A near real-time deep learning approach for detecting rice phenology based on UAV images

•Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of time-series data.•Integrating regional mean thermal time into CNN improve the detection accuracy.•The estimated harvest dates was in close agreement...

Full description

Saved in:
Bibliographic Details
Published inAgricultural and forest meteorology Vol. 287; p. 107938
Main Authors Yang, Qi, Shi, Liangsheng, Han, Jingye, Yu, Jin, Huang, Kai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of time-series data.•Integrating regional mean thermal time into CNN improve the detection accuracy.•The estimated harvest dates was in close agreement with the observation.•The proposed approach provides near real-time estimation of the principal phenological stages of rice. Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop phenology detection have relied on time-series (multi-temporal) vegetation index (VI) data, and have included threshold-based, phenometrics-based and shape-model-fitting-based (SMF) methods. However, the performance of these methods depends on the duration and temporal resolution of the time-series data. In this study, we propose a new approach which identifies the principal growth stages of rice (Oryza sativa L.) directly from RGB images. Only a mono-temporal unmanned aerial vehicle (UAV) imagery was required for a large-area phenology detection via the well-trained network. An efficient convolutional neural network (CNN) architecture was designed to estimate rice phenology. The CNN incorporated spatial pyramid pooling (SPP), transfer learning and an auxiliary branch with external data. A total of 82 plots across a 160-hectare rice cultivation area of Southern China were selected to evaluate the proposed network. CNN predictions were ground truthed using rice phenology measurements taken from each plot throughout the growing season. Aerial data were collected using a fixed-wing UAV equipped with multispectral and RGB cameras. The performance of traditional SMF methods deteriorated when time-series VI data were of short duration. In contrast, the phenological stage estimated by the proposed network showed good agreement with ground observations, with a top-1 accuracy rate of 83.9% and mean absolute error (MAE) of 0.18. The spatial distribution of harvest dates for 627 plots in the study area were computed from the phenological stage estimates. The estimates matched well with the observed harvest dates. The results demonstrated the excellent performance of the proposed deep learning approach in near real-time phenology detection and harvest time estimation.
AbstractList •Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of time-series data.•Integrating regional mean thermal time into CNN improve the detection accuracy.•The estimated harvest dates was in close agreement with the observation.•The proposed approach provides near real-time estimation of the principal phenological stages of rice. Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop phenology detection have relied on time-series (multi-temporal) vegetation index (VI) data, and have included threshold-based, phenometrics-based and shape-model-fitting-based (SMF) methods. However, the performance of these methods depends on the duration and temporal resolution of the time-series data. In this study, we propose a new approach which identifies the principal growth stages of rice (Oryza sativa L.) directly from RGB images. Only a mono-temporal unmanned aerial vehicle (UAV) imagery was required for a large-area phenology detection via the well-trained network. An efficient convolutional neural network (CNN) architecture was designed to estimate rice phenology. The CNN incorporated spatial pyramid pooling (SPP), transfer learning and an auxiliary branch with external data. A total of 82 plots across a 160-hectare rice cultivation area of Southern China were selected to evaluate the proposed network. CNN predictions were ground truthed using rice phenology measurements taken from each plot throughout the growing season. Aerial data were collected using a fixed-wing UAV equipped with multispectral and RGB cameras. The performance of traditional SMF methods deteriorated when time-series VI data were of short duration. In contrast, the phenological stage estimated by the proposed network showed good agreement with ground observations, with a top-1 accuracy rate of 83.9% and mean absolute error (MAE) of 0.18. The spatial distribution of harvest dates for 627 plots in the study area were computed from the phenological stage estimates. The estimates matched well with the observed harvest dates. The results demonstrated the excellent performance of the proposed deep learning approach in near real-time phenology detection and harvest time estimation.
Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop phenology detection have relied on time-series (multi-temporal) vegetation index (VI) data, and have included threshold-based, phenometrics-based and shape-model-fitting-based (SMF) methods. However, the performance of these methods depends on the duration and temporal resolution of the time-series data. In this study, we propose a new approach which identifies the principal growth stages of rice (Oryza sativa L.) directly from RGB images. Only a mono-temporal unmanned aerial vehicle (UAV) imagery was required for a large-area phenology detection via the well-trained network. An efficient convolutional neural network (CNN) architecture was designed to estimate rice phenology. The CNN incorporated spatial pyramid pooling (SPP), transfer learning and an auxiliary branch with external data. A total of 82 plots across a 160-hectare rice cultivation area of Southern China were selected to evaluate the proposed network. CNN predictions were ground truthed using rice phenology measurements taken from each plot throughout the growing season. Aerial data were collected using a fixed-wing UAV equipped with multispectral and RGB cameras. The performance of traditional SMF methods deteriorated when time-series VI data were of short duration. In contrast, the phenological stage estimated by the proposed network showed good agreement with ground observations, with a top-1 accuracy rate of 83.9% and mean absolute error (MAE) of 0.18. The spatial distribution of harvest dates for 627 plots in the study area were computed from the phenological stage estimates. The estimates matched well with the observed harvest dates. The results demonstrated the excellent performance of the proposed deep learning approach in near real-time phenology detection and harvest time estimation.
ArticleNumber 107938
Author Yu, Jin
Shi, Liangsheng
Huang, Kai
Yang, Qi
Han, Jingye
Author_xml – sequence: 1
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 2
  givenname: Liangsheng
  surname: Shi
  fullname: Shi, Liangsheng
  email: liangshs@whu.edu.cn
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 3
  givenname: Jingye
  surname: Han
  fullname: Han, Jingye
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 4
  givenname: Jin
  surname: Yu
  fullname: Yu, Jin
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, Hubei 430072, China
– sequence: 5
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
  organization: Guangxi Hydraulic Research Institute, Nanning, Guangxi 530023, China
BookMark eNqNkDtPwzAUhS1UJNrCb8AjS0rsPBwPDFXFS6rEQhGb5Tg3ravUDraL1H-PoyAGFpiudO459_HN0MRYAwhdk3RBUlLe7hdy61rrDhAWNKWDynhWnaEpqViWUJqnEzSNziohnGYXaOb9Pk0JZYxP0fsSG5AOO5BdEvQBcAPQ4y5qRpstln3vrFQ7HDfEVgAVBtlpBbjfgbGd3Z5wLT002Bq8Wb5hfZBb8JfovJWdh6vvOkebh_vX1VOyfnl8Xi3XicpJHhIq24aRFlgpa9ZwxTKeM8KqrGFsELisVVuXSrUgC8hVUVPCC5K3ZaF4Katsjm7GufHOjyP4IA7aK-g6acAevaAFyzPKSZlG691oVc5676AVSgcZtDXBSd0JkoqBqNiLH6JiICpGojHPfuV7F591p38kl2MSIolPDU54pcEoaLSLREVj9Z8zvgDp7Zjd
CitedBy_id crossref_primary_10_3390_rs14020244
crossref_primary_10_1016_j_compag_2025_109938
crossref_primary_10_1016_j_jag_2022_103121
crossref_primary_10_1016_j_compag_2021_106543
crossref_primary_10_3390_agronomy11122446
crossref_primary_10_3390_agriculture12071033
crossref_primary_10_1016_j_jag_2024_104057
crossref_primary_10_1093_jxb_erac294
crossref_primary_10_3390_rs15235565
crossref_primary_10_1016_j_iswcr_2023_04_001
crossref_primary_10_1016_j_isprsjprs_2023_05_022
crossref_primary_10_1109_ACCESS_2021_3138847
crossref_primary_10_3390_rs13091620
crossref_primary_10_1016_j_ecoinf_2022_101552
crossref_primary_10_1016_j_compag_2024_109813
crossref_primary_10_3390_rs14102378
crossref_primary_10_1016_j_fcr_2021_108419
crossref_primary_10_1117_1_JRS_17_038503
crossref_primary_10_3390_rs14153723
crossref_primary_10_3390_rs13245177
crossref_primary_10_1016_j_isprsjprs_2024_01_006
crossref_primary_10_1016_j_isprsjprs_2024_08_011
crossref_primary_10_37221_eaef_15_2_47
crossref_primary_10_1016_j_phycom_2023_102079
crossref_primary_10_3934_math_2024498
crossref_primary_10_1186_s13007_024_01278_0
crossref_primary_10_1515_nleng_2022_0299
crossref_primary_10_3390_drones8040140
crossref_primary_10_3390_rs15081979
crossref_primary_10_1016_j_fcr_2021_108148
crossref_primary_10_3390_agriengineering6010048
crossref_primary_10_1007_s40747_023_01261_7
crossref_primary_10_1016_j_knosys_2022_109644
crossref_primary_10_32604_cmc_2024_045101
crossref_primary_10_3390_rs14061331
crossref_primary_10_1029_2024WR037582
crossref_primary_10_3390_rs14122927
crossref_primary_10_3390_rs15030679
crossref_primary_10_3390_agriculture14081240
crossref_primary_10_3390_ijerph20031770
crossref_primary_10_1016_j_isprsjprs_2022_01_023
crossref_primary_10_3390_ijgi9120728
crossref_primary_10_1016_j_aej_2024_08_076
crossref_primary_10_3390_s20216205
crossref_primary_10_3390_jimaging11010028
crossref_primary_10_1016_j_atech_2022_100129
crossref_primary_10_3390_s22010094
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_3390_drones8040166
crossref_primary_10_1016_j_micpro_2020_103607
crossref_primary_10_1016_j_agrformet_2023_109646
crossref_primary_10_1016_j_cj_2022_03_001
crossref_primary_10_1016_j_fcr_2023_108847
crossref_primary_10_3390_rs13010086
crossref_primary_10_3390_rs13142787
crossref_primary_10_1088_2631_8695_ad9afe
crossref_primary_10_34133_plantphenomics_0017
crossref_primary_10_3390_agronomy14030494
crossref_primary_10_1016_j_jenvman_2025_124969
crossref_primary_10_3390_agronomy14122751
crossref_primary_10_1016_j_compag_2024_109212
crossref_primary_10_3390_rs13142678
crossref_primary_10_1016_j_fcr_2023_109044
crossref_primary_10_1007_s10661_024_13221_w
crossref_primary_10_3390_rs15153859
crossref_primary_10_3390_rs14143453
crossref_primary_10_1016_j_compag_2024_109608
crossref_primary_10_1016_j_compag_2024_109728
crossref_primary_10_1016_j_jafr_2023_100590
crossref_primary_10_3389_fpls_2022_805738
crossref_primary_10_3390_drones7020083
crossref_primary_10_3390_rs13204057
crossref_primary_10_3390_rs12213617
crossref_primary_10_1016_j_inpa_2024_04_006
crossref_primary_10_1016_j_catena_2021_105442
crossref_primary_10_3389_frai_2020_00028
crossref_primary_10_1016_j_jconhyd_2024_104394
crossref_primary_10_3390_agronomy11122465
crossref_primary_10_1016_j_rse_2023_113729
crossref_primary_10_1051_e3sconf_202128502038
crossref_primary_10_1080_10106049_2022_2104390
crossref_primary_10_1109_JSTARS_2024_3505964
crossref_primary_10_1016_j_compag_2022_107370
crossref_primary_10_3389_frai_2024_1477637
crossref_primary_10_3934_agrfood_2023038
crossref_primary_10_1016_j_compag_2024_109076
crossref_primary_10_1016_j_agrformet_2022_109283
crossref_primary_10_1109_MGRS_2020_2998816
crossref_primary_10_5194_essd_16_3893_2024
crossref_primary_10_3390_agronomy14081620
crossref_primary_10_1016_j_fcr_2022_108693
crossref_primary_10_1016_j_envres_2024_118845
crossref_primary_10_1051_e3sconf_202235001008
crossref_primary_10_1029_2021WR031429
crossref_primary_10_1007_s12517_021_08420_5
crossref_primary_10_1016_j_agee_2023_108810
crossref_primary_10_1080_01431161_2023_2216846
crossref_primary_10_1109_JSTARS_2025_3543190
crossref_primary_10_2174_1872212115666210827100258
crossref_primary_10_1002_gj_4048
crossref_primary_10_1109_ACCESS_2021_3069449
crossref_primary_10_1007_s11119_023_09996_6
crossref_primary_10_3390_drones8110665
crossref_primary_10_1371_journal_pone_0282364
crossref_primary_10_1016_j_atech_2023_100353
crossref_primary_10_3390_rs15082205
crossref_primary_10_3390_rs15225413
Cites_doi 10.1016/j.jag.2012.01.009
10.1078/0176-1617-01176
10.1016/j.tplants.2013.09.008
10.1002/2015JD023969
10.1002/arp.399
10.1016/j.fcr.2019.02.022
10.1016/j.rse.2010.04.019
10.1016/j.fcr.2018.12.009
10.1016/j.agrformet.2013.01.007
10.1016/j.compag.2018.02.016
10.1111/j.1744-7348.1991.tb04895.x
10.1016/j.jag.2017.01.001
10.1016/j.agrformet.2014.06.007
10.1016/j.agwat.2015.10.013
10.1016/j.rse.2012.12.017
10.3390/rs10020293
10.1186/s13007-018-0333-4
10.1016/j.rse.2014.03.008
10.3390/rs8050416
10.1016/j.measurement.2015.12.014
10.1016/j.jag.2014.08.011
10.3390/rs70403467
10.5194/isprs-archives-XLII-1-W1-551-2017
10.1016/j.eja.2018.12.004
10.1016/S0034-4257(02)00135-9
10.1016/0168-1923(92)90071-B
10.3390/rs10020268
10.1007/s11119-017-9504-y
10.1016/0168-1923(95)02236-Q
10.1016/j.agrformet.2014.09.011
10.1016/j.isprsjprs.2018.02.011
10.1016/j.rse.2016.03.039
10.1017/S0021859618000436
10.1016/S0168-1699(02)00116-3
10.1016/j.rse.2017.06.007
10.1016/0034-4257(94)90143-0
10.3390/rs11060691
10.1016/j.agrformet.2019.01.019
10.3390/rs10101540
10.1016/j.agrformet.2017.10.015
10.1007/BF01580735
10.1016/j.rse.2005.03.008
10.1016/j.agrformet.2018.01.005
10.1029/97GB00330
10.3390/rs61110395
10.1016/j.rse.2013.02.029
10.2134/agronj2004.1139
10.1007/s11119-012-9274-5
10.1080/01431160802632249
10.1109/TPAMI.2015.2389824
10.3390/s19204363
10.1016/j.rse.2006.04.014
10.1016/S0378-4290(97)00140-8
10.3390/s19071569
10.1016/j.cageo.2004.05.006
10.1038/nature25785
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agrformet.2020.107938
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1873-2240
ExternalDocumentID 10_1016_j_agrformet_2020_107938
S016819232030040X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
Y6R
ZMT
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
RIG
SEP
SEW
SSH
WUQ
7S9
L.6
ID FETCH-LOGICAL-c414t-2afd71fe76ab7d9c739471783d77b7d99abcfb6ccfea5e4c5b219514f65c96a83
IEDL.DBID .~1
ISSN 0168-1923
IngestDate Fri Jul 11 11:00:21 EDT 2025
Tue Jul 01 04:35:18 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 23 02:47:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
UAV
Convolutional neural network
Shape model fitting
Rice phenology detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-2afd71fe76ab7d9c739471783d77b7d99abcfb6ccfea5e4c5b219514f65c96a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2574329160
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574329160
crossref_citationtrail_10_1016_j_agrformet_2020_107938
crossref_primary_10_1016_j_agrformet_2020_107938
elsevier_sciencedirect_doi_10_1016_j_agrformet_2020_107938
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Agricultural and forest meteorology
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed, Huete (bib0076) 2003; 84
Kouadio, Duveiller, Djaby, El Jarroudi, Defourny, Tychon (bib0029) 2012; 18
Pan, Huang, Zhou, Wang, Cheng, Zhang, Blackburn, Yan, Liu (bib0040) 2015; 34
Lati, Filin, Elnashef, Eizenberg (bib0032) 2019; 19
Liénard, Vogs, Gatziolis, Strigul (bib0034) 2016; 81
Maturana, Scherer (bib0039) 2015
Lancashire, Bleiholder, Van Den Boom, Langelüddeke, Stauss, Weber, Witzenberger (bib0031) 1991; 119
White, Nemani (bib0066) 2006; 104
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. 51, arXiv Prepr.arXiv:1409.1556.
Son, Chen, Chen, Minh, Trung (bib0052) 2014; 197
Boschetti, Stroppiana, Brivio, Bocchi (bib0004) 2009; 30
You, Li, Low, Lobell, Ermon (bib0072) 2017
Bolton, Friedl (bib0003) 2013; 173
Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bib0048) 2005; 96
Burkart, Hecht, Kraska, Rascher (bib0007) 2018; 19
Fang, Tang, Peng, Gong, Dai, Chai, Liu (bib0011) 2016; 8
Huang, Liu, van der Maaten, Weinberger (bib0020) 2017
Wang, Huang, Zhang, Li, She, Wei, Gao, Song (bib0063) 2015; 7
Brocks, Bareth (bib0006) 2018; 10
He, Zhang, Ren, Sun (bib0017) 2015; 37
Bendig, Bolten, Bennertz, Broscheit, Eichfuss, Bareth (bib0002) 2014; 6
Cassman, Peng, Olk, Ladha, Reichardt, Dobermann, Singh (bib0009) 1998; 56
Jakubauskas, Legates, Kastens (bib0023) 2002; 37
Verhoeven (bib0060) 2011
Rußwurm, Körner (bib0043) 2017
Wang, Liu, Sun, Fu (bib0065) 2019
Jin, Liu, Baret, Hemerlé, Comar (bib0024) 2017; 198
Sakamoto (bib0044) 2018; 138
Trombetta, Iacobellis, Tarantino, Gentile (bib0058) 2016; 164
Yang, Shi, Han, Zha, Zhu (bib0070) 2019; 235
Gao, Jin, Huang, Zhang (bib0013) 1992; 60
Setiyono, Quicho, Gatti, Campos-Taberner, Busetto, Collivignarelli, García-Haro, Boschetti, Khan, Holecz (bib0049) 2018; 10
Manfron, Delmotte, Busetto, Hossard, Ranghetti, Brivio, Boschetti (bib0037) 2017; 57
Zhang, Kovacs (bib0074) 2012; 13
He, Asseng, Zhao, Wu, Yang, Zhuang, Jin, Yu (bib0018) 2015; 200
Srivastava, R.K., Greff, K., Schmidhuber, J., 2015. Training very deep networks. arXiv Prepr. arXiv:1507.06228.
Sakamoto, Gitelson, Arkebauer (bib0046) 2013; 131
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0056) 2016
Wu, Yang, Yang, Xu, Han, Zhu (bib0068) 2019; 11
Qi, Su, Niessner, Dai, Yan, Guibas (bib0042) 2016
He, Zhang, Ren, Sun (bib0016) 2016
Liu, Zhang, Yu, Gao, Yang (bib0035) 2018; 10
Guo, An, Wang (bib0015) 2016; 121
Krizhevsky, Sulskever, Hinton (bib0030) 2012; 60
Sun, Di, Sun, Shen, Lai (bib0054) 2019; 19
Szegedy, Ioffe, Vanhoucke, Alemi (bib0055) 2017
Araus, Cairns (bib0001) 2014; 19
Cui, Zhang, Chen, Zhang (bib0010) 2018; 555
Gitelson (bib0014) 2004; 161
Wang, Tran, Desai, Lobell, Ermon (bib0062) 2018
Zeng, Wardlow, Wang, Shan, Tadesse, Hayes, Li (bib0073) 2016; 181
Zhang, Tao (bib0075) 2019; 268
Ma, Li, Chen, Du, Zheng, Zhang, Sun (bib0036) 2019; 103
Yin, Kropff, McLaren, Visperas (bib0071) 1995; 77
Sakamoto, Gitelson, Arkebauer (bib0045) 2014; 147
Viña, Gitelson, Rundquist, Keydan, Leavitt, Schepers (bib0061) 2004; 96
Yalcin (bib0069) 2017
Sakamoto, Wardlow, Gitelson, Verma, Suyker, Arkebauer (bib0047) 2010; 114
Bouman, Kropff, Tuong, Wopereis, ten Berge, van Laar (bib0005) 2001
Qi, Su, Mo, Guibas (bib0041) 2017
Sinha, Bai, Ramani (bib0051) 2016
Hu, Shi, Huang, Zha, Hu, Ye, Yang (bib0019) 2019; 232
Byrd, Schnabel, Shultz (bib0008) 1988; 40
Jain, Mondal, DeFries, Small, Galford (bib0022) 2013; 134
Van Keulen, Penning de Vries, Drees (bib0059) 1982
Wang, Wang, Wang, Zhang, Zheng, Huang, Tan (bib0064) 2018; 250–251
Kamilaris, Prenafeta-Boldú (bib0027) 2018
Jönsson, Eklundh (bib0025) 2004; 30
White, Thornton, Running (bib0067) 1997; 11
Klosterman, Melaas, Wang, Martinez, Frederick, O'Keefe, Orwig, Wang, Sun, Schaaf, Friedl, Richardson (bib0028) 2018; 248
Kamilaris, Prenafeta-Boldú (bib0026) 2018; 147
Masjedi, Carpenter, Crawford, Tuinstra (bib0038) 2019
Taghavi Namin, Esmaeilzadeh, Najafi, Brown, Borevitz (bib0057) 2018; 14
LeCun, Bose, Denker, Henderson, Howard, Hubbard, Jackel (bib0033) 1990
Fischer (bib0012) 1994; 48
Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv Prepr. arXiv:1502.03167.
Jain (10.1016/j.agrformet.2020.107938_bib0022) 2013; 134
Hu (10.1016/j.agrformet.2020.107938_bib0019) 2019; 232
Zhang (10.1016/j.agrformet.2020.107938_bib0074) 2012; 13
Kouadio (10.1016/j.agrformet.2020.107938_bib0029) 2012; 18
Qi (10.1016/j.agrformet.2020.107938_bib0042) 2016
Son (10.1016/j.agrformet.2020.107938_bib0052) 2014; 197
Lancashire (10.1016/j.agrformet.2020.107938_bib0031) 1991; 119
10.1016/j.agrformet.2020.107938_bib0021
Ma (10.1016/j.agrformet.2020.107938_bib0036) 2019; 103
Yalcin (10.1016/j.agrformet.2020.107938_bib0069) 2017
Brocks (10.1016/j.agrformet.2020.107938_bib0006) 2018; 10
Sakamoto (10.1016/j.agrformet.2020.107938_bib0046) 2013; 131
Pan (10.1016/j.agrformet.2020.107938_bib0040) 2015; 34
Van Keulen (10.1016/j.agrformet.2020.107938_bib0059) 1982
Krizhevsky (10.1016/j.agrformet.2020.107938_bib0030) 2012; 60
Fischer (10.1016/j.agrformet.2020.107938_bib0012) 1994; 48
Gitelson (10.1016/j.agrformet.2020.107938_bib0014) 2004; 161
Yang (10.1016/j.agrformet.2020.107938_bib0070) 2019; 235
Kamilaris (10.1016/j.agrformet.2020.107938_bib0027) 2018
Wang (10.1016/j.agrformet.2020.107938_bib0063) 2015; 7
Bendig (10.1016/j.agrformet.2020.107938_bib0002) 2014; 6
Sinha (10.1016/j.agrformet.2020.107938_bib0051) 2016
He (10.1016/j.agrformet.2020.107938_bib0017) 2015; 37
Rußwurm (10.1016/j.agrformet.2020.107938_bib0043) 2017
Qi (10.1016/j.agrformet.2020.107938_bib0041) 2017
Szegedy (10.1016/j.agrformet.2020.107938_bib0055) 2017
Boschetti (10.1016/j.agrformet.2020.107938_bib0004) 2009; 30
Jönsson (10.1016/j.agrformet.2020.107938_bib0025) 2004; 30
Zhang (10.1016/j.agrformet.2020.107938_bib0075) 2019; 268
Zeng (10.1016/j.agrformet.2020.107938_bib0073) 2016; 181
Zhang (10.1016/j.agrformet.2020.107938_bib0076) 2003; 84
He (10.1016/j.agrformet.2020.107938_bib0016) 2016
Gao (10.1016/j.agrformet.2020.107938_bib0013) 1992; 60
Verhoeven (10.1016/j.agrformet.2020.107938_bib0060) 2011
Wang (10.1016/j.agrformet.2020.107938_bib0062) 2018
Sakamoto (10.1016/j.agrformet.2020.107938_bib0048) 2005; 96
Klosterman (10.1016/j.agrformet.2020.107938_bib0028) 2018; 248
White (10.1016/j.agrformet.2020.107938_bib0067) 1997; 11
You (10.1016/j.agrformet.2020.107938_bib0072) 2017
Jin (10.1016/j.agrformet.2020.107938_bib0024) 2017; 198
Kamilaris (10.1016/j.agrformet.2020.107938_bib0026) 2018; 147
Trombetta (10.1016/j.agrformet.2020.107938_bib0058) 2016; 164
Viña (10.1016/j.agrformet.2020.107938_bib0061) 2004; 96
Liénard (10.1016/j.agrformet.2020.107938_bib0034) 2016; 81
Burkart (10.1016/j.agrformet.2020.107938_bib0007) 2018; 19
Lati (10.1016/j.agrformet.2020.107938_bib0032) 2019; 19
Sakamoto (10.1016/j.agrformet.2020.107938_bib0047) 2010; 114
Cui (10.1016/j.agrformet.2020.107938_bib0010) 2018; 555
Masjedi (10.1016/j.agrformet.2020.107938_bib0038) 2019
Wang (10.1016/j.agrformet.2020.107938_bib0065) 2019
Jakubauskas (10.1016/j.agrformet.2020.107938_bib0023) 2002; 37
Wu (10.1016/j.agrformet.2020.107938_bib0068) 2019; 11
LeCun (10.1016/j.agrformet.2020.107938_bib0033) 1990
Byrd (10.1016/j.agrformet.2020.107938_bib0008) 1988; 40
Guo (10.1016/j.agrformet.2020.107938_bib0015) 2016; 121
Yin (10.1016/j.agrformet.2020.107938_bib0071) 1995; 77
Szegedy (10.1016/j.agrformet.2020.107938_bib0056) 2016
Sun (10.1016/j.agrformet.2020.107938_bib0054) 2019; 19
Maturana (10.1016/j.agrformet.2020.107938_bib0039) 2015
Setiyono (10.1016/j.agrformet.2020.107938_bib0049) 2018; 10
Fang (10.1016/j.agrformet.2020.107938_bib0011) 2016; 8
Sakamoto (10.1016/j.agrformet.2020.107938_bib0044) 2018; 138
Araus (10.1016/j.agrformet.2020.107938_bib0001) 2014; 19
10.1016/j.agrformet.2020.107938_bib0053
Bolton (10.1016/j.agrformet.2020.107938_bib0003) 2013; 173
10.1016/j.agrformet.2020.107938_bib0050
He (10.1016/j.agrformet.2020.107938_bib0018) 2015; 200
Liu (10.1016/j.agrformet.2020.107938_bib0035) 2018; 10
White (10.1016/j.agrformet.2020.107938_bib0066) 2006; 104
Taghavi Namin (10.1016/j.agrformet.2020.107938_bib0057) 2018; 14
Cassman (10.1016/j.agrformet.2020.107938_bib0009) 1998; 56
Wang (10.1016/j.agrformet.2020.107938_bib0064) 2018; 250–251
Manfron (10.1016/j.agrformet.2020.107938_bib0037) 2017; 57
Bouman (10.1016/j.agrformet.2020.107938_bib0005) 2001
Huang (10.1016/j.agrformet.2020.107938_bib0020) 2017
Sakamoto (10.1016/j.agrformet.2020.107938_bib0045) 2014; 147
References_xml – volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bib0017
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 147
  start-page: 219
  year: 2014
  end-page: 231
  ident: bib0045
  article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bib0027
  article-title: A review of the use of convolutional neural networks in agriculture
  publication-title: J. Agric. Sci.
– volume: 18
  start-page: 111
  year: 2012
  end-page: 118
  ident: bib0029
  article-title: Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 6
  start-page: 10395
  year: 2014
  end-page: 10412
  ident: bib0002
  article-title: Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging
  publication-title: Remote Sens.
– reference: Srivastava, R.K., Greff, K., Schmidhuber, J., 2015. Training very deep networks. arXiv Prepr. arXiv:1507.06228.
– volume: 7
  start-page: 3467
  year: 2015
  end-page: 3488
  ident: bib0063
  article-title: Rice fields mapping in fragmented area using multi-temporal HJ-1A/B CCD images
  publication-title: Remote Sens.
– start-page: 589
  year: 2019
  end-page: 593
  ident: bib0065
  article-title: Phenological prediction algorithm based on deep learning,
  publication-title: IEEE International Conference on Mechatronics and Automation (ICMA)
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0016
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 268
  start-page: 224
  year: 2019
  end-page: 233
  ident: bib0075
  article-title: Improving rice development and phenology prediction across contrasting climate zones of China
  publication-title: Agric. For. Meteorol.
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: bib0026
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agric.
– volume: 30
  start-page: 833
  year: 2004
  end-page: 845
  ident: bib0025
  article-title: TIMESAT - a program for analyzing time-series of satellite sensor data
  publication-title: Comput. Geosci.
– start-page: 922
  year: 2015
  end-page: 928
  ident: bib0039
  article-title: VoxNet: a 3D convolutional neural network for real-time object recognition
  publication-title: IEEE International Conference on Intelligent Robots and Systems
– reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv Prepr. arXiv:1502.03167.
– volume: 250–251
  start-page: 319
  year: 2018
  end-page: 329
  ident: bib0064
  article-title: Modelling maize phenology, biomass growth and yield under contrasting temperature conditions
  publication-title: Agric. For. Meteorol.
– volume: 235
  start-page: 142
  year: 2019
  end-page: 153
  ident: bib0070
  article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images
  publication-title: Field Crops Res.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 21
  ident: bib0054
  article-title: County-level soybean yield prediction using deep CNN-LSTM model
  publication-title: Sensors
– volume: 119
  start-page: 561
  year: 1991
  end-page: 601
  ident: bib0031
  article-title: A uniform decimal code for growth stages of crops and weeds
  publication-title: Ann. Appl. Biol.
– year: 2001
  ident: bib0005
  article-title: ORYZA2000: Modeling Lowland Rice
– volume: 10
  start-page: 268
  year: 2018
  ident: bib0006
  article-title: Estimating barley biomass with crop surface models from oblique RGB imagery
  publication-title: Remote Sens.
– volume: 19
  start-page: 1569
  year: 2019
  ident: bib0032
  article-title: 3-D image-driven morphological crop analysis: a novel method for detection of sunflower broomrape initial subsoil parasitism
  publication-title: Sensors
– volume: 96
  start-page: 366
  year: 2005
  end-page: 374
  ident: bib0048
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 4643
  year: 2009
  end-page: 4662
  ident: bib0004
  article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images
  publication-title: Int. J. Remote Sens.
– start-page: 77
  year: 2017
  end-page: 85
  ident: bib0041
  article-title: PointNet: deep learning on point sets for 3D classification and segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 10
  start-page: 293
  year: 2018
  ident: bib0049
  article-title: Spatial rice yield estimation based on MODIS and sentinel-1 SAR data and ORYZA crop growth model
  publication-title: Remote Sens.
– volume: 60
  start-page: 84
  year: 2012
  end-page: 90
  ident: bib0030
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 416
  year: 2016
  ident: bib0011
  article-title: Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data
  publication-title: Remote Sens.
– volume: 197
  start-page: 52
  year: 2014
  end-page: 64
  ident: bib0052
  article-title: A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation
  publication-title: Agric. For. Meteorol.
– volume: 48
  start-page: 220
  year: 1994
  end-page: 230
  ident: bib0012
  article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters
  publication-title: Remote Sens. Environ.
– year: 2011
  ident: bib0060
  article-title: Taking computer vision aloft - archaeological three-dimensional reconstructions from aerial photographs with photoscan
  publication-title: Archaeol. Prospect.
– volume: 56
  start-page: 7
  year: 1998
  end-page: 39
  ident: bib0009
  article-title: Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems
  publication-title: Field Crops Res.
– volume: 248
  start-page: 397
  year: 2018
  end-page: 407
  ident: bib0028
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
– volume: 131
  start-page: 215
  year: 2013
  end-page: 231
  ident: bib0046
  article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information
  publication-title: Remote Sens. Environ.
– start-page: 5648
  year: 2016
  end-page: 5656
  ident: bib0042
  article-title: Volumetric and multi-view CNNs for object classification on 3D data
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 37
  start-page: 127
  year: 2002
  end-page: 139
  ident: bib0023
  article-title: Crop identification using harmonic analysis of time-series AVHRR NDVI data
  publication-title: Comput. Electron. Agric.
– volume: 181
  start-page: 237
  year: 2016
  end-page: 250
  ident: bib0073
  article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 198
  start-page: 105
  year: 2017
  end-page: 114
  ident: bib0024
  article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 2146
  year: 2010
  end-page: 2159
  ident: bib0047
  article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. 51, arXiv Prepr.arXiv:1409.1556.
– volume: 164
  start-page: 304
  year: 2016
  end-page: 316
  ident: bib0058
  article-title: Calibration of the AquaCrop model for winter wheat using MODIS LAI images
  publication-title: Agric. Water Manag.
– volume: 57
  start-page: 190
  year: 2017
  end-page: 201
  ident: bib0037
  article-title: Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 691
  year: 2019
  ident: bib0068
  article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network
  publication-title: Remote Sens.
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0056
  article-title: Rethinking the inception architecture for computer vision,
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2018
  ident: bib0062
  article-title: Deep transfer learning for crop yield prediction with remote sensing data
  publication-title: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bib0076
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 247
  year: 1988
  end-page: 263
  ident: bib0008
  article-title: Approximate solution of the trust region problem by minimization over two-dimensional subspaces
  publication-title: Math. Program.
– volume: 77
  start-page: 1
  year: 1995
  end-page: 16
  ident: bib0071
  article-title: A nonlinear model for crop development as a function of temperature
  publication-title: Agric. For. Meteorol.
– volume: 232
  start-page: 49
  year: 2019
  end-page: 61
  ident: bib0019
  article-title: Improvement of sugarcane crop simulation by SWAP-WOFOST model via data assimilation
  publication-title: Field Crops Res.
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: bib0055
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: AAAI Conference on Artificial Intelligence
– volume: 60
  start-page: 1
  year: 1992
  end-page: 16
  ident: bib0013
  article-title: Rice clock model-a computer model to simulate rice development
  publication-title: Agric. For. Meteorol.
– start-page: 551
  year: 2017
  end-page: 558
  ident: bib0043
  article-title: Multi-temporal land cover classification with long short-term memory neural networks
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 121
  start-page: 1027
  year: 2016
  end-page: 1042
  ident: bib0015
  article-title: Reconciling the discrepancy in ground- and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008
  publication-title: J. Geophys. Res. Atmos.
– volume: 200
  start-page: 135
  year: 2015
  end-page: 143
  ident: bib0018
  article-title: Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China
  publication-title: Agric. For. Meteorol.
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib0020
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2019
  ident: bib0038
  article-title: Prediction of sorghum biomass using UAV time series data and recurrent neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 87
  year: 1982
  end-page: 97
  ident: bib0059
  article-title: A summary model for crop growth
  publication-title: Simulation of Plant Growth and Crop Production
– volume: 14
  start-page: 66
  year: 2018
  ident: bib0057
  article-title: Deep phenotyping: deep learning for temporal phenotype/genotype classification
  publication-title: Plant Methods
– volume: 555
  start-page: 363
  year: 2018
  end-page: 366
  ident: bib0010
  article-title: Pursuing sustainable productivity with millions of smallholder farmers
  publication-title: Nature
– volume: 19
  start-page: 52
  year: 2014
  end-page: 61
  ident: bib0001
  article-title: Field high-throughput phenotyping: the new crop breeding frontier
  publication-title: Trends Plant Sci.
– start-page: 4559
  year: 2017
  end-page: 4566
  ident: bib0072
  article-title: Deep gaussian process for crop yield prediction based on remote sensing data
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 1
  year: 2017
  end-page: 5
  ident: bib0069
  article-title: Plant phenology recognition using deep learning: deep-Pheno
  publication-title: International Conference on Agro-Geoinformatics
– volume: 81
  start-page: 264
  year: 2016
  end-page: 269
  ident: bib0034
  article-title: Embedded, real-time UAV control for improved, image-based 3D scene reconstruction
  publication-title: Measurement
– volume: 104
  start-page: 43
  year: 2006
  end-page: 49
  ident: bib0066
  article-title: Real-time monitoring and short-term forecasting of land surface phenology
  publication-title: Remote Sens. Environ.
– start-page: 223
  year: 2016
  end-page: 240
  ident: bib0051
  article-title: Deep learning 3D shape surfaces using geometry images
  publication-title: European Conference on Computer Vision (ECCV)
– volume: 138
  start-page: 176
  year: 2018
  end-page: 192
  ident: bib0044
  article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops.
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 13
  start-page: 693
  year: 2012
  end-page: 712
  ident: bib0074
  article-title: The application of small unmanned aerial systems for precision agriculture: a review
  publication-title: Precis. Agric.
– volume: 161
  start-page: 165
  year: 2004
  end-page: 173
  ident: bib0014
  article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation
  publication-title: J. Plant Physiol.
– volume: 103
  start-page: 117
  year: 2019
  end-page: 129
  ident: bib0036
  article-title: Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network
  publication-title: Eur. J. Agron.
– volume: 10
  start-page: 1540
  year: 2018
  ident: bib0035
  article-title: Real-Time monitoring of crop phenology in the Midwestern United States using VIIRS observations
  publication-title: Remote Sens.
– volume: 19
  start-page: 134
  year: 2018
  end-page: 146
  ident: bib0007
  article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution
  publication-title: Precis. Agric.
– volume: 34
  start-page: 188
  year: 2015
  end-page: 197
  ident: bib0040
  article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 134
  start-page: 210
  year: 2013
  end-page: 223
  ident: bib0022
  article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors
  publication-title: Remote Sens. Environ.
– year: 1990
  ident: bib0033
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 96
  start-page: 1139
  year: 2004
  end-page: 1147
  ident: bib0061
  article-title: Monitoring maize (Zea mays L.) phenology with remote sensing
  publication-title: Agron. J.
– volume: 11
  start-page: 217
  year: 1997
  end-page: 234
  ident: bib0067
  article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability
  publication-title: Global Biogeochem. Cycles
– volume: 173
  start-page: 74
  year: 2013
  end-page: 84
  ident: bib0003
  article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
  publication-title: Agric. For. Meteorol.
– volume: 18
  start-page: 111
  year: 2012
  ident: 10.1016/j.agrformet.2020.107938_bib0029
  article-title: Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2012.01.009
– volume: 161
  start-page: 165
  year: 2004
  ident: 10.1016/j.agrformet.2020.107938_bib0014
  article-title: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01176
– volume: 19
  start-page: 52
  year: 2014
  ident: 10.1016/j.agrformet.2020.107938_bib0001
  article-title: Field high-throughput phenotyping: the new crop breeding frontier
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2013.09.008
– volume: 121
  start-page: 1027
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0015
  article-title: Reconciling the discrepancy in ground- and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD023969
– year: 2011
  ident: 10.1016/j.agrformet.2020.107938_bib0060
  article-title: Taking computer vision aloft - archaeological three-dimensional reconstructions from aerial photographs with photoscan
  publication-title: Archaeol. Prospect.
  doi: 10.1002/arp.399
– start-page: 77
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0041
  article-title: PointNet: deep learning on point sets for 3D classification and segmentation
– volume: 235
  start-page: 142
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0070
  article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.02.022
– volume: 114
  start-page: 2146
  year: 2010
  ident: 10.1016/j.agrformet.2020.107938_bib0047
  article-title: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.019
– year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0062
  article-title: Deep transfer learning for crop yield prediction with remote sensing data
– volume: 232
  start-page: 49
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0019
  article-title: Improvement of sugarcane crop simulation by SWAP-WOFOST model via data assimilation
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2018.12.009
– start-page: 87
  year: 1982
  ident: 10.1016/j.agrformet.2020.107938_bib0059
  article-title: A summary model for crop growth
– volume: 173
  start-page: 74
  year: 2013
  ident: 10.1016/j.agrformet.2020.107938_bib0003
  article-title: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.01.007
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0026
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– volume: 119
  start-page: 561
  year: 1991
  ident: 10.1016/j.agrformet.2020.107938_bib0031
  article-title: A uniform decimal code for growth stages of crops and weeds
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1991.tb04895.x
– volume: 57
  start-page: 190
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0037
  article-title: Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2017.01.001
– start-page: 1
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0069
  article-title: Plant phenology recognition using deep learning: deep-Pheno
– volume: 197
  start-page: 52
  year: 2014
  ident: 10.1016/j.agrformet.2020.107938_bib0052
  article-title: A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.06.007
– year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0038
  article-title: Prediction of sorghum biomass using UAV time series data and recurrent neural networks
– volume: 164
  start-page: 304
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0058
  article-title: Calibration of the AquaCrop model for winter wheat using MODIS LAI images
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.10.013
– start-page: 223
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0051
  article-title: Deep learning 3D shape surfaces using geometry images
– volume: 131
  start-page: 215
  year: 2013
  ident: 10.1016/j.agrformet.2020.107938_bib0046
  article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.017
– volume: 10
  start-page: 293
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0049
  article-title: Spatial rice yield estimation based on MODIS and sentinel-1 SAR data and ORYZA crop growth model
  publication-title: Remote Sens.
  doi: 10.3390/rs10020293
– volume: 14
  start-page: 66
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0057
  article-title: Deep phenotyping: deep learning for temporal phenotype/genotype classification
  publication-title: Plant Methods
  doi: 10.1186/s13007-018-0333-4
– volume: 147
  start-page: 219
  year: 2014
  ident: 10.1016/j.agrformet.2020.107938_bib0045
  article-title: Near real-time prediction of U.S. corn yields based on time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.008
– volume: 8
  start-page: 416
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0011
  article-title: Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data
  publication-title: Remote Sens.
  doi: 10.3390/rs8050416
– start-page: 4559
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0072
  article-title: Deep gaussian process for crop yield prediction based on remote sensing data
– volume: 81
  start-page: 264
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0034
  article-title: Embedded, real-time UAV control for improved, image-based 3D scene reconstruction
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.12.014
– volume: 34
  start-page: 188
  year: 2015
  ident: 10.1016/j.agrformet.2020.107938_bib0040
  article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2014.08.011
– volume: 7
  start-page: 3467
  year: 2015
  ident: 10.1016/j.agrformet.2020.107938_bib0063
  article-title: Rice fields mapping in fragmented area using multi-temporal HJ-1A/B CCD images
  publication-title: Remote Sens.
  doi: 10.3390/rs70403467
– start-page: 551
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0043
  article-title: Multi-temporal land cover classification with long short-term memory neural networks
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-1-W1-551-2017
– volume: 103
  start-page: 117
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0036
  article-title: Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.12.004
– volume: 84
  start-page: 471
  year: 2003
  ident: 10.1016/j.agrformet.2020.107938_bib0076
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 60
  start-page: 1
  year: 1992
  ident: 10.1016/j.agrformet.2020.107938_bib0013
  article-title: Rice clock model-a computer model to simulate rice development
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(92)90071-B
– volume: 10
  start-page: 268
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0006
  article-title: Estimating barley biomass with crop surface models from oblique RGB imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10020268
– volume: 19
  start-page: 134
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0007
  article-title: Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-017-9504-y
– volume: 77
  start-page: 1
  year: 1995
  ident: 10.1016/j.agrformet.2020.107938_bib0071
  article-title: A nonlinear model for crop development as a function of temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02236-Q
– volume: 200
  start-page: 135
  year: 2015
  ident: 10.1016/j.agrformet.2020.107938_bib0018
  article-title: Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.09.011
– start-page: 922
  year: 2015
  ident: 10.1016/j.agrformet.2020.107938_bib0039
  article-title: VoxNet: a 3D convolutional neural network for real-time object recognition
– volume: 138
  start-page: 176
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0044
  article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops.
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.011
– start-page: 5648
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0042
  article-title: Volumetric and multi-view CNNs for object classification on 3D data
– volume: 181
  start-page: 237
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0073
  article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.039
– year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0027
  article-title: A review of the use of convolutional neural networks in agriculture
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859618000436
– volume: 60
  start-page: 84
  year: 2012
  ident: 10.1016/j.agrformet.2020.107938_bib0030
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2001
  ident: 10.1016/j.agrformet.2020.107938_bib0005
– volume: 37
  start-page: 127
  year: 2002
  ident: 10.1016/j.agrformet.2020.107938_bib0023
  article-title: Crop identification using harmonic analysis of time-series AVHRR NDVI data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/S0168-1699(02)00116-3
– volume: 198
  start-page: 105
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0024
  article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.007
– volume: 48
  start-page: 220
  year: 1994
  ident: 10.1016/j.agrformet.2020.107938_bib0012
  article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90143-0
– volume: 11
  start-page: 691
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0068
  article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs11060691
– volume: 268
  start-page: 224
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0075
  article-title: Improving rice development and phenology prediction across contrasting climate zones of China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.01.019
– volume: 10
  start-page: 1540
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0035
  article-title: Real-Time monitoring of crop phenology in the Midwestern United States using VIIRS observations
  publication-title: Remote Sens.
  doi: 10.3390/rs10101540
– volume: 248
  start-page: 397
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0028
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.10.015
– volume: 40
  start-page: 247
  year: 1988
  ident: 10.1016/j.agrformet.2020.107938_bib0008
  article-title: Approximate solution of the trust region problem by minimization over two-dimensional subspaces
  publication-title: Math. Program.
  doi: 10.1007/BF01580735
– start-page: 2261
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0020
  article-title: Densely connected convolutional networks
– volume: 96
  start-page: 366
  year: 2005
  ident: 10.1016/j.agrformet.2020.107938_bib0048
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.008
– ident: 10.1016/j.agrformet.2020.107938_bib0050
– volume: 250–251
  start-page: 319
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0064
  article-title: Modelling maize phenology, biomass growth and yield under contrasting temperature conditions
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.01.005
– start-page: 589
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0065
  article-title: Phenological prediction algorithm based on deep learning,
– volume: 11
  start-page: 217
  year: 1997
  ident: 10.1016/j.agrformet.2020.107938_bib0067
  article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/97GB00330
– volume: 6
  start-page: 10395
  year: 2014
  ident: 10.1016/j.agrformet.2020.107938_bib0002
  article-title: Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging
  publication-title: Remote Sens.
  doi: 10.3390/rs61110395
– volume: 134
  start-page: 210
  year: 2013
  ident: 10.1016/j.agrformet.2020.107938_bib0022
  article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.029
– volume: 96
  start-page: 1139
  year: 2004
  ident: 10.1016/j.agrformet.2020.107938_bib0061
  article-title: Monitoring maize (Zea mays L.) phenology with remote sensing
  publication-title: Agron. J.
  doi: 10.2134/agronj2004.1139
– volume: 13
  start-page: 693
  year: 2012
  ident: 10.1016/j.agrformet.2020.107938_bib0074
  article-title: The application of small unmanned aerial systems for precision agriculture: a review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 30
  start-page: 4643
  year: 2009
  ident: 10.1016/j.agrformet.2020.107938_bib0004
  article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802632249
– volume: 37
  start-page: 1904
  year: 2015
  ident: 10.1016/j.agrformet.2020.107938_bib0017
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0054
  article-title: County-level soybean yield prediction using deep CNN-LSTM model
  publication-title: Sensors
  doi: 10.3390/s19204363
– start-page: 4278
  year: 2017
  ident: 10.1016/j.agrformet.2020.107938_bib0055
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– start-page: 770
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0016
  article-title: Deep residual learning for image recognition
– volume: 104
  start-page: 43
  year: 2006
  ident: 10.1016/j.agrformet.2020.107938_bib0066
  article-title: Real-time monitoring and short-term forecasting of land surface phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.014
– volume: 56
  start-page: 7
  year: 1998
  ident: 10.1016/j.agrformet.2020.107938_bib0009
  article-title: Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(97)00140-8
– ident: 10.1016/j.agrformet.2020.107938_bib0021
– volume: 19
  start-page: 1569
  year: 2019
  ident: 10.1016/j.agrformet.2020.107938_bib0032
  article-title: 3-D image-driven morphological crop analysis: a novel method for detection of sunflower broomrape initial subsoil parasitism
  publication-title: Sensors
  doi: 10.3390/s19071569
– volume: 30
  start-page: 833
  year: 2004
  ident: 10.1016/j.agrformet.2020.107938_bib0025
  article-title: TIMESAT - a program for analyzing time-series of satellite sensor data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.05.006
– volume: 555
  start-page: 363
  year: 2018
  ident: 10.1016/j.agrformet.2020.107938_bib0010
  article-title: Pursuing sustainable productivity with millions of smallholder farmers
  publication-title: Nature
  doi: 10.1038/nature25785
– ident: 10.1016/j.agrformet.2020.107938_bib0053
– start-page: 2818
  year: 2016
  ident: 10.1016/j.agrformet.2020.107938_bib0056
  article-title: Rethinking the inception architecture for computer vision,
– year: 1990
  ident: 10.1016/j.agrformet.2020.107938_bib0033
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0012779
Score 2.6270165
Snippet •Using CNN to detect rice phenology by a mono-temporal imagery of UAV was investigated.•Shape-model-fitting method underperformed with short length of...
Near real-time crop phenology detection is essential for crop management, estimation of harvest time and yield estimation. Previous approaches to crop...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107938
SubjectTerms China
Convolutional neural network
crop management
cultivation area
Deep learning
forests
harvest date
meteorology
neural networks
Oryza sativa
phenology
rice
Rice phenology detection
Shape model fitting
time series analysis
UAV
unmanned aerial vehicles
vegetation index
Title A near real-time deep learning approach for detecting rice phenology based on UAV images
URI https://dx.doi.org/10.1016/j.agrformet.2020.107938
https://www.proquest.com/docview/2574329160
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrxUpAQt7A-k5ZbNYEGCC4wtFvkpOk0NHXTNq78duw-JoGEOHCMG6dR7NpfE8dm7BIAXII_acKGEInIghFgpSdyGRvIlZQJ0Ib-07PsD6KHYTxcY732LgyFVTa2v7bplbVuKN1mNbuz8bj7gmCFsnmFgUdZo7wh3WCPFGn59ecqzMMPVJ1vDzsL6v0txgtGVXC-o6DKgKiorclvHuqHra4c0N0O226QI8_qye2yNVfusa1sNG-yZ7g91nlCCDydVzvl_Ir3JmPEo1Vrnw0zXqJWcwSJE0EV5Xnu3Iw3VSNGvE0uznGq-IjOFohMOYc4xYHVg5LTy_m05IPsjePoI7c4YIO729deXzRlFYSN_GgpAihy5RdOSTAqT60KU_RQKglzpYiQgrGFkdYWDmIX2digVUNcVcjYphKS8JCtl9PSHTEeSucriUwWJWCUlyC4srJwCEoMgEk7TLZLqW2Tc5xKX0x0G1z2rlcy0CQDXcugw7wV46xOu_E3y00rK_1NgzQ6h7-ZL1rpavy-6NAESjf9WGg0aVEYIIj2jv_zghO2SS0KMvPjU7a-nH-4M4QzS3Ne6es528juH_vPX_QV98k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gF4QDBAdOPDSIg3q2k-7IS3qGLq2NoXVtQ36-w4VVGVVl33_3OXOJWGhPbAY845x_Jd7n6xLz8DfEFEn9NHmnQJpjJ1aCU6FclKZRYrrVSOvKA_m6vpIv2xzJYnMOn_heGyyhD7u5jeRusgGYXZHO3W69FPAivM5pXEEbNGRcsncMrsVNkATsur6-n8uJkQ645yj-6XrPCgzAtXbX2-57rKmKXksPm_ktRf4brNQZcv4UUAj6LsxvcKTnxzBs_L1T4QaPgzGM4IBW_37WK5-CommzVB0vbqNSxL0ZBjC8KJG8mHyovK-50IB0esRM8vLmio1MTbCyxm2iHBpWBdp5z3KrFtxKL8Jaj3lb97A4vL77eTqQwnK0iXjtODjLGu9Lj2WqHVVeF0UlCS0nlSac2CAq2rrXKu9pj51GWWAhtBq1plrlCYJ29h0Gwb_w5EovxYK1JyZASro5zwlVO1J1xiEW0xBNVPpXGBdpxPv9iYvr7stznawLANTGeDIURHxV3HvPG4yrfeVuaBExnKD48rf-6ta-gV430TbPz2_s5QVEuTmHB0dP4_D_gET6e3sxtzczW_voBn3MI1Z-PsPQwO-3v_gdDNwX4M3vsHbCn6eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+near+real-time+deep+learning+approach+for+detecting+rice+phenology+based+on+UAV+images&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Yang%2C+Qi&rft.au=Shi%2C+Liangsheng&rft.au=Han%2C+Jingye&rft.au=Yu%2C+Jin&rft.date=2020-06-15&rft.issn=0168-1923&rft.volume=287+p.107938-&rft_id=info:doi/10.1016%2Fj.agrformet.2020.107938&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon