional network and deep neural network
Abstract Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 2; pp. 2141 - 2150 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
22.03.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug–protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, ‘graph convolutional network (GCN)-DTI’, for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin. |
---|---|
AbstractList | Abstract
Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug–protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, ‘graph convolutional network (GCN)-DTI’, for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin. Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug-protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, 'graph convolutional network (GCN)-DTI', for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin. Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug-protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, 'graph convolutional network (GCN)-DTI', for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug-protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, 'graph convolutional network (GCN)-DTI', for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin. |
Author | Valsdottir, Linda R Peng, Jiajie Zang, Tianyi Hu, Yang Zhao, Tianyi |
Author_xml | – sequence: 1 givenname: Tianyi orcidid: 0000-0003-1913-081X surname: Zhao fullname: Zhao, Tianyi email: zty2009@hit.edu.cn organization: Department of Computer Science at Harbin Institute of Technology. He currently works as a bioinformatician in Beth Israel Deaconess Medical Center – sequence: 2 givenname: Yang surname: Hu fullname: Hu, Yang email: huyang@hit.edu.cn organization: Department of Life Science at Harbin Institute of Technology. His expertise is bioinformatics – sequence: 3 givenname: Linda R surname: Valsdottir fullname: Valsdottir, Linda R email: lvalsdot@bidmc.harvard.edu organization: MS in Biology and works as a scientific writer at the Smith Center for Outcomes Research in Cardiology at Beth Israel Deaconess Medical Center in Boston, MA. Her work is focused on helping researchers communicate their findings in an effort to translate novel analytical approaches and clinical expertise into improved outcomes for patients – sequence: 4 givenname: Tianyi surname: Zang fullname: Zang, Tianyi email: tianyi.zang@hit.edu.cn organization: School of Computer Science and Technology at Harbin Institute of Technology (HIT), China. Before joining HIT in 2009, he was a research fellow at the Department of Computer Science at University of Oxford, UK. His current research is concerned with biomedical bigdata computing and algorithms, deep-learning algorithms for network data, intelligent recommendation algorithms, and modeling and analysis methods for complex systems – sequence: 5 givenname: Jiajie surname: Peng fullname: Peng, Jiajie email: jiajiepeng@nwpu.edu.cn organization: School of Computer Science at Northwestern Polytechnical University. His expertise is computational biology and machine learning. Availability and implementation: https://github.com/zty2009/GCN-DNN/ |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32367110$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U9LHDEUAPBQFP_Vk_cSEEQo4yaTbDJzLNJaQfBizyHJvNlGZ5Npkql48zv4DftJmmV3EUQ8Jbz83iPvvUO044MHhE4ouaCkZTPjzMwYrQnnn9AB5VJWnMz5zuouZDXngu2jw5TuCamJbOge2mc1E5JScoDsdQc-u_7J-QXu4rT49_ySdVxAxs5niNpmF3zCRifocPB4EfX4G9vg_4ZhWr3pAXvIjyE-YO073AGMJTDF1_hntNvrIcHx5jxCv358v7v8Wd3cXl1ffrupLKc8V6zhojG1hvLP0o1piRRWiF6AkawxLes5Ibw10tacE9rMa8Ogr60kWoiOa3aEztd1xxj-TJCyWrpkYRi0hzAlVbO2EYwxKgo9fUPvwxRLL0XN67YVUnBS1JeNmswSOjVGt9TxSW3HVwBdAxtDShF6ZV3Wq6nkqN2gKFGrFamyIrVZUcn5-iZnW_Z9fbbWYRo_hP8B3gihTw |
CitedBy_id | crossref_primary_10_1093_bib_bbad030 crossref_primary_10_1109_TNB_2024_3441590 crossref_primary_10_3389_fgene_2021_728563 crossref_primary_10_1038_s41598_024_69186_w crossref_primary_10_1038_s41698_022_00285_5 crossref_primary_10_3389_fcell_2021_753221 crossref_primary_10_3390_molecules28186546 crossref_primary_10_1093_bioinformatics_btac496 crossref_primary_10_1016_j_jpha_2024_101144 crossref_primary_10_1039_D1SC05180F crossref_primary_10_1016_j_commatsci_2023_112717 crossref_primary_10_1021_acs_jcim_4c02088 crossref_primary_10_1093_bib_bbab491 crossref_primary_10_1093_bib_bbac184 crossref_primary_10_1038_s41598_025_86166_w crossref_primary_10_1371_journal_pone_0283768 crossref_primary_10_1007_s11030_024_10851_7 crossref_primary_10_1016_j_fmre_2024_02_011 crossref_primary_10_1016_j_ipha_2025_01_001 crossref_primary_10_3389_fcell_2021_739715 crossref_primary_10_1109_TCBB_2023_3339645 crossref_primary_10_1186_s12859_024_05914_3 crossref_primary_10_1111_coin_12696 crossref_primary_10_3389_fcell_2021_740267 crossref_primary_10_1016_j_jare_2022_01_009 crossref_primary_10_3389_fmolb_2021_815243 crossref_primary_10_20965_jaciii_2024_p0552 crossref_primary_10_3390_w15132463 crossref_primary_10_2174_1381612826666200612163819 crossref_primary_10_1109_JBHI_2023_3344031 crossref_primary_10_3389_fcell_2021_755511 crossref_primary_10_1007_s11704_020_8179_0 crossref_primary_10_1093_bib_bbab520 crossref_primary_10_1186_s12859_020_03847_1 crossref_primary_10_1016_j_techfore_2022_121912 crossref_primary_10_1007_s41870_025_02404_4 crossref_primary_10_1002_aisy_202300017 crossref_primary_10_1016_j_ymeth_2022_11_002 crossref_primary_10_1093_bioinformatics_btae570 crossref_primary_10_1016_j_knosys_2022_109250 crossref_primary_10_3389_fmolb_2022_843150 crossref_primary_10_1016_j_neucom_2023_127203 crossref_primary_10_12677_hjbm_2024_144060 crossref_primary_10_1007_s12539_021_00483_y crossref_primary_10_1515_biol_2022_0795 crossref_primary_10_3389_fcell_2021_645275 crossref_primary_10_1109_ACCESS_2024_3514912 crossref_primary_10_3389_fgene_2022_980497 crossref_primary_10_1186_s12911_024_02631_y crossref_primary_10_1155_2021_6690154 crossref_primary_10_3389_fcell_2021_700355 crossref_primary_10_1145_3662178 crossref_primary_10_1093_bioinformatics_btac837 crossref_primary_10_1093_bioadv_vbab038 crossref_primary_10_1093_bioinformatics_btac715 crossref_primary_10_1146_annurev_pharmtox_051921_023255 crossref_primary_10_3389_fgene_2021_690049 crossref_primary_10_1007_s40747_023_01038_y crossref_primary_10_31083_j_fbl2704113 crossref_primary_10_2174_1568026622666220701091339 crossref_primary_10_2174_1574893617666220513114917 crossref_primary_10_1093_bib_bbac120 crossref_primary_10_1109_ACCESS_2024_3406037 crossref_primary_10_1186_s12859_024_06021_z crossref_primary_10_3390_s23084168 crossref_primary_10_1186_s12859_022_04612_2 crossref_primary_10_3390_biom14101267 crossref_primary_10_1093_bib_bbac634 crossref_primary_10_2174_1574893618666230825121841 crossref_primary_10_3389_fcell_2020_626221 crossref_primary_10_1371_journal_pcbi_1010671 crossref_primary_10_1109_TCBB_2021_3088614 crossref_primary_10_1016_j_dcmed_2022_12_007 crossref_primary_10_3390_cimb44050155 crossref_primary_10_3389_fcell_2021_722410 crossref_primary_10_1093_bib_bbac073 crossref_primary_10_1093_bib_bbad161 crossref_primary_10_3390_ijms22168993 crossref_primary_10_1093_bioinformatics_btac164 crossref_primary_10_1021_acs_jcim_4c02073 crossref_primary_10_1093_bioinformatics_btab473 crossref_primary_10_1002_qub2_39 crossref_primary_10_1016_j_compbiomed_2024_108339 crossref_primary_10_1093_bioinformatics_btad411 crossref_primary_10_1016_j_dajour_2021_100010 crossref_primary_10_1016_j_ymeth_2022_08_016 crossref_primary_10_3390_ijms23126732 crossref_primary_10_1016_j_future_2024_05_054 crossref_primary_10_1038_s41598_022_13796_9 crossref_primary_10_1109_JBHI_2024_3476120 crossref_primary_10_3389_fcell_2021_827108 crossref_primary_10_1186_s12859_022_05073_3 crossref_primary_10_1007_s11030_021_10273_9 crossref_primary_10_1016_j_compbiomed_2023_107199 crossref_primary_10_3390_cancers13092111 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_1016_j_neucom_2022_04_104 crossref_primary_10_1016_j_compbiolchem_2022_107719 crossref_primary_10_1038_s42003_024_06734_0 crossref_primary_10_3389_fpubh_2024_1361901 crossref_primary_10_3389_fgene_2021_726599 crossref_primary_10_1021_acs_jctc_2c01227 crossref_primary_10_1093_bib_bbae043 crossref_primary_10_1038_s41467_023_39120_1 crossref_primary_10_1093_bib_bbae168 crossref_primary_10_1093_bioadv_vbad116 crossref_primary_10_1093_bib_bbad079 crossref_primary_10_1093_bib_bbad474 crossref_primary_10_1002_asia_202200269 crossref_primary_10_18632_oncotarget_28234 crossref_primary_10_1093_bib_bbac140 crossref_primary_10_1186_s12859_022_04613_1 crossref_primary_10_1016_j_compbiolchem_2025_108410 crossref_primary_10_1186_s12859_022_04569_2 crossref_primary_10_3934_mbe_2024115 crossref_primary_10_1109_JBHI_2021_3121798 crossref_primary_10_3389_fmolb_2022_962799 crossref_primary_10_1142_S0219720024500240 crossref_primary_10_1097_CM9_0000000000003387 crossref_primary_10_2174_1570163820666230901160043 crossref_primary_10_3389_fcell_2020_632957 crossref_primary_10_1093_bib_bbab606 crossref_primary_10_1002_asia_202100789 crossref_primary_10_1007_s00530_024_01325_9 crossref_primary_10_1016_j_patter_2023_100909 crossref_primary_10_1109_TCBB_2022_3206907 crossref_primary_10_1093_bib_bbab289 crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1186_s12915_024_01949_3 crossref_primary_10_3389_fphar_2024_1393415 crossref_primary_10_3390_ncrna10010009 crossref_primary_10_1093_bib_bbac099 crossref_primary_10_1016_j_ymeth_2024_04_010 crossref_primary_10_1093_bib_bbad462 crossref_primary_10_2174_1573409919666230111164340 crossref_primary_10_1016_j_jmgm_2023_108498 crossref_primary_10_1186_s13321_024_00915_z crossref_primary_10_1109_TPS_2022_3221474 crossref_primary_10_1093_bib_bbab319 crossref_primary_10_2174_1574893618666230816090548 crossref_primary_10_1016_j_compbiomed_2022_106145 crossref_primary_10_3389_fcell_2021_675978 crossref_primary_10_1016_j_chemolab_2024_105065 crossref_primary_10_1186_s12859_024_05904_5 crossref_primary_10_1016_j_eswa_2024_125264 crossref_primary_10_1007_s12539_021_00488_7 crossref_primary_10_1038_s41467_021_24172_y crossref_primary_10_3390_math11183990 crossref_primary_10_1093_bib_bbae103 crossref_primary_10_1016_j_ymeth_2024_01_018 crossref_primary_10_1093_bfgp_elaa030 crossref_primary_10_3389_fcell_2021_712020 crossref_primary_10_1093_bioinformatics_btac476 crossref_primary_10_1093_bib_bbae184 crossref_primary_10_3389_fphar_2023_1255181 crossref_primary_10_1111_bph_17427 crossref_primary_10_2174_1574893616666211119093100 crossref_primary_10_1093_bib_bbac159 crossref_primary_10_2174_0115734099266731231115065030 crossref_primary_10_1016_j_future_2024_06_046 crossref_primary_10_1016_j_csbj_2023_02_004 crossref_primary_10_3389_fonc_2022_902616 crossref_primary_10_1016_j_compbiomed_2024_108371 crossref_primary_10_1093_bib_bbad082 crossref_primary_10_1016_j_compbiomed_2024_108376 crossref_primary_10_1016_j_compbiomed_2022_105918 crossref_primary_10_1016_j_future_2024_07_012 crossref_primary_10_1016_j_ab_2024_115691 crossref_primary_10_1016_j_imu_2024_101604 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1093_bib_bbab582 crossref_primary_10_1186_s13321_022_00665_w crossref_primary_10_2147_TACG_S365613 crossref_primary_10_1016_j_compbiolchem_2024_108244 crossref_primary_10_1093_bib_bbad516 crossref_primary_10_1109_ACCESS_2023_3260979 crossref_primary_10_1007_s12539_024_00608_z crossref_primary_10_1093_bib_bbac148 crossref_primary_10_1016_j_compbiomed_2023_107274 crossref_primary_10_3390_app11073239 crossref_primary_10_1016_j_future_2024_06_052 crossref_primary_10_3390_biology11070967 crossref_primary_10_3390_fi13010013 |
Cites_doi | 10.2174/1568026615666150506151533 10.1016/j.drudis.2014.10.012 10.1093/bioinformatics/bts670 10.1039/C8SC00148K 10.1093/bioinformatics/btx160 10.1093/bioinformatics/btx731 10.1093/nar/30.1.163 10.1021/ja504810z 10.1186/s13321-017-0209-z 10.1038/s41467-017-00680-8 10.1016/j.neucom.2017.04.055 10.1016/j.ymeth.2015.01.015 10.1186/s12859-016-0890-3 10.1038/srep33910 10.1093/bioinformatics/btv695 10.1016/j.steroids.2010.09.008 10.1038/srep38860 10.1038/srep40376 10.1371/journal.pcbi.1002503 10.7150/ijbs.24612 10.1109/MSP.2012.2205597 10.1093/bib/bbv066 10.1073/pnas.1603992113 10.1038/sj.bjp.0705428 10.1007/s12272-016-0791-z 10.1016/j.toxlet.2015.02.012 10.1093/nar/gkx1037 10.1186/s12859-016-1005-x 10.1016/j.cbi.2015.05.023 10.1093/toxsci/kfm150 10.1016/j.drudis.2017.12.001 10.1016/j.drudis.2018.05.010 10.1093/bioinformatics/btw244 10.1186/s12859-016-0977-x 10.1038/nrd3078 10.1016/j.drudis.2015.08.001 10.1016/j.taap.2011.12.017 10.1111/jnc.13207 10.1093/bioinformatics/btn162 10.1186/1471-2105-11-255 10.1371/journal.pcbi.1004760 10.1093/bioinformatics/bti1141 10.1186/s12859-017-1460-z 10.1109/TVCG.2016.2569084 10.1038/srep08883 10.1002/prot.20356 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbaa044 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 2150 |
ExternalDocumentID | 32367110 10_1093_bib_bbaa044 10.1093/bib/bbaa044 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ GROUPED_DOAJ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c414t-38468b2ae002aa0b9076c66f6eb738b93f40049b7c24401852b3ef2c70a66d4a3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 05:24:08 EDT 2025 Mon Jun 30 08:50:14 EDT 2025 Wed Feb 19 02:29:09 EST 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Aug 28 03:20:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | graph convolutional network drug–target interaction prediction deep neural network biological networks |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-38468b2ae002aa0b9076c66f6eb738b93f40049b7c24401852b3ef2c70a66d4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1913-081X |
PMID | 32367110 |
PQID | 2529967640 |
PQPubID | 26846 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2398633316 proquest_journals_2529967640 pubmed_primary_32367110 crossref_citationtrail_10_1093_bib_bbaa044 crossref_primary_10_1093_bib_bbaa044 oup_primary_10_1093_bib_bbaa044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Mar-22 |
PublicationDateYYYYMMDD | 2021-03-22 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-Mar-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Tanoli (2021070817465103200_ref1) 2020; 21 Mathur (2021070817465103200_ref5) 2015; 5 Schirle (2021070817465103200_ref3) 2016; 21 Lim (2021070817465103200_ref43) 2016; 6 He (2021070817465103200_ref17) 2017; 9 Lu (2021070817465103200_ref23) 2017; 18 Kipf (2021070817465103200_ref40) 2016 Cheng (2021070817465103200_ref31) 2012; 8 Fleuren (2021070817465103200_ref8) 2015; 74 Xu (2021070817465103200_ref39) 2016; 23 Riboldi (2021070817465103200_ref48) 2003; 140 Zong (2021070817465103200_ref28) 2017; 33 Xue (2021070817465103200_ref2) 2018; 14 Paul (2021070817465103200_ref6) 2010; 9 Mei (2021070817465103200_ref19) 2012; 29 Luo (2021070817465103200_ref22) 2017; 8 Defferrard (2021070817465103200_ref33) 2016 Chen (2021070817465103200_ref11) 2010; 11 Hewett (2021070817465103200_ref10) 2002; 30 Yuan (2021070817465103200_ref32) 2016; 32 Beyer (2021070817465103200_ref49) 2007; 99 Zhu (2021070817465103200_ref9) 2005; 21 Chandrasekaran (2021070817465103200_ref46) 2011; 76 Liu (2021070817465103200_ref18) 2016; 12 Yamanishi (2021070817465103200_ref30) 2008; 24 Li (2021070817465103200_ref35) 2016; 6 Prot (2021070817465103200_ref44) 2012; 259 Hinton (2021070817465103200_ref34) 2012; 29 Wishart (2021070817465103200_ref42) 2017; 46 Zheng (2021070817465103200_ref45) 2015; 238 Olayan (2021070817465103200_ref26) 2017; 34 Lo (2021070817465103200_ref16) 2018; 23 Hao (2021070817465103200_ref27) 2017; 7 Li (2021070817465103200_ref20) 2015; 32 Nascimento (2021070817465103200_ref25) 2016; 17 Fotis (2021070817465103200_ref13) 2018; 23 Lavecchia (2021070817465103200_ref14) 2015; 20 Jiang (2021070817465103200_ref50) 2015; 234 Pei (2021070817465103200_ref21) 2014; 136 Buza (2021070817465103200_ref29) 2017; 260 Walter (2021070817465103200_ref47) 2015; 134 Aleksandar (2021070817465103200_ref37) 2015; 15 Alanis-Lobato (2021070817465103200_ref41) 2016; 45 Mayr (2021070817465103200_ref15) 2018; 9 Öztürk (2021070817465103200_ref38) 2016; 17 Lee (2021070817465103200_ref4) 2016; 39 Chen (2021070817465103200_ref7) 2015; 17 Pánek (2021070817465103200_ref36) 2005; 58 Fu (2021070817465103200_ref12) 2016; 17 Vinayagam (2021070817465103200_ref24) 2016; 113 |
References_xml | – volume: 45 start-page: gkw985 year: 2016 ident: 2021070817465103200_ref41 article-title: HIPPIE v2. 0: enhancing meaningfulness and reliability of protein–protein interaction networks publication-title: Nucleic Acids Res – volume: 15 start-page: 1768 year: 2015 ident: 2021070817465103200_ref37 article-title: Application of SMILES notation based optimal descriptors in drug discovery and design publication-title: Curr Top Med Chem doi: 10.2174/1568026615666150506151533 – volume: 20 start-page: 318 year: 2015 ident: 2021070817465103200_ref14 article-title: Machine-learning approaches in drug discovery: methods and applications publication-title: Drug Discov Today doi: 10.1016/j.drudis.2014.10.012 – volume: 29 start-page: 238 year: 2012 ident: 2021070817465103200_ref19 article-title: Drug–target interaction prediction by learning from local information and neighbors publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts670 – volume: 9 start-page: 5441 year: 2018 ident: 2021070817465103200_ref15 article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL publication-title: Chem Sci doi: 10.1039/C8SC00148K – volume: 33 start-page: 2337 year: 2017 ident: 2021070817465103200_ref28 article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx160 – volume: 34 start-page: 1164 year: 2017 ident: 2021070817465103200_ref26 article-title: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx731 – volume: 30 start-page: 163 year: 2002 ident: 2021070817465103200_ref10 article-title: PharmGKB: the pharmacogenetics knowledge base publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.163 – volume: 136 start-page: 11556 year: 2014 ident: 2021070817465103200_ref21 article-title: Systems biology brings new dimensions for structure-based drug design publication-title: J Am Chem Soc doi: 10.1021/ja504810z – volume: 9 start-page: 24 year: 2017 ident: 2021070817465103200_ref17 article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines publication-title: J Chem doi: 10.1186/s13321-017-0209-z – volume: 8 start-page: 573 year: 2017 ident: 2021070817465103200_ref22 article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information publication-title: Nat Commun doi: 10.1038/s41467-017-00680-8 – volume: 260 start-page: 284 year: 2017 ident: 2021070817465103200_ref29 article-title: Drug–target interaction prediction with bipartite local models and hubness-aware regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.055 – start-page: 3844 volume-title: Advances in neural information processing systems year: 2016 ident: 2021070817465103200_ref33 – volume: 74 start-page: 97 year: 2015 ident: 2021070817465103200_ref8 article-title: Application of text mining in the biomedical domain publication-title: Methods doi: 10.1016/j.ymeth.2015.01.015 – volume: 17 start-page: 46 year: 2016 ident: 2021070817465103200_ref25 article-title: A multiple kernel learning algorithm for drug-target interaction prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0890-3 – volume: 6 start-page: 33910 year: 2016 ident: 2021070817465103200_ref35 article-title: Identifying anticancer peptides by using improved hybrid compositions publication-title: Sci Rep doi: 10.1038/srep33910 – volume: 32 start-page: 1057 year: 2015 ident: 2021070817465103200_ref20 article-title: Identification of drug–target interaction from interactome network with ‘guilt-by-association’principle and topology features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv695 – volume: 76 start-page: 118 year: 2011 ident: 2021070817465103200_ref46 article-title: 17β-estradiol protects against acetaminophen-overdose-induced acute oxidative hepatic damage and increases the survival rate in mice publication-title: Steroids doi: 10.1016/j.steroids.2010.09.008 – volume: 6 start-page: 38860 year: 2016 ident: 2021070817465103200_ref43 article-title: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem publication-title: Sci Rep doi: 10.1038/srep38860 – volume: 7 start-page: 40376 year: 2017 ident: 2021070817465103200_ref27 article-title: Predicting drug-target interactions by dual-network integrated logistic matrix factorization publication-title: Sci Rep doi: 10.1038/srep40376 – volume: 8 start-page: e1002503 year: 2012 ident: 2021070817465103200_ref31 article-title: Prediction of drug-target interactions and drug repositioning via network-based inference publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002503 – volume: 14 start-page: 1232 year: 2018 ident: 2021070817465103200_ref2 article-title: Review of drug repositioning approaches and resources publication-title: Int J Biol Sci doi: 10.7150/ijbs.24612 – volume: 29 start-page: 82 year: 2012 ident: 2021070817465103200_ref34 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J] publication-title: IEEE Signal processing magazine doi: 10.1109/MSP.2012.2205597 – volume: 17 start-page: 696 year: 2015 ident: 2021070817465103200_ref7 article-title: Drug–target interaction prediction: databases, web servers and computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbv066 – volume: 113 start-page: 4976 year: 2016 ident: 2021070817465103200_ref24 article-title: Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1603992113 – volume-title: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 year: 2016 ident: 2021070817465103200_ref40 – volume: 140 start-page: 377 year: 2003 ident: 2021070817465103200_ref48 article-title: Benzydamine inhibits monocyte migration and MAPK activation induced by chemotactic agonists publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0705428 – volume: 39 start-page: 1193 year: 2016 ident: 2021070817465103200_ref4 article-title: Target identification for biologically active small molecules using chemical biology approaches publication-title: Arch Pharm Res doi: 10.1007/s12272-016-0791-z – volume: 234 start-page: 139 year: 2015 ident: 2021070817465103200_ref50 article-title: Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2015.02.012 – volume: 46 start-page: D1074 year: 2017 ident: 2021070817465103200_ref42 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 17 start-page: 160 year: 2016 ident: 2021070817465103200_ref12 article-title: Predicting drug target interactions using meta-path-based semantic network analysis publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1005-x – volume: 238 start-page: 93 year: 2015 ident: 2021070817465103200_ref45 article-title: The therapeutic detoxification of chlorogenic acid against acetaminophen-induced liver injury by ameliorating hepatic inflammation publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2015.05.023 – volume: 99 start-page: 326 year: 2007 ident: 2021070817465103200_ref49 article-title: Multicenter study of acetaminophen hepatotoxicity reveals the importance of biological endpoints in genomic analyses publication-title: Toxicol Sci doi: 10.1093/toxsci/kfm150 – volume: 23 start-page: 626 year: 2018 ident: 2021070817465103200_ref13 article-title: Network-based technologies for early drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2017.12.001 – volume: 23 start-page: 1538 year: 2018 ident: 2021070817465103200_ref16 article-title: Machine learning in chemoinformatics and drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.05.010 – volume: 32 start-page: i18 year: 2016 ident: 2021070817465103200_ref32 article-title: DrugE-rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw244 – volume: 17 start-page: 128 year: 2016 ident: 2021070817465103200_ref38 article-title: A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0977-x – volume: 9 start-page: 203 year: 2010 ident: 2021070817465103200_ref6 article-title: How to improve R&D productivity: the pharmaceutical industry's grand challenge publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3078 – volume: 21 start-page: 82 year: 2016 ident: 2021070817465103200_ref3 article-title: Identifying compound efficacy targets in phenotypic drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2015.08.001 – volume: 259 start-page: 270 year: 2012 ident: 2021070817465103200_ref44 article-title: Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: application to acetaminophen injury publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2011.12.017 – volume: 134 start-page: 1040 year: 2015 ident: 2021070817465103200_ref47 article-title: Tesmilifene modifies brain endothelial functions and opens the blood–brain/blood–glioma barrier publication-title: J Neurochem doi: 10.1111/jnc.13207 – volume: 24 start-page: i232 year: 2008 ident: 2021070817465103200_ref30 article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn162 – volume: 11 start-page: 255 year: 2010 ident: 2021070817465103200_ref11 article-title: Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-255 – volume: 21 start-page: 211 year: 2020 ident: 2021070817465103200_ref1 article-title: Interactive visual analysis of drug–target interaction networks using drug target profiler, with applications to precision medicine and drug repurposing publication-title: Brief Bioinform – volume: 12 start-page: e1004760 year: 2016 ident: 2021070817465103200_ref18 article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004760 – volume: 21 start-page: ii245 year: 2005 ident: 2021070817465103200_ref9 article-title: A probabilistic model for mining implicit ‘chemical compound–gene’relations from literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1141 – volume: 18 start-page: 39 year: 2017 ident: 2021070817465103200_ref23 article-title: Link prediction in drug-target interactions network using similarity indices publication-title: Bmc Bioinformatics doi: 10.1186/s12859-017-1460-z – volume: 23 start-page: 1910 year: 2016 ident: 2021070817465103200_ref39 article-title: ASCII art synthesis from natural photographs publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2016.2569084 – volume: 5 start-page: 8883 year: 2015 ident: 2021070817465103200_ref5 article-title: Human iPSC-based cardiac microphysiological system for drug screening applications publication-title: Sci Rep doi: 10.1038/srep08883 – volume: 58 start-page: 923 year: 2005 ident: 2021070817465103200_ref36 article-title: A new method for identification of protein (sub) families in a set of proteins based on hydropathy distribution in proteins publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.20356 |
SSID | ssj0020781 |
Score | 2.6487358 |
Snippet | Abstract
Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to... Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate... Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2141 |
SubjectTerms | Artificial neural networks Computer applications Drugs Graph theory Machine learning Neural networks Proteins Target recognition Therapeutic targets |
Title | Identifying drug–target interactions based on graph convolutional network and deep neural network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32367110 https://www.proquest.com/docview/2529967640 https://www.proquest.com/docview/2398633316 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSgMxEA5SELyI_65WjdCTELqbpEn2KGIpgnppobcl2SQiyFb6c_DmO_iGPonJJl2pFr3uzm7ITIaZIfN9A0CHaKNSaSQSxmpEueVI9bRGQmU80zITtp48d__ABiN6N-6NY4PsbM0Vfk666ll1lZIypZ7204VfT5E_fBw3dZXnqwkgIo48u3uE4f34diXwrIDZfuWUdWzp74DtmBTC62DFXbBhqj2wGcZEvu2DMqBpa0QS1NPF0-f7R-jghp7tYRqwCTPoI5KGkwrWLNTQN5THg-V-XoV-bygrDbUxr9AzWX4_PwCj_u3wZoDicARU0ozOEXGJg1BYGqcAtz_lilxWMmaZUZwIlRPrvTNXvHQBPPUQaUWMxSVPJWOaSnIIWtWkMscAKkIIFoLJXFJK0lwoVzPnPE-JxaK0NgFXS80VZWQO9wMsXopwg00Kp-YiqjkBnUb4NRBmrBe7cCb4W6K9NE8R_WpW4J4Ln4wzmibgsnntPMJfc8jKTBZOhuSCuS1lLAFHwazNOsQT1rmM5-Tf5U_BFvbtKylBGLdBaz5dmDOXf8zVeX36vgCULtmE |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+drug-target+interactions+based+on+graph+convolutional+network+and+deep+neural+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhao%2C+Tianyi&rft.au=Hu%2C+Yang&rft.au=Valsdottir%2C+Linda+R&rft.au=Zang%2C+Tianyi&rft.date=2021-03-22&rft.eissn=1477-4054&rft.volume=22&rft.issue=2&rft.spage=2141&rft_id=info:doi/10.1093%2Fbib%2Fbbaa044&rft_id=info%3Apmid%2F32367110&rft.externalDocID=32367110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |