Self-powered DNA nanomachines for fluorescence detection of lead

A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb 2+ ). In the presence of target Pb 2+ , capture DNA nanomachine formed by AuNP and DNAzyme r...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 190; no. 3; p. 99
Main Authors Li, Xiang-Ling, Jiang, Han, Zhao, Lei, Song, Tian shun, Xie, Jing jing
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.03.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb 2+ ). In the presence of target Pb 2+ , capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb 2+ , which yielded an “active” DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb 2+ . Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb 2+ in the concentration range 50–600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. Graphical Abstract
AbstractList A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb ). In the presence of target Pb , capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb , which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb . Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.
A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an “active” DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50–600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.
A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.
A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb.sup.2+). In the presence of target Pb.sup.2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb.sup.2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb.sup.2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb.sup.2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. Graphical
A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb 2+ ). In the presence of target Pb 2+ , capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb 2+ , which yielded an “active” DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb 2+ . Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb 2+ in the concentration range 50–600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. Graphical Abstract
ArticleNumber 99
Audience Academic
Author Song, Tian shun
Zhao, Lei
Jiang, Han
Li, Xiang-Ling
Xie, Jing jing
Author_xml – sequence: 1
  givenname: Xiang-Ling
  orcidid: 0000-0001-8198-9778
  surname: Li
  fullname: Li, Xiang-Ling
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
– sequence: 2
  givenname: Han
  surname: Jiang
  fullname: Jiang, Han
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
– sequence: 4
  givenname: Tian shun
  surname: Song
  fullname: Song, Tian shun
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
– sequence: 5
  givenname: Jing jing
  surname: Xie
  fullname: Xie, Jing jing
  email: xiej@njtech.edu.cn
  organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36809414$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaSZp_0AXxdBNN06uHpY0uw7pKxCaRdq1kKWr1MGWppJN6b-vJk4oZBG0EIjvHJ17zwk5iikiIW8pnFEAdV4AJIgWGG-hk4q36gXZUMFl24HiR2QDwGTLpWLH5KSUOwCqJBOvyDGXGraCig35eINjaPfpD2b0zafvuybamCbrfg0RSxNSbsK4pIzFYXTYeJzRzUOKTQrNiNa_Ji-DHQu-ebhPyc8vn39cfGuvrr9eXuyuWlf_mVuqtOwU41sMjDNKmWNKoFee6gAcqXAgFLPO0X4reuZRd8Izq_qec686zk_Jh9V3n9PvBctspqFmGkcbMS3FMKX0VgNnB_T9E_QuLTnWdPeUFAqYqtTZSt3aEc0QQ5qzdfV4nAZXNx2G-r5TXFOpOwlV8O7Bdukn9Gafh8nmv-ZxmRXQK-ByKiVjMG6Y7WFZ1XkYDQVz6M2svZnam7nvzRzCsCfSR_dnRXwVlQrHW8z_53xG9Q-H06bD
CitedBy_id crossref_primary_10_1016_j_trac_2023_117508
crossref_primary_10_1016_j_aca_2024_342492
crossref_primary_10_1007_s00604_024_06515_w
Cites_doi 10.1002/anie.201912514
10.1007/s11356-018-1733-8
10.1021/acs.analchem.5b00040
10.1021/jacs.8b09867
10.1016/j.sab.2021.106071
10.1016/j.trac.2018.04.012
10.1002/anie.201814282
10.1016/1074-5521(95)90028-4
10.1016/j.toxrep.2019.08.001
10.1021/acs.accounts.9b00419
10.1002/cbic.201800322
10.1073/pnas.94.9.4262
10.1039/d1cs00240f
10.1021/acs.analchem.8b00725
10.1007/s00604-019-3612-5
10.1016/j.jelechem.2020.114657
10.1016/1074-5521(94)90014-0
10.1021/acs.analchem.7b05458
10.1002/anie.201915675
10.1007/s00604-018-2977-1
10.1016/j.snb.2020.127898
10.1016/j.aca.2013.12.017
10.1007/s00604-019-3836-4
10.1002/smll.201902989
10.1021/acs.analchem.8b01136
10.1016/j.aca.2017.11.016
10.1007/s00604-019-3743-8
10.1007/s00604-020-04324-5
10.1016/j.jelechem.2021.115756
10.1016/j.jelechem.2020.114828
10.1080/01496395.2020.1788597
10.1021/acs.analchem.8b01574
10.3390/s21020602
10.1007/s11356-020-07865-7
10.1021/acs.analchem.6b01291
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s00604-023-05673-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1436-5073
ExternalDocumentID A738168560
36809414
10_1007_s00604_023_05673_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21878150; 21904092; 22078149
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions
  grantid: 20KJB150020
  funderid: http://dx.doi.org/10.13039/501100013280
– fundername: the National Key Research and Development Program of China
  grantid: 2018YFA0901300
– fundername: Fundamental Research Funds for Promotion Project
  grantid: 39808129
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220002
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220002
– fundername: National Natural Science Foundation of China
  grantid: 21904092
– fundername: National Natural Science Foundation of China
  grantid: 22078149
– fundername: National Natural Science Foundation of China
  grantid: 21878150
– fundername: Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions
  grantid: 20KJB150020
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7X7
88E
8FE
8FG
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAS
LLZTM
M1P
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9N
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
Y6R
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z85
Z86
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
Z92
ZMTXR
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
ABRTQ
K9.
7X8
ID FETCH-LOGICAL-c414t-178657239ef232112c274ed7d18f03e14c0472acc1b94b2de854d2a7bb33d7533
IEDL.DBID U2A
ISSN 0026-3672
1436-5073
IngestDate Fri Jul 11 11:28:34 EDT 2025
Fri Jul 25 10:54:56 EDT 2025
Tue Jun 10 21:13:11 EDT 2025
Wed Feb 19 02:25:26 EST 2025
Thu Apr 24 23:07:08 EDT 2025
Tue Jul 01 04:07:04 EDT 2025
Fri Feb 21 02:45:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DNAzyme
Lead ions
Self-powered
Catalytic hairpin assembly
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-178657239ef232112c274ed7d18f03e14c0472acc1b94b2de854d2a7bb33d7533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8198-9778
PMID 36809414
PQID 2778647027
PQPubID 2043622
ParticipantIDs proquest_miscellaneous_2778980323
proquest_journals_2778647027
gale_infotracacademiconefile_A738168560
pubmed_primary_36809414
crossref_citationtrail_10_1007_s00604_023_05673_7
crossref_primary_10_1007_s00604_023_05673_7
springer_journals_10_1007_s00604_023_05673_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Austria
– name: Heidelberg
PublicationSubtitle Analytical Sciences and Technologies on the Micro- and Nanoscale
PublicationTitle Mikrochimica acta (1966)
PublicationTitleAbbrev Microchim Acta
PublicationTitleAlternate Mikrochim Acta
PublicationYear 2023
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References Zhou, Feng, Yu, Jiang (CR4) 2018; 25
Le, Seo (CR27) 2018; 999
Liu, Zhang, Xie, Zhao, Zheng, Ye (CR31) 2019; 15
Buledi, Amin, Haider, Bhanger, Solangi (CR7) 2021; 28
Ma, Liu (CR25) 2019; 20
Li, Cao, Nilghaz, Guan, Zhang, Shen (CR6) 2015; 87
Shen, Li, Qi, Wang, Sun, Deng, Lu, Chen, Chen, Tang (CR30) 2018; 185
Santiago-Felipe, Tortajada-Genaro, Puchades, Maquieira (CR29) 2014; 811
Akinyemi, Miah, Ijomone, Tsatsakis, Soares, Tinkov, Skalny, Venkataramani, Aschner (CR16) 2019; 6
Leonardo, Toldra, Campas (CR28) 2021; 21
Huang, de Rochambeau, Sleiman, Liu (CR23) 2020; 59
Waheed, Mansha, Ullah (CR3) 2018; 105
Chen, He, Chen, Hu (CR13) 2021; 177
Koosha, Shamsipur, Salimi, Ramezani (CR11) 2021; 56
Breaker, Joyce (CR20) 1995; 2
Zhang, Chen, Xiao, Su, Li, Liu, Zhang, Zhou, Xu, Wang (CR8) 2021; 901
Breaker, Joyce (CR18) 1994; 1
Huang, Li, Zhou, Mei, Zhou, Jing (CR14) 2016; 88
Santoro, Joyce (CR19) 1997; 94
Gao, Xu, Hao, Xu, Kuang (CR1) 2019; 58
Xiong, Yang, Lake, Li, Hong, Fan, Zhang, Lu (CR24) 2020; 59
Wang, Nie, Lu, Shu, Han (CR34) 2019; 186
Yang, Zhang, Xu, Chen (CR35) 2018; 90
Zhang, Guo, Jiang, Mao, Ji, He (CR5) 2018; 90
Song, Wang, Liu, Zhang, Wang, Wang, Zhang, Yu, Huang (CR33) 2019; 186
Yang, Loh, Chu, Feng, Satyavolu, Xiong, Huynh, Hwang, Li, Xing, Zhang, Chelma, Gruebele, Lu (CR2) 2018; 140
Swetha, Chen, Kumar, Feng (CR9) 2020; 878
McConnell, Cozma, Mou, Brennan, Lu, Li (CR17) 2021; 50
Smirnova, Samarina, Ilin, Pletnev (CR12) 2018; 90
Chen, Wang, Lu, Luo, Dong, Ji, Xu, Huo, Hou (CR22) 2020; 311
Lake, Yang, Zhang, Lu (CR21) 2019; 52
Cao, Liao, Wang, Liu (CR10) 2021; 880
Li, Liang, Mu, Tan, Lu, Hu, Zhao, Tian (CR32) 2020; 187
Zhad, Lai (CR15) 2018; 90
Wu, Wu, Liu, Wang, Zou (CR26) 2019; 186
JM Liu (5673_CR31) 2019; 15
A Waheed (5673_CR3) 2018; 105
SV Smirnova (5673_CR12) 2018; 90
MY Xiong (5673_CR24) 2020; 59
JA Buledi (5673_CR7) 2021; 28
XL Chen (5673_CR22) 2020; 311
K Huang (5673_CR14) 2016; 88
AJ Akinyemi (5673_CR16) 2019; 6
SW Santoro (5673_CR19) 1997; 94
R Gao (5673_CR1) 2019; 58
F Zhou (5673_CR4) 2018; 25
PJJ Huang (5673_CR23) 2020; 59
E Koosha (5673_CR11) 2021; 56
W Shen (5673_CR30) 2018; 185
EM McConnell (5673_CR17) 2021; 50
Q Li (5673_CR32) 2020; 187
YJ Chen (5673_CR13) 2021; 177
XJ Yang (5673_CR35) 2018; 90
YA Zhang (5673_CR5) 2018; 90
HRLZ Zhad (5673_CR15) 2018; 90
P Swetha (5673_CR9) 2020; 878
ZL Yang (5673_CR2) 2018; 140
JT Cao (5673_CR10) 2021; 880
S Leonardo (5673_CR28) 2021; 21
RJ Lake (5673_CR21) 2019; 52
RR Breaker (5673_CR18) 1994; 1
XL Song (5673_CR33) 2019; 186
MS Li (5673_CR6) 2015; 87
WX Zhang (5673_CR8) 2021; 901
RR Breaker (5673_CR20) 1995; 2
S Santiago-Felipe (5673_CR29) 2014; 811
BH Le (5673_CR27) 2018; 999
H Wu (5673_CR26) 2019; 186
LZ Ma (5673_CR25) 2019; 20
WJ Wang (5673_CR34) 2019; 186
References_xml – volume: 59
  start-page: 1891
  issue: 5
  year: 2020
  end-page: 1896
  ident: CR24
  article-title: DNAzyme-mediated genetically encoded sensors for ratiometric imaging of metal ions in living cells
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201912514
– volume: 25
  start-page: 15651
  issue: 16
  year: 2018
  end-page: 15661
  ident: CR4
  article-title: High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd(II) and Pb(II)
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-1733-8
– volume: 87
  start-page: 2555
  issue: 5
  year: 2015
  end-page: 2559
  ident: CR6
  article-title: “Periodic-table-style” paper device for monitoring heavy metals in water
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.5b00040
– volume: 140
  start-page: 17656
  issue: 50
  year: 2018
  end-page: 17665
  ident: CR2
  article-title: Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b09867
– volume: 177
  start-page: 106071
  year: 2021
  ident: CR13
  article-title: Thiol-grafted magnetic polymer for preconcentration of Cd, Hg, Pb from environmental water followed by inductively coupled plasma mass spectrometry detection
  publication-title: Spectrochim Acta B
  doi: 10.1016/j.sab.2021.106071
– volume: 105
  start-page: 37
  year: 2018
  end-page: 51
  ident: CR3
  article-title: Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction
  publication-title: Trends Analyt Chem
  doi: 10.1016/j.trac.2018.04.012
– volume: 58
  start-page: 3913
  issue: 12
  year: 2019
  end-page: 3917
  ident: CR1
  article-title: Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201814282
– volume: 2
  start-page: 655
  issue: 10
  year: 1995
  end-page: 660
  ident: CR20
  article-title: A DNA enzyme with Mg -dependent Rna phosphoesterase activity
  publication-title: Chem Biol
  doi: 10.1016/1074-5521(95)90028-4
– volume: 6
  start-page: 833
  year: 2019
  end-page: 840
  ident: CR16
  article-title: Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: involvement of the dopamine transporter
  publication-title: Toxicol Rep
  doi: 10.1016/j.toxrep.2019.08.001
– volume: 52
  start-page: 3275
  issue: 12
  year: 2019
  end-page: 3286
  ident: CR21
  article-title: DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.9b00419
– volume: 20
  start-page: 537
  issue: 4
  year: 2019
  end-page: 542
  ident: CR25
  article-title: An in vitro-selected DNAzyme mutant highly specific for Na under slightly acidic conditions
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201800322
– volume: 94
  start-page: 4262
  issue: 9
  year: 1997
  end-page: 4266
  ident: CR19
  article-title: A general purpose RNA-cleaving DNA enzyme
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.9.4262
– volume: 50
  start-page: 8954
  issue: 16
  year: 2021
  end-page: 8994
  ident: CR17
  article-title: Biosensing with DNAzymes
  publication-title: Chem Soc Rev
  doi: 10.1039/d1cs00240f
– volume: 90
  start-page: 6199
  issue: 10
  year: 2018
  end-page: 6205
  ident: CR35
  article-title: In situ visualization of hERG potassium channel via dual signal amplification
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.8b00725
– volume: 186
  start-page: 559
  issue: 8
  year: 2019
  ident: CR33
  article-title: A triply amplified electrochemical lead(II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3612-5
– volume: 878
  start-page: 114657
  year: 2020
  ident: CR9
  article-title: High index facets-Ag nanoflower enabled efficient electrochemical detection of lead in blood serum and cosmetics
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2020.114657
– volume: 1
  start-page: 223
  issue: 4
  year: 1994
  end-page: 229
  ident: CR18
  article-title: A DNA enzyme that cleaves RNA
  publication-title: Chem Biol
  doi: 10.1016/1074-5521(94)90014-0
– volume: 90
  start-page: 6519
  issue: 11
  year: 2018
  end-page: 6525
  ident: CR15
  article-title: Application of calcium-binding motif of E-cadherin for electrochemical detection of Pb(II)
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b05458
– volume: 59
  start-page: 3573
  issue: 9
  year: 2020
  end-page: 3577
  ident: CR23
  article-title: Target self-enhanced selectivity in metal-specific DNAzymes
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201915675
– volume: 185
  start-page: 447
  issue: 10
  year: 2018
  ident: CR30
  article-title: Fluorometric determination of zinc(II) by using DNAzyme-modified magnetic microbeads
  publication-title: Microchim Acta
  doi: 10.1007/s00604-018-2977-1
– volume: 311
  start-page: 127898
  year: 2020
  ident: CR22
  article-title: Ultra-sensitive detection of Pb based on DNAzymes coupling with multicycle strand displacement amplification (M-SDA) and nano-graphene oxide
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2020.127898
– volume: 811
  start-page: 81
  year: 2014
  end-page: 87
  ident: CR29
  article-title: Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2013.12.017
– volume: 186
  start-page: 715
  issue: 11
  year: 2019
  ident: CR26
  article-title: Fluorometric determination of microRNA using arched probe-mediated isothermal exponential amplification combined with DNA-templated silver nanoclusters
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3836-4
– volume: 15
  start-page: 1902989
  issue: 42
  year: 2019
  ident: CR31
  article-title: Applications of catalytic hairpin assembly reaction in biosensing
  publication-title: Small
  doi: 10.1002/smll.201902989
– volume: 90
  start-page: 6323
  issue: 10
  year: 2018
  end-page: 6331
  ident: CR12
  article-title: Multielement determination of trace heavy metals in water by microwave-induced plasma atomic emission spectrometry after extraction in unconventional single-salt aqueous biphasic system
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.8b01136
– volume: 999
  start-page: 155
  year: 2018
  end-page: 160
  ident: CR27
  article-title: Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2017.11.016
– volume: 186
  start-page: 661
  issue: 9
  year: 2019
  ident: CR34
  article-title: Catalytic hairpin assembly-assisted lateral flow assay for visual determination of microRNA-21 using gold nanoparticles
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3743-8
– volume: 187
  start-page: 365
  issue: 6
  year: 2020
  ident: CR32
  article-title: Ratiometric fluorescent 3D DNA walker and catalyzed hairpin assembly for determination ofmicroRNA
  publication-title: Microchim Acta
  doi: 10.1007/s00604-020-04324-5
– volume: 901
  start-page: 115756
  year: 2021
  ident: CR8
  article-title: A hydrogel electrochemical electrode for simultaneous measurement of cadmium ions and lead ions
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2021.115756
– volume: 880
  start-page: 114828
  year: 2021
  ident: CR10
  article-title: A novel photoelectrochemical strategy for lead ion detection based on CdSe quantum dots co-sensitized ZnO-CdS nanostructure
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2020.114828
– volume: 56
  start-page: 1721
  issue: 10
  year: 2021
  end-page: 1729
  ident: CR11
  article-title: A microextraction method based on precipitation for the simultaneous separation and preconcentration of cadmium and lead before their determination by FAAS: experimental design methodology
  publication-title: Sep Sci Technol
  doi: 10.1080/01496395.2020.1788597
– volume: 90
  start-page: 9796
  issue: 16
  year: 2018
  end-page: 9804
  ident: CR5
  article-title: Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.8b01574
– volume: 21
  start-page: 602
  issue: 2
  year: 2021
  ident: CR28
  article-title: Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring
  publication-title: Sensors
  doi: 10.3390/s21020602
– volume: 28
  start-page: 58994
  issue: 42
  year: 2021
  end-page: 59002
  ident: CR7
  article-title: A review on detection of heavy metals from aqueous media using nanomaterial-based sensors
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-07865-7
– volume: 88
  start-page: 6820
  issue: 13
  year: 2016
  end-page: 6826
  ident: CR14
  article-title: Selective solid-phase extraction of lead ions in water samples using three-dimensional ion-imprinted polymers
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b01291
– volume: 2
  start-page: 655
  issue: 10
  year: 1995
  ident: 5673_CR20
  publication-title: Chem Biol
  doi: 10.1016/1074-5521(95)90028-4
– volume: 88
  start-page: 6820
  issue: 13
  year: 2016
  ident: 5673_CR14
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b01291
– volume: 878
  start-page: 114657
  year: 2020
  ident: 5673_CR9
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2020.114657
– volume: 186
  start-page: 661
  issue: 9
  year: 2019
  ident: 5673_CR34
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3743-8
– volume: 1
  start-page: 223
  issue: 4
  year: 1994
  ident: 5673_CR18
  publication-title: Chem Biol
  doi: 10.1016/1074-5521(94)90014-0
– volume: 187
  start-page: 365
  issue: 6
  year: 2020
  ident: 5673_CR32
  publication-title: Microchim Acta
  doi: 10.1007/s00604-020-04324-5
– volume: 901
  start-page: 115756
  year: 2021
  ident: 5673_CR8
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2021.115756
– volume: 880
  start-page: 114828
  year: 2021
  ident: 5673_CR10
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2020.114828
– volume: 15
  start-page: 1902989
  issue: 42
  year: 2019
  ident: 5673_CR31
  publication-title: Small
  doi: 10.1002/smll.201902989
– volume: 28
  start-page: 58994
  issue: 42
  year: 2021
  ident: 5673_CR7
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-07865-7
– volume: 999
  start-page: 155
  year: 2018
  ident: 5673_CR27
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2017.11.016
– volume: 811
  start-page: 81
  year: 2014
  ident: 5673_CR29
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2013.12.017
– volume: 90
  start-page: 6519
  issue: 11
  year: 2018
  ident: 5673_CR15
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b05458
– volume: 186
  start-page: 559
  issue: 8
  year: 2019
  ident: 5673_CR33
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3612-5
– volume: 58
  start-page: 3913
  issue: 12
  year: 2019
  ident: 5673_CR1
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201814282
– volume: 20
  start-page: 537
  issue: 4
  year: 2019
  ident: 5673_CR25
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201800322
– volume: 185
  start-page: 447
  issue: 10
  year: 2018
  ident: 5673_CR30
  publication-title: Microchim Acta
  doi: 10.1007/s00604-018-2977-1
– volume: 59
  start-page: 1891
  issue: 5
  year: 2020
  ident: 5673_CR24
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201912514
– volume: 105
  start-page: 37
  year: 2018
  ident: 5673_CR3
  publication-title: Trends Analyt Chem
  doi: 10.1016/j.trac.2018.04.012
– volume: 56
  start-page: 1721
  issue: 10
  year: 2021
  ident: 5673_CR11
  publication-title: Sep Sci Technol
  doi: 10.1080/01496395.2020.1788597
– volume: 50
  start-page: 8954
  issue: 16
  year: 2021
  ident: 5673_CR17
  publication-title: Chem Soc Rev
  doi: 10.1039/d1cs00240f
– volume: 87
  start-page: 2555
  issue: 5
  year: 2015
  ident: 5673_CR6
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.5b00040
– volume: 6
  start-page: 833
  year: 2019
  ident: 5673_CR16
  publication-title: Toxicol Rep
  doi: 10.1016/j.toxrep.2019.08.001
– volume: 52
  start-page: 3275
  issue: 12
  year: 2019
  ident: 5673_CR21
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.9b00419
– volume: 90
  start-page: 9796
  issue: 16
  year: 2018
  ident: 5673_CR5
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.8b01574
– volume: 90
  start-page: 6323
  issue: 10
  year: 2018
  ident: 5673_CR12
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.8b01136
– volume: 140
  start-page: 17656
  issue: 50
  year: 2018
  ident: 5673_CR2
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b09867
– volume: 21
  start-page: 602
  issue: 2
  year: 2021
  ident: 5673_CR28
  publication-title: Sensors
  doi: 10.3390/s21020602
– volume: 90
  start-page: 6199
  issue: 10
  year: 2018
  ident: 5673_CR35
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.8b00725
– volume: 59
  start-page: 3573
  issue: 9
  year: 2020
  ident: 5673_CR23
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201915675
– volume: 311
  start-page: 127898
  year: 2020
  ident: 5673_CR22
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2020.127898
– volume: 94
  start-page: 4262
  issue: 9
  year: 1997
  ident: 5673_CR19
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.9.4262
– volume: 25
  start-page: 15651
  issue: 16
  year: 2018
  ident: 5673_CR4
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-1733-8
– volume: 177
  start-page: 106071
  year: 2021
  ident: 5673_CR13
  publication-title: Spectrochim Acta B
  doi: 10.1016/j.sab.2021.106071
– volume: 186
  start-page: 715
  issue: 11
  year: 2019
  ident: 5673_CR26
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3836-4
SSID ssj0017624
Score 2.374214
Snippet A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving...
A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Analytical Chemistry
Biosensing Techniques
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
DNA
DNA, Catalytic
Fluorescence
Heavy metals
Initiators
Ions
Lead
Microengineering
Nanochemistry
Nanotechnology
Original Paper
Selectivity
Substrates
Technology application
Title Self-powered DNA nanomachines for fluorescence detection of lead
URI https://link.springer.com/article/10.1007/s00604-023-05673-7
https://www.ncbi.nlm.nih.gov/pubmed/36809414
https://www.proquest.com/docview/2778647027
https://www.proquest.com/docview/2778980323
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gAXxJu0ZWUkJA5gaf1I7NxIH9sKRC-wUjlZiT05LUnV3f3_jL1JgAqQOOUQ27Lm4ZnRzHwD8Eb4vC6VRx5QI9d5MLwp9Jw3wfq2iUOP0hSFz1fF5VJ_vM6vh6aw9VjtPqYk00s9NbtF6BDNycZwMtpGcbMHB3mM3UmKl7Kacgek3gP2csFVYeTQKvPnM34zR3cf5V-s0p00abI-i0fwcHAbWbXj82O4h90TuH86Tmt7Ch--4KrlN3HmGQZ2dlWxru7676lUEteMXFPWrrb9bUJv8sgCblIRVsf6lq2I0c9guTj_enrJh-kI3GuhN1wYW-RGqhJb8orIbfIUYGIwQdh2rlBoH4Ega-9FU-pGBrS5DrI2TaNUoCBFPYf9ru_wJbBGaNouRE3OHYVr0gpdo7aYy3Zeei0zECORnB-gw-MEi5WbQI8TYR0R1iXCOpPBu2nPzQ4445-r30bau6hVdLKvh-YAul_Ep3KViQlOS-5ZBscje9ygbmsnIwqeNiQLGbyefhMHYvaj7rDf7taUdq6kyuDFjq3TxVRhKcwVOoP3I59_Hv73Wx_-3_IjeCCT6MUKtmPY39xu8RW5NJtmBnt2cTGDg-rk7GQRvxffPp3Pklz_AGfp61c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQL4k2ggJGQOICl9SOxc2NVqBZo90JX6s2K7clpm1Td3f_P2JsEqACJsx-yZmzPN5qZbwDeilA2tQrII2rkuoyG-0rPuI82tD41PcpdFM6W1WKlv16UF0NR2GbMdh9DkvmnnordEnWI5mRjOBlto7i5DXcIDNiUyLWS8yl2QM974F6uuKqMHEpl_rzHb-bo5qf8i1W6ESbN1ufkPtwbYCOb7_X8AG5h9xAOj8dubY_g43dct_wq9TzDyD4t56xruv4yp0rihhE0Ze16119n9qaALOI2J2F1rG_ZmhT9GFYnn8-PF3zojsCDFnrLhbFVaaSqsSVURLApkIOJ0URh25lCoUMigmxCEL7WXka0pY6yMd4rFclJUU_goOs7fAbMC03LhWgI3JG7Jq3QDWqLpWxnddCyADEKyYWBOjx1sFi7ifQ4C9aRYF0WrDMFvJ_WXO2JM_45-12SvUuvinYOzVAcQOdL_FRublKA0xI8K-BoVI8bntvGycSCpw252AW8mYZJAyn60XTY7_ZzajtTUhXwdK_W6WCqsuTmCl3Ah1HPPzf_-6mf_9_013C4OD87dadflt9ewF2Zr2HKZjuCg-31Dl8SvNn6V_k2_wBuxOpe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkaAvqFwltICRkHgAq-sjsfPGqmVVrhUSrNQ3Kz7ytCSrNvv_O3aOlqog8exD1ozt-UYz8w3AW-byqhQuUB9koDL3itpCzqj12tU2Nj1KXRS-L4vTlfxylp9dq-JP2e5jSLKvaYgsTU13tPH10VT4FmlEJEV7Q9GAK0HVXbiH3zGL93rF51McAZ_6wMNcUFEoPpTN3L7HH6bp5gd9zULdCJkmS7TYg4cDhCTzXueP4E5oHsOD47Fz2xP4-DOsa7qJ_c-CJyfLOWmqpv2d0ibDBUGYSur1tj1PTE4uEB-6lJDVkLYma1T6U1gtPv06PqVDpwTqJJMdZUoXueKiDDUiJIRQDp3N4JVnup6JwKSLpJCVc8yW0nIfdC49r5S1Qnh0WMQz2GnaJjwHYpnE5YxVCPTQdeOaySpIHXJez0oneQZsFJJxA4147GaxNhMBchKsQcGaJFijMng_rdn0JBr_nP0uyt7EF4Y7u2ooFMDzRa4qM1cx2KkRqmVwOKrHDE_vwvDIiCcVutsZvJmGUQMxElI1od32c0o9E1xksN-rdTqYKDS6vExm8GHU89Xmfz_1i_-b_hru_zhZmG-fl18PYJenWxgT2w5hpzvfhpeIdDr7Kl3mS0gC7po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-powered+DNA+nanomachines+for+fluorescence+detection+of+lead&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Li%2C+Xiang-Ling&rft.au=Jiang%2C+Han&rft.au=Zhao%2C+Lei&rft.au=Song%2C+Tian+shun&rft.date=2023-03-01&rft.pub=Springer&rft.issn=0026-3672&rft.volume=190&rft.issue=3&rft_id=info:doi/10.1007%2Fs00604-023-05673-7&rft.externalDocID=A738168560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon