Machine learning models for prediction the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) for waste-to-energy evaluation

Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important subjects needed to build waste incineration power plants around the world. For this purpose, machine learning models were used to predict the Highe...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 31; p. 101823
Main Authors Taki, Morteza, Rohani, Abbas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2214-157X
2214-157X
DOI10.1016/j.csite.2022.101823

Cover

Abstract Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important subjects needed to build waste incineration power plants around the world. For this purpose, machine learning models were used to predict the Higher Heating Value (HHV) of MSW based on the initial materials. Four types of machine learning methods: Radial Bias Function Artificial Neural Network (RBF-ANN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), Support Vector Machine (SVM) and Adaptive Nero-Fuzzy Inference System (ANFIS) were used for modeling the HHV with six different inputs (carbon, water, hydrogen, oxygen, nitrogen, sulfur, and ash). The results showed that RBF-ANN can predict the HHV of MSW with higher accuracy than other models. The overall Mean Absolute Percentage Error (MAPE) for MLP-ANN, SVM and ANFIS models were 7.3, 11.77 and 23.76%, respectively. The MAPE of the best topology for RBF model (6-17-1) with spread factor of 0.8 reach to 0.45%. Finally, the results of this study proved that ANN's can be used as a practical tool with high accuracy and reliability for design and management of waste incineration plants.
AbstractList Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important subjects needed to build waste incineration power plants around the world. For this purpose, machine learning models were used to predict the Higher Heating Value (HHV) of MSW based on the initial materials. Four types of machine learning methods: Radial Bias Function Artificial Neural Network (RBF-ANN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), Support Vector Machine (SVM) and Adaptive Nero-Fuzzy Inference System (ANFIS) were used for modeling the HHV with six different inputs (carbon, water, hydrogen, oxygen, nitrogen, sulfur, and ash). The results showed that RBF-ANN can predict the HHV of MSW with higher accuracy than other models. The overall Mean Absolute Percentage Error (MAPE) for MLP-ANN, SVM and ANFIS models were 7.3, 11.77 and 23.76%, respectively. The MAPE of the best topology for RBF model (6-17-1) with spread factor of 0.8 reach to 0.45%. Finally, the results of this study proved that ANN's can be used as a practical tool with high accuracy and reliability for design and management of waste incineration plants.
ArticleNumber 101823
Author Taki, Morteza
Rohani, Abbas
Author_xml – sequence: 1
  givenname: Morteza
  orcidid: 0000-0002-3059-4984
  surname: Taki
  fullname: Taki, Morteza
  email: mtaki@asnrukh.ac.ir, mortezataaki@gmail.com
  organization: Department of Agricultural Machinery and Mechanization Engineering, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, P.O. Box: 6341773637, Mollasani, Iran
– sequence: 2
  givenname: Abbas
  surname: Rohani
  fullname: Rohani, Abbas
  email: arohani@um.ac.ir
  organization: Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
BookMark eNp9kUFPHCEUx0ljE631E3jhWA-z8hh2hjn00JjqmLjpQaO9EQbe7LIZYQO4xrNf3JndNjEePAEPfv-8x-8bOfDBIyGnwGbAoDpfz0xyGWeccT5VJC-_kCPOQRQwr_8evNsfkpOU1owxqEsJQhyR14U2K-eRDqijd35JH4PFIdE-RLqJaJ3JLniaV0hbt1xhpC3qPD2818MT0h9te39GQ08XT94Zt9EDvQ2Ds_RBpzxeL24fznZhz9O5yKFAj3H5QnE78noK_06-9npIePJvPSZ3l7_vLtri5s_V9cWvm8IIELngFZe2NqUoe5x3zEq0jeHc2AZAo8RGNNgBFz3HupI1gu6AVVKUFSB0pjwm1_tYG_RabaJ71PFFBe3UrhDiUumYnRlQdeX4QRXMta2MEGCb2tass7Ke91II249ZzT7LxJBSxF4Zl3fD5KjdoICpyY1aq50bNblRezcjW35g__fyOfVzT41ycOswqmQcejMaimjyOIP7lH8DnVWrkA
CitedBy_id crossref_primary_10_1109_JSEN_2023_3331693
crossref_primary_10_1016_j_nxsust_2024_100092
crossref_primary_10_1016_j_cles_2024_100143
crossref_primary_10_3390_agriculture14010025
crossref_primary_10_1007_s11694_024_03017_4
crossref_primary_10_1016_j_csite_2025_105880
crossref_primary_10_14710_ijred_2023_47831
crossref_primary_10_1016_j_gerr_2024_100060
crossref_primary_10_1371_journal_pone_0311802
crossref_primary_10_1007_s41939_024_00540_1
crossref_primary_10_1007_s11694_023_02256_1
crossref_primary_10_1016_j_jallcom_2023_172828
crossref_primary_10_3390_toxics12110786
crossref_primary_10_1016_j_eti_2024_104012
crossref_primary_10_3390_cleantechnol4040075
crossref_primary_10_1007_s10853_024_09379_w
crossref_primary_10_1007_s10661_024_13311_9
crossref_primary_10_1016_j_cscee_2024_101006
crossref_primary_10_3390_w15040674
crossref_primary_10_5937_ror2201085T
crossref_primary_10_53982_ajerd_2023_0601_05_j
crossref_primary_10_1016_j_afres_2024_100524
crossref_primary_10_1016_j_csite_2023_103048
crossref_primary_10_1016_j_micpath_2023_106177
crossref_primary_10_3390_su16093579
crossref_primary_10_1080_15567036_2024_2309303
crossref_primary_10_1016_j_csite_2024_104144
crossref_primary_10_3390_su15076088
crossref_primary_10_1016_j_biombioe_2025_107795
crossref_primary_10_1016_j_psep_2024_11_051
crossref_primary_10_1016_j_fuel_2023_129898
crossref_primary_10_3390_en17215292
crossref_primary_10_1007_s12665_024_11702_2
crossref_primary_10_1016_j_fuel_2023_128548
crossref_primary_10_3390_en17174213
crossref_primary_10_1007_s41939_024_00453_z
crossref_primary_10_1016_j_psep_2023_11_057
crossref_primary_10_3390_horticulturae9080853
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1016_j_psep_2023_06_030
crossref_primary_10_1016_j_scs_2023_104926
Cites_doi 10.3390/su12114456
10.1016/j.jclepro.2020.125575
10.1023/A:1018628609742
10.1016/j.jclepro.2019.02.112
10.1016/j.jclepro.2021.127672
10.1016/j.jece.2021.105717
10.1016/j.wasman.2020.06.046
10.1016/j.fuel.2020.118906
10.1016/j.jclepro.2018.12.016
10.1016/j.wasman.2020.07.034
10.1016/j.supflu.2017.02.006
10.1016/j.jclepro.2020.125671
10.1016/j.rser.2020.109883
10.1016/j.energy.2020.119279
10.1016/j.fuproc.2016.08.013
10.1016/j.wasman.2019.03.012
10.1016/j.asoc.2019.106006
10.1016/j.jece.2017.07.071
10.1016/j.wasman.2018.07.012
10.1016/j.wasman.2012.11.003
10.1016/j.apenergy.2017.05.042
10.1016/j.biortech.2015.12.024
10.1016/j.wasman.2019.08.007
10.1016/j.renene.2017.08.061
10.1016/j.compeleceng.2020.106701
10.1016/j.wasman.2018.11.038
10.1016/j.energy.2020.119632
10.1016/j.apenergy.2018.10.071
10.1016/j.jclepro.2018.06.173
10.1016/j.enbuild.2014.12.029
10.1016/j.envint.2019.105291
10.1016/j.wasman.2019.07.034
10.1016/S0016-2361(03)00075-9
10.1016/j.enbuild.2016.08.020
10.1016/j.wasman.2014.11.020
10.1016/j.wasman.2020.04.017
10.1016/j.scitotenv.2021.148024
10.1080/15567036.2019.1604872
10.1016/j.energy.2020.118162
10.1016/j.wasman.2015.09.034
10.1016/j.wasman.2020.04.015
10.1016/j.wasman.2016.05.018
10.1007/s12649-018-0297-7
10.1016/j.catena.2020.104762
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.101823
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_b3173615ad6c441d97d70bd875f844df
10_1016_j_csite_2022_101823
S2214157X22000697
GroupedDBID 0R~
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-2628d7c343fe5b0d8ed9c22cd911ae8e949eb124f2e7687e1ab10684361e1bc3
IEDL.DBID IXB
ISSN 2214-157X
IngestDate Wed Aug 27 01:30:06 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Tue Jul 01 02:28:32 EDT 2025
Sun Apr 06 06:54:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Radial bias function
Incineration power plant
Modeling
Clean energy
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-2628d7c343fe5b0d8ed9c22cd911ae8e949eb124f2e7687e1ab10684361e1bc3
ORCID 0000-0002-3059-4984
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214157X22000697
ParticipantIDs doaj_primary_oai_doaj_org_article_b3173615ad6c441d97d70bd875f844df
crossref_citationtrail_10_1016_j_csite_2022_101823
crossref_primary_10_1016_j_csite_2022_101823
elsevier_sciencedirect_doi_10_1016_j_csite_2022_101823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sarvestani, Rohani, Farzad, Aghkhani (bib42) 2016; 154
Sirabahenda, Simon, Courtenay, van den Heuvel (bib41) 2020; 195
Azam, Jahromy, Raza, Raza, Lee, Kim, Winter (bib1) 2020; 134
Taki, Farhadi (bib45) 2021; 52
Wu, Niu, Dai, Wu (bib8) 2020; 107
Palacios-Bereche, de Mello Sant'Ana (bib3) 2019; 212
Drudi, Drudi, Martins, Antonio, Jtc (bib26) 2019; 87
Lin, Raza (bib4) 2019; 219
Ayeleru, Fajimi, Oboirien, Olubambi (bib17) 2021; 289
Cubillos (bib23) 2020; 115
Amini, Taki, Rohani (bib48) 2020; 87
Birgen, Magnanelli, Carlsson, Skreiberg, Mosby, Becidan (bib24) 2021; 283
Motahari-Nezhad, Jafari (bib40) 2020; 165
Ayilara, Olanrewaju, Babalola, Odeyemi (bib14) 2020; 12
Suykens, Vandewalle (bib36) 1999; 9
Scarlat, Fahl, Dallemand (bib25) 2019; 10
Wang, Tang, He, Tang, Robinson (bib12) 2021; 216
Shah, Kumar Srivastava, Sabyasachi Mohanty, Varjani (bib18) 2021; 9
Ana, Rafael, Francisca (bib16) 2019; 97
Genuino, Bataller, Capareda, Luna (bib29) 2017; 5
Meraz, Dominguez, Kornhauser, Rosas (bib33) 2003; 82
Taki, Rohani, Yildizhan (bib46) 2020
Klemes, Fan, Tan, Jiang (bib2) 2020; 127
Azadi, Karimi-Jashni (bib10) 2016; 48
Fallah, Ng, Vu, Torabi (bib22) 2020; 116
Lin, Wang, Chi, Huang, Yan (bib27) 2015; 36
Fu, Cheng, Yang, Batista, Jiang (bib43) 2020; 85
Ogwueleka, Ogwueleka (bib32) 2010; 7
Zekovic, Bera, Durovic, Pavlic (bib30) 2017; 125
Taki, Soheili-Fard, Rohani, Chen, Yildizhan (bib37) 2018; 197
Adamovic, Antanasijevic, Cosovic, Ristic, Pocajt (bib28) 2018; 78
Wang, Tarroja, Smith, Shaffer, Samuelsen (bib6) 2019; 235
Rohani, Taki, Abdollahpour (bib38) 2018; 115
Ayeleru, Dlova, Akinribide, Ntuli, Kupolati, Marina (bib19) 2020; 110
Jung, Kim, Heo (bib34) 2015; 90
Ali, Gordon, Hamish (bib15) 2019; 98
Vu, Ng, Bolingbroke (bib9) 2019; 84
Bolandnazar, Taki (bib39) 2020; 42
Yang, Nguyen, Bui, Nguyen-Thoi, Zhou, Huang (bib5) 2021; 311
Lin, Chyan, Chen, Wang (bib49) 2013; 33
Shahbaz, Raghutla, Chittedi, Jiao, Vo (bib7) 2020; 207
Cao, Xin, Yuan (bib35) 2016; 202
Esmaeili, Mozayani (bib47) 2009
Vu, Ng, Richter, Karimi, Kabir (bib21) 2021; 789
Amen, Hameed, Albashar, Kamran, Shah, Zaman, Mukhtar, Saqib, Ch, Ibrahim, Ullah, Al-Sehemi, Ahmad, Klemes, Bokhari, Asif (bib11) 2021; 287
Li, Loh, Zhang, Tong, Dai (bib20) 2018; 209
Safar, Bux, Faria, Pervez (bib13) 2021; 219
Abbasi, Hananeh (bib31) 2016; 56
Jović, Aničić, Marsenić, Nedić (bib44) 2016; 129
Li (10.1016/j.csite.2022.101823_bib20) 2018; 209
Vu (10.1016/j.csite.2022.101823_bib21) 2021; 789
Yang (10.1016/j.csite.2022.101823_bib5) 2021; 311
Genuino (10.1016/j.csite.2022.101823_bib29) 2017; 5
Lin (10.1016/j.csite.2022.101823_bib49) 2013; 33
Cubillos (10.1016/j.csite.2022.101823_bib23) 2020; 115
Shahbaz (10.1016/j.csite.2022.101823_bib7) 2020; 207
Birgen (10.1016/j.csite.2022.101823_bib24) 2021; 283
Sarvestani (10.1016/j.csite.2022.101823_bib42) 2016; 154
Cao (10.1016/j.csite.2022.101823_bib35) 2016; 202
Jović (10.1016/j.csite.2022.101823_bib44) 2016; 129
Abbasi (10.1016/j.csite.2022.101823_bib31) 2016; 56
Wu (10.1016/j.csite.2022.101823_bib8) 2020; 107
Amini (10.1016/j.csite.2022.101823_bib48) 2020; 87
Adamovic (10.1016/j.csite.2022.101823_bib28) 2018; 78
Azadi (10.1016/j.csite.2022.101823_bib10) 2016; 48
Ayeleru (10.1016/j.csite.2022.101823_bib19) 2020; 110
Amen (10.1016/j.csite.2022.101823_bib11) 2021; 287
Scarlat (10.1016/j.csite.2022.101823_bib25) 2019; 10
Ogwueleka (10.1016/j.csite.2022.101823_bib32) 2010; 7
Drudi (10.1016/j.csite.2022.101823_bib26) 2019; 87
Safar (10.1016/j.csite.2022.101823_bib13) 2021; 219
Esmaeili (10.1016/j.csite.2022.101823_bib47) 2009
Palacios-Bereche (10.1016/j.csite.2022.101823_bib3) 2019; 212
Fu (10.1016/j.csite.2022.101823_bib43) 2020; 85
Zekovic (10.1016/j.csite.2022.101823_bib30) 2017; 125
Wang (10.1016/j.csite.2022.101823_bib6) 2019; 235
Motahari-Nezhad (10.1016/j.csite.2022.101823_bib40) 2020; 165
Ayeleru (10.1016/j.csite.2022.101823_bib17) 2021; 289
Taki (10.1016/j.csite.2022.101823_bib37) 2018; 197
Sirabahenda (10.1016/j.csite.2022.101823_bib41) 2020; 195
Bolandnazar (10.1016/j.csite.2022.101823_bib39) 2020; 42
Azam (10.1016/j.csite.2022.101823_bib1) 2020; 134
Suykens (10.1016/j.csite.2022.101823_bib36) 1999; 9
Lin (10.1016/j.csite.2022.101823_bib27) 2015; 36
Ana (10.1016/j.csite.2022.101823_bib16) 2019; 97
Rohani (10.1016/j.csite.2022.101823_bib38) 2018; 115
Ayilara (10.1016/j.csite.2022.101823_bib14) 2020; 12
Taki (10.1016/j.csite.2022.101823_bib46) 2020
Ali (10.1016/j.csite.2022.101823_bib15) 2019; 98
Meraz (10.1016/j.csite.2022.101823_bib33) 2003; 82
Vu (10.1016/j.csite.2022.101823_bib9) 2019; 84
Lin (10.1016/j.csite.2022.101823_bib4) 2019; 219
Shah (10.1016/j.csite.2022.101823_bib18) 2021; 9
Klemes (10.1016/j.csite.2022.101823_bib2) 2020; 127
Jung (10.1016/j.csite.2022.101823_bib34) 2015; 90
Taki (10.1016/j.csite.2022.101823_bib45) 2021; 52
Wang (10.1016/j.csite.2022.101823_bib12) 2021; 216
Fallah (10.1016/j.csite.2022.101823_bib22) 2020; 116
References_xml – volume: 5
  start-page: 4101
  year: 2017
  end-page: 4107
  ident: bib29
  article-title: Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar
  publication-title: J. Environ. Chem. Eng.
– volume: 87
  year: 2020
  ident: bib48
  article-title: Applied improved RBF neural network model for predicting the broiler output energies
  publication-title: Appl. Soft Comput. J.
– volume: 116
  start-page: 66
  year: 2020
  end-page: 78
  ident: bib22
  article-title: Application of a multi-stage neural network approach for time-series landfill gas modeling with missing data imputation
  publication-title: Waste Manag.
– volume: 84
  start-page: 129
  year: 2019
  end-page: 140
  ident: bib9
  article-title: Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models
  publication-title: Waste Manag.
– volume: 202
  start-page: 158
  year: 2016
  end-page: 164
  ident: bib35
  article-title: Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach
  publication-title: Bioresour. Technol.
– volume: 207
  start-page: 118
  year: 2020
  end-page: 162
  ident: bib7
  article-title: The effect of renewable energy consumption on economic growth: evidence from the renewable country attractive index
  publication-title: Energy
– volume: 287
  year: 2021
  ident: bib11
  article-title: Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: a sustainable case study
  publication-title: J. Clean. Prod.
– volume: 125
  start-page: 88
  year: 2017
  end-page: 95
  ident: bib30
  article-title: Supercritical fluid extraction of coriander seeds: kinetics modelling and ANN optimization
  publication-title: J. Supercrit. Fluids
– volume: 7
  start-page: 259
  year: 2010
  end-page: 266
  ident: bib32
  article-title: Modeling energy content of municipal solid waste using Artificial Neural Network. Iran
  publication-title: J. Environ. Health. Sci. Eng.
– volume: 82
  start-page: 1499
  year: 2003
  end-page: 1507
  ident: bib33
  article-title: A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition
  publication-title: Fuel
– volume: 235
  start-page: 284
  year: 2019
  end-page: 298
  ident: bib6
  article-title: Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions
  publication-title: Appl. Energy
– volume: 36
  start-page: 24
  year: 2015
  end-page: 32
  ident: bib27
  article-title: A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition
  publication-title: Waste Manag.
– volume: 789
  year: 2021
  ident: bib21
  article-title: Modeling of municipal waste disposal rates during COVID-19 using separated waste fraction models
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 2425
  year: 2019
  end-page: 2444
  ident: bib25
  article-title: Status and opportunities for energy recovery from municipal solid waste in Europe
  publication-title: Waste Biomass Valorization
– volume: 134
  year: 2020
  ident: bib1
  article-title: Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan
  publication-title: Environ. Int.
– volume: 98
  start-page: 14
  year: 2019
  end-page: 20
  ident: bib15
  article-title: Food waste from a university campus in the Middle East: derivers, composition, and resource recovery potential
  publication-title: Waste Manag.
– volume: 219
  start-page: 981
  year: 2019
  end-page: 993
  ident: bib4
  article-title: Analysis of energy related CO
  publication-title: J. Clean. Prod.
– volume: 289
  year: 2021
  ident: bib17
  article-title: Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: a case study of Johannesburg, South Africa
  publication-title: J. Clean. Prod.
– volume: 212
  start-page: 461
  year: 2019
  end-page: 474
  ident: bib3
  article-title: Energy recovery overview of municipal solid waste in S∼ ao Paulo State, Brazil
  publication-title: J. Clean. Prod.
– volume: 216
  year: 2021
  ident: bib12
  article-title: Generalized models to predict the lower heating value (LHV) of municipal solid waste (MSW)
  publication-title: Energy
– volume: 219
  year: 2021
  ident: bib13
  article-title: Integrated model of municipal solid waste management for energy recovery in Pakistan
  publication-title: Energy
– volume: 52
  start-page: 197
  year: 2021
  end-page: 209
  ident: bib45
  article-title: Application of artificial neural network models (MLP and RBF) and support vector machine (SVM) to estimate the shadow in flat-plate solar collectors in Iran
  publication-title: Iran Biosyst. Eng.
– volume: 283
  year: 2021
  ident: bib24
  article-title: Machine learning based modelling for lower heating value prediction of municipal solid waste
  publication-title: Fuel
– volume: 115
  start-page: 8
  year: 2020
  end-page: 14
  ident: bib23
  article-title: Multi-site household waste generation forecasting using a deep learning approach
  publication-title: Waste Manag.
– volume: 97
  start-page: 19
  year: 2019
  end-page: 26
  ident: bib16
  article-title: Inhibition effect of polyurethane foam waste in dioxin formation
  publication-title: Waste Manag.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib36
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 87
  start-page: 782
  year: 2019
  end-page: 790
  ident: bib26
  article-title: Statistical model for heating value of municipal solid waste in brazil based on gravimetric composition
  publication-title: Waste Manag.
– volume: 42
  start-page: 1618
  year: 2020
  end-page: 1632
  ident: bib39
  article-title: Energy consumption forecasting in agriculture by artificial intelligence and mathematical models
  publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff.
– volume: 48
  start-page: 14
  year: 2016
  end-page: 23
  ident: bib10
  article-title: Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: a case study of Fars province, Iran
  publication-title: Waste Manag.
– volume: 9
  year: 2021
  ident: bib18
  article-title: Municipal solid waste as a sustainable resource for energy production: State-of-the-art review
  publication-title: J. Environ. Chem. Eng.
– volume: 78
  start-page: 955
  year: 2018
  end-page: 968
  ident: bib28
  article-title: An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries
  publication-title: Waste Manag.
– year: 2009
  ident: bib47
  article-title: Adjusting the parameters of radial Basis function networks using particle swarm optimization
  publication-title: International Conference on Computational Intelligence for Measurement Systems and Applications Hong Kong, China May 11-13
– volume: 110
  start-page: 24
  year: 2020
  end-page: 42
  ident: bib19
  article-title: Challenges of plastic waste generation and management in sub-Saharan Africa: a review
  publication-title: Waste Manag.
– volume: 209
  start-page: 400
  year: 2018
  end-page: 408
  ident: bib20
  article-title: Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system
  publication-title: Appl. Energy
– volume: 127
  year: 2020
  ident: bib2
  article-title: Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19
  publication-title: Renew. Sustain. Energy Rev.
– volume: 107
  start-page: 182
  year: 2020
  end-page: 190
  ident: bib8
  article-title: New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks
  publication-title: Waste Manag.
– volume: 90
  start-page: 76
  year: 2015
  end-page: 84
  ident: bib34
  article-title: Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach
  publication-title: Energy Build.
– volume: 154
  start-page: 37
  year: 2016
  end-page: 43
  ident: bib42
  article-title: Modeling of specific fuel consumption and emission parameters of compression ignition engine using Nano fluid combustion experimental data
  publication-title: Fuel Process. Technol.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 23
  ident: bib14
  article-title: Waste management through composting: challenges and potentials
  publication-title: Sustainability
– volume: 115
  start-page: 411
  year: 2018
  end-page: 422
  ident: bib38
  article-title: A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)
  publication-title: Renew. Energy
– year: 2020
  ident: bib46
  article-title: Application of machine learning for solar radiation modeling
  publication-title: Theor. Appl. Climatol.
– volume: 165
  year: 2020
  ident: bib40
  article-title: ANFIS system for prognosis of dynamometer high-speed ball bearing based on frequency domain acoustic emission signals
  publication-title: Measurement
– volume: 85
  year: 2020
  ident: bib43
  article-title: Wastewater discharge quality prediction using stratified sampling and wavelet de-noising ANFIS model
  publication-title: Comput. Electr. Eng.
– volume: 195
  year: 2020
  ident: bib41
  article-title: Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models
  publication-title: Catena
– volume: 311
  year: 2021
  ident: bib5
  article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm
  publication-title: J. Clean. Prod.
– volume: 56
  start-page: 13
  year: 2016
  end-page: 22
  ident: bib31
  article-title: Forecasting municipal solid waste generation using artificial intelligence modelling approaches
  publication-title: Waste Manag.
– volume: 129
  start-page: 261
  year: 2016
  end-page: 263
  ident: bib44
  article-title: Solar radiation analyzing by neuro-fuzzy approach
  publication-title: Energy Build.
– volume: 33
  start-page: 268
  year: 2013
  end-page: 276
  ident: bib49
  article-title: Swift model for a lower heating value prediction based on wet-based physical components of municipal solid waste
  publication-title: Waste Manag.
– volume: 197
  start-page: 195
  year: 2018
  end-page: 207
  ident: bib37
  article-title: Life cycle assessment to compare the environmental impacts of different wheat production systems
  publication-title: J. Clean. Prod.
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib14
  article-title: Waste management through composting: challenges and potentials
  publication-title: Sustainability
  doi: 10.3390/su12114456
– volume: 287
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib11
  article-title: Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: a sustainable case study
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125575
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.csite.2022.101823_bib36
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 219
  start-page: 981
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib4
  article-title: Analysis of energy related CO2 emissions in Pakistan
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.02.112
– volume: 311
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib5
  article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127672
– volume: 9
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib18
  article-title: Municipal solid waste as a sustainable resource for energy production: State-of-the-art review
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105717
– volume: 115
  start-page: 8
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib23
  article-title: Multi-site household waste generation forecasting using a deep learning approach
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2020.06.046
– volume: 283
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib24
  article-title: Machine learning based modelling for lower heating value prediction of municipal solid waste
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118906
– volume: 212
  start-page: 461
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib3
  article-title: Energy recovery overview of municipal solid waste in S∼ ao Paulo State, Brazil
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.016
– volume: 116
  start-page: 66
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib22
  article-title: Application of a multi-stage neural network approach for time-series landfill gas modeling with missing data imputation
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2020.07.034
– volume: 125
  start-page: 88
  year: 2017
  ident: 10.1016/j.csite.2022.101823_bib30
  article-title: Supercritical fluid extraction of coriander seeds: kinetics modelling and ANN optimization
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2017.02.006
– volume: 289
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib17
  article-title: Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: a case study of Johannesburg, South Africa
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125671
– year: 2020
  ident: 10.1016/j.csite.2022.101823_bib46
  article-title: Application of machine learning for solar radiation modeling
  publication-title: Theor. Appl. Climatol.
– volume: 127
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib2
  article-title: Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109883
– volume: 216
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib12
  article-title: Generalized models to predict the lower heating value (LHV) of municipal solid waste (MSW)
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119279
– volume: 154
  start-page: 37
  year: 2016
  ident: 10.1016/j.csite.2022.101823_bib42
  article-title: Modeling of specific fuel consumption and emission parameters of compression ignition engine using Nano fluid combustion experimental data
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.08.013
– volume: 87
  start-page: 782
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib26
  article-title: Statistical model for heating value of municipal solid waste in brazil based on gravimetric composition
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.03.012
– volume: 87
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib48
  article-title: Applied improved RBF neural network model for predicting the broiler output energies
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.106006
– volume: 5
  start-page: 4101
  year: 2017
  ident: 10.1016/j.csite.2022.101823_bib29
  article-title: Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.07.071
– volume: 78
  start-page: 955
  year: 2018
  ident: 10.1016/j.csite.2022.101823_bib28
  article-title: An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2018.07.012
– volume: 33
  start-page: 268
  issue: 2
  year: 2013
  ident: 10.1016/j.csite.2022.101823_bib49
  article-title: Swift model for a lower heating value prediction based on wet-based physical components of municipal solid waste
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2012.11.003
– volume: 209
  start-page: 400
  year: 2018
  ident: 10.1016/j.csite.2022.101823_bib20
  article-title: Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.042
– volume: 202
  start-page: 158
  year: 2016
  ident: 10.1016/j.csite.2022.101823_bib35
  article-title: Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.12.024
– volume: 98
  start-page: 14
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib15
  article-title: Food waste from a university campus in the Middle East: derivers, composition, and resource recovery potential
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.08.007
– volume: 115
  start-page: 411
  year: 2018
  ident: 10.1016/j.csite.2022.101823_bib38
  article-title: A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.08.061
– volume: 85
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib43
  article-title: Wastewater discharge quality prediction using stratified sampling and wavelet de-noising ANFIS model
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106701
– volume: 84
  start-page: 129
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib9
  article-title: Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2018.11.038
– volume: 52
  start-page: 197
  issue: 2
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib45
  article-title: Application of artificial neural network models (MLP and RBF) and support vector machine (SVM) to estimate the shadow in flat-plate solar collectors in Iran
  publication-title: Iran Biosyst. Eng.
– volume: 219
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib13
  article-title: Integrated model of municipal solid waste management for energy recovery in Pakistan
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119632
– volume: 235
  start-page: 284
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib6
  article-title: Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.071
– volume: 197
  start-page: 195
  year: 2018
  ident: 10.1016/j.csite.2022.101823_bib37
  article-title: Life cycle assessment to compare the environmental impacts of different wheat production systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.173
– volume: 90
  start-page: 76
  year: 2015
  ident: 10.1016/j.csite.2022.101823_bib34
  article-title: Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.12.029
– volume: 7
  start-page: 259
  issue: 3
  year: 2010
  ident: 10.1016/j.csite.2022.101823_bib32
  article-title: Modeling energy content of municipal solid waste using Artificial Neural Network. Iran
  publication-title: J. Environ. Health. Sci. Eng.
– volume: 134
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib1
  article-title: Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105291
– year: 2009
  ident: 10.1016/j.csite.2022.101823_bib47
  article-title: Adjusting the parameters of radial Basis function networks using particle swarm optimization
– volume: 97
  start-page: 19
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib16
  article-title: Inhibition effect of polyurethane foam waste in dioxin formation
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2019.07.034
– volume: 82
  start-page: 1499
  year: 2003
  ident: 10.1016/j.csite.2022.101823_bib33
  article-title: A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition
  publication-title: Fuel
  doi: 10.1016/S0016-2361(03)00075-9
– volume: 129
  start-page: 261
  year: 2016
  ident: 10.1016/j.csite.2022.101823_bib44
  article-title: Solar radiation analyzing by neuro-fuzzy approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.08.020
– volume: 36
  start-page: 24
  year: 2015
  ident: 10.1016/j.csite.2022.101823_bib27
  article-title: A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2014.11.020
– volume: 110
  start-page: 24
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib19
  article-title: Challenges of plastic waste generation and management in sub-Saharan Africa: a review
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2020.04.017
– volume: 789
  year: 2021
  ident: 10.1016/j.csite.2022.101823_bib21
  article-title: Modeling of municipal waste disposal rates during COVID-19 using separated waste fraction models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148024
– volume: 42
  start-page: 1618
  issue: 13
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib39
  article-title: Energy consumption forecasting in agriculture by artificial intelligence and mathematical models
  publication-title: Energy Sources, Part A Recovery, Util. Environ. Eff.
  doi: 10.1080/15567036.2019.1604872
– volume: 207
  start-page: 118
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib7
  article-title: The effect of renewable energy consumption on economic growth: evidence from the renewable country attractive index
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118162
– volume: 48
  start-page: 14
  year: 2016
  ident: 10.1016/j.csite.2022.101823_bib10
  article-title: Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: a case study of Fars province, Iran
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.09.034
– volume: 107
  start-page: 182
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib8
  article-title: New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2020.04.015
– volume: 56
  start-page: 13
  year: 2016
  ident: 10.1016/j.csite.2022.101823_bib31
  article-title: Forecasting municipal solid waste generation using artificial intelligence modelling approaches
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2016.05.018
– volume: 10
  start-page: 2425
  issue: 9
  year: 2019
  ident: 10.1016/j.csite.2022.101823_bib25
  article-title: Status and opportunities for energy recovery from municipal solid waste in Europe
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-018-0297-7
– volume: 195
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib41
  article-title: Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104762
– volume: 165
  year: 2020
  ident: 10.1016/j.csite.2022.101823_bib40
  article-title: ANFIS system for prognosis of dynamometer high-speed ball bearing based on frequency domain acoustic emission signals
  publication-title: Measurement
SSID ssj0001738144
Score 2.4245572
Snippet Time-resolved knowledge of physico-chemical properties of Municipal Solid Waste (MSW) materials and their thermal energy content is one of the important...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 101823
SubjectTerms Clean energy
Incineration power plant
Modeling
Radial bias function
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXhQMNimadMcVZQirBdfeyt5TGRl2V10xR_gH3eSdrVe9OKxIU1KviHzTTP5hpBDbqSyvHQs4yUwAeF8N1eKSXT2UoPRqY9ZvjdFdS-uB_mgU-or5IQ18sDNwp0adHAZul3tCouu2ynpZGIc0mxfCuF82H0TlXSCqfh3RaInipVcOU8FS3M5mEsOxeQuG49mMfDnoaXk2Q-3FNX7O96p43GuVslKSxXpWfOJa2QBxutkuSMguEE--jEXEmhb_OGJxso2rxSpKJ2-hEOYsPAUWR5tMjpoFUgidnzQozegR1X1cEwnnvbDLZHhFOe7nYyGjj5qhJ8e9W8fj-Ng7-GZzSYM4mVB-q0Svknuri7vLirWllVgVqRixniB2EibicxDbhJXgkO4uHW472koQQmFGzgXngPGIhJSbTBuLAWiAKmx2RZZHE_GsE0oUsvMm0KBE05I5XWC7MXr3OfGSCt0j_D5ota2lRwPlS9G9Ty37LmOSNQBibpBokdOvl6aNoobv3c_D2h9dQ1y2bEBjahujaj-y4h6pJhjXbfMo2EUONTwt9l3_mP2XbIUhmwy2_bI4uzlDfaR6szMQbTqTwET-Yo
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning models for prediction the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) for waste-to-energy evaluation
URI https://dx.doi.org/10.1016/j.csite.2022.101823
https://doaj.org/article/b3173615ad6c441d97d70bd875f844df
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCTO1QNH2g7iPg0CEBStiiKFEcm6CBUMBdnCbeBD6OgQrDMhwH_QH947mjpMRZMnQkcXyAd7j7SN6Dsa_SaeNlFUQuKxAK6H-3MEZoNPbagrNZTF6-v8r6t_q5LJYH7HyMhSG3ykH39zo9aeuhZzqc5nTTttOFlBlaH72UKdrEUEQ5RZVSEN_y7PGdRaNNSjVdiV7QgDH5UHLz8umTVqIpo55K5k8MVMrjv2en9mzPxWv2agCN_Hu_ryN2AOs37OVeKsG37N88eUUCH8pA3PBU4-aWIyjlmy19xxALOOI93vt28JrgIhJe2dUd8JO6vjrlXeRzihdpN7jeolu1gV9bFAR-Ml9cn6bJ_lJb7DoBKWyQP-YLf8cuL35cntdiKLAgvMrUTsgSuaR9rvIIhZuFCgIyTvqAGtBCBUYZVOVSRQl4K9GQWYc3yErlZQaZ8_l7drju1vCBcQSZeXSlgaCC0ibaGeKYaItYOKe9shMmx0Nt_JB8nGpgrJrRy-xPkzjRECeanhMT9u1h0KbPvfE8-Rlx64GUEmenjm570wyS0zjES7j9wobSIxIMRgc9cwFvbbFSKsQJK0deN0_kEKdqn1v94_8O_MReUKv3a_vMDnfbO_iCQGfnjtMDwXGS53uQs_t3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6k6dB2KPpE3SeHDglQwhZFieLYBA2UNs5iN_FG8BmoMCzDddAf0D_eIyUlzpKhoyiSIniHu4_i3XcAn5kR0rLK0ZxVnnIf73cLKalAZy-0NzoLKcr3vKx_8u-LYrEHx0MuTAyr7G1_Z9OTte5bxv1ujtdNM54xlqH3EQuWsk2keAAPEQ2UkUD_dHF0-6NFoFNKRV3jABpHDOxDKc7Lpltahr4stlQsv-OhEpH_jqPacT4nz-BpjxrJ125hz2HPr17Akx0uwZfwd5rCIj3p60BckVTk5jdBVErWm3gfE2VAEPCRLriD1BEvYscLvbz25KCuLw5JG8g0Jow0a_zerF02jlxq1ARyMJ1dHqbJ_sRnum2pT3mD5JYw_BXMT77Nj2vaV1iglmd8S1mJYhI253nwhZm4yjuUHLMOTaD2lZdcoi1nPDCPxxLhM23wCFnxvMx8Zmz-GvZX7cq_AYIoMw-mlN5xx4UMeoJAJugiFMYIy_UI2LCpyvbs47EIxlINYWa_VJKEipJQnSRG8OVm0Loj37i_-1GU1k3XyJydGtrNlepVRxkETLj8QrvSIhR0UjgxMQ6PbaHi3IURlIOs1R1FxKma-77-9n8HfoJH9Xx6ps5Oz3-8g8fxTRfk9h72t5tr_wFRz9Z8TFr9D1jI_aY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+models+for+prediction+the+Higher+Heating+Value+%28HHV%29+of+Municipal+Solid+Waste+%28MSW%29+for+waste-to-energy+evaluation&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Taki%2C+Morteza&rft.au=Rohani%2C+Abbas&rft.date=2022-03-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=31&rft.spage=101823&rft_id=info:doi/10.1016%2Fj.csite.2022.101823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2022_101823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon