Machine learning models for prediction the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) for waste-to-energy evaluation
Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important subjects needed to build waste incineration power plants around the world. For this purpose, machine learning models were used to predict the Highe...
Saved in:
Published in | Case studies in thermal engineering Vol. 31; p. 101823 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-157X 2214-157X |
DOI | 10.1016/j.csite.2022.101823 |
Cover
Abstract | Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important subjects needed to build waste incineration power plants around the world. For this purpose, machine learning models were used to predict the Higher Heating Value (HHV) of MSW based on the initial materials. Four types of machine learning methods: Radial Bias Function Artificial Neural Network (RBF-ANN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), Support Vector Machine (SVM) and Adaptive Nero-Fuzzy Inference System (ANFIS) were used for modeling the HHV with six different inputs (carbon, water, hydrogen, oxygen, nitrogen, sulfur, and ash). The results showed that RBF-ANN can predict the HHV of MSW with higher accuracy than other models. The overall Mean Absolute Percentage Error (MAPE) for MLP-ANN, SVM and ANFIS models were 7.3, 11.77 and 23.76%, respectively. The MAPE of the best topology for RBF model (6-17-1) with spread factor of 0.8 reach to 0.45%. Finally, the results of this study proved that ANN's can be used as a practical tool with high accuracy and reliability for design and management of waste incineration plants. |
---|---|
AbstractList | Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important subjects needed to build waste incineration power plants around the world. For this purpose, machine learning models were used to predict the Higher Heating Value (HHV) of MSW based on the initial materials. Four types of machine learning methods: Radial Bias Function Artificial Neural Network (RBF-ANN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), Support Vector Machine (SVM) and Adaptive Nero-Fuzzy Inference System (ANFIS) were used for modeling the HHV with six different inputs (carbon, water, hydrogen, oxygen, nitrogen, sulfur, and ash). The results showed that RBF-ANN can predict the HHV of MSW with higher accuracy than other models. The overall Mean Absolute Percentage Error (MAPE) for MLP-ANN, SVM and ANFIS models were 7.3, 11.77 and 23.76%, respectively. The MAPE of the best topology for RBF model (6-17-1) with spread factor of 0.8 reach to 0.45%. Finally, the results of this study proved that ANN's can be used as a practical tool with high accuracy and reliability for design and management of waste incineration plants. |
ArticleNumber | 101823 |
Author | Taki, Morteza Rohani, Abbas |
Author_xml | – sequence: 1 givenname: Morteza orcidid: 0000-0002-3059-4984 surname: Taki fullname: Taki, Morteza email: mtaki@asnrukh.ac.ir, mortezataaki@gmail.com organization: Department of Agricultural Machinery and Mechanization Engineering, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran – sequence: 2 givenname: Abbas surname: Rohani fullname: Rohani, Abbas email: arohani@um.ac.ir organization: Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran |
BookMark | eNp9kUFPHCEUx0ljE631E3jhWA-z8hh2hjn00JjqmLjpQaO9EQbe7LIZYQO4xrNf3JndNjEePAEPfv-8x-8bOfDBIyGnwGbAoDpfz0xyGWeccT5VJC-_kCPOQRQwr_8evNsfkpOU1owxqEsJQhyR14U2K-eRDqijd35JH4PFIdE-RLqJaJ3JLniaV0hbt1xhpC3qPD2818MT0h9te39GQ08XT94Zt9EDvQ2Ds_RBpzxeL24fznZhz9O5yKFAj3H5QnE78noK_06-9npIePJvPSZ3l7_vLtri5s_V9cWvm8IIELngFZe2NqUoe5x3zEq0jeHc2AZAo8RGNNgBFz3HupI1gu6AVVKUFSB0pjwm1_tYG_RabaJ71PFFBe3UrhDiUumYnRlQdeX4QRXMta2MEGCb2tass7Ke91II249ZzT7LxJBSxF4Zl3fD5KjdoICpyY1aq50bNblRezcjW35g__fyOfVzT41ycOswqmQcejMaimjyOIP7lH8DnVWrkA |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3331693 crossref_primary_10_1016_j_nxsust_2024_100092 crossref_primary_10_1016_j_cles_2024_100143 crossref_primary_10_3390_agriculture14010025 crossref_primary_10_1007_s11694_024_03017_4 crossref_primary_10_1016_j_csite_2025_105880 crossref_primary_10_14710_ijred_2023_47831 crossref_primary_10_1016_j_gerr_2024_100060 crossref_primary_10_1371_journal_pone_0311802 crossref_primary_10_1007_s41939_024_00540_1 crossref_primary_10_1007_s11694_023_02256_1 crossref_primary_10_1016_j_jallcom_2023_172828 crossref_primary_10_3390_toxics12110786 crossref_primary_10_1016_j_eti_2024_104012 crossref_primary_10_3390_cleantechnol4040075 crossref_primary_10_1007_s10853_024_09379_w crossref_primary_10_1007_s10661_024_13311_9 crossref_primary_10_1016_j_cscee_2024_101006 crossref_primary_10_3390_w15040674 crossref_primary_10_5937_ror2201085T crossref_primary_10_53982_ajerd_2023_0601_05_j crossref_primary_10_1016_j_afres_2024_100524 crossref_primary_10_1016_j_csite_2023_103048 crossref_primary_10_1016_j_micpath_2023_106177 crossref_primary_10_3390_su16093579 crossref_primary_10_1080_15567036_2024_2309303 crossref_primary_10_1016_j_csite_2024_104144 crossref_primary_10_3390_su15076088 crossref_primary_10_1016_j_biombioe_2025_107795 crossref_primary_10_1016_j_psep_2024_11_051 crossref_primary_10_1016_j_fuel_2023_129898 crossref_primary_10_3390_en17215292 crossref_primary_10_1007_s12665_024_11702_2 crossref_primary_10_1016_j_fuel_2023_128548 crossref_primary_10_3390_en17174213 crossref_primary_10_1007_s41939_024_00453_z crossref_primary_10_1016_j_psep_2023_11_057 crossref_primary_10_3390_horticulturae9080853 crossref_primary_10_61435_ijred_2024_60387 crossref_primary_10_1016_j_psep_2023_06_030 crossref_primary_10_1016_j_scs_2023_104926 |
Cites_doi | 10.3390/su12114456 10.1016/j.jclepro.2020.125575 10.1023/A:1018628609742 10.1016/j.jclepro.2019.02.112 10.1016/j.jclepro.2021.127672 10.1016/j.jece.2021.105717 10.1016/j.wasman.2020.06.046 10.1016/j.fuel.2020.118906 10.1016/j.jclepro.2018.12.016 10.1016/j.wasman.2020.07.034 10.1016/j.supflu.2017.02.006 10.1016/j.jclepro.2020.125671 10.1016/j.rser.2020.109883 10.1016/j.energy.2020.119279 10.1016/j.fuproc.2016.08.013 10.1016/j.wasman.2019.03.012 10.1016/j.asoc.2019.106006 10.1016/j.jece.2017.07.071 10.1016/j.wasman.2018.07.012 10.1016/j.wasman.2012.11.003 10.1016/j.apenergy.2017.05.042 10.1016/j.biortech.2015.12.024 10.1016/j.wasman.2019.08.007 10.1016/j.renene.2017.08.061 10.1016/j.compeleceng.2020.106701 10.1016/j.wasman.2018.11.038 10.1016/j.energy.2020.119632 10.1016/j.apenergy.2018.10.071 10.1016/j.jclepro.2018.06.173 10.1016/j.enbuild.2014.12.029 10.1016/j.envint.2019.105291 10.1016/j.wasman.2019.07.034 10.1016/S0016-2361(03)00075-9 10.1016/j.enbuild.2016.08.020 10.1016/j.wasman.2014.11.020 10.1016/j.wasman.2020.04.017 10.1016/j.scitotenv.2021.148024 10.1080/15567036.2019.1604872 10.1016/j.energy.2020.118162 10.1016/j.wasman.2015.09.034 10.1016/j.wasman.2020.04.015 10.1016/j.wasman.2016.05.018 10.1007/s12649-018-0297-7 10.1016/j.catena.2020.104762 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2022.101823 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_b3173615ad6c441d97d70bd875f844df 10_1016_j_csite_2022_101823 S2214157X22000697 |
GroupedDBID | 0R~ 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c414t-2628d7c343fe5b0d8ed9c22cd911ae8e949eb124f2e7687e1ab10684361e1bc3 |
IEDL.DBID | IXB |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:30:06 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Tue Jul 01 02:28:32 EDT 2025 Sun Apr 06 06:54:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Radial bias function Incineration power plant Modeling Clean energy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-2628d7c343fe5b0d8ed9c22cd911ae8e949eb124f2e7687e1ab10684361e1bc3 |
ORCID | 0000-0002-3059-4984 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214157X22000697 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3173615ad6c441d97d70bd875f844df crossref_citationtrail_10_1016_j_csite_2022_101823 crossref_primary_10_1016_j_csite_2022_101823 elsevier_sciencedirect_doi_10_1016_j_csite_2022_101823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sarvestani, Rohani, Farzad, Aghkhani (bib42) 2016; 154 Sirabahenda, Simon, Courtenay, van den Heuvel (bib41) 2020; 195 Azam, Jahromy, Raza, Raza, Lee, Kim, Winter (bib1) 2020; 134 Taki, Farhadi (bib45) 2021; 52 Wu, Niu, Dai, Wu (bib8) 2020; 107 Palacios-Bereche, de Mello Sant'Ana (bib3) 2019; 212 Drudi, Drudi, Martins, Antonio, Jtc (bib26) 2019; 87 Lin, Raza (bib4) 2019; 219 Ayeleru, Fajimi, Oboirien, Olubambi (bib17) 2021; 289 Cubillos (bib23) 2020; 115 Amini, Taki, Rohani (bib48) 2020; 87 Birgen, Magnanelli, Carlsson, Skreiberg, Mosby, Becidan (bib24) 2021; 283 Motahari-Nezhad, Jafari (bib40) 2020; 165 Ayilara, Olanrewaju, Babalola, Odeyemi (bib14) 2020; 12 Suykens, Vandewalle (bib36) 1999; 9 Scarlat, Fahl, Dallemand (bib25) 2019; 10 Wang, Tang, He, Tang, Robinson (bib12) 2021; 216 Shah, Kumar Srivastava, Sabyasachi Mohanty, Varjani (bib18) 2021; 9 Ana, Rafael, Francisca (bib16) 2019; 97 Genuino, Bataller, Capareda, Luna (bib29) 2017; 5 Meraz, Dominguez, Kornhauser, Rosas (bib33) 2003; 82 Taki, Rohani, Yildizhan (bib46) 2020 Klemes, Fan, Tan, Jiang (bib2) 2020; 127 Azadi, Karimi-Jashni (bib10) 2016; 48 Fallah, Ng, Vu, Torabi (bib22) 2020; 116 Lin, Wang, Chi, Huang, Yan (bib27) 2015; 36 Fu, Cheng, Yang, Batista, Jiang (bib43) 2020; 85 Ogwueleka, Ogwueleka (bib32) 2010; 7 Zekovic, Bera, Durovic, Pavlic (bib30) 2017; 125 Taki, Soheili-Fard, Rohani, Chen, Yildizhan (bib37) 2018; 197 Adamovic, Antanasijevic, Cosovic, Ristic, Pocajt (bib28) 2018; 78 Wang, Tarroja, Smith, Shaffer, Samuelsen (bib6) 2019; 235 Rohani, Taki, Abdollahpour (bib38) 2018; 115 Ayeleru, Dlova, Akinribide, Ntuli, Kupolati, Marina (bib19) 2020; 110 Jung, Kim, Heo (bib34) 2015; 90 Ali, Gordon, Hamish (bib15) 2019; 98 Vu, Ng, Bolingbroke (bib9) 2019; 84 Bolandnazar, Taki (bib39) 2020; 42 Yang, Nguyen, Bui, Nguyen-Thoi, Zhou, Huang (bib5) 2021; 311 Lin, Chyan, Chen, Wang (bib49) 2013; 33 Shahbaz, Raghutla, Chittedi, Jiao, Vo (bib7) 2020; 207 Cao, Xin, Yuan (bib35) 2016; 202 Esmaeili, Mozayani (bib47) 2009 Vu, Ng, Richter, Karimi, Kabir (bib21) 2021; 789 Amen, Hameed, Albashar, Kamran, Shah, Zaman, Mukhtar, Saqib, Ch, Ibrahim, Ullah, Al-Sehemi, Ahmad, Klemes, Bokhari, Asif (bib11) 2021; 287 Li, Loh, Zhang, Tong, Dai (bib20) 2018; 209 Safar, Bux, Faria, Pervez (bib13) 2021; 219 Abbasi, Hananeh (bib31) 2016; 56 Jović, Aničić, Marsenić, Nedić (bib44) 2016; 129 Li (10.1016/j.csite.2022.101823_bib20) 2018; 209 Vu (10.1016/j.csite.2022.101823_bib21) 2021; 789 Yang (10.1016/j.csite.2022.101823_bib5) 2021; 311 Genuino (10.1016/j.csite.2022.101823_bib29) 2017; 5 Lin (10.1016/j.csite.2022.101823_bib49) 2013; 33 Cubillos (10.1016/j.csite.2022.101823_bib23) 2020; 115 Shahbaz (10.1016/j.csite.2022.101823_bib7) 2020; 207 Birgen (10.1016/j.csite.2022.101823_bib24) 2021; 283 Sarvestani (10.1016/j.csite.2022.101823_bib42) 2016; 154 Cao (10.1016/j.csite.2022.101823_bib35) 2016; 202 Jović (10.1016/j.csite.2022.101823_bib44) 2016; 129 Abbasi (10.1016/j.csite.2022.101823_bib31) 2016; 56 Wu (10.1016/j.csite.2022.101823_bib8) 2020; 107 Amini (10.1016/j.csite.2022.101823_bib48) 2020; 87 Adamovic (10.1016/j.csite.2022.101823_bib28) 2018; 78 Azadi (10.1016/j.csite.2022.101823_bib10) 2016; 48 Ayeleru (10.1016/j.csite.2022.101823_bib19) 2020; 110 Amen (10.1016/j.csite.2022.101823_bib11) 2021; 287 Scarlat (10.1016/j.csite.2022.101823_bib25) 2019; 10 Ogwueleka (10.1016/j.csite.2022.101823_bib32) 2010; 7 Drudi (10.1016/j.csite.2022.101823_bib26) 2019; 87 Safar (10.1016/j.csite.2022.101823_bib13) 2021; 219 Esmaeili (10.1016/j.csite.2022.101823_bib47) 2009 Palacios-Bereche (10.1016/j.csite.2022.101823_bib3) 2019; 212 Fu (10.1016/j.csite.2022.101823_bib43) 2020; 85 Zekovic (10.1016/j.csite.2022.101823_bib30) 2017; 125 Wang (10.1016/j.csite.2022.101823_bib6) 2019; 235 Motahari-Nezhad (10.1016/j.csite.2022.101823_bib40) 2020; 165 Ayeleru (10.1016/j.csite.2022.101823_bib17) 2021; 289 Taki (10.1016/j.csite.2022.101823_bib37) 2018; 197 Sirabahenda (10.1016/j.csite.2022.101823_bib41) 2020; 195 Bolandnazar (10.1016/j.csite.2022.101823_bib39) 2020; 42 Azam (10.1016/j.csite.2022.101823_bib1) 2020; 134 Suykens (10.1016/j.csite.2022.101823_bib36) 1999; 9 Lin (10.1016/j.csite.2022.101823_bib27) 2015; 36 Ana (10.1016/j.csite.2022.101823_bib16) 2019; 97 Rohani (10.1016/j.csite.2022.101823_bib38) 2018; 115 Ayilara (10.1016/j.csite.2022.101823_bib14) 2020; 12 Taki (10.1016/j.csite.2022.101823_bib46) 2020 Ali (10.1016/j.csite.2022.101823_bib15) 2019; 98 Meraz (10.1016/j.csite.2022.101823_bib33) 2003; 82 Vu (10.1016/j.csite.2022.101823_bib9) 2019; 84 Lin (10.1016/j.csite.2022.101823_bib4) 2019; 219 Shah (10.1016/j.csite.2022.101823_bib18) 2021; 9 Klemes (10.1016/j.csite.2022.101823_bib2) 2020; 127 Jung (10.1016/j.csite.2022.101823_bib34) 2015; 90 Taki (10.1016/j.csite.2022.101823_bib45) 2021; 52 Wang (10.1016/j.csite.2022.101823_bib12) 2021; 216 Fallah (10.1016/j.csite.2022.101823_bib22) 2020; 116 |
References_xml | – volume: 5 start-page: 4101 year: 2017 end-page: 4107 ident: bib29 article-title: Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar publication-title: J. Environ. Chem. Eng. – volume: 87 year: 2020 ident: bib48 article-title: Applied improved RBF neural network model for predicting the broiler output energies publication-title: Appl. Soft Comput. J. – volume: 116 start-page: 66 year: 2020 end-page: 78 ident: bib22 article-title: Application of a multi-stage neural network approach for time-series landfill gas modeling with missing data imputation publication-title: Waste Manag. – volume: 84 start-page: 129 year: 2019 end-page: 140 ident: bib9 article-title: Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models publication-title: Waste Manag. – volume: 202 start-page: 158 year: 2016 end-page: 164 ident: bib35 article-title: Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach publication-title: Bioresour. Technol. – volume: 207 start-page: 118 year: 2020 end-page: 162 ident: bib7 article-title: The effect of renewable energy consumption on economic growth: evidence from the renewable country attractive index publication-title: Energy – volume: 287 year: 2021 ident: bib11 article-title: Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: a sustainable case study publication-title: J. Clean. Prod. – volume: 125 start-page: 88 year: 2017 end-page: 95 ident: bib30 article-title: Supercritical fluid extraction of coriander seeds: kinetics modelling and ANN optimization publication-title: J. Supercrit. Fluids – volume: 7 start-page: 259 year: 2010 end-page: 266 ident: bib32 article-title: Modeling energy content of municipal solid waste using Artificial Neural Network. Iran publication-title: J. Environ. Health. Sci. Eng. – volume: 82 start-page: 1499 year: 2003 end-page: 1507 ident: bib33 article-title: A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition publication-title: Fuel – volume: 235 start-page: 284 year: 2019 end-page: 298 ident: bib6 article-title: Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions publication-title: Appl. Energy – volume: 36 start-page: 24 year: 2015 end-page: 32 ident: bib27 article-title: A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition publication-title: Waste Manag. – volume: 789 year: 2021 ident: bib21 article-title: Modeling of municipal waste disposal rates during COVID-19 using separated waste fraction models publication-title: Sci. Total Environ. – volume: 10 start-page: 2425 year: 2019 end-page: 2444 ident: bib25 article-title: Status and opportunities for energy recovery from municipal solid waste in Europe publication-title: Waste Biomass Valorization – volume: 134 year: 2020 ident: bib1 article-title: Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan publication-title: Environ. Int. – volume: 98 start-page: 14 year: 2019 end-page: 20 ident: bib15 article-title: Food waste from a university campus in the Middle East: derivers, composition, and resource recovery potential publication-title: Waste Manag. – volume: 219 start-page: 981 year: 2019 end-page: 993 ident: bib4 article-title: Analysis of energy related CO publication-title: J. Clean. Prod. – volume: 289 year: 2021 ident: bib17 article-title: Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: a case study of Johannesburg, South Africa publication-title: J. Clean. Prod. – volume: 212 start-page: 461 year: 2019 end-page: 474 ident: bib3 article-title: Energy recovery overview of municipal solid waste in S∼ ao Paulo State, Brazil publication-title: J. Clean. Prod. – volume: 216 year: 2021 ident: bib12 article-title: Generalized models to predict the lower heating value (LHV) of municipal solid waste (MSW) publication-title: Energy – volume: 219 year: 2021 ident: bib13 article-title: Integrated model of municipal solid waste management for energy recovery in Pakistan publication-title: Energy – volume: 52 start-page: 197 year: 2021 end-page: 209 ident: bib45 article-title: Application of artificial neural network models (MLP and RBF) and support vector machine (SVM) to estimate the shadow in flat-plate solar collectors in Iran publication-title: Iran Biosyst. Eng. – volume: 283 year: 2021 ident: bib24 article-title: Machine learning based modelling for lower heating value prediction of municipal solid waste publication-title: Fuel – volume: 115 start-page: 8 year: 2020 end-page: 14 ident: bib23 article-title: Multi-site household waste generation forecasting using a deep learning approach publication-title: Waste Manag. – volume: 97 start-page: 19 year: 2019 end-page: 26 ident: bib16 article-title: Inhibition effect of polyurethane foam waste in dioxin formation publication-title: Waste Manag. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib36 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 87 start-page: 782 year: 2019 end-page: 790 ident: bib26 article-title: Statistical model for heating value of municipal solid waste in brazil based on gravimetric composition publication-title: Waste Manag. – volume: 42 start-page: 1618 year: 2020 end-page: 1632 ident: bib39 article-title: Energy consumption forecasting in agriculture by artificial intelligence and mathematical models publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. – volume: 48 start-page: 14 year: 2016 end-page: 23 ident: bib10 article-title: Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: a case study of Fars province, Iran publication-title: Waste Manag. – volume: 9 year: 2021 ident: bib18 article-title: Municipal solid waste as a sustainable resource for energy production: State-of-the-art review publication-title: J. Environ. Chem. Eng. – volume: 78 start-page: 955 year: 2018 end-page: 968 ident: bib28 article-title: An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries publication-title: Waste Manag. – year: 2009 ident: bib47 article-title: Adjusting the parameters of radial Basis function networks using particle swarm optimization publication-title: International Conference on Computational Intelligence for Measurement Systems and Applications Hong Kong, China May 11-13 – volume: 110 start-page: 24 year: 2020 end-page: 42 ident: bib19 article-title: Challenges of plastic waste generation and management in sub-Saharan Africa: a review publication-title: Waste Manag. – volume: 209 start-page: 400 year: 2018 end-page: 408 ident: bib20 article-title: Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system publication-title: Appl. Energy – volume: 127 year: 2020 ident: bib2 article-title: Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19 publication-title: Renew. Sustain. Energy Rev. – volume: 107 start-page: 182 year: 2020 end-page: 190 ident: bib8 article-title: New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks publication-title: Waste Manag. – volume: 90 start-page: 76 year: 2015 end-page: 84 ident: bib34 article-title: Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach publication-title: Energy Build. – volume: 154 start-page: 37 year: 2016 end-page: 43 ident: bib42 article-title: Modeling of specific fuel consumption and emission parameters of compression ignition engine using Nano fluid combustion experimental data publication-title: Fuel Process. Technol. – volume: 12 start-page: 1 year: 2020 end-page: 23 ident: bib14 article-title: Waste management through composting: challenges and potentials publication-title: Sustainability – volume: 115 start-page: 411 year: 2018 end-page: 422 ident: bib38 article-title: A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I) publication-title: Renew. Energy – year: 2020 ident: bib46 article-title: Application of machine learning for solar radiation modeling publication-title: Theor. Appl. Climatol. – volume: 165 year: 2020 ident: bib40 article-title: ANFIS system for prognosis of dynamometer high-speed ball bearing based on frequency domain acoustic emission signals publication-title: Measurement – volume: 85 year: 2020 ident: bib43 article-title: Wastewater discharge quality prediction using stratified sampling and wavelet de-noising ANFIS model publication-title: Comput. Electr. Eng. – volume: 195 year: 2020 ident: bib41 article-title: Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models publication-title: Catena – volume: 311 year: 2021 ident: bib5 article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm publication-title: J. Clean. Prod. – volume: 56 start-page: 13 year: 2016 end-page: 22 ident: bib31 article-title: Forecasting municipal solid waste generation using artificial intelligence modelling approaches publication-title: Waste Manag. – volume: 129 start-page: 261 year: 2016 end-page: 263 ident: bib44 article-title: Solar radiation analyzing by neuro-fuzzy approach publication-title: Energy Build. – volume: 33 start-page: 268 year: 2013 end-page: 276 ident: bib49 article-title: Swift model for a lower heating value prediction based on wet-based physical components of municipal solid waste publication-title: Waste Manag. – volume: 197 start-page: 195 year: 2018 end-page: 207 ident: bib37 article-title: Life cycle assessment to compare the environmental impacts of different wheat production systems publication-title: J. Clean. Prod. – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.csite.2022.101823_bib14 article-title: Waste management through composting: challenges and potentials publication-title: Sustainability doi: 10.3390/su12114456 – volume: 287 year: 2021 ident: 10.1016/j.csite.2022.101823_bib11 article-title: Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: a sustainable case study publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125575 – volume: 9 start-page: 293 year: 1999 ident: 10.1016/j.csite.2022.101823_bib36 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 219 start-page: 981 year: 2019 ident: 10.1016/j.csite.2022.101823_bib4 article-title: Analysis of energy related CO2 emissions in Pakistan publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.02.112 – volume: 311 year: 2021 ident: 10.1016/j.csite.2022.101823_bib5 article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127672 – volume: 9 year: 2021 ident: 10.1016/j.csite.2022.101823_bib18 article-title: Municipal solid waste as a sustainable resource for energy production: State-of-the-art review publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105717 – volume: 115 start-page: 8 year: 2020 ident: 10.1016/j.csite.2022.101823_bib23 article-title: Multi-site household waste generation forecasting using a deep learning approach publication-title: Waste Manag. doi: 10.1016/j.wasman.2020.06.046 – volume: 283 year: 2021 ident: 10.1016/j.csite.2022.101823_bib24 article-title: Machine learning based modelling for lower heating value prediction of municipal solid waste publication-title: Fuel doi: 10.1016/j.fuel.2020.118906 – volume: 212 start-page: 461 year: 2019 ident: 10.1016/j.csite.2022.101823_bib3 article-title: Energy recovery overview of municipal solid waste in S∼ ao Paulo State, Brazil publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.016 – volume: 116 start-page: 66 year: 2020 ident: 10.1016/j.csite.2022.101823_bib22 article-title: Application of a multi-stage neural network approach for time-series landfill gas modeling with missing data imputation publication-title: Waste Manag. doi: 10.1016/j.wasman.2020.07.034 – volume: 125 start-page: 88 year: 2017 ident: 10.1016/j.csite.2022.101823_bib30 article-title: Supercritical fluid extraction of coriander seeds: kinetics modelling and ANN optimization publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2017.02.006 – volume: 289 year: 2021 ident: 10.1016/j.csite.2022.101823_bib17 article-title: Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: a case study of Johannesburg, South Africa publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125671 – year: 2020 ident: 10.1016/j.csite.2022.101823_bib46 article-title: Application of machine learning for solar radiation modeling publication-title: Theor. Appl. Climatol. – volume: 127 year: 2020 ident: 10.1016/j.csite.2022.101823_bib2 article-title: Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109883 – volume: 216 year: 2021 ident: 10.1016/j.csite.2022.101823_bib12 article-title: Generalized models to predict the lower heating value (LHV) of municipal solid waste (MSW) publication-title: Energy doi: 10.1016/j.energy.2020.119279 – volume: 154 start-page: 37 year: 2016 ident: 10.1016/j.csite.2022.101823_bib42 article-title: Modeling of specific fuel consumption and emission parameters of compression ignition engine using Nano fluid combustion experimental data publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.08.013 – volume: 87 start-page: 782 year: 2019 ident: 10.1016/j.csite.2022.101823_bib26 article-title: Statistical model for heating value of municipal solid waste in brazil based on gravimetric composition publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.03.012 – volume: 87 year: 2020 ident: 10.1016/j.csite.2022.101823_bib48 article-title: Applied improved RBF neural network model for predicting the broiler output energies publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.106006 – volume: 5 start-page: 4101 year: 2017 ident: 10.1016/j.csite.2022.101823_bib29 article-title: Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.07.071 – volume: 78 start-page: 955 year: 2018 ident: 10.1016/j.csite.2022.101823_bib28 article-title: An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.07.012 – volume: 33 start-page: 268 issue: 2 year: 2013 ident: 10.1016/j.csite.2022.101823_bib49 article-title: Swift model for a lower heating value prediction based on wet-based physical components of municipal solid waste publication-title: Waste Manag. doi: 10.1016/j.wasman.2012.11.003 – volume: 209 start-page: 400 year: 2018 ident: 10.1016/j.csite.2022.101823_bib20 article-title: Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.042 – volume: 202 start-page: 158 year: 2016 ident: 10.1016/j.csite.2022.101823_bib35 article-title: Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.024 – volume: 98 start-page: 14 year: 2019 ident: 10.1016/j.csite.2022.101823_bib15 article-title: Food waste from a university campus in the Middle East: derivers, composition, and resource recovery potential publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.08.007 – volume: 115 start-page: 411 year: 2018 ident: 10.1016/j.csite.2022.101823_bib38 article-title: A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I) publication-title: Renew. Energy doi: 10.1016/j.renene.2017.08.061 – volume: 85 year: 2020 ident: 10.1016/j.csite.2022.101823_bib43 article-title: Wastewater discharge quality prediction using stratified sampling and wavelet de-noising ANFIS model publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106701 – volume: 84 start-page: 129 year: 2019 ident: 10.1016/j.csite.2022.101823_bib9 article-title: Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.11.038 – volume: 52 start-page: 197 issue: 2 year: 2021 ident: 10.1016/j.csite.2022.101823_bib45 article-title: Application of artificial neural network models (MLP and RBF) and support vector machine (SVM) to estimate the shadow in flat-plate solar collectors in Iran publication-title: Iran Biosyst. Eng. – volume: 219 year: 2021 ident: 10.1016/j.csite.2022.101823_bib13 article-title: Integrated model of municipal solid waste management for energy recovery in Pakistan publication-title: Energy doi: 10.1016/j.energy.2020.119632 – volume: 235 start-page: 284 year: 2019 ident: 10.1016/j.csite.2022.101823_bib6 article-title: Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.071 – volume: 197 start-page: 195 year: 2018 ident: 10.1016/j.csite.2022.101823_bib37 article-title: Life cycle assessment to compare the environmental impacts of different wheat production systems publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.173 – volume: 90 start-page: 76 year: 2015 ident: 10.1016/j.csite.2022.101823_bib34 article-title: Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.12.029 – volume: 7 start-page: 259 issue: 3 year: 2010 ident: 10.1016/j.csite.2022.101823_bib32 article-title: Modeling energy content of municipal solid waste using Artificial Neural Network. Iran publication-title: J. Environ. Health. Sci. Eng. – volume: 134 year: 2020 ident: 10.1016/j.csite.2022.101823_bib1 article-title: Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105291 – year: 2009 ident: 10.1016/j.csite.2022.101823_bib47 article-title: Adjusting the parameters of radial Basis function networks using particle swarm optimization – volume: 97 start-page: 19 year: 2019 ident: 10.1016/j.csite.2022.101823_bib16 article-title: Inhibition effect of polyurethane foam waste in dioxin formation publication-title: Waste Manag. doi: 10.1016/j.wasman.2019.07.034 – volume: 82 start-page: 1499 year: 2003 ident: 10.1016/j.csite.2022.101823_bib33 article-title: A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition publication-title: Fuel doi: 10.1016/S0016-2361(03)00075-9 – volume: 129 start-page: 261 year: 2016 ident: 10.1016/j.csite.2022.101823_bib44 article-title: Solar radiation analyzing by neuro-fuzzy approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.08.020 – volume: 36 start-page: 24 year: 2015 ident: 10.1016/j.csite.2022.101823_bib27 article-title: A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition publication-title: Waste Manag. doi: 10.1016/j.wasman.2014.11.020 – volume: 110 start-page: 24 year: 2020 ident: 10.1016/j.csite.2022.101823_bib19 article-title: Challenges of plastic waste generation and management in sub-Saharan Africa: a review publication-title: Waste Manag. doi: 10.1016/j.wasman.2020.04.017 – volume: 789 year: 2021 ident: 10.1016/j.csite.2022.101823_bib21 article-title: Modeling of municipal waste disposal rates during COVID-19 using separated waste fraction models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148024 – volume: 42 start-page: 1618 issue: 13 year: 2020 ident: 10.1016/j.csite.2022.101823_bib39 article-title: Energy consumption forecasting in agriculture by artificial intelligence and mathematical models publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff. doi: 10.1080/15567036.2019.1604872 – volume: 207 start-page: 118 year: 2020 ident: 10.1016/j.csite.2022.101823_bib7 article-title: The effect of renewable energy consumption on economic growth: evidence from the renewable country attractive index publication-title: Energy doi: 10.1016/j.energy.2020.118162 – volume: 48 start-page: 14 year: 2016 ident: 10.1016/j.csite.2022.101823_bib10 article-title: Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: a case study of Fars province, Iran publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.09.034 – volume: 107 start-page: 182 year: 2020 ident: 10.1016/j.csite.2022.101823_bib8 article-title: New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks publication-title: Waste Manag. doi: 10.1016/j.wasman.2020.04.015 – volume: 56 start-page: 13 year: 2016 ident: 10.1016/j.csite.2022.101823_bib31 article-title: Forecasting municipal solid waste generation using artificial intelligence modelling approaches publication-title: Waste Manag. doi: 10.1016/j.wasman.2016.05.018 – volume: 10 start-page: 2425 issue: 9 year: 2019 ident: 10.1016/j.csite.2022.101823_bib25 article-title: Status and opportunities for energy recovery from municipal solid waste in Europe publication-title: Waste Biomass Valorization doi: 10.1007/s12649-018-0297-7 – volume: 195 year: 2020 ident: 10.1016/j.csite.2022.101823_bib41 article-title: Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models publication-title: Catena doi: 10.1016/j.catena.2020.104762 – volume: 165 year: 2020 ident: 10.1016/j.csite.2022.101823_bib40 article-title: ANFIS system for prognosis of dynamometer high-speed ball bearing based on frequency domain acoustic emission signals publication-title: Measurement |
SSID | ssj0001738144 |
Score | 2.4245572 |
Snippet | Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101823 |
SubjectTerms | Clean energy Incineration power plant Modeling Radial bias function |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXhQMNimadMcVZQirBdfeyt5TGRl2V10xR_gH3eSdrVe9OKxIU1KviHzTTP5hpBDbqSyvHQs4yUwAeF8N1eKSXT2UoPRqY9ZvjdFdS-uB_mgU-or5IQ18sDNwp0adHAZul3tCouu2ynpZGIc0mxfCuF82H0TlXSCqfh3RaInipVcOU8FS3M5mEsOxeQuG49mMfDnoaXk2Q-3FNX7O96p43GuVslKSxXpWfOJa2QBxutkuSMguEE--jEXEmhb_OGJxso2rxSpKJ2-hEOYsPAUWR5tMjpoFUgidnzQozegR1X1cEwnnvbDLZHhFOe7nYyGjj5qhJ8e9W8fj-Ng7-GZzSYM4mVB-q0Svknuri7vLirWllVgVqRixniB2EibicxDbhJXgkO4uHW472koQQmFGzgXngPGIhJSbTBuLAWiAKmx2RZZHE_GsE0oUsvMm0KBE05I5XWC7MXr3OfGSCt0j_D5ota2lRwPlS9G9Ty37LmOSNQBibpBokdOvl6aNoobv3c_D2h9dQ1y2bEBjahujaj-y4h6pJhjXbfMo2EUONTwt9l3_mP2XbIUhmwy2_bI4uzlDfaR6szMQbTqTwET-Yo priority: 102 providerName: Directory of Open Access Journals |
Title | Machine learning models for prediction the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) for waste-to-energy evaluation |
URI | https://dx.doi.org/10.1016/j.csite.2022.101823 https://doaj.org/article/b3173615ad6c441d97d70bd875f844df |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCTO1QNH2g7iPg0CEBStiiKFEcm6CBUMBdnCbeBD6OgQrDMhwH_QH947mjpMRZMnQkcXyAd7j7SN6Dsa_SaeNlFUQuKxAK6H-3MEZoNPbagrNZTF6-v8r6t_q5LJYH7HyMhSG3ykH39zo9aeuhZzqc5nTTttOFlBlaH72UKdrEUEQ5RZVSEN_y7PGdRaNNSjVdiV7QgDH5UHLz8umTVqIpo55K5k8MVMrjv2en9mzPxWv2agCN_Hu_ryN2AOs37OVeKsG37N88eUUCH8pA3PBU4-aWIyjlmy19xxALOOI93vt28JrgIhJe2dUd8JO6vjrlXeRzihdpN7jeolu1gV9bFAR-Ml9cn6bJ_lJb7DoBKWyQP-YLf8cuL35cntdiKLAgvMrUTsgSuaR9rvIIhZuFCgIyTvqAGtBCBUYZVOVSRQl4K9GQWYc3yErlZQaZ8_l7drju1vCBcQSZeXSlgaCC0ibaGeKYaItYOKe9shMmx0Nt_JB8nGpgrJrRy-xPkzjRECeanhMT9u1h0KbPvfE8-Rlx64GUEmenjm570wyS0zjES7j9wobSIxIMRgc9cwFvbbFSKsQJK0deN0_kEKdqn1v94_8O_MReUKv3a_vMDnfbO_iCQGfnjtMDwXGS53uQs_t3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6k6dB2KPpE3SeHDglQwhZFieLYBA2UNs5iN_FG8BmoMCzDddAf0D_eIyUlzpKhoyiSIniHu4_i3XcAn5kR0rLK0ZxVnnIf73cLKalAZy-0NzoLKcr3vKx_8u-LYrEHx0MuTAyr7G1_Z9OTte5bxv1ujtdNM54xlqH3EQuWsk2keAAPEQ2UkUD_dHF0-6NFoFNKRV3jABpHDOxDKc7Lpltahr4stlQsv-OhEpH_jqPacT4nz-BpjxrJ125hz2HPr17Akx0uwZfwd5rCIj3p60BckVTk5jdBVErWm3gfE2VAEPCRLriD1BEvYscLvbz25KCuLw5JG8g0Jow0a_zerF02jlxq1ARyMJ1dHqbJ_sRnum2pT3mD5JYw_BXMT77Nj2vaV1iglmd8S1mJYhI253nwhZm4yjuUHLMOTaD2lZdcoi1nPDCPxxLhM23wCFnxvMx8Zmz-GvZX7cq_AYIoMw-mlN5xx4UMeoJAJugiFMYIy_UI2LCpyvbs47EIxlINYWa_VJKEipJQnSRG8OVm0Loj37i_-1GU1k3XyJydGtrNlepVRxkETLj8QrvSIhR0UjgxMQ6PbaHi3IURlIOs1R1FxKma-77-9n8HfoJH9Xx6ps5Oz3-8g8fxTRfk9h72t5tr_wFRz9Z8TFr9D1jI_aY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+models+for+prediction+the+Higher+Heating+Value+%28HHV%29+of+Municipal+Solid+Waste+%28MSW%29+for+waste-to-energy+evaluation&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Taki%2C+Morteza&rft.au=Rohani%2C+Abbas&rft.date=2022-03-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=31&rft.spage=101823&rft_id=info:doi/10.1016%2Fj.csite.2022.101823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2022_101823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |