Identifying drug–target interactions based on graph convolutional network and deep neural network

Abstract Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 2; pp. 2141 - 2150
Main Authors Zhao, Tianyi, Hu, Yang, Valsdottir, Linda R, Zang, Tianyi, Peng, Jiajie
Format Journal Article
LanguageEnglish
Published England Oxford University Press 22.03.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug–protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, ‘graph convolutional network (GCN)-DTI’, for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.
AbstractList Abstract Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug–protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, ‘graph convolutional network (GCN)-DTI’, for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.
Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug-protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, 'graph convolutional network (GCN)-DTI', for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.
Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug-protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, 'graph convolutional network (GCN)-DTI', for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug-protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, 'graph convolutional network (GCN)-DTI', for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.
Author Valsdottir, Linda R
Peng, Jiajie
Zang, Tianyi
Hu, Yang
Zhao, Tianyi
Author_xml – sequence: 1
  givenname: Tianyi
  orcidid: 0000-0003-1913-081X
  surname: Zhao
  fullname: Zhao, Tianyi
  email: zty2009@hit.edu.cn
  organization: Department of Computer Science at Harbin Institute of Technology. He currently works as a bioinformatician in Beth Israel Deaconess Medical Center
– sequence: 2
  givenname: Yang
  surname: Hu
  fullname: Hu, Yang
  email: huyang@hit.edu.cn
  organization: Department of Life Science at Harbin Institute of Technology. His expertise is bioinformatics
– sequence: 3
  givenname: Linda R
  surname: Valsdottir
  fullname: Valsdottir, Linda R
  email: lvalsdot@bidmc.harvard.edu
  organization: MS in Biology and works as a scientific writer at the Smith Center for Outcomes Research in Cardiology at Beth Israel Deaconess Medical Center in Boston, MA. Her work is focused on helping researchers communicate their findings in an effort to translate novel analytical approaches and clinical expertise into improved outcomes for patients
– sequence: 4
  givenname: Tianyi
  surname: Zang
  fullname: Zang, Tianyi
  email: tianyi.zang@hit.edu.cn
  organization: School of Computer Science and Technology at Harbin Institute of Technology (HIT), China. Before joining HIT in 2009, he was a research fellow at the Department of Computer Science at University of Oxford, UK. His current research is concerned with biomedical bigdata computing and algorithms, deep-learning algorithms for network data, intelligent recommendation algorithms, and modeling and analysis methods for complex systems
– sequence: 5
  givenname: Jiajie
  surname: Peng
  fullname: Peng, Jiajie
  email: jiajiepeng@nwpu.edu.cn
  organization: School of Computer Science at Northwestern Polytechnical University. His expertise is computational biology and machine learning. Availability and implementation: https://github.com/zty2009/GCN-DNN/
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32367110$$D View this record in MEDLINE/PubMed
BookMark eNp90U9LHDEUAPBQFP_Vk_cSEEQo4yaTbDJzLNJaQfBizyHJvNlGZ5Npkql48zv4DftJmmV3EUQ8Jbz83iPvvUO044MHhE4ouaCkZTPjzMwYrQnnn9AB5VJWnMz5zuouZDXngu2jw5TuCamJbOge2mc1E5JScoDsdQc-u_7J-QXu4rT49_ySdVxAxs5niNpmF3zCRifocPB4EfX4G9vg_4ZhWr3pAXvIjyE-YO073AGMJTDF1_hntNvrIcHx5jxCv358v7v8Wd3cXl1ffrupLKc8V6zhojG1hvLP0o1piRRWiF6AkawxLes5Ibw10tacE9rMa8Ogr60kWoiOa3aEztd1xxj-TJCyWrpkYRi0hzAlVbO2EYwxKgo9fUPvwxRLL0XN67YVUnBS1JeNmswSOjVGt9TxSW3HVwBdAxtDShF6ZV3Wq6nkqN2gKFGrFamyIrVZUcn5-iZnW_Z9fbbWYRo_hP8B3gihTw
CitedBy_id crossref_primary_10_1093_bib_bbad030
crossref_primary_10_1109_TNB_2024_3441590
crossref_primary_10_3389_fgene_2021_728563
crossref_primary_10_1038_s41598_024_69186_w
crossref_primary_10_1038_s41698_022_00285_5
crossref_primary_10_3389_fcell_2021_753221
crossref_primary_10_3390_molecules28186546
crossref_primary_10_1093_bioinformatics_btac496
crossref_primary_10_1016_j_jpha_2024_101144
crossref_primary_10_1039_D1SC05180F
crossref_primary_10_1016_j_commatsci_2023_112717
crossref_primary_10_1021_acs_jcim_4c02088
crossref_primary_10_1093_bib_bbab491
crossref_primary_10_1093_bib_bbac184
crossref_primary_10_1038_s41598_025_86166_w
crossref_primary_10_1371_journal_pone_0283768
crossref_primary_10_1007_s11030_024_10851_7
crossref_primary_10_1016_j_fmre_2024_02_011
crossref_primary_10_1016_j_ipha_2025_01_001
crossref_primary_10_3389_fcell_2021_739715
crossref_primary_10_1109_TCBB_2023_3339645
crossref_primary_10_1186_s12859_024_05914_3
crossref_primary_10_1111_coin_12696
crossref_primary_10_3389_fcell_2021_740267
crossref_primary_10_1016_j_jare_2022_01_009
crossref_primary_10_3389_fmolb_2021_815243
crossref_primary_10_20965_jaciii_2024_p0552
crossref_primary_10_3390_w15132463
crossref_primary_10_2174_1381612826666200612163819
crossref_primary_10_1109_JBHI_2023_3344031
crossref_primary_10_3389_fcell_2021_755511
crossref_primary_10_1007_s11704_020_8179_0
crossref_primary_10_1093_bib_bbab520
crossref_primary_10_1186_s12859_020_03847_1
crossref_primary_10_1016_j_techfore_2022_121912
crossref_primary_10_1007_s41870_025_02404_4
crossref_primary_10_1002_aisy_202300017
crossref_primary_10_1016_j_ymeth_2022_11_002
crossref_primary_10_1093_bioinformatics_btae570
crossref_primary_10_1016_j_knosys_2022_109250
crossref_primary_10_3389_fmolb_2022_843150
crossref_primary_10_1016_j_neucom_2023_127203
crossref_primary_10_12677_hjbm_2024_144060
crossref_primary_10_1007_s12539_021_00483_y
crossref_primary_10_1515_biol_2022_0795
crossref_primary_10_3389_fcell_2021_645275
crossref_primary_10_1109_ACCESS_2024_3514912
crossref_primary_10_3389_fgene_2022_980497
crossref_primary_10_1186_s12911_024_02631_y
crossref_primary_10_1155_2021_6690154
crossref_primary_10_3389_fcell_2021_700355
crossref_primary_10_1145_3662178
crossref_primary_10_1093_bioinformatics_btac837
crossref_primary_10_1093_bioadv_vbab038
crossref_primary_10_1093_bioinformatics_btac715
crossref_primary_10_1146_annurev_pharmtox_051921_023255
crossref_primary_10_3389_fgene_2021_690049
crossref_primary_10_1007_s40747_023_01038_y
crossref_primary_10_31083_j_fbl2704113
crossref_primary_10_2174_1568026622666220701091339
crossref_primary_10_2174_1574893617666220513114917
crossref_primary_10_1093_bib_bbac120
crossref_primary_10_1109_ACCESS_2024_3406037
crossref_primary_10_1186_s12859_024_06021_z
crossref_primary_10_3390_s23084168
crossref_primary_10_1186_s12859_022_04612_2
crossref_primary_10_3390_biom14101267
crossref_primary_10_1093_bib_bbac634
crossref_primary_10_2174_1574893618666230825121841
crossref_primary_10_3389_fcell_2020_626221
crossref_primary_10_1371_journal_pcbi_1010671
crossref_primary_10_1109_TCBB_2021_3088614
crossref_primary_10_1016_j_dcmed_2022_12_007
crossref_primary_10_3390_cimb44050155
crossref_primary_10_3389_fcell_2021_722410
crossref_primary_10_1093_bib_bbac073
crossref_primary_10_1093_bib_bbad161
crossref_primary_10_3390_ijms22168993
crossref_primary_10_1093_bioinformatics_btac164
crossref_primary_10_1021_acs_jcim_4c02073
crossref_primary_10_1093_bioinformatics_btab473
crossref_primary_10_1002_qub2_39
crossref_primary_10_1016_j_compbiomed_2024_108339
crossref_primary_10_1093_bioinformatics_btad411
crossref_primary_10_1016_j_dajour_2021_100010
crossref_primary_10_1016_j_ymeth_2022_08_016
crossref_primary_10_3390_ijms23126732
crossref_primary_10_1016_j_future_2024_05_054
crossref_primary_10_1038_s41598_022_13796_9
crossref_primary_10_1109_JBHI_2024_3476120
crossref_primary_10_3389_fcell_2021_827108
crossref_primary_10_1186_s12859_022_05073_3
crossref_primary_10_1007_s11030_021_10273_9
crossref_primary_10_1016_j_compbiomed_2023_107199
crossref_primary_10_3390_cancers13092111
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_1016_j_neucom_2022_04_104
crossref_primary_10_1016_j_compbiolchem_2022_107719
crossref_primary_10_1038_s42003_024_06734_0
crossref_primary_10_3389_fpubh_2024_1361901
crossref_primary_10_3389_fgene_2021_726599
crossref_primary_10_1021_acs_jctc_2c01227
crossref_primary_10_1093_bib_bbae043
crossref_primary_10_1038_s41467_023_39120_1
crossref_primary_10_1093_bib_bbae168
crossref_primary_10_1093_bioadv_vbad116
crossref_primary_10_1093_bib_bbad079
crossref_primary_10_1093_bib_bbad474
crossref_primary_10_1002_asia_202200269
crossref_primary_10_18632_oncotarget_28234
crossref_primary_10_1093_bib_bbac140
crossref_primary_10_1186_s12859_022_04613_1
crossref_primary_10_1016_j_compbiolchem_2025_108410
crossref_primary_10_1186_s12859_022_04569_2
crossref_primary_10_3934_mbe_2024115
crossref_primary_10_1109_JBHI_2021_3121798
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_1142_S0219720024500240
crossref_primary_10_1097_CM9_0000000000003387
crossref_primary_10_2174_1570163820666230901160043
crossref_primary_10_3389_fcell_2020_632957
crossref_primary_10_1093_bib_bbab606
crossref_primary_10_1002_asia_202100789
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_1016_j_patter_2023_100909
crossref_primary_10_1109_TCBB_2022_3206907
crossref_primary_10_1093_bib_bbab289
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1186_s12915_024_01949_3
crossref_primary_10_3389_fphar_2024_1393415
crossref_primary_10_3390_ncrna10010009
crossref_primary_10_1093_bib_bbac099
crossref_primary_10_1016_j_ymeth_2024_04_010
crossref_primary_10_1093_bib_bbad462
crossref_primary_10_2174_1573409919666230111164340
crossref_primary_10_1016_j_jmgm_2023_108498
crossref_primary_10_1186_s13321_024_00915_z
crossref_primary_10_1109_TPS_2022_3221474
crossref_primary_10_1093_bib_bbab319
crossref_primary_10_2174_1574893618666230816090548
crossref_primary_10_1016_j_compbiomed_2022_106145
crossref_primary_10_3389_fcell_2021_675978
crossref_primary_10_1016_j_chemolab_2024_105065
crossref_primary_10_1186_s12859_024_05904_5
crossref_primary_10_1016_j_eswa_2024_125264
crossref_primary_10_1007_s12539_021_00488_7
crossref_primary_10_1038_s41467_021_24172_y
crossref_primary_10_3390_math11183990
crossref_primary_10_1093_bib_bbae103
crossref_primary_10_1016_j_ymeth_2024_01_018
crossref_primary_10_1093_bfgp_elaa030
crossref_primary_10_3389_fcell_2021_712020
crossref_primary_10_1093_bioinformatics_btac476
crossref_primary_10_1093_bib_bbae184
crossref_primary_10_3389_fphar_2023_1255181
crossref_primary_10_1111_bph_17427
crossref_primary_10_2174_1574893616666211119093100
crossref_primary_10_1093_bib_bbac159
crossref_primary_10_2174_0115734099266731231115065030
crossref_primary_10_1016_j_future_2024_06_046
crossref_primary_10_1016_j_csbj_2023_02_004
crossref_primary_10_3389_fonc_2022_902616
crossref_primary_10_1016_j_compbiomed_2024_108371
crossref_primary_10_1093_bib_bbad082
crossref_primary_10_1016_j_compbiomed_2024_108376
crossref_primary_10_1016_j_compbiomed_2022_105918
crossref_primary_10_1016_j_future_2024_07_012
crossref_primary_10_1016_j_ab_2024_115691
crossref_primary_10_1016_j_imu_2024_101604
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1093_bib_bbab582
crossref_primary_10_1186_s13321_022_00665_w
crossref_primary_10_2147_TACG_S365613
crossref_primary_10_1016_j_compbiolchem_2024_108244
crossref_primary_10_1093_bib_bbad516
crossref_primary_10_1109_ACCESS_2023_3260979
crossref_primary_10_1007_s12539_024_00608_z
crossref_primary_10_1093_bib_bbac148
crossref_primary_10_1016_j_compbiomed_2023_107274
crossref_primary_10_3390_app11073239
crossref_primary_10_1016_j_future_2024_06_052
crossref_primary_10_3390_biology11070967
crossref_primary_10_3390_fi13010013
Cites_doi 10.2174/1568026615666150506151533
10.1016/j.drudis.2014.10.012
10.1093/bioinformatics/bts670
10.1039/C8SC00148K
10.1093/bioinformatics/btx160
10.1093/bioinformatics/btx731
10.1093/nar/30.1.163
10.1021/ja504810z
10.1186/s13321-017-0209-z
10.1038/s41467-017-00680-8
10.1016/j.neucom.2017.04.055
10.1016/j.ymeth.2015.01.015
10.1186/s12859-016-0890-3
10.1038/srep33910
10.1093/bioinformatics/btv695
10.1016/j.steroids.2010.09.008
10.1038/srep38860
10.1038/srep40376
10.1371/journal.pcbi.1002503
10.7150/ijbs.24612
10.1109/MSP.2012.2205597
10.1093/bib/bbv066
10.1073/pnas.1603992113
10.1038/sj.bjp.0705428
10.1007/s12272-016-0791-z
10.1016/j.toxlet.2015.02.012
10.1093/nar/gkx1037
10.1186/s12859-016-1005-x
10.1016/j.cbi.2015.05.023
10.1093/toxsci/kfm150
10.1016/j.drudis.2017.12.001
10.1016/j.drudis.2018.05.010
10.1093/bioinformatics/btw244
10.1186/s12859-016-0977-x
10.1038/nrd3078
10.1016/j.drudis.2015.08.001
10.1016/j.taap.2011.12.017
10.1111/jnc.13207
10.1093/bioinformatics/btn162
10.1186/1471-2105-11-255
10.1371/journal.pcbi.1004760
10.1093/bioinformatics/bti1141
10.1186/s12859-017-1460-z
10.1109/TVCG.2016.2569084
10.1038/srep08883
10.1002/prot.20356
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbaa044
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 2150
ExternalDocumentID 32367110
10_1093_bib_bbaa044
10.1093/bib/bbaa044
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
GROUPED_DOAJ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c414t-38468b2ae002aa0b9076c66f6eb738b93f40049b7c24401852b3ef2c70a66d4a3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 05:24:08 EDT 2025
Mon Jun 30 08:50:14 EDT 2025
Wed Feb 19 02:29:09 EST 2025
Tue Jul 01 03:39:29 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Aug 28 03:20:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords graph convolutional network
drug–target interaction prediction
deep neural network
biological networks
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-38468b2ae002aa0b9076c66f6eb738b93f40049b7c24401852b3ef2c70a66d4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1913-081X
PMID 32367110
PQID 2529967640
PQPubID 26846
PageCount 10
ParticipantIDs proquest_miscellaneous_2398633316
proquest_journals_2529967640
pubmed_primary_32367110
crossref_citationtrail_10_1093_bib_bbaa044
crossref_primary_10_1093_bib_bbaa044
oup_primary_10_1093_bib_bbaa044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Mar-22
PublicationDateYYYYMMDD 2021-03-22
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-Mar-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Tanoli (2021070817465103200_ref1) 2020; 21
Mathur (2021070817465103200_ref5) 2015; 5
Schirle (2021070817465103200_ref3) 2016; 21
Lim (2021070817465103200_ref43) 2016; 6
He (2021070817465103200_ref17) 2017; 9
Lu (2021070817465103200_ref23) 2017; 18
Kipf (2021070817465103200_ref40) 2016
Cheng (2021070817465103200_ref31) 2012; 8
Fleuren (2021070817465103200_ref8) 2015; 74
Xu (2021070817465103200_ref39) 2016; 23
Riboldi (2021070817465103200_ref48) 2003; 140
Zong (2021070817465103200_ref28) 2017; 33
Xue (2021070817465103200_ref2) 2018; 14
Paul (2021070817465103200_ref6) 2010; 9
Mei (2021070817465103200_ref19) 2012; 29
Luo (2021070817465103200_ref22) 2017; 8
Defferrard (2021070817465103200_ref33) 2016
Chen (2021070817465103200_ref11) 2010; 11
Hewett (2021070817465103200_ref10) 2002; 30
Yuan (2021070817465103200_ref32) 2016; 32
Beyer (2021070817465103200_ref49) 2007; 99
Zhu (2021070817465103200_ref9) 2005; 21
Chandrasekaran (2021070817465103200_ref46) 2011; 76
Liu (2021070817465103200_ref18) 2016; 12
Yamanishi (2021070817465103200_ref30) 2008; 24
Li (2021070817465103200_ref35) 2016; 6
Prot (2021070817465103200_ref44) 2012; 259
Hinton (2021070817465103200_ref34) 2012; 29
Wishart (2021070817465103200_ref42) 2017; 46
Zheng (2021070817465103200_ref45) 2015; 238
Olayan (2021070817465103200_ref26) 2017; 34
Lo (2021070817465103200_ref16) 2018; 23
Hao (2021070817465103200_ref27) 2017; 7
Li (2021070817465103200_ref20) 2015; 32
Nascimento (2021070817465103200_ref25) 2016; 17
Fotis (2021070817465103200_ref13) 2018; 23
Lavecchia (2021070817465103200_ref14) 2015; 20
Jiang (2021070817465103200_ref50) 2015; 234
Pei (2021070817465103200_ref21) 2014; 136
Buza (2021070817465103200_ref29) 2017; 260
Walter (2021070817465103200_ref47) 2015; 134
Aleksandar (2021070817465103200_ref37) 2015; 15
Alanis-Lobato (2021070817465103200_ref41) 2016; 45
Mayr (2021070817465103200_ref15) 2018; 9
Öztürk (2021070817465103200_ref38) 2016; 17
Lee (2021070817465103200_ref4) 2016; 39
Chen (2021070817465103200_ref7) 2015; 17
Pánek (2021070817465103200_ref36) 2005; 58
Fu (2021070817465103200_ref12) 2016; 17
Vinayagam (2021070817465103200_ref24) 2016; 113
References_xml – volume: 45
  start-page: gkw985
  year: 2016
  ident: 2021070817465103200_ref41
  article-title: HIPPIE v2. 0: enhancing meaningfulness and reliability of protein–protein interaction networks
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 1768
  year: 2015
  ident: 2021070817465103200_ref37
  article-title: Application of SMILES notation based optimal descriptors in drug discovery and design
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026615666150506151533
– volume: 20
  start-page: 318
  year: 2015
  ident: 2021070817465103200_ref14
  article-title: Machine-learning approaches in drug discovery: methods and applications
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2014.10.012
– volume: 29
  start-page: 238
  year: 2012
  ident: 2021070817465103200_ref19
  article-title: Drug–target interaction prediction by learning from local information and neighbors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts670
– volume: 9
  start-page: 5441
  year: 2018
  ident: 2021070817465103200_ref15
  article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
  publication-title: Chem Sci
  doi: 10.1039/C8SC00148K
– volume: 33
  start-page: 2337
  year: 2017
  ident: 2021070817465103200_ref28
  article-title: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx160
– volume: 34
  start-page: 1164
  year: 2017
  ident: 2021070817465103200_ref26
  article-title: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx731
– volume: 30
  start-page: 163
  year: 2002
  ident: 2021070817465103200_ref10
  article-title: PharmGKB: the pharmacogenetics knowledge base
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.163
– volume: 136
  start-page: 11556
  year: 2014
  ident: 2021070817465103200_ref21
  article-title: Systems biology brings new dimensions for structure-based drug design
  publication-title: J Am Chem Soc
  doi: 10.1021/ja504810z
– volume: 9
  start-page: 24
  year: 2017
  ident: 2021070817465103200_ref17
  article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines
  publication-title: J Chem
  doi: 10.1186/s13321-017-0209-z
– volume: 8
  start-page: 573
  year: 2017
  ident: 2021070817465103200_ref22
  article-title: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00680-8
– volume: 260
  start-page: 284
  year: 2017
  ident: 2021070817465103200_ref29
  article-title: Drug–target interaction prediction with bipartite local models and hubness-aware regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.055
– start-page: 3844
  volume-title: Advances in neural information processing systems
  year: 2016
  ident: 2021070817465103200_ref33
– volume: 74
  start-page: 97
  year: 2015
  ident: 2021070817465103200_ref8
  article-title: Application of text mining in the biomedical domain
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.01.015
– volume: 17
  start-page: 46
  year: 2016
  ident: 2021070817465103200_ref25
  article-title: A multiple kernel learning algorithm for drug-target interaction prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0890-3
– volume: 6
  start-page: 33910
  year: 2016
  ident: 2021070817465103200_ref35
  article-title: Identifying anticancer peptides by using improved hybrid compositions
  publication-title: Sci Rep
  doi: 10.1038/srep33910
– volume: 32
  start-page: 1057
  year: 2015
  ident: 2021070817465103200_ref20
  article-title: Identification of drug–target interaction from interactome network with ‘guilt-by-association’principle and topology features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv695
– volume: 76
  start-page: 118
  year: 2011
  ident: 2021070817465103200_ref46
  article-title: 17β-estradiol protects against acetaminophen-overdose-induced acute oxidative hepatic damage and increases the survival rate in mice
  publication-title: Steroids
  doi: 10.1016/j.steroids.2010.09.008
– volume: 6
  start-page: 38860
  year: 2016
  ident: 2021070817465103200_ref43
  article-title: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem
  publication-title: Sci Rep
  doi: 10.1038/srep38860
– volume: 7
  start-page: 40376
  year: 2017
  ident: 2021070817465103200_ref27
  article-title: Predicting drug-target interactions by dual-network integrated logistic matrix factorization
  publication-title: Sci Rep
  doi: 10.1038/srep40376
– volume: 8
  start-page: e1002503
  year: 2012
  ident: 2021070817465103200_ref31
  article-title: Prediction of drug-target interactions and drug repositioning via network-based inference
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002503
– volume: 14
  start-page: 1232
  year: 2018
  ident: 2021070817465103200_ref2
  article-title: Review of drug repositioning approaches and resources
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.24612
– volume: 29
  start-page: 82
  year: 2012
  ident: 2021070817465103200_ref34
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]
  publication-title: IEEE Signal processing magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 17
  start-page: 696
  year: 2015
  ident: 2021070817465103200_ref7
  article-title: Drug–target interaction prediction: databases, web servers and computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv066
– volume: 113
  start-page: 4976
  year: 2016
  ident: 2021070817465103200_ref24
  article-title: Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1603992113
– volume-title: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907
  year: 2016
  ident: 2021070817465103200_ref40
– volume: 140
  start-page: 377
  year: 2003
  ident: 2021070817465103200_ref48
  article-title: Benzydamine inhibits monocyte migration and MAPK activation induced by chemotactic agonists
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0705428
– volume: 39
  start-page: 1193
  year: 2016
  ident: 2021070817465103200_ref4
  article-title: Target identification for biologically active small molecules using chemical biology approaches
  publication-title: Arch Pharm Res
  doi: 10.1007/s12272-016-0791-z
– volume: 234
  start-page: 139
  year: 2015
  ident: 2021070817465103200_ref50
  article-title: Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2015.02.012
– volume: 46
  start-page: D1074
  year: 2017
  ident: 2021070817465103200_ref42
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 17
  start-page: 160
  year: 2016
  ident: 2021070817465103200_ref12
  article-title: Predicting drug target interactions using meta-path-based semantic network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1005-x
– volume: 238
  start-page: 93
  year: 2015
  ident: 2021070817465103200_ref45
  article-title: The therapeutic detoxification of chlorogenic acid against acetaminophen-induced liver injury by ameliorating hepatic inflammation
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2015.05.023
– volume: 99
  start-page: 326
  year: 2007
  ident: 2021070817465103200_ref49
  article-title: Multicenter study of acetaminophen hepatotoxicity reveals the importance of biological endpoints in genomic analyses
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfm150
– volume: 23
  start-page: 626
  year: 2018
  ident: 2021070817465103200_ref13
  article-title: Network-based technologies for early drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2017.12.001
– volume: 23
  start-page: 1538
  year: 2018
  ident: 2021070817465103200_ref16
  article-title: Machine learning in chemoinformatics and drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.05.010
– volume: 32
  start-page: i18
  year: 2016
  ident: 2021070817465103200_ref32
  article-title: DrugE-rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw244
– volume: 17
  start-page: 128
  year: 2016
  ident: 2021070817465103200_ref38
  article-title: A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0977-x
– volume: 9
  start-page: 203
  year: 2010
  ident: 2021070817465103200_ref6
  article-title: How to improve R&D productivity: the pharmaceutical industry's grand challenge
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3078
– volume: 21
  start-page: 82
  year: 2016
  ident: 2021070817465103200_ref3
  article-title: Identifying compound efficacy targets in phenotypic drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2015.08.001
– volume: 259
  start-page: 270
  year: 2012
  ident: 2021070817465103200_ref44
  article-title: Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: application to acetaminophen injury
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2011.12.017
– volume: 134
  start-page: 1040
  year: 2015
  ident: 2021070817465103200_ref47
  article-title: Tesmilifene modifies brain endothelial functions and opens the blood–brain/blood–glioma barrier
  publication-title: J Neurochem
  doi: 10.1111/jnc.13207
– volume: 24
  start-page: i232
  year: 2008
  ident: 2021070817465103200_ref30
  article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn162
– volume: 11
  start-page: 255
  year: 2010
  ident: 2021070817465103200_ref11
  article-title: Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-255
– volume: 21
  start-page: 211
  year: 2020
  ident: 2021070817465103200_ref1
  article-title: Interactive visual analysis of drug–target interaction networks using drug target profiler, with applications to precision medicine and drug repurposing
  publication-title: Brief Bioinform
– volume: 12
  start-page: e1004760
  year: 2016
  ident: 2021070817465103200_ref18
  article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004760
– volume: 21
  start-page: ii245
  year: 2005
  ident: 2021070817465103200_ref9
  article-title: A probabilistic model for mining implicit ‘chemical compound–gene’relations from literature
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1141
– volume: 18
  start-page: 39
  year: 2017
  ident: 2021070817465103200_ref23
  article-title: Link prediction in drug-target interactions network using similarity indices
  publication-title: Bmc Bioinformatics
  doi: 10.1186/s12859-017-1460-z
– volume: 23
  start-page: 1910
  year: 2016
  ident: 2021070817465103200_ref39
  article-title: ASCII art synthesis from natural photographs
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2016.2569084
– volume: 5
  start-page: 8883
  year: 2015
  ident: 2021070817465103200_ref5
  article-title: Human iPSC-based cardiac microphysiological system for drug screening applications
  publication-title: Sci Rep
  doi: 10.1038/srep08883
– volume: 58
  start-page: 923
  year: 2005
  ident: 2021070817465103200_ref36
  article-title: A new method for identification of protein (sub) families in a set of proteins based on hydropathy distribution in proteins
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.20356
SSID ssj0020781
Score 2.6487358
Snippet Abstract Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to...
Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate...
Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2141
SubjectTerms Artificial neural networks
Computer applications
Drugs
Graph theory
Machine learning
Neural networks
Proteins
Target recognition
Therapeutic targets
Title Identifying drug–target interactions based on graph convolutional network and deep neural network
URI https://www.ncbi.nlm.nih.gov/pubmed/32367110
https://www.proquest.com/docview/2529967640
https://www.proquest.com/docview/2398633316
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSgMxEA5SELyI_65WjdCTELqbpEn2KGIpgnppobcl2SQiyFb6c_DmO_iGPonJJl2pFr3uzm7ITIaZIfN9A0CHaKNSaSQSxmpEueVI9bRGQmU80zITtp48d__ABiN6N-6NY4PsbM0Vfk666ll1lZIypZ7204VfT5E_fBw3dZXnqwkgIo48u3uE4f34diXwrIDZfuWUdWzp74DtmBTC62DFXbBhqj2wGcZEvu2DMqBpa0QS1NPF0-f7R-jghp7tYRqwCTPoI5KGkwrWLNTQN5THg-V-XoV-bygrDbUxr9AzWX4_PwCj_u3wZoDicARU0ozOEXGJg1BYGqcAtz_lilxWMmaZUZwIlRPrvTNXvHQBPPUQaUWMxSVPJWOaSnIIWtWkMscAKkIIFoLJXFJK0lwoVzPnPE-JxaK0NgFXS80VZWQO9wMsXopwg00Kp-YiqjkBnUb4NRBmrBe7cCb4W6K9NE8R_WpW4J4Ln4wzmibgsnntPMJfc8jKTBZOhuSCuS1lLAFHwazNOsQT1rmM5-Tf5U_BFvbtKylBGLdBaz5dmDOXf8zVeX36vgCULtmE
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+drug-target+interactions+based+on+graph+convolutional+network+and+deep+neural+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhao%2C+Tianyi&rft.au=Hu%2C+Yang&rft.au=Valsdottir%2C+Linda+R&rft.au=Zang%2C+Tianyi&rft.date=2021-03-22&rft.eissn=1477-4054&rft.volume=22&rft.issue=2&rft.spage=2141&rft_id=info:doi/10.1093%2Fbib%2Fbbaa044&rft_id=info%3Apmid%2F32367110&rft.externalDocID=32367110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon