Inheritance of resistance to Mal de Río Cuarto (MRC) disease in Zea mays (L.)

No genetic estimates for resistance to Mal de Río Cuarto (MRC) disease in Zea mays (L.) are currently available in the literature. Therefore, the objectives of this investigation were (i) to estimate the variance and heritability of partial resistance to MRC disease and of other agronomic traits fro...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of agricultural science Vol. 139; no. 1; pp. 47 - 53
Main Authors DI RENZO, M. A., BONAMICO, N. C., DÍAZ, D. D., SALERNO, J. C., IBAÑEZ, M. M., GESUMARIA, J. J.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.08.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:No genetic estimates for resistance to Mal de Río Cuarto (MRC) disease in Zea mays (L.) are currently available in the literature. Therefore, the objectives of this investigation were (i) to estimate the variance and heritability of partial resistance to MRC disease and of other agronomic traits from maize families and (ii) to examine associations among MRC disease severity values across different environments and between MRC and other agronomic traits. These estimations, obtained in an endemic area, could contribute to the design of efficient enhancement programmes and evaluation activity for the improvement of MRC resistance. The research was conducted by testing 227 F3 derived-lines from a cross between a susceptible dent line, Mo17, and a partially resistant flint line, BLS14, for MRC disease at two Río Cuarto locations in each of 2 years. The resistance of the lines, measured with a disease severity index (DSI), was normally distributed across environments. Genotypic variances were highly significant on all scoring environments. Estimates of genotype–environment interaction were also significant, suggesting that certain genotypes have little stability over different environments. For disease severity index all estimates demonstrated moderate heritabilities ranging from 0.44 to 0.56 and were similar when based on individual environments or across environment. Confidence interval widths ranged from 34.88 to 50.30% as large as the heritability point estimate. The correlations between environments were small enough to indicate that families did not rank similarly in individual environments for MRC resistance. Disease severity index correlated significantly (P<0.01) with plant height, leaf surface, leaf border, leaf length and tassel type. Heritability estimates for plant height and tassel type were 0.48 and 0.38 respectively and for the various leaf traits heritability values were very low. On the basis of the substantial genotype–environment interaction and the little association between DSI values in the different environments, selection for an increased resistance to MRC disease would require evaluation of germplasm across multiple years and locations. Tassel type would be a useful predictor of DSI and can be used effectively to improve screening procedures.
Bibliography:istex:1E47DDAEC35CC1C486FEFEDAE0E56D2C24238B6F
PII:S0021859602002241
ark:/67375/6GQ-1NPV4WH0-Z
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-8596
1469-5146
DOI:10.1017/S0021859602002241