Shell and tube heat exchanger flexible design strategy for process operability

Traditionally, the shell and tube heat exchanger (STHE) design minimizes the total annual cost subject to allowable pressure drop. However, it is often insufficient when considering equipment limitations and uncertain disturbance factors. Design inefficiency or improper operation of overall process...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 37; p. 102163
Main Authors Chen, Liang-Yu, Adi, Vincentius Surya Kurnia, Laxmidewi, Rosalia
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2214-157X
2214-157X
DOI10.1016/j.csite.2022.102163

Cover

Abstract Traditionally, the shell and tube heat exchanger (STHE) design minimizes the total annual cost subject to allowable pressure drop. However, it is often insufficient when considering equipment limitations and uncertain disturbance factors. Design inefficiency or improper operation of overall process systems could potentially occur. A rigorous design strategy of STHE based on the flexibility index analysis method is proposed to address the above issues. The genetic algorithm with rigorous constraints is considered for the STHE design optimization. Simultaneously, the flexibility index (FI) is incorporated to quantify the uncertain factors of the STHE operation. The STHE load capacity and the corresponding uncertain disturbance factors affecting the STHE operability are evaluated. In addition, design workflows incorporating flexibility index are also discussed. Simultaneous consideration of the flexibility index in the optimization procedure can improve the STHE design operability under the expected range of disturbance factors and lower the total cost. [Display omitted]
AbstractList Traditionally, the shell and tube heat exchanger (STHE) design minimizes the total annual cost subject to allowable pressure drop. However, it is often insufficient when considering equipment limitations and uncertain disturbance factors. Design inefficiency or improper operation of overall process systems could potentially occur. A rigorous design strategy of STHE based on the flexibility index analysis method is proposed to address the above issues. The genetic algorithm with rigorous constraints is considered for the STHE design optimization. Simultaneously, the flexibility index (FI) is incorporated to quantify the uncertain factors of the STHE operation. The STHE load capacity and the corresponding uncertain disturbance factors affecting the STHE operability are evaluated. In addition, design workflows incorporating flexibility index are also discussed. Simultaneous consideration of the flexibility index in the optimization procedure can improve the STHE design operability under the expected range of disturbance factors and lower the total cost. [Display omitted]
Traditionally, the shell and tube heat exchanger (STHE) design minimizes the total annual cost subject to allowable pressure drop. However, it is often insufficient when considering equipment limitations and uncertain disturbance factors. Design inefficiency or improper operation of overall process systems could potentially occur. A rigorous design strategy of STHE based on the flexibility index analysis method is proposed to address the above issues. The genetic algorithm with rigorous constraints is considered for the STHE design optimization. Simultaneously, the flexibility index (FI) is incorporated to quantify the uncertain factors of the STHE operation. The STHE load capacity and the corresponding uncertain disturbance factors affecting the STHE operability are evaluated. In addition, design workflows incorporating flexibility index are also discussed. Simultaneous consideration of the flexibility index in the optimization procedure can improve the STHE design operability under the expected range of disturbance factors and lower the total cost.
ArticleNumber 102163
Author Chen, Liang-Yu
Laxmidewi, Rosalia
Adi, Vincentius Surya Kurnia
Author_xml – sequence: 1
  givenname: Liang-Yu
  surname: Chen
  fullname: Chen, Liang-Yu
– sequence: 2
  givenname: Vincentius Surya Kurnia
  orcidid: 0000-0002-6857-2772
  surname: Adi
  fullname: Adi, Vincentius Surya Kurnia
  email: vska@nchu.edu.tw
– sequence: 3
  givenname: Rosalia
  surname: Laxmidewi
  fullname: Laxmidewi, Rosalia
BookMark eNp9kMFqGzEQhkVIoWmSJ-hFL2B3RquVdg85BNOkAZMc2kBvQivN2jKblZHUYL991nELJQefZhj4_pn5vrDzMY7E2FeEOQKqb5u5y6HQXIAQ00Sgqs7YhRAoZ1jr3-f_9Z_Zdc4bAEBdNSjlBXv8uaZh4Hb0vPzpiK_JFk47t7bjihLvB9qFbiDuKYfVyHNJttBqz_uY-DZFRznzuKVkuzCEsr9in3o7ZLr-Wy_Z8933X4sfs-XT_cPidjlzEmWZVY0Q0AlNDZLWCixUtexBo3etctCpttZIJDtsGi1UB7Kqa92j6j143arqkj0cc320G7NN4cWmvYk2mPdBTCtjUwluIIMkWuXRtocdZKGpXAvoJTXQNp13U1Z7zHIp5pyoNy4UW0Icp2fDYBDMwbPZmHfP5uDZHD1PbPWB_XfLaermSNGk6DVQMtkFGh35kMiV6Ydwkn8DHxmY8A
CitedBy_id crossref_primary_10_1016_j_engfailanal_2024_108664
crossref_primary_10_3390_en17112631
crossref_primary_10_1016_j_icheatmasstransfer_2023_106985
crossref_primary_10_5937_engtoday2300013A
crossref_primary_10_1016_j_applthermaleng_2024_123966
crossref_primary_10_1021_acs_iecr_3c01854
crossref_primary_10_1016_j_applthermaleng_2025_125928
crossref_primary_10_1016_j_renene_2023_03_041
crossref_primary_10_1016_j_csite_2022_102616
crossref_primary_10_5937_engtoday2202053A
crossref_primary_10_38124_ijisrt_25mar031
crossref_primary_10_1016_j_anucene_2024_110875
crossref_primary_10_1016_j_seppur_2023_123344
crossref_primary_10_3390_mca29010001
crossref_primary_10_3390_en16031380
Cites_doi 10.1016/j.apm.2012.03.043
10.1016/j.applthermaleng.2019.04.038
10.1021/ie8015363
10.1177/0957650911402888
10.1016/j.ces.2010.01.009
10.1007/s42452-020-04013-1
10.1038/scientificamerican0792-66
10.1016/j.tsep.2017.05.003
10.1016/j.applthermaleng.2010.03.001
10.1016/j.physrep.2016.08.001
10.1016/S0017-9310(01)00362-3
10.1016/j.cep.2007.02.004
10.1023/A:1008202821328
10.1016/0098-1354(87)87011-4
10.1002/er.1272
10.1016/j.applthermaleng.2007.08.010
10.1016/j.applthermaleng.2007.11.009
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.102163
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_1e296d1a90354ea083c901d4e8098bdc
10_1016_j_csite_2022_102163
S2214157X22004099
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-38220b27e81e7760a0354f071dc96c0b69571ee4b188726b043557f16fd0d7963
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:22:52 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Tue Jul 01 02:28:34 EDT 2025
Tue Jul 25 20:58:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Simultaneous optimization
Shell and tube heat exchanger
Genetic algorithm
Flexibility index
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-38220b27e81e7760a0354f071dc96c0b69571ee4b188726b043557f16fd0d7963
ORCID 0000-0002-6857-2772
OpenAccessLink https://doaj.org/article/1e296d1a90354ea083c901d4e8098bdc
ParticipantIDs doaj_primary_oai_doaj_org_article_1e296d1a90354ea083c901d4e8098bdc
crossref_citationtrail_10_1016_j_csite_2022_102163
crossref_primary_10_1016_j_csite_2022_102163
elsevier_sciencedirect_doi_10_1016_j_csite_2022_102163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References de Vasconcelos Segundo, Mariani, dos Santos Coelho (bib8) 2019; 156
Shah, Sekulić (bib25) 2003
Costa, Queiroz (bib5) 2008; 28
Swaney, Grossmann (bib20) 1985; 31
Biegler, Grossmann, Westerberg (bib34) 1997
Swaney, Grossmann (bib19) 1985; 31
Holland (bib9) 1992; 267
Taborek (bib30) 1998
Patel, Rao (bib38) 2010; 30
Palen, Taborek (bib28) 1969; 65
Eberhart, Kennedy (bib10) 1995
Rao, Patel (bib7) 2013; 37
Smith (bib31) 2005
Raja, Jhala, Patel (bib15) 2017; 2
Tinker (bib26) 1951
Turgut (bib16) 2021; 3
(bib33) 2019
Grossmann, Floudas (bib21) 1987; 11
Caputo, Pelagagge, Salini (bib14) 2008; 25
Riyanto, Chang (bib23) 2010; 65
Bell (bib2) 1963
Johannessen, Nummedal, Kjelstrup (bib3) 2002; 45
(bib35) 2007
Chang, Li, Liou (bib22) 2009; 48
Mukherjee (bib37) 1998; 94
Ponce-Ortega, Serna-González, Jiménez-Gutiérrez (bib4) 2008; 47
Lima, Georgakis, Smith, Schnelle, Vinson (bib17) 2010; vol. 56
Wildi-Tremblay, Gosselin (bib13) 2007; 31
Halemane, Grossmann (bib18) 1983; vol. 29
Shah (bib24) 1983
Tinker (bib27) 1958
Salcedo-Sanz (bib12) 2016; 655
Storn, Price (bib11) 1997; 11
Kern (bib1) 1950
Rao, Patel (bib6) 2010; 225
Turton, Bailie, Whiting, Shaeiwitz, Bhattacharyya (bib32) 2012
Bell (bib29) 1988
Edwards (bib36) 2008
Mukherjee (10.1016/j.csite.2022.102163_bib37) 1998; 94
Halemane (10.1016/j.csite.2022.102163_bib18) 1983; vol. 29
Bell (10.1016/j.csite.2022.102163_bib29) 1988
Raja (10.1016/j.csite.2022.102163_bib15) 2017; 2
Swaney (10.1016/j.csite.2022.102163_bib20) 1985; 31
Eberhart (10.1016/j.csite.2022.102163_bib10) 1995
Chang (10.1016/j.csite.2022.102163_bib22) 2009; 48
Ponce-Ortega (10.1016/j.csite.2022.102163_bib4) 2008; 47
Costa (10.1016/j.csite.2022.102163_bib5) 2008; 28
Shah (10.1016/j.csite.2022.102163_bib25) 2003
Tinker (10.1016/j.csite.2022.102163_bib27) 1958
Kern (10.1016/j.csite.2022.102163_bib1) 1950
Swaney (10.1016/j.csite.2022.102163_bib19) 1985; 31
Caputo (10.1016/j.csite.2022.102163_bib14) 2008; 25
Shah (10.1016/j.csite.2022.102163_bib24) 1983
Tinker (10.1016/j.csite.2022.102163_bib26) 1951
Bell (10.1016/j.csite.2022.102163_bib2) 1963
(10.1016/j.csite.2022.102163_bib33) 2019
Turton (10.1016/j.csite.2022.102163_bib32) 2012
Taborek (10.1016/j.csite.2022.102163_bib30) 1998
Rao (10.1016/j.csite.2022.102163_bib7) 2013; 37
Wildi-Tremblay (10.1016/j.csite.2022.102163_bib13) 2007; 31
Biegler (10.1016/j.csite.2022.102163_bib34) 1997
(10.1016/j.csite.2022.102163_bib35) 2007
Storn (10.1016/j.csite.2022.102163_bib11) 1997; 11
Holland (10.1016/j.csite.2022.102163_bib9) 1992; 267
Smith (10.1016/j.csite.2022.102163_bib31) 2005
Edwards (10.1016/j.csite.2022.102163_bib36) 2008
Rao (10.1016/j.csite.2022.102163_bib6) 2010; 225
Turgut (10.1016/j.csite.2022.102163_bib16) 2021; 3
Riyanto (10.1016/j.csite.2022.102163_bib23) 2010; 65
Lima (10.1016/j.csite.2022.102163_bib17) 2010; vol. 56
de Vasconcelos Segundo (10.1016/j.csite.2022.102163_bib8) 2019; 156
Grossmann (10.1016/j.csite.2022.102163_bib21) 1987; 11
Johannessen (10.1016/j.csite.2022.102163_bib3) 2002; 45
Patel (10.1016/j.csite.2022.102163_bib38) 2010; 30
Salcedo-Sanz (10.1016/j.csite.2022.102163_bib12) 2016; 655
Palen (10.1016/j.csite.2022.102163_bib28) 1969; 65
References_xml – start-page: 36
  year: 1958
  end-page: 52
  ident: bib27
  article-title: Shell side characteristics of shell-and-tube heat exchangers–– a simplified rating system for commercial heat exchangers
  publication-title: Trans. ASME
– volume: 65
  start-page: 2758
  year: 2010
  end-page: 2770
  ident: bib23
  article-title: A heuristic revamp strategy to improve operational flexibility of water networks based on active constraints
  publication-title: Chem. Eng. Sci.
– volume: 65
  start-page: 53
  year: 1969
  end-page: 63
  ident: bib28
  article-title: Solution of shell side flow, pressure drop and heat transfer by stream analysis method
  publication-title: Chem. Eng. Prog. Symp. Ser.
– volume: vol. 29
  start-page: 425
  year: 1983
  end-page: 433
  ident: bib18
  publication-title: Optimal Process Design under Uncertainty
– year: 2008
  ident: bib36
  article-title: Design and Rating of Shell and Tube Heat Exchangers
– start-page: 21
  year: 1983
  end-page: 72
  ident: bib24
  article-title: Heat exchanger basic design methods
  publication-title: Low Reynolds Number Flow Heat Exchangers
– year: 1950
  ident: bib1
  article-title: Process Heat Transfer
– volume: 225
  start-page: 619
  year: 2010
  end-page: 634
  ident: bib6
  article-title: Design optimization of shell and tube heat exchangers using swarm optimization algorithms
  publication-title: Proc. IME J. Power Energy
– volume: 267
  start-page: 66
  year: 1992
  end-page: 72
  ident: bib9
  article-title: Genetic algorithms
  publication-title: Sci. Am.
– volume: 25
  start-page: 1151
  year: 2008
  end-page: 1159
  ident: bib14
  article-title: Heat exchanger design based on economic optimization
  publication-title: Appl. Therm. Eng.
– year: 2005
  ident: bib31
  article-title: Chemical Process Design and Integration
– volume: 31
  start-page: 867
  year: 2007
  end-page: 885
  ident: bib13
  article-title: Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance
  publication-title: Int. J. Energy Res.
– year: 2012
  ident: bib32
  publication-title: Analysis, Synthesis, and Design of Chemical Processes
– volume: 28
  start-page: 1798
  year: 2008
  end-page: 1805
  ident: bib5
  article-title: Design optimization of shell-and-tube heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 3
  start-page: 3
  year: 2021
  ident: bib16
  article-title: A novel chaotic manta-ray foraging optimization algorithm for thermo-economic design optimization of an air-fin cooler
  publication-title: SN Appl. Sci.
– start-page: 145
  year: 1988
  end-page: 166
  ident: bib29
  article-title: Delaware method for shell-side design
  publication-title: Heat Transfer Equipment Design
– year: 2003
  ident: bib25
  article-title: Fundamentals of Heat Exchanger Design
– volume: 11
  start-page: 675
  year: 1987
  end-page: 693
  ident: bib21
  article-title: Active constraint strategy for flexibility analysis in chemical processes
  publication-title: Comput. Chem. Eng.
– year: 1963
  ident: bib2
  article-title: Final Report of the Cooperative Research Program on Shell-And-Tube Heat Exchangers. University of Delaware Engineering Experiment Station Bulletin No. 5
– year: 2007
  ident: bib35
  publication-title: Standards of the Tubular Exchanger Manufacturers Association
– volume: 48
  start-page: 3496
  year: 2009
  end-page: 3504
  ident: bib22
  article-title: Development of a generalized mixed integer nonlinear programming model for assessing and improving the operational flexibility of water network designs
  publication-title: Ind. Eng. Chem. Res.
– volume: vol. 56
  start-page: 1249
  year: 2010
  end-page: 1261
  ident: bib17
  publication-title: Operability‐based Determination of Feasible Control Constraints for Several High‐dimensional Nonsquare Industrial Processes
– year: 1998
  ident: bib30
  article-title: Shell-and-tube heat exchangers: single phase flow
  publication-title: Handbook of Heat Exchanger Design
– start-page: 89
  year: 1951
  end-page: 116
  ident: bib26
  article-title: Shell Side Characteristics of Segmentally Baffled Shell-And-Tube Heat Exchangers, Parts I, II, III,
– volume: 30
  start-page: 1417
  year: 2010
  end-page: 1425
  ident: bib38
  article-title: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique
  publication-title: Appl. Therm. Eng.
– volume: 31
  start-page: 631
  year: 1985
  end-page: 641
  ident: bib20
  article-title: An index for operational flexibility in chemical process design
  publication-title: Part II: Computational algorithms. American Institute of Chemical Engineers
– volume: 94
  start-page: 21
  year: 1998
  end-page: 37
  ident: bib37
  article-title: Effectively design shell-and-tube heat exchangers
  publication-title: Chem. Eng. Prog.
– volume: 156
  start-page: 119
  year: 2019
  end-page: 144
  ident: bib8
  article-title: Design of heat exchangers using falcon optimization algorithm
  publication-title: Appl. Therm. Eng.
– volume: 47
  start-page: 906
  year: 2008
  end-page: 913
  ident: bib4
  article-title: Design and optimization of multipass heat exchangers
  publication-title: Chem. Eng. Process: Process Intensif.
– volume: 45
  start-page: 2649
  year: 2002
  end-page: 2654
  ident: bib3
  article-title: Minimizing the entropy production in heat exchange
  publication-title: Int. J. Heat Mass Tran.
– volume: 37
  start-page: 1147
  year: 2013
  end-page: 1162
  ident: bib7
  article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm
  publication-title: Appl. Math. Model.
– start-page: 39
  year: 1995
  end-page: 43
  ident: bib10
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– volume: 2
  start-page: 87
  year: 2017
  end-page: 101
  ident: bib15
  article-title: Many-objective optimization of shell and tube heat exchanger
  publication-title: Therm. Sci. Eng. Prog.
– volume: 31
  start-page: 621
  year: 1985
  end-page: 630
  ident: bib19
  article-title: An index for operational flexibility in chemical process design
  publication-title: Part I: Formulation and theory. American Institute of Chemical Engineers
– volume: 655
  start-page: 1
  year: 2016
  end-page: 70
  ident: bib12
  article-title: Modern meta-heuristics based on nonlinear physics processes: a review of models and design procedures
  publication-title: Phys. Rep.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib11
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– year: 2019
  ident: bib33
  article-title: 2018年各國平均電價比較
– year: 1997
  ident: bib34
  article-title: Systematic Methods for Chemical Process Design
– volume: 37
  start-page: 1147
  year: 2013
  ident: 10.1016/j.csite.2022.102163_bib7
  article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.03.043
– start-page: 39
  year: 1995
  ident: 10.1016/j.csite.2022.102163_bib10
  article-title: A new optimizer using particle swarm theory
– volume: 156
  start-page: 119
  year: 2019
  ident: 10.1016/j.csite.2022.102163_bib8
  article-title: Design of heat exchangers using falcon optimization algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.038
– start-page: 36
  year: 1958
  ident: 10.1016/j.csite.2022.102163_bib27
  article-title: Shell side characteristics of shell-and-tube heat exchangers–– a simplified rating system for commercial heat exchangers
  publication-title: Trans. ASME
– year: 2007
  ident: 10.1016/j.csite.2022.102163_bib35
– year: 1963
  ident: 10.1016/j.csite.2022.102163_bib2
– volume: 48
  start-page: 3496
  year: 2009
  ident: 10.1016/j.csite.2022.102163_bib22
  article-title: Development of a generalized mixed integer nonlinear programming model for assessing and improving the operational flexibility of water network designs
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie8015363
– volume: 225
  start-page: 619
  year: 2010
  ident: 10.1016/j.csite.2022.102163_bib6
  article-title: Design optimization of shell and tube heat exchangers using swarm optimization algorithms
  publication-title: Proc. IME J. Power Energy
  doi: 10.1177/0957650911402888
– volume: 65
  start-page: 2758
  year: 2010
  ident: 10.1016/j.csite.2022.102163_bib23
  article-title: A heuristic revamp strategy to improve operational flexibility of water networks based on active constraints
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.01.009
– volume: 3
  start-page: 3
  year: 2021
  ident: 10.1016/j.csite.2022.102163_bib16
  article-title: A novel chaotic manta-ray foraging optimization algorithm for thermo-economic design optimization of an air-fin cooler
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-04013-1
– volume: 267
  start-page: 66
  year: 1992
  ident: 10.1016/j.csite.2022.102163_bib9
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 2
  start-page: 87
  year: 2017
  ident: 10.1016/j.csite.2022.102163_bib15
  article-title: Many-objective optimization of shell and tube heat exchanger
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2017.05.003
– volume: 30
  start-page: 1417
  year: 2010
  ident: 10.1016/j.csite.2022.102163_bib38
  article-title: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.03.001
– year: 2005
  ident: 10.1016/j.csite.2022.102163_bib31
– volume: 655
  start-page: 1
  year: 2016
  ident: 10.1016/j.csite.2022.102163_bib12
  article-title: Modern meta-heuristics based on nonlinear physics processes: a review of models and design procedures
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.08.001
– start-page: 145
  year: 1988
  ident: 10.1016/j.csite.2022.102163_bib29
  article-title: Delaware method for shell-side design
– year: 2012
  ident: 10.1016/j.csite.2022.102163_bib32
– start-page: 21
  year: 1983
  ident: 10.1016/j.csite.2022.102163_bib24
  article-title: Heat exchanger basic design methods
– volume: vol. 29
  start-page: 425
  year: 1983
  ident: 10.1016/j.csite.2022.102163_bib18
– volume: 31
  start-page: 631
  year: 1985
  ident: 10.1016/j.csite.2022.102163_bib20
  article-title: An index for operational flexibility in chemical process design
  publication-title: Part II: Computational algorithms. American Institute of Chemical Engineers
– volume: 45
  start-page: 2649
  year: 2002
  ident: 10.1016/j.csite.2022.102163_bib3
  article-title: Minimizing the entropy production in heat exchange
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/S0017-9310(01)00362-3
– volume: vol. 56
  start-page: 1249
  year: 2010
  ident: 10.1016/j.csite.2022.102163_bib17
– volume: 47
  start-page: 906
  year: 2008
  ident: 10.1016/j.csite.2022.102163_bib4
  article-title: Design and optimization of multipass heat exchangers
  publication-title: Chem. Eng. Process: Process Intensif.
  doi: 10.1016/j.cep.2007.02.004
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.csite.2022.102163_bib11
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– year: 1950
  ident: 10.1016/j.csite.2022.102163_bib1
– year: 1998
  ident: 10.1016/j.csite.2022.102163_bib30
  article-title: Shell-and-tube heat exchangers: single phase flow
– volume: 94
  start-page: 21
  year: 1998
  ident: 10.1016/j.csite.2022.102163_bib37
  article-title: Effectively design shell-and-tube heat exchangers
  publication-title: Chem. Eng. Prog.
– volume: 65
  start-page: 53
  year: 1969
  ident: 10.1016/j.csite.2022.102163_bib28
  article-title: Solution of shell side flow, pressure drop and heat transfer by stream analysis method
  publication-title: Chem. Eng. Prog. Symp. Ser.
– year: 2008
  ident: 10.1016/j.csite.2022.102163_bib36
– start-page: 89
  year: 1951
  ident: 10.1016/j.csite.2022.102163_bib26
– volume: 31
  start-page: 621
  year: 1985
  ident: 10.1016/j.csite.2022.102163_bib19
  article-title: An index for operational flexibility in chemical process design
  publication-title: Part I: Formulation and theory. American Institute of Chemical Engineers
– volume: 11
  start-page: 675
  year: 1987
  ident: 10.1016/j.csite.2022.102163_bib21
  article-title: Active constraint strategy for flexibility analysis in chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(87)87011-4
– year: 2019
  ident: 10.1016/j.csite.2022.102163_bib33
– volume: 31
  start-page: 867
  year: 2007
  ident: 10.1016/j.csite.2022.102163_bib13
  article-title: Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1272
– volume: 25
  start-page: 1151
  year: 2008
  ident: 10.1016/j.csite.2022.102163_bib14
  article-title: Heat exchanger design based on economic optimization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.08.010
– volume: 28
  start-page: 1798
  year: 2008
  ident: 10.1016/j.csite.2022.102163_bib5
  article-title: Design optimization of shell-and-tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.11.009
– year: 1997
  ident: 10.1016/j.csite.2022.102163_bib34
– year: 2003
  ident: 10.1016/j.csite.2022.102163_bib25
SSID ssj0001738144
Score 2.3171008
Snippet Traditionally, the shell and tube heat exchanger (STHE) design minimizes the total annual cost subject to allowable pressure drop. However, it is often...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102163
SubjectTerms Flexibility index
Genetic algorithm
Shell and tube heat exchanger
Simultaneous optimization
SummonAdditionalLinks – databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1Fe8sBIVDtx7GSkFahCggUqdYviFyqq2qi0Ev333DkJtEsHxljnPM7OfZ_su8-E3LHU5kx4EaV54iORWhXpTGaRNIkyuffMhnXIl1c5HInncTrukEFbC4NplU3sr2N6iNZNS6_xZq-aTHpvccwBfdQ4xoEGogNxGKtKsYhv3P9bZ1GASeFMV7SPsEMrPhTSvEzYpI0BylDFgMtkC6CCjv8GTm1gz9MROWxII32o3-uYdNzshBxsSAmektc3zOik5czS5Uo7ijGWuu-mrpd61L3UU0dtyNigX7Uo7ZoCZ6VVXSxA55Vb1LLd6zMyenp8Hwyj5qyEyAgullECQM90rFzGnVKSlSxJhQf-YE0uDdMyTxV3TmgOUSWWmgFNSpXn0ltmFfyF52RvNp-5C0Iz4zMDrIiVqRMWbIHkcKOswz1aY22XxK2DCtMIieN5FtOizRj7LIJXC_RqUXu1S-5_O1W1jsZu8z56_tcURbBDw3zxUTSzoOAuzqXlZY7f6kogkwbYjRUuY3mmrekS2Y5bsTWn4FaTXU-__G_HK7KPV3UO2jXZWy5W7gZIy1Lfhln5A5wp57A
  priority: 102
  providerName: Elsevier
Title Shell and tube heat exchanger flexible design strategy for process operability
URI https://dx.doi.org/10.1016/j.csite.2022.102163
https://doaj.org/article/1e296d1a90354ea083c901d4e8098bdc
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIhJ34EY8UgQoSXaBStyh-SaCqrUor0X_P2U6rsJSFJUPk2NGXy91n-_wdQjeEW0WYZxlXhc8YtzLTpSgzYQpplPfExnXI14HoD9nLiI9apb5CTliSB07A3VGXK2FprUjBmauBMRgIYZa5kqhSWxO8L1GkNZmKqysSIlGs5JrnlGWUy9Facigmd5m4NQsT_zxoF1BR_ApLUb2_FZ1aEefpAO03VBHfp1c8RDtucoT2WgKCx2jwFvI4cT2xeLHUDgfPit13c5oX-6B2qccO25ingb-SFO0KA1PFs3REAE9nbp7EulcnaPj0-P7Qz5oKCZlhlC2yAsI70bl0JXVSClIHkDywBmuUMEQLxSV1jmkKviQXmgA54tJT4S2xEv69U9SZTCfuDOHS-NIAFyI1d8xCW6A21Ejrws6ssbaL8jVAlWnkw0MVi3G1zhP7rCKqVUC1Sqh20e3moVlSz9jevBeQ3zQN0tfxBhhE1RhE9ZdBdJFYf7eqYRGJHUBXH9tGP_-P0S_QbugyZaFdos5ivnRXQFsW-jpaKFyfR70fT9TnpA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT_MwEB2xHIADYtVXVh84EtVOHDs5AgKVrRdA6s2KN9RPqK1KkeDfM3YSKBcOXB1PlrEz78meeQY4obktKfc8ycvMJzy3MtGFKBJhMmlK76mN65D3fdF74jeDfLAAF20tTEirbGJ_HdNjtG5auo03u5PhsPuQpgzRRw7SMNBIdBZhGdmACAL614Pz74UWiaAUD3UNBkmwaNWHYp6Xibu0KWJZkDFgIvuBUFHIfw6o5sDnagPWG9ZIzuoX24QFN9qCtTktwW3oP4SUTlKNLJm9aUdCkCXuvSnsJT4IX-oXR2xM2SCvtSrtB0HSSiZ1tQAZT9y01u3-2IGnq8vHi17SHJaQGM74LMkQ6alOpSuYk1LQimY590ggrCmFoVqUuWTOcc0wrKRCU-RJufRMeEutxN9wF5ZG45H7B6QwvjBIi2iVO26xL7IcZqR1YZPWWNuBtHWQMo2SeDjQ4kW1KWP_VfSqCl5VtVc7cPplNKmFNH7vfh48_9U1qGDHhvH0WTXTQDGXlsKyqgzf6ipkkwbpjeWuoGWhremAaMdN_ZhUeKvhb0_f-6vhMaz0Hu_v1N11_3YfVsOVOiHtAJZm0zd3iAxmpo_iDP0EV8Dq1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shell+and+tube+heat+exchanger+flexible+design+strategy+for+process+operability&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Liang-Yu+Chen&rft.au=Vincentius+Surya+Kurnia+Adi&rft.au=Rosalia+Laxmidewi&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=37&rft.spage=102163&rft_id=info:doi/10.1016%2Fj.csite.2022.102163&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e296d1a90354ea083c901d4e8098bdc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon