A near real-time deep learning approach for detecting rice phenology based on UAV images
•Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of time-series data.•Integrating regional mean thermal time into CNN improve the detection accuracy.•The estimated harvest dates was in close agreement...
Saved in:
Published in | Agricultural and forest meteorology Vol. 287; p. 107938 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of time-series data.•Integrating regional mean thermal time into CNN improve the detection accuracy.•The estimated harvest dates was in close agreement with the observation.•The proposed approach provides near real-time estimation of the principal phenological stages of rice.
Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop phenology detection have relied on time-series (multi-temporal) vegetation index (VI) data, and have included threshold-based, phenometrics-based and shape-model-fitting-based (SMF) methods. However, the performance of these methods depends on the duration and temporal resolution of the time-series data. In this study, we propose a new approach which identifies the principal growth stages of rice (Oryza sativa L.) directly from RGB images. Only a mono-temporal unmanned aerial vehicle (UAV) imagery was required for a large-area phenology detection via the well-trained network. An efficient convolutional neural network (CNN) architecture was designed to estimate rice phenology. The CNN incorporated spatial pyramid pooling (SPP), transfer learning and an auxiliary branch with external data. A total of 82 plots across a 160-hectare rice cultivation area of Southern China were selected to evaluate the proposed network. CNN predictions were ground truthed using rice phenology measurements taken from each plot throughout the growing season. Aerial data were collected using a fixed-wing UAV equipped with multispectral and RGB cameras. The performance of traditional SMF methods deteriorated when time-series VI data were of short duration. In contrast, the phenological stage estimated by the proposed network showed good agreement with ground observations, with a top-1 accuracy rate of 83.9% and mean absolute error (MAE) of 0.18. The spatial distribution of harvest dates for 627 plots in the study area were computed from the phenological stage estimates. The estimates matched well with the observed harvest dates. The results demonstrated the excellent performance of the proposed deep learning approach in near real-time phenology detection and harvest time estimation. |
---|---|
AbstractList | •Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of time-series data.•Integrating regional mean thermal time into CNN improve the detection accuracy.•The estimated harvest dates was in close agreement with the observation.•The proposed approach provides near real-time estimation of the principal phenological stages of rice.
Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop phenology detection have relied on time-series (multi-temporal) vegetation index (VI) data, and have included threshold-based, phenometrics-based and shape-model-fitting-based (SMF) methods. However, the performance of these methods depends on the duration and temporal resolution of the time-series data. In this study, we propose a new approach which identifies the principal growth stages of rice (Oryza sativa L.) directly from RGB images. Only a mono-temporal unmanned aerial vehicle (UAV) imagery was required for a large-area phenology detection via the well-trained network. An efficient convolutional neural network (CNN) architecture was designed to estimate rice phenology. The CNN incorporated spatial pyramid pooling (SPP), transfer learning and an auxiliary branch with external data. A total of 82 plots across a 160-hectare rice cultivation area of Southern China were selected to evaluate the proposed network. CNN predictions were ground truthed using rice phenology measurements taken from each plot throughout the growing season. Aerial data were collected using a fixed-wing UAV equipped with multispectral and RGB cameras. The performance of traditional SMF methods deteriorated when time-series VI data were of short duration. In contrast, the phenological stage estimated by the proposed network showed good agreement with ground observations, with a top-1 accuracy rate of 83.9% and mean absolute error (MAE) of 0.18. The spatial distribution of harvest dates for 627 plots in the study area were computed from the phenological stage estimates. The estimates matched well with the observed harvest dates. The results demonstrated the excellent performance of the proposed deep learning approach in near real-time phenology detection and harvest time estimation. Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop phenology detection have relied on time-series (multi-temporal) vegetation index (VI) data, and have included threshold-based, phenometrics-based and shape-model-fitting-based (SMF) methods. However, the performance of these methods depends on the duration and temporal resolution of the time-series data. In this study, we propose a new approach which identifies the principal growth stages of rice (Oryza sativa L.) directly from RGB images. Only a mono-temporal unmanned aerial vehicle (UAV) imagery was required for a large-area phenology detection via the well-trained network. An efficient convolutional neural network (CNN) architecture was designed to estimate rice phenology. The CNN incorporated spatial pyramid pooling (SPP), transfer learning and an auxiliary branch with external data. A total of 82 plots across a 160-hectare rice cultivation area of Southern China were selected to evaluate the proposed network. CNN predictions were ground truthed using rice phenology measurements taken from each plot throughout the growing season. Aerial data were collected using a fixed-wing UAV equipped with multispectral and RGB cameras. The performance of traditional SMF methods deteriorated when time-series VI data were of short duration. In contrast, the phenological stage estimated by the proposed network showed good agreement with ground observations, with a top-1 accuracy rate of 83.9% and mean absolute error (MAE) of 0.18. The spatial distribution of harvest dates for 627 plots in the study area were computed from the phenological stage estimates. The estimates matched well with the observed harvest dates. The results demonstrated the excellent performance of the proposed deep learning approach in near real-time phenology detection and harvest time estimation. |
ArticleNumber | 107938 |
Author | Yu, Jin Shi, Liangsheng Huang, Kai Yang, Qi Han, Jingye |
Author_xml | – sequence: 1 givenname: Qi surname: Yang fullname: Yang, Qi organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China – sequence: 2 givenname: Liangsheng surname: Shi fullname: Shi, Liangsheng email: liangshs@whu.edu.cn organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China – sequence: 3 givenname: Jingye surname: Han fullname: Han, Jingye organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China – sequence: 4 givenname: Jin surname: Yu fullname: Yu, Jin organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China – sequence: 5 givenname: Kai surname: Huang fullname: Huang, Kai organization: Guangxi Hydraulic Research Institute, Nanning, Guangxi 530023, China |
BookMark | eNqNkDtPwzAUhS1UJNrCb8AjS0rsPBwPDFXFS6rEQhGb5Tg3ravUDraL1H-PoyAGFpiudO459_HN0MRYAwhdk3RBUlLe7hdy61rrDhAWNKWDynhWnaEpqViWUJqnEzSNziohnGYXaOb9Pk0JZYxP0fsSG5AOO5BdEvQBcAPQ4y5qRpstln3vrFQ7HDfEVgAVBtlpBbjfgbGd3Z5wLT002Bq8Wb5hfZBb8JfovJWdh6vvOkebh_vX1VOyfnl8Xi3XicpJHhIq24aRFlgpa9ZwxTKeM8KqrGFsELisVVuXSrUgC8hVUVPCC5K3ZaF4Katsjm7GufHOjyP4IA7aK-g6acAevaAFyzPKSZlG691oVc5676AVSgcZtDXBSd0JkoqBqNiLH6JiICpGojHPfuV7F591p38kl2MSIolPDU54pcEoaLSLREVj9Z8zvgDp7Zjd |
CitedBy_id | crossref_primary_10_3390_rs14020244 crossref_primary_10_1016_j_compag_2025_109938 crossref_primary_10_1016_j_jag_2022_103121 crossref_primary_10_1016_j_compag_2021_106543 crossref_primary_10_3390_agronomy11122446 crossref_primary_10_3390_agriculture12071033 crossref_primary_10_1016_j_jag_2024_104057 crossref_primary_10_1093_jxb_erac294 crossref_primary_10_3390_rs15235565 crossref_primary_10_1016_j_iswcr_2023_04_001 crossref_primary_10_1016_j_isprsjprs_2023_05_022 crossref_primary_10_1109_ACCESS_2021_3138847 crossref_primary_10_3390_rs13091620 crossref_primary_10_1016_j_ecoinf_2022_101552 crossref_primary_10_1016_j_compag_2024_109813 crossref_primary_10_3390_rs14102378 crossref_primary_10_1016_j_fcr_2021_108419 crossref_primary_10_1117_1_JRS_17_038503 crossref_primary_10_3390_rs14153723 crossref_primary_10_3390_rs13245177 crossref_primary_10_1016_j_isprsjprs_2024_01_006 crossref_primary_10_1016_j_isprsjprs_2024_08_011 crossref_primary_10_37221_eaef_15_2_47 crossref_primary_10_1016_j_phycom_2023_102079 crossref_primary_10_3934_math_2024498 crossref_primary_10_1186_s13007_024_01278_0 crossref_primary_10_1515_nleng_2022_0299 crossref_primary_10_3390_drones8040140 crossref_primary_10_3390_rs15081979 crossref_primary_10_1016_j_fcr_2021_108148 crossref_primary_10_3390_agriengineering6010048 crossref_primary_10_1007_s40747_023_01261_7 crossref_primary_10_1016_j_knosys_2022_109644 crossref_primary_10_32604_cmc_2024_045101 crossref_primary_10_3390_rs14061331 crossref_primary_10_1029_2024WR037582 crossref_primary_10_3390_rs14122927 crossref_primary_10_3390_rs15030679 crossref_primary_10_3390_agriculture14081240 crossref_primary_10_3390_ijerph20031770 crossref_primary_10_1016_j_isprsjprs_2022_01_023 crossref_primary_10_3390_ijgi9120728 crossref_primary_10_1016_j_aej_2024_08_076 crossref_primary_10_3390_s20216205 crossref_primary_10_3390_jimaging11010028 crossref_primary_10_1016_j_atech_2022_100129 crossref_primary_10_3390_s22010094 crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_3390_drones8040166 crossref_primary_10_1016_j_micpro_2020_103607 crossref_primary_10_1016_j_agrformet_2023_109646 crossref_primary_10_1016_j_cj_2022_03_001 crossref_primary_10_1016_j_fcr_2023_108847 crossref_primary_10_3390_rs13010086 crossref_primary_10_3390_rs13142787 crossref_primary_10_1088_2631_8695_ad9afe crossref_primary_10_34133_plantphenomics_0017 crossref_primary_10_3390_agronomy14030494 crossref_primary_10_1016_j_jenvman_2025_124969 crossref_primary_10_3390_agronomy14122751 crossref_primary_10_1016_j_compag_2024_109212 crossref_primary_10_3390_rs13142678 crossref_primary_10_1016_j_fcr_2023_109044 crossref_primary_10_1007_s10661_024_13221_w crossref_primary_10_3390_rs15153859 crossref_primary_10_3390_rs14143453 crossref_primary_10_1016_j_compag_2024_109608 crossref_primary_10_1016_j_compag_2024_109728 crossref_primary_10_1016_j_jafr_2023_100590 crossref_primary_10_3389_fpls_2022_805738 crossref_primary_10_3390_drones7020083 crossref_primary_10_3390_rs13204057 crossref_primary_10_3390_rs12213617 crossref_primary_10_1016_j_inpa_2024_04_006 crossref_primary_10_1016_j_catena_2021_105442 crossref_primary_10_3389_frai_2020_00028 crossref_primary_10_1016_j_jconhyd_2024_104394 crossref_primary_10_3390_agronomy11122465 crossref_primary_10_1016_j_rse_2023_113729 crossref_primary_10_1051_e3sconf_202128502038 crossref_primary_10_1080_10106049_2022_2104390 crossref_primary_10_1109_JSTARS_2024_3505964 crossref_primary_10_1016_j_compag_2022_107370 crossref_primary_10_3389_frai_2024_1477637 crossref_primary_10_3934_agrfood_2023038 crossref_primary_10_1016_j_compag_2024_109076 crossref_primary_10_1016_j_agrformet_2022_109283 crossref_primary_10_1109_MGRS_2020_2998816 crossref_primary_10_5194_essd_16_3893_2024 crossref_primary_10_3390_agronomy14081620 crossref_primary_10_1016_j_fcr_2022_108693 crossref_primary_10_1016_j_envres_2024_118845 crossref_primary_10_1051_e3sconf_202235001008 crossref_primary_10_1029_2021WR031429 crossref_primary_10_1007_s12517_021_08420_5 crossref_primary_10_1016_j_agee_2023_108810 crossref_primary_10_1080_01431161_2023_2216846 crossref_primary_10_1109_JSTARS_2025_3543190 crossref_primary_10_2174_1872212115666210827100258 crossref_primary_10_1002_gj_4048 crossref_primary_10_1109_ACCESS_2021_3069449 crossref_primary_10_1007_s11119_023_09996_6 crossref_primary_10_3390_drones8110665 crossref_primary_10_1371_journal_pone_0282364 crossref_primary_10_1016_j_atech_2023_100353 crossref_primary_10_3390_rs15082205 crossref_primary_10_3390_rs15225413 |
Cites_doi | 10.1016/j.jag.2012.01.009 10.1078/0176-1617-01176 10.1016/j.tplants.2013.09.008 10.1002/2015JD023969 10.1002/arp.399 10.1016/j.fcr.2019.02.022 10.1016/j.rse.2010.04.019 10.1016/j.fcr.2018.12.009 10.1016/j.agrformet.2013.01.007 10.1016/j.compag.2018.02.016 10.1111/j.1744-7348.1991.tb04895.x 10.1016/j.jag.2017.01.001 10.1016/j.agrformet.2014.06.007 10.1016/j.agwat.2015.10.013 10.1016/j.rse.2012.12.017 10.3390/rs10020293 10.1186/s13007-018-0333-4 10.1016/j.rse.2014.03.008 10.3390/rs8050416 10.1016/j.measurement.2015.12.014 10.1016/j.jag.2014.08.011 10.3390/rs70403467 10.5194/isprs-archives-XLII-1-W1-551-2017 10.1016/j.eja.2018.12.004 10.1016/S0034-4257(02)00135-9 10.1016/0168-1923(92)90071-B 10.3390/rs10020268 10.1007/s11119-017-9504-y 10.1016/0168-1923(95)02236-Q 10.1016/j.agrformet.2014.09.011 10.1016/j.isprsjprs.2018.02.011 10.1016/j.rse.2016.03.039 10.1017/S0021859618000436 10.1016/S0168-1699(02)00116-3 10.1016/j.rse.2017.06.007 10.1016/0034-4257(94)90143-0 10.3390/rs11060691 10.1016/j.agrformet.2019.01.019 10.3390/rs10101540 10.1016/j.agrformet.2017.10.015 10.1007/BF01580735 10.1016/j.rse.2005.03.008 10.1016/j.agrformet.2018.01.005 10.1029/97GB00330 10.3390/rs61110395 10.1016/j.rse.2013.02.029 10.2134/agronj2004.1139 10.1007/s11119-012-9274-5 10.1080/01431160802632249 10.1109/TPAMI.2015.2389824 10.3390/s19204363 10.1016/j.rse.2006.04.014 10.1016/S0378-4290(97)00140-8 10.3390/s19071569 10.1016/j.cageo.2004.05.006 10.1038/nature25785 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.agrformet.2020.107938 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture |
EISSN | 1873-2240 |
ExternalDocumentID | 10_1016_j_agrformet_2020_107938 S016819232030040X |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABLJU ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSE SSZ T5K WH7 Y6R ZMT ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- RIG SEP SEW SSH WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c414t-2afd71fe76ab7d9c739471783d77b7d99abcfb6ccfea5e4c5b219514f65c96a83 |
IEDL.DBID | .~1 |
ISSN | 0168-1923 |
IngestDate | Fri Jul 11 11:00:21 EDT 2025 Tue Jul 01 04:35:18 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 23 02:47:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning UAV Convolutional neural network Shape model fitting Rice phenology detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-2afd71fe76ab7d9c739471783d77b7d99abcfb6ccfea5e4c5b219514f65c96a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2574329160 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2574329160 crossref_citationtrail_10_1016_j_agrformet_2020_107938 crossref_primary_10_1016_j_agrformet_2020_107938 elsevier_sciencedirect_doi_10_1016_j_agrformet_2020_107938 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural and forest meteorology |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed, Huete (bib0076) 2003; 84 Kouadio, Duveiller, Djaby, El Jarroudi, Defourny, Tychon (bib0029) 2012; 18 Pan, Huang, Zhou, Wang, Cheng, Zhang, Blackburn, Yan, Liu (bib0040) 2015; 34 Lati, Filin, Elnashef, Eizenberg (bib0032) 2019; 19 Liénard, Vogs, Gatziolis, Strigul (bib0034) 2016; 81 Maturana, Scherer (bib0039) 2015 Lancashire, Bleiholder, Van Den Boom, Langelüddeke, Stauss, Weber, Witzenberger (bib0031) 1991; 119 White, Nemani (bib0066) 2006; 104 Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. 51, arXiv Prepr.arXiv:1409.1556. Son, Chen, Chen, Minh, Trung (bib0052) 2014; 197 Boschetti, Stroppiana, Brivio, Bocchi (bib0004) 2009; 30 You, Li, Low, Lobell, Ermon (bib0072) 2017 Bolton, Friedl (bib0003) 2013; 173 Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bib0048) 2005; 96 Burkart, Hecht, Kraska, Rascher (bib0007) 2018; 19 Fang, Tang, Peng, Gong, Dai, Chai, Liu (bib0011) 2016; 8 Huang, Liu, van der Maaten, Weinberger (bib0020) 2017 Wang, Huang, Zhang, Li, She, Wei, Gao, Song (bib0063) 2015; 7 Brocks, Bareth (bib0006) 2018; 10 He, Zhang, Ren, Sun (bib0017) 2015; 37 Bendig, Bolten, Bennertz, Broscheit, Eichfuss, Bareth (bib0002) 2014; 6 Cassman, Peng, Olk, Ladha, Reichardt, Dobermann, Singh (bib0009) 1998; 56 Jakubauskas, Legates, Kastens (bib0023) 2002; 37 Verhoeven (bib0060) 2011 Rußwurm, Körner (bib0043) 2017 Wang, Liu, Sun, Fu (bib0065) 2019 Jin, Liu, Baret, Hemerlé, Comar (bib0024) 2017; 198 Sakamoto (bib0044) 2018; 138 Trombetta, Iacobellis, Tarantino, Gentile (bib0058) 2016; 164 Yang, Shi, Han, Zha, Zhu (bib0070) 2019; 235 Gao, Jin, Huang, Zhang (bib0013) 1992; 60 Setiyono, Quicho, Gatti, Campos-Taberner, Busetto, Collivignarelli, García-Haro, Boschetti, Khan, Holecz (bib0049) 2018; 10 Manfron, Delmotte, Busetto, Hossard, Ranghetti, Brivio, Boschetti (bib0037) 2017; 57 Zhang, Kovacs (bib0074) 2012; 13 He, Asseng, Zhao, Wu, Yang, Zhuang, Jin, Yu (bib0018) 2015; 200 Srivastava, R.K., Greff, K., Schmidhuber, J., 2015. Training very deep networks. arXiv Prepr. arXiv:1507.06228. Sakamoto, Gitelson, Arkebauer (bib0046) 2013; 131 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0056) 2016 Wu, Yang, Yang, Xu, Han, Zhu (bib0068) 2019; 11 Qi, Su, Niessner, Dai, Yan, Guibas (bib0042) 2016 He, Zhang, Ren, Sun (bib0016) 2016 Liu, Zhang, Yu, Gao, Yang (bib0035) 2018; 10 Guo, An, Wang (bib0015) 2016; 121 Krizhevsky, Sulskever, Hinton (bib0030) 2012; 60 Sun, Di, Sun, Shen, Lai (bib0054) 2019; 19 Szegedy, Ioffe, Vanhoucke, Alemi (bib0055) 2017 Araus, Cairns (bib0001) 2014; 19 Cui, Zhang, Chen, Zhang (bib0010) 2018; 555 Gitelson (bib0014) 2004; 161 Wang, Tran, Desai, Lobell, Ermon (bib0062) 2018 Zeng, Wardlow, Wang, Shan, Tadesse, Hayes, Li (bib0073) 2016; 181 Zhang, Tao (bib0075) 2019; 268 Ma, Li, Chen, Du, Zheng, Zhang, Sun (bib0036) 2019; 103 Yin, Kropff, McLaren, Visperas (bib0071) 1995; 77 Sakamoto, Gitelson, Arkebauer (bib0045) 2014; 147 Viña, Gitelson, Rundquist, Keydan, Leavitt, Schepers (bib0061) 2004; 96 Yalcin (bib0069) 2017 Sakamoto, Wardlow, Gitelson, Verma, Suyker, Arkebauer (bib0047) 2010; 114 Bouman, Kropff, Tuong, Wopereis, ten Berge, van Laar (bib0005) 2001 Qi, Su, Mo, Guibas (bib0041) 2017 Sinha, Bai, Ramani (bib0051) 2016 Hu, Shi, Huang, Zha, Hu, Ye, Yang (bib0019) 2019; 232 Byrd, Schnabel, Shultz (bib0008) 1988; 40 Jain, Mondal, DeFries, Small, Galford (bib0022) 2013; 134 Van Keulen, Penning de Vries, Drees (bib0059) 1982 Wang, Wang, Wang, Zhang, Zheng, Huang, Tan (bib0064) 2018; 250–251 Kamilaris, Prenafeta-Boldú (bib0027) 2018 Jönsson, Eklundh (bib0025) 2004; 30 White, Thornton, Running (bib0067) 1997; 11 Klosterman, Melaas, Wang, Martinez, Frederick, O'Keefe, Orwig, Wang, Sun, Schaaf, Friedl, Richardson (bib0028) 2018; 248 Kamilaris, Prenafeta-Boldú (bib0026) 2018; 147 Masjedi, Carpenter, Crawford, Tuinstra (bib0038) 2019 Taghavi Namin, Esmaeilzadeh, Najafi, Brown, Borevitz (bib0057) 2018; 14 LeCun, Bose, Denker, Henderson, Howard, Hubbard, Jackel (bib0033) 1990 Fischer (bib0012) 1994; 48 Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv Prepr. arXiv:1502.03167. Jain (10.1016/j.agrformet.2020.107938_bib0022) 2013; 134 Hu (10.1016/j.agrformet.2020.107938_bib0019) 2019; 232 Zhang (10.1016/j.agrformet.2020.107938_bib0074) 2012; 13 Kouadio (10.1016/j.agrformet.2020.107938_bib0029) 2012; 18 Qi (10.1016/j.agrformet.2020.107938_bib0042) 2016 Son (10.1016/j.agrformet.2020.107938_bib0052) 2014; 197 Lancashire (10.1016/j.agrformet.2020.107938_bib0031) 1991; 119 10.1016/j.agrformet.2020.107938_bib0021 Ma (10.1016/j.agrformet.2020.107938_bib0036) 2019; 103 Yalcin (10.1016/j.agrformet.2020.107938_bib0069) 2017 Brocks (10.1016/j.agrformet.2020.107938_bib0006) 2018; 10 Sakamoto (10.1016/j.agrformet.2020.107938_bib0046) 2013; 131 Pan (10.1016/j.agrformet.2020.107938_bib0040) 2015; 34 Van Keulen (10.1016/j.agrformet.2020.107938_bib0059) 1982 Krizhevsky (10.1016/j.agrformet.2020.107938_bib0030) 2012; 60 Fischer (10.1016/j.agrformet.2020.107938_bib0012) 1994; 48 Gitelson (10.1016/j.agrformet.2020.107938_bib0014) 2004; 161 Yang (10.1016/j.agrformet.2020.107938_bib0070) 2019; 235 Kamilaris (10.1016/j.agrformet.2020.107938_bib0027) 2018 Wang (10.1016/j.agrformet.2020.107938_bib0063) 2015; 7 Bendig (10.1016/j.agrformet.2020.107938_bib0002) 2014; 6 Sinha (10.1016/j.agrformet.2020.107938_bib0051) 2016 He (10.1016/j.agrformet.2020.107938_bib0017) 2015; 37 Rußwurm (10.1016/j.agrformet.2020.107938_bib0043) 2017 Qi (10.1016/j.agrformet.2020.107938_bib0041) 2017 Szegedy (10.1016/j.agrformet.2020.107938_bib0055) 2017 Boschetti (10.1016/j.agrformet.2020.107938_bib0004) 2009; 30 Jönsson (10.1016/j.agrformet.2020.107938_bib0025) 2004; 30 Zhang (10.1016/j.agrformet.2020.107938_bib0075) 2019; 268 Zeng (10.1016/j.agrformet.2020.107938_bib0073) 2016; 181 Zhang (10.1016/j.agrformet.2020.107938_bib0076) 2003; 84 He (10.1016/j.agrformet.2020.107938_bib0016) 2016 Gao (10.1016/j.agrformet.2020.107938_bib0013) 1992; 60 Verhoeven (10.1016/j.agrformet.2020.107938_bib0060) 2011 Wang (10.1016/j.agrformet.2020.107938_bib0062) 2018 Sakamoto (10.1016/j.agrformet.2020.107938_bib0048) 2005; 96 Klosterman (10.1016/j.agrformet.2020.107938_bib0028) 2018; 248 White (10.1016/j.agrformet.2020.107938_bib0067) 1997; 11 You (10.1016/j.agrformet.2020.107938_bib0072) 2017 Jin (10.1016/j.agrformet.2020.107938_bib0024) 2017; 198 Kamilaris (10.1016/j.agrformet.2020.107938_bib0026) 2018; 147 Trombetta (10.1016/j.agrformet.2020.107938_bib0058) 2016; 164 Viña (10.1016/j.agrformet.2020.107938_bib0061) 2004; 96 Liénard (10.1016/j.agrformet.2020.107938_bib0034) 2016; 81 Burkart (10.1016/j.agrformet.2020.107938_bib0007) 2018; 19 Lati (10.1016/j.agrformet.2020.107938_bib0032) 2019; 19 Sakamoto (10.1016/j.agrformet.2020.107938_bib0047) 2010; 114 Cui (10.1016/j.agrformet.2020.107938_bib0010) 2018; 555 Masjedi (10.1016/j.agrformet.2020.107938_bib0038) 2019 Wang (10.1016/j.agrformet.2020.107938_bib0065) 2019 Jakubauskas (10.1016/j.agrformet.2020.107938_bib0023) 2002; 37 Wu (10.1016/j.agrformet.2020.107938_bib0068) 2019; 11 LeCun (10.1016/j.agrformet.2020.107938_bib0033) 1990 Byrd (10.1016/j.agrformet.2020.107938_bib0008) 1988; 40 Guo (10.1016/j.agrformet.2020.107938_bib0015) 2016; 121 Yin (10.1016/j.agrformet.2020.107938_bib0071) 1995; 77 Szegedy (10.1016/j.agrformet.2020.107938_bib0056) 2016 Sun (10.1016/j.agrformet.2020.107938_bib0054) 2019; 19 Maturana (10.1016/j.agrformet.2020.107938_bib0039) 2015 Setiyono (10.1016/j.agrformet.2020.107938_bib0049) 2018; 10 Fang (10.1016/j.agrformet.2020.107938_bib0011) 2016; 8 Sakamoto (10.1016/j.agrformet.2020.107938_bib0044) 2018; 138 Araus (10.1016/j.agrformet.2020.107938_bib0001) 2014; 19 10.1016/j.agrformet.2020.107938_bib0053 Bolton (10.1016/j.agrformet.2020.107938_bib0003) 2013; 173 10.1016/j.agrformet.2020.107938_bib0050 He (10.1016/j.agrformet.2020.107938_bib0018) 2015; 200 Liu (10.1016/j.agrformet.2020.107938_bib0035) 2018; 10 White (10.1016/j.agrformet.2020.107938_bib0066) 2006; 104 Taghavi Namin (10.1016/j.agrformet.2020.107938_bib0057) 2018; 14 Cassman (10.1016/j.agrformet.2020.107938_bib0009) 1998; 56 Wang (10.1016/j.agrformet.2020.107938_bib0064) 2018; 250–251 Manfron (10.1016/j.agrformet.2020.107938_bib0037) 2017; 57 Bouman (10.1016/j.agrformet.2020.107938_bib0005) 2001 Huang (10.1016/j.agrformet.2020.107938_bib0020) 2017 Sakamoto (10.1016/j.agrformet.2020.107938_bib0045) 2014; 147 |
References_xml | – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: bib0017 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 147 start-page: 219 year: 2014 end-page: 231 ident: bib0045 article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data publication-title: Remote Sens. Environ. – year: 2018 ident: bib0027 article-title: A review of the use of convolutional neural networks in agriculture publication-title: J. Agric. Sci. – volume: 18 start-page: 111 year: 2012 end-page: 118 ident: bib0029 article-title: Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 6 start-page: 10395 year: 2014 end-page: 10412 ident: bib0002 article-title: Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging publication-title: Remote Sens. – reference: Srivastava, R.K., Greff, K., Schmidhuber, J., 2015. Training very deep networks. arXiv Prepr. arXiv:1507.06228. – volume: 7 start-page: 3467 year: 2015 end-page: 3488 ident: bib0063 article-title: Rice fields mapping in fragmented area using multi-temporal HJ-1A/B CCD images publication-title: Remote Sens. – start-page: 589 year: 2019 end-page: 593 ident: bib0065 article-title: Phenological prediction algorithm based on deep learning, publication-title: IEEE International Conference on Mechatronics and Automation (ICMA) – start-page: 770 year: 2016 end-page: 778 ident: bib0016 article-title: Deep residual learning for image recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 268 start-page: 224 year: 2019 end-page: 233 ident: bib0075 article-title: Improving rice development and phenology prediction across contrasting climate zones of China publication-title: Agric. For. Meteorol. – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: bib0026 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agric. – volume: 30 start-page: 833 year: 2004 end-page: 845 ident: bib0025 article-title: TIMESAT - a program for analyzing time-series of satellite sensor data publication-title: Comput. Geosci. – start-page: 922 year: 2015 end-page: 928 ident: bib0039 article-title: VoxNet: a 3D convolutional neural network for real-time object recognition publication-title: IEEE International Conference on Intelligent Robots and Systems – reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv Prepr. arXiv:1502.03167. – volume: 250–251 start-page: 319 year: 2018 end-page: 329 ident: bib0064 article-title: Modelling maize phenology, biomass growth and yield under contrasting temperature conditions publication-title: Agric. For. Meteorol. – volume: 235 start-page: 142 year: 2019 end-page: 153 ident: bib0070 article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images publication-title: Field Crops Res. – volume: 19 start-page: 1 year: 2019 end-page: 21 ident: bib0054 article-title: County-level soybean yield prediction using deep CNN-LSTM model publication-title: Sensors – volume: 119 start-page: 561 year: 1991 end-page: 601 ident: bib0031 article-title: A uniform decimal code for growth stages of crops and weeds publication-title: Ann. Appl. Biol. – year: 2001 ident: bib0005 article-title: ORYZA2000: Modeling Lowland Rice – volume: 10 start-page: 268 year: 2018 ident: bib0006 article-title: Estimating barley biomass with crop surface models from oblique RGB imagery publication-title: Remote Sens. – volume: 19 start-page: 1569 year: 2019 ident: bib0032 article-title: 3-D image-driven morphological crop analysis: a novel method for detection of sunflower broomrape initial subsoil parasitism publication-title: Sensors – volume: 96 start-page: 366 year: 2005 end-page: 374 ident: bib0048 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sens. Environ. – volume: 30 start-page: 4643 year: 2009 end-page: 4662 ident: bib0004 article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images publication-title: Int. J. Remote Sens. – start-page: 77 year: 2017 end-page: 85 ident: bib0041 article-title: PointNet: deep learning on point sets for 3D classification and segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 10 start-page: 293 year: 2018 ident: bib0049 article-title: Spatial rice yield estimation based on MODIS and sentinel-1 SAR data and ORYZA crop growth model publication-title: Remote Sens. – volume: 60 start-page: 84 year: 2012 end-page: 90 ident: bib0030 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 416 year: 2016 ident: bib0011 article-title: Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data publication-title: Remote Sens. – volume: 197 start-page: 52 year: 2014 end-page: 64 ident: bib0052 article-title: A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation publication-title: Agric. For. Meteorol. – volume: 48 start-page: 220 year: 1994 end-page: 230 ident: bib0012 article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters publication-title: Remote Sens. Environ. – year: 2011 ident: bib0060 article-title: Taking computer vision aloft - archaeological three-dimensional reconstructions from aerial photographs with photoscan publication-title: Archaeol. Prospect. – volume: 56 start-page: 7 year: 1998 end-page: 39 ident: bib0009 article-title: Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems publication-title: Field Crops Res. – volume: 248 start-page: 397 year: 2018 end-page: 407 ident: bib0028 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. – volume: 131 start-page: 215 year: 2013 end-page: 231 ident: bib0046 article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information publication-title: Remote Sens. Environ. – start-page: 5648 year: 2016 end-page: 5656 ident: bib0042 article-title: Volumetric and multi-view CNNs for object classification on 3D data publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 37 start-page: 127 year: 2002 end-page: 139 ident: bib0023 article-title: Crop identification using harmonic analysis of time-series AVHRR NDVI data publication-title: Comput. Electron. Agric. – volume: 181 start-page: 237 year: 2016 end-page: 250 ident: bib0073 article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. – volume: 198 start-page: 105 year: 2017 end-page: 114 ident: bib0024 article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery publication-title: Remote Sens. Environ. – volume: 114 start-page: 2146 year: 2010 end-page: 2159 ident: bib0047 article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. – reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. 51, arXiv Prepr.arXiv:1409.1556. – volume: 164 start-page: 304 year: 2016 end-page: 316 ident: bib0058 article-title: Calibration of the AquaCrop model for winter wheat using MODIS LAI images publication-title: Agric. Water Manag. – volume: 57 start-page: 190 year: 2017 end-page: 201 ident: bib0037 article-title: Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 691 year: 2019 ident: bib0068 article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network publication-title: Remote Sens. – start-page: 2818 year: 2016 end-page: 2826 ident: bib0056 article-title: Rethinking the inception architecture for computer vision, publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2018 ident: bib0062 article-title: Deep transfer learning for crop yield prediction with remote sensing data publication-title: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bib0076 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. – volume: 40 start-page: 247 year: 1988 end-page: 263 ident: bib0008 article-title: Approximate solution of the trust region problem by minimization over two-dimensional subspaces publication-title: Math. Program. – volume: 77 start-page: 1 year: 1995 end-page: 16 ident: bib0071 article-title: A nonlinear model for crop development as a function of temperature publication-title: Agric. For. Meteorol. – volume: 232 start-page: 49 year: 2019 end-page: 61 ident: bib0019 article-title: Improvement of sugarcane crop simulation by SWAP-WOFOST model via data assimilation publication-title: Field Crops Res. – start-page: 4278 year: 2017 end-page: 4284 ident: bib0055 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: AAAI Conference on Artificial Intelligence – volume: 60 start-page: 1 year: 1992 end-page: 16 ident: bib0013 article-title: Rice clock model-a computer model to simulate rice development publication-title: Agric. For. Meteorol. – start-page: 551 year: 2017 end-page: 558 ident: bib0043 article-title: Multi-temporal land cover classification with long short-term memory neural networks publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 121 start-page: 1027 year: 2016 end-page: 1042 ident: bib0015 article-title: Reconciling the discrepancy in ground- and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008 publication-title: J. Geophys. Res. Atmos. – volume: 200 start-page: 135 year: 2015 end-page: 143 ident: bib0018 article-title: Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China publication-title: Agric. For. Meteorol. – start-page: 2261 year: 2017 end-page: 2269 ident: bib0020 article-title: Densely connected convolutional networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2019 ident: bib0038 article-title: Prediction of sorghum biomass using UAV time series data and recurrent neural networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 87 year: 1982 end-page: 97 ident: bib0059 article-title: A summary model for crop growth publication-title: Simulation of Plant Growth and Crop Production – volume: 14 start-page: 66 year: 2018 ident: bib0057 article-title: Deep phenotyping: deep learning for temporal phenotype/genotype classification publication-title: Plant Methods – volume: 555 start-page: 363 year: 2018 end-page: 366 ident: bib0010 article-title: Pursuing sustainable productivity with millions of smallholder farmers publication-title: Nature – volume: 19 start-page: 52 year: 2014 end-page: 61 ident: bib0001 article-title: Field high-throughput phenotyping: the new crop breeding frontier publication-title: Trends Plant Sci. – start-page: 4559 year: 2017 end-page: 4566 ident: bib0072 article-title: Deep gaussian process for crop yield prediction based on remote sensing data publication-title: AAAI Conference on Artificial Intelligence – start-page: 1 year: 2017 end-page: 5 ident: bib0069 article-title: Plant phenology recognition using deep learning: deep-Pheno publication-title: International Conference on Agro-Geoinformatics – volume: 81 start-page: 264 year: 2016 end-page: 269 ident: bib0034 article-title: Embedded, real-time UAV control for improved, image-based 3D scene reconstruction publication-title: Measurement – volume: 104 start-page: 43 year: 2006 end-page: 49 ident: bib0066 article-title: Real-time monitoring and short-term forecasting of land surface phenology publication-title: Remote Sens. Environ. – start-page: 223 year: 2016 end-page: 240 ident: bib0051 article-title: Deep learning 3D shape surfaces using geometry images publication-title: European Conference on Computer Vision (ECCV) – volume: 138 start-page: 176 year: 2018 end-page: 192 ident: bib0044 article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops. publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 13 start-page: 693 year: 2012 end-page: 712 ident: bib0074 article-title: The application of small unmanned aerial systems for precision agriculture: a review publication-title: Precis. Agric. – volume: 161 start-page: 165 year: 2004 end-page: 173 ident: bib0014 article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation publication-title: J. Plant Physiol. – volume: 103 start-page: 117 year: 2019 end-page: 129 ident: bib0036 article-title: Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network publication-title: Eur. J. Agron. – volume: 10 start-page: 1540 year: 2018 ident: bib0035 article-title: Real-Time monitoring of crop phenology in the Midwestern United States using VIIRS observations publication-title: Remote Sens. – volume: 19 start-page: 134 year: 2018 end-page: 146 ident: bib0007 article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution publication-title: Precis. Agric. – volume: 34 start-page: 188 year: 2015 end-page: 197 ident: bib0040 article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 134 start-page: 210 year: 2013 end-page: 223 ident: bib0022 article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors publication-title: Remote Sens. Environ. – year: 1990 ident: bib0033 article-title: Handwritten digit recognition with a back-propagation network publication-title: Adv. Neural Inf. Process. Syst. – volume: 96 start-page: 1139 year: 2004 end-page: 1147 ident: bib0061 article-title: Monitoring maize (Zea mays L.) phenology with remote sensing publication-title: Agron. J. – volume: 11 start-page: 217 year: 1997 end-page: 234 ident: bib0067 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Global Biogeochem. Cycles – volume: 173 start-page: 74 year: 2013 end-page: 84 ident: bib0003 article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics publication-title: Agric. For. Meteorol. – volume: 18 start-page: 111 year: 2012 ident: 10.1016/j.agrformet.2020.107938_bib0029 article-title: Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2012.01.009 – volume: 161 start-page: 165 year: 2004 ident: 10.1016/j.agrformet.2020.107938_bib0014 article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01176 – volume: 19 start-page: 52 year: 2014 ident: 10.1016/j.agrformet.2020.107938_bib0001 article-title: Field high-throughput phenotyping: the new crop breeding frontier publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.09.008 – volume: 121 start-page: 1027 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0015 article-title: Reconciling the discrepancy in ground- and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023969 – year: 2011 ident: 10.1016/j.agrformet.2020.107938_bib0060 article-title: Taking computer vision aloft - archaeological three-dimensional reconstructions from aerial photographs with photoscan publication-title: Archaeol. Prospect. doi: 10.1002/arp.399 – start-page: 77 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0041 article-title: PointNet: deep learning on point sets for 3D classification and segmentation – volume: 235 start-page: 142 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0070 article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.02.022 – volume: 114 start-page: 2146 year: 2010 ident: 10.1016/j.agrformet.2020.107938_bib0047 article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.019 – year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0062 article-title: Deep transfer learning for crop yield prediction with remote sensing data – volume: 232 start-page: 49 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0019 article-title: Improvement of sugarcane crop simulation by SWAP-WOFOST model via data assimilation publication-title: Field Crops Res. doi: 10.1016/j.fcr.2018.12.009 – start-page: 87 year: 1982 ident: 10.1016/j.agrformet.2020.107938_bib0059 article-title: A summary model for crop growth – volume: 173 start-page: 74 year: 2013 ident: 10.1016/j.agrformet.2020.107938_bib0003 article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.01.007 – volume: 147 start-page: 70 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0026 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 – volume: 119 start-page: 561 year: 1991 ident: 10.1016/j.agrformet.2020.107938_bib0031 article-title: A uniform decimal code for growth stages of crops and weeds publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1991.tb04895.x – volume: 57 start-page: 190 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0037 article-title: Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2017.01.001 – start-page: 1 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0069 article-title: Plant phenology recognition using deep learning: deep-Pheno – volume: 197 start-page: 52 year: 2014 ident: 10.1016/j.agrformet.2020.107938_bib0052 article-title: A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.06.007 – year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0038 article-title: Prediction of sorghum biomass using UAV time series data and recurrent neural networks – volume: 164 start-page: 304 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0058 article-title: Calibration of the AquaCrop model for winter wheat using MODIS LAI images publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.10.013 – start-page: 223 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0051 article-title: Deep learning 3D shape surfaces using geometry images – volume: 131 start-page: 215 year: 2013 ident: 10.1016/j.agrformet.2020.107938_bib0046 article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.017 – volume: 10 start-page: 293 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0049 article-title: Spatial rice yield estimation based on MODIS and sentinel-1 SAR data and ORYZA crop growth model publication-title: Remote Sens. doi: 10.3390/rs10020293 – volume: 14 start-page: 66 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0057 article-title: Deep phenotyping: deep learning for temporal phenotype/genotype classification publication-title: Plant Methods doi: 10.1186/s13007-018-0333-4 – volume: 147 start-page: 219 year: 2014 ident: 10.1016/j.agrformet.2020.107938_bib0045 article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.008 – volume: 8 start-page: 416 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0011 article-title: Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data publication-title: Remote Sens. doi: 10.3390/rs8050416 – start-page: 4559 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0072 article-title: Deep gaussian process for crop yield prediction based on remote sensing data – volume: 81 start-page: 264 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0034 article-title: Embedded, real-time UAV control for improved, image-based 3D scene reconstruction publication-title: Measurement doi: 10.1016/j.measurement.2015.12.014 – volume: 34 start-page: 188 year: 2015 ident: 10.1016/j.agrformet.2020.107938_bib0040 article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2014.08.011 – volume: 7 start-page: 3467 year: 2015 ident: 10.1016/j.agrformet.2020.107938_bib0063 article-title: Rice fields mapping in fragmented area using multi-temporal HJ-1A/B CCD images publication-title: Remote Sens. doi: 10.3390/rs70403467 – start-page: 551 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0043 article-title: Multi-temporal land cover classification with long short-term memory neural networks publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-1-W1-551-2017 – volume: 103 start-page: 117 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0036 article-title: Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.12.004 – volume: 84 start-page: 471 year: 2003 ident: 10.1016/j.agrformet.2020.107938_bib0076 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 60 start-page: 1 year: 1992 ident: 10.1016/j.agrformet.2020.107938_bib0013 article-title: Rice clock model-a computer model to simulate rice development publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(92)90071-B – volume: 10 start-page: 268 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0006 article-title: Estimating barley biomass with crop surface models from oblique RGB imagery publication-title: Remote Sens. doi: 10.3390/rs10020268 – volume: 19 start-page: 134 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0007 article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution publication-title: Precis. Agric. doi: 10.1007/s11119-017-9504-y – volume: 77 start-page: 1 year: 1995 ident: 10.1016/j.agrformet.2020.107938_bib0071 article-title: A nonlinear model for crop development as a function of temperature publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02236-Q – volume: 200 start-page: 135 year: 2015 ident: 10.1016/j.agrformet.2020.107938_bib0018 article-title: Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.09.011 – start-page: 922 year: 2015 ident: 10.1016/j.agrformet.2020.107938_bib0039 article-title: VoxNet: a 3D convolutional neural network for real-time object recognition – volume: 138 start-page: 176 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0044 article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops. publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.011 – start-page: 5648 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0042 article-title: Volumetric and multi-view CNNs for object classification on 3D data – volume: 181 start-page: 237 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0073 article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.039 – year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0027 article-title: A review of the use of convolutional neural networks in agriculture publication-title: J. Agric. Sci. doi: 10.1017/S0021859618000436 – volume: 60 start-page: 84 year: 2012 ident: 10.1016/j.agrformet.2020.107938_bib0030 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2001 ident: 10.1016/j.agrformet.2020.107938_bib0005 – volume: 37 start-page: 127 year: 2002 ident: 10.1016/j.agrformet.2020.107938_bib0023 article-title: Crop identification using harmonic analysis of time-series AVHRR NDVI data publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(02)00116-3 – volume: 198 start-page: 105 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0024 article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.007 – volume: 48 start-page: 220 year: 1994 ident: 10.1016/j.agrformet.2020.107938_bib0012 article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90143-0 – volume: 11 start-page: 691 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0068 article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network publication-title: Remote Sens. doi: 10.3390/rs11060691 – volume: 268 start-page: 224 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0075 article-title: Improving rice development and phenology prediction across contrasting climate zones of China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.01.019 – volume: 10 start-page: 1540 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0035 article-title: Real-Time monitoring of crop phenology in the Midwestern United States using VIIRS observations publication-title: Remote Sens. doi: 10.3390/rs10101540 – volume: 248 start-page: 397 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0028 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.10.015 – volume: 40 start-page: 247 year: 1988 ident: 10.1016/j.agrformet.2020.107938_bib0008 article-title: Approximate solution of the trust region problem by minimization over two-dimensional subspaces publication-title: Math. Program. doi: 10.1007/BF01580735 – start-page: 2261 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0020 article-title: Densely connected convolutional networks – volume: 96 start-page: 366 year: 2005 ident: 10.1016/j.agrformet.2020.107938_bib0048 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.008 – ident: 10.1016/j.agrformet.2020.107938_bib0050 – volume: 250–251 start-page: 319 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0064 article-title: Modelling maize phenology, biomass growth and yield under contrasting temperature conditions publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.01.005 – start-page: 589 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0065 article-title: Phenological prediction algorithm based on deep learning, – volume: 11 start-page: 217 year: 1997 ident: 10.1016/j.agrformet.2020.107938_bib0067 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Global Biogeochem. Cycles doi: 10.1029/97GB00330 – volume: 6 start-page: 10395 year: 2014 ident: 10.1016/j.agrformet.2020.107938_bib0002 article-title: Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging publication-title: Remote Sens. doi: 10.3390/rs61110395 – volume: 134 start-page: 210 year: 2013 ident: 10.1016/j.agrformet.2020.107938_bib0022 article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.029 – volume: 96 start-page: 1139 year: 2004 ident: 10.1016/j.agrformet.2020.107938_bib0061 article-title: Monitoring maize (Zea mays L.) phenology with remote sensing publication-title: Agron. J. doi: 10.2134/agronj2004.1139 – volume: 13 start-page: 693 year: 2012 ident: 10.1016/j.agrformet.2020.107938_bib0074 article-title: The application of small unmanned aerial systems for precision agriculture: a review publication-title: Precis. Agric. doi: 10.1007/s11119-012-9274-5 – volume: 30 start-page: 4643 year: 2009 ident: 10.1016/j.agrformet.2020.107938_bib0004 article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802632249 – volume: 37 start-page: 1904 year: 2015 ident: 10.1016/j.agrformet.2020.107938_bib0017 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0054 article-title: County-level soybean yield prediction using deep CNN-LSTM model publication-title: Sensors doi: 10.3390/s19204363 – start-page: 4278 year: 2017 ident: 10.1016/j.agrformet.2020.107938_bib0055 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – start-page: 770 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0016 article-title: Deep residual learning for image recognition – volume: 104 start-page: 43 year: 2006 ident: 10.1016/j.agrformet.2020.107938_bib0066 article-title: Real-time monitoring and short-term forecasting of land surface phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.014 – volume: 56 start-page: 7 year: 1998 ident: 10.1016/j.agrformet.2020.107938_bib0009 article-title: Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems publication-title: Field Crops Res. doi: 10.1016/S0378-4290(97)00140-8 – ident: 10.1016/j.agrformet.2020.107938_bib0021 – volume: 19 start-page: 1569 year: 2019 ident: 10.1016/j.agrformet.2020.107938_bib0032 article-title: 3-D image-driven morphological crop analysis: a novel method for detection of sunflower broomrape initial subsoil parasitism publication-title: Sensors doi: 10.3390/s19071569 – volume: 30 start-page: 833 year: 2004 ident: 10.1016/j.agrformet.2020.107938_bib0025 article-title: TIMESAT - a program for analyzing time-series of satellite sensor data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.05.006 – volume: 555 start-page: 363 year: 2018 ident: 10.1016/j.agrformet.2020.107938_bib0010 article-title: Pursuing sustainable productivity with millions of smallholder farmers publication-title: Nature doi: 10.1038/nature25785 – ident: 10.1016/j.agrformet.2020.107938_bib0053 – start-page: 2818 year: 2016 ident: 10.1016/j.agrformet.2020.107938_bib0056 article-title: Rethinking the inception architecture for computer vision, – year: 1990 ident: 10.1016/j.agrformet.2020.107938_bib0033 article-title: Handwritten digit recognition with a back-propagation network publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0012779 |
Score | 2.6270165 |
Snippet | •Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of... Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107938 |
SubjectTerms | China Convolutional neural network crop management cultivation area Deep learning forests harvest date meteorology neural networks Oryza sativa phenology rice Rice phenology detection Shape model fitting time series analysis UAV unmanned aerial vehicles vegetation index |
Title | A near real-time deep learning approach for detecting rice phenology based on UAV images |
URI | https://dx.doi.org/10.1016/j.agrformet.2020.107938 https://www.proquest.com/docview/2574329160 |
Volume | 287 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrxUpAQt7A-k5ZbNYEGCC4wtFvkpOk0NHXTNq78duw-JoGEOHCMG6dR7NpfE8dm7BIAXII_acKGEInIghFgpSdyGRvIlZQJ0Ib-07PsD6KHYTxcY732LgyFVTa2v7bplbVuKN1mNbuz8bj7gmCFsnmFgUdZo7wh3WCPFGn59ecqzMMPVJ1vDzsL6v0txgtGVXC-o6DKgKiorclvHuqHra4c0N0O226QI8_qye2yNVfusa1sNG-yZ7g91nlCCDydVzvl_Ir3JmPEo1Vrnw0zXqJWcwSJE0EV5Xnu3Iw3VSNGvE0uznGq-IjOFohMOYc4xYHVg5LTy_m05IPsjePoI7c4YIO729deXzRlFYSN_GgpAihy5RdOSTAqT60KU_RQKglzpYiQgrGFkdYWDmIX2digVUNcVcjYphKS8JCtl9PSHTEeSucriUwWJWCUlyC4srJwCEoMgEk7TLZLqW2Tc5xKX0x0G1z2rlcy0CQDXcugw7wV46xOu_E3y00rK_1NgzQ6h7-ZL1rpavy-6NAESjf9WGg0aVEYIIj2jv_zghO2SS0KMvPjU7a-nH-4M4QzS3Ne6es528juH_vPX_QV98k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4QDBAdOPDSIg3q2k-7IS3qGLq2NoXVtQ36-w4VVGVVl33_3OXOJWGhPbAY845x_Jd7n6xLz8DfEFEn9NHmnQJpjJ1aCU6FclKZRYrrVSOvKA_m6vpIv2xzJYnMOn_heGyyhD7u5jeRusgGYXZHO3W69FPAivM5pXEEbNGRcsncMrsVNkATsur6-n8uJkQ645yj-6XrPCgzAtXbX2-57rKmKXksPm_ktRf4brNQZcv4UUAj6LsxvcKTnxzBs_L1T4QaPgzGM4IBW_37WK5-CommzVB0vbqNSxL0ZBjC8KJG8mHyovK-50IB0esRM8vLmio1MTbCyxm2iHBpWBdp5z3KrFtxKL8Jaj3lb97A4vL77eTqQwnK0iXjtODjLGu9Lj2WqHVVeF0UlCS0nlSac2CAq2rrXKu9pj51GWWAhtBq1plrlCYJ29h0Gwb_w5EovxYK1JyZASro5zwlVO1J1xiEW0xBNVPpXGBdpxPv9iYvr7stznawLANTGeDIURHxV3HvPG4yrfeVuaBExnKD48rf-6ta-gV430TbPz2_s5QVEuTmHB0dP4_D_gET6e3sxtzczW_voBn3MI1Z-PsPQwO-3v_gdDNwX4M3vsHbCn6eg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+near+real-time+deep+learning+approach+for+detecting+rice+phenology+based+on+UAV+images&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Yang%2C+Qi&rft.au=Shi%2C+Liangsheng&rft.au=Han%2C+Jingye&rft.au=Yu%2C+Jin&rft.date=2020-06-15&rft.issn=0168-1923&rft.volume=287+p.107938-&rft_id=info:doi/10.1016%2Fj.agrformet.2020.107938&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon |