Self-powered DNA nanomachines for fluorescence detection of lead
A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb 2+ ). In the presence of target Pb 2+ , capture DNA nanomachine formed by AuNP and DNAzyme r...
Saved in:
Published in | Mikrochimica acta (1966) Vol. 190; no. 3; p. 99 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.03.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb
2+
). In the presence of target Pb
2+
, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb
2+
, which yielded an “active” DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb
2+
. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb
2+
in the concentration range 50–600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.
Graphical Abstract |
---|---|
AbstractList | A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb
). In the presence of target Pb
, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb
, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb
. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb
in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an “active” DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50–600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb.sup.2+). In the presence of target Pb.sup.2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb.sup.2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb.sup.2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb.sup.2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. Graphical A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb 2+ ). In the presence of target Pb 2+ , capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb 2+ , which yielded an “active” DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb 2+ . Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb 2+ in the concentration range 50–600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions. Graphical Abstract |
ArticleNumber | 99 |
Audience | Academic |
Author | Song, Tian shun Zhao, Lei Jiang, Han Li, Xiang-Ling Xie, Jing jing |
Author_xml | – sequence: 1 givenname: Xiang-Ling orcidid: 0000-0001-8198-9778 surname: Li fullname: Li, Xiang-Ling organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University – sequence: 2 givenname: Han surname: Jiang fullname: Jiang, Han organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University – sequence: 3 givenname: Lei surname: Zhao fullname: Zhao, Lei organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University – sequence: 4 givenname: Tian shun surname: Song fullname: Song, Tian shun organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University – sequence: 5 givenname: Jing jing surname: Xie fullname: Xie, Jing jing email: xiej@njtech.edu.cn organization: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36809414$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaSZp_0AXxdBNN06uHpY0uw7pKxCaRdq1kKWr1MGWppJN6b-vJk4oZBG0EIjvHJ17zwk5iikiIW8pnFEAdV4AJIgWGG-hk4q36gXZUMFl24HiR2QDwGTLpWLH5KSUOwCqJBOvyDGXGraCig35eINjaPfpD2b0zafvuybamCbrfg0RSxNSbsK4pIzFYXTYeJzRzUOKTQrNiNa_Ji-DHQu-ebhPyc8vn39cfGuvrr9eXuyuWlf_mVuqtOwU41sMjDNKmWNKoFee6gAcqXAgFLPO0X4reuZRd8Izq_qec686zk_Jh9V3n9PvBctspqFmGkcbMS3FMKX0VgNnB_T9E_QuLTnWdPeUFAqYqtTZSt3aEc0QQ5qzdfV4nAZXNx2G-r5TXFOpOwlV8O7Bdukn9Gafh8nmv-ZxmRXQK-ByKiVjMG6Y7WFZ1XkYDQVz6M2svZnam7nvzRzCsCfSR_dnRXwVlQrHW8z_53xG9Q-H06bD |
CitedBy_id | crossref_primary_10_1016_j_trac_2023_117508 crossref_primary_10_1016_j_aca_2024_342492 crossref_primary_10_1007_s00604_024_06515_w |
Cites_doi | 10.1002/anie.201912514 10.1007/s11356-018-1733-8 10.1021/acs.analchem.5b00040 10.1021/jacs.8b09867 10.1016/j.sab.2021.106071 10.1016/j.trac.2018.04.012 10.1002/anie.201814282 10.1016/1074-5521(95)90028-4 10.1016/j.toxrep.2019.08.001 10.1021/acs.accounts.9b00419 10.1002/cbic.201800322 10.1073/pnas.94.9.4262 10.1039/d1cs00240f 10.1021/acs.analchem.8b00725 10.1007/s00604-019-3612-5 10.1016/j.jelechem.2020.114657 10.1016/1074-5521(94)90014-0 10.1021/acs.analchem.7b05458 10.1002/anie.201915675 10.1007/s00604-018-2977-1 10.1016/j.snb.2020.127898 10.1016/j.aca.2013.12.017 10.1007/s00604-019-3836-4 10.1002/smll.201902989 10.1021/acs.analchem.8b01136 10.1016/j.aca.2017.11.016 10.1007/s00604-019-3743-8 10.1007/s00604-020-04324-5 10.1016/j.jelechem.2021.115756 10.1016/j.jelechem.2020.114828 10.1080/01496395.2020.1788597 10.1021/acs.analchem.8b01574 10.3390/s21020602 10.1007/s11356-020-07865-7 10.1021/acs.analchem.6b01291 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1007/s00604-023-05673-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1436-5073 |
ExternalDocumentID | A738168560 36809414 10_1007_s00604_023_05673_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21878150; 21904092; 22078149 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions grantid: 20KJB150020 funderid: http://dx.doi.org/10.13039/501100013280 – fundername: the National Key Research and Development Program of China grantid: 2018YFA0901300 – fundername: Fundamental Research Funds for Promotion Project grantid: 39808129 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20220002 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20220002 – fundername: National Natural Science Foundation of China grantid: 21904092 – fundername: National Natural Science Foundation of China grantid: 22078149 – fundername: National Natural Science Foundation of China grantid: 21878150 – fundername: Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions grantid: 20KJB150020 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7X7 88E 8FE 8FG 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAS LLZTM M1P M4Y MA- ML- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9N PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 Y6R YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z7Y Z83 Z85 Z86 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 Z92 ZMTXR ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB ABRTQ K9. 7X8 |
ID | FETCH-LOGICAL-c414t-178657239ef232112c274ed7d18f03e14c0472acc1b94b2de854d2a7bb33d7533 |
IEDL.DBID | U2A |
ISSN | 0026-3672 1436-5073 |
IngestDate | Fri Jul 11 11:28:34 EDT 2025 Fri Jul 25 10:54:56 EDT 2025 Tue Jun 10 21:13:11 EDT 2025 Wed Feb 19 02:25:26 EST 2025 Thu Apr 24 23:07:08 EDT 2025 Tue Jul 01 04:07:04 EDT 2025 Fri Feb 21 02:45:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | DNAzyme Lead ions Self-powered Catalytic hairpin assembly |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c414t-178657239ef232112c274ed7d18f03e14c0472acc1b94b2de854d2a7bb33d7533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8198-9778 |
PMID | 36809414 |
PQID | 2778647027 |
PQPubID | 2043622 |
ParticipantIDs | proquest_miscellaneous_2778980323 proquest_journals_2778647027 gale_infotracacademiconefile_A738168560 pubmed_primary_36809414 crossref_citationtrail_10_1007_s00604_023_05673_7 crossref_primary_10_1007_s00604_023_05673_7 springer_journals_10_1007_s00604_023_05673_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Austria – name: Heidelberg |
PublicationSubtitle | Analytical Sciences and Technologies on the Micro- and Nanoscale |
PublicationTitle | Mikrochimica acta (1966) |
PublicationTitleAbbrev | Microchim Acta |
PublicationTitleAlternate | Mikrochim Acta |
PublicationYear | 2023 |
Publisher | Springer Vienna Springer Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer – name: Springer Nature B.V |
References | Zhou, Feng, Yu, Jiang (CR4) 2018; 25 Le, Seo (CR27) 2018; 999 Liu, Zhang, Xie, Zhao, Zheng, Ye (CR31) 2019; 15 Buledi, Amin, Haider, Bhanger, Solangi (CR7) 2021; 28 Ma, Liu (CR25) 2019; 20 Li, Cao, Nilghaz, Guan, Zhang, Shen (CR6) 2015; 87 Shen, Li, Qi, Wang, Sun, Deng, Lu, Chen, Chen, Tang (CR30) 2018; 185 Santiago-Felipe, Tortajada-Genaro, Puchades, Maquieira (CR29) 2014; 811 Akinyemi, Miah, Ijomone, Tsatsakis, Soares, Tinkov, Skalny, Venkataramani, Aschner (CR16) 2019; 6 Leonardo, Toldra, Campas (CR28) 2021; 21 Huang, de Rochambeau, Sleiman, Liu (CR23) 2020; 59 Waheed, Mansha, Ullah (CR3) 2018; 105 Chen, He, Chen, Hu (CR13) 2021; 177 Koosha, Shamsipur, Salimi, Ramezani (CR11) 2021; 56 Breaker, Joyce (CR20) 1995; 2 Zhang, Chen, Xiao, Su, Li, Liu, Zhang, Zhou, Xu, Wang (CR8) 2021; 901 Breaker, Joyce (CR18) 1994; 1 Huang, Li, Zhou, Mei, Zhou, Jing (CR14) 2016; 88 Santoro, Joyce (CR19) 1997; 94 Gao, Xu, Hao, Xu, Kuang (CR1) 2019; 58 Xiong, Yang, Lake, Li, Hong, Fan, Zhang, Lu (CR24) 2020; 59 Wang, Nie, Lu, Shu, Han (CR34) 2019; 186 Yang, Zhang, Xu, Chen (CR35) 2018; 90 Zhang, Guo, Jiang, Mao, Ji, He (CR5) 2018; 90 Song, Wang, Liu, Zhang, Wang, Wang, Zhang, Yu, Huang (CR33) 2019; 186 Yang, Loh, Chu, Feng, Satyavolu, Xiong, Huynh, Hwang, Li, Xing, Zhang, Chelma, Gruebele, Lu (CR2) 2018; 140 Swetha, Chen, Kumar, Feng (CR9) 2020; 878 McConnell, Cozma, Mou, Brennan, Lu, Li (CR17) 2021; 50 Smirnova, Samarina, Ilin, Pletnev (CR12) 2018; 90 Chen, Wang, Lu, Luo, Dong, Ji, Xu, Huo, Hou (CR22) 2020; 311 Lake, Yang, Zhang, Lu (CR21) 2019; 52 Cao, Liao, Wang, Liu (CR10) 2021; 880 Li, Liang, Mu, Tan, Lu, Hu, Zhao, Tian (CR32) 2020; 187 Zhad, Lai (CR15) 2018; 90 Wu, Wu, Liu, Wang, Zou (CR26) 2019; 186 JM Liu (5673_CR31) 2019; 15 A Waheed (5673_CR3) 2018; 105 SV Smirnova (5673_CR12) 2018; 90 MY Xiong (5673_CR24) 2020; 59 JA Buledi (5673_CR7) 2021; 28 XL Chen (5673_CR22) 2020; 311 K Huang (5673_CR14) 2016; 88 AJ Akinyemi (5673_CR16) 2019; 6 SW Santoro (5673_CR19) 1997; 94 R Gao (5673_CR1) 2019; 58 F Zhou (5673_CR4) 2018; 25 PJJ Huang (5673_CR23) 2020; 59 E Koosha (5673_CR11) 2021; 56 W Shen (5673_CR30) 2018; 185 EM McConnell (5673_CR17) 2021; 50 Q Li (5673_CR32) 2020; 187 YJ Chen (5673_CR13) 2021; 177 XJ Yang (5673_CR35) 2018; 90 YA Zhang (5673_CR5) 2018; 90 HRLZ Zhad (5673_CR15) 2018; 90 P Swetha (5673_CR9) 2020; 878 ZL Yang (5673_CR2) 2018; 140 JT Cao (5673_CR10) 2021; 880 S Leonardo (5673_CR28) 2021; 21 RJ Lake (5673_CR21) 2019; 52 RR Breaker (5673_CR18) 1994; 1 XL Song (5673_CR33) 2019; 186 MS Li (5673_CR6) 2015; 87 WX Zhang (5673_CR8) 2021; 901 RR Breaker (5673_CR20) 1995; 2 S Santiago-Felipe (5673_CR29) 2014; 811 BH Le (5673_CR27) 2018; 999 H Wu (5673_CR26) 2019; 186 LZ Ma (5673_CR25) 2019; 20 WJ Wang (5673_CR34) 2019; 186 |
References_xml | – volume: 59 start-page: 1891 issue: 5 year: 2020 end-page: 1896 ident: CR24 article-title: DNAzyme-mediated genetically encoded sensors for ratiometric imaging of metal ions in living cells publication-title: Angew Chem Int Ed doi: 10.1002/anie.201912514 – volume: 25 start-page: 15651 issue: 16 year: 2018 end-page: 15661 ident: CR4 article-title: High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd(II) and Pb(II) publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-1733-8 – volume: 87 start-page: 2555 issue: 5 year: 2015 end-page: 2559 ident: CR6 article-title: “Periodic-table-style” paper device for monitoring heavy metals in water publication-title: Anal Chem doi: 10.1021/acs.analchem.5b00040 – volume: 140 start-page: 17656 issue: 50 year: 2018 end-page: 17665 ident: CR2 article-title: Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles publication-title: J Am Chem Soc doi: 10.1021/jacs.8b09867 – volume: 177 start-page: 106071 year: 2021 ident: CR13 article-title: Thiol-grafted magnetic polymer for preconcentration of Cd, Hg, Pb from environmental water followed by inductively coupled plasma mass spectrometry detection publication-title: Spectrochim Acta B doi: 10.1016/j.sab.2021.106071 – volume: 105 start-page: 37 year: 2018 end-page: 51 ident: CR3 article-title: Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction publication-title: Trends Analyt Chem doi: 10.1016/j.trac.2018.04.012 – volume: 58 start-page: 3913 issue: 12 year: 2019 end-page: 3917 ident: CR1 article-title: Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells publication-title: Angew Chem Int Ed doi: 10.1002/anie.201814282 – volume: 2 start-page: 655 issue: 10 year: 1995 end-page: 660 ident: CR20 article-title: A DNA enzyme with Mg -dependent Rna phosphoesterase activity publication-title: Chem Biol doi: 10.1016/1074-5521(95)90028-4 – volume: 6 start-page: 833 year: 2019 end-page: 840 ident: CR16 article-title: Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: involvement of the dopamine transporter publication-title: Toxicol Rep doi: 10.1016/j.toxrep.2019.08.001 – volume: 52 start-page: 3275 issue: 12 year: 2019 end-page: 3286 ident: CR21 article-title: DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions publication-title: Acc Chem Res doi: 10.1021/acs.accounts.9b00419 – volume: 20 start-page: 537 issue: 4 year: 2019 end-page: 542 ident: CR25 article-title: An in vitro-selected DNAzyme mutant highly specific for Na under slightly acidic conditions publication-title: ChemBioChem doi: 10.1002/cbic.201800322 – volume: 94 start-page: 4262 issue: 9 year: 1997 end-page: 4266 ident: CR19 article-title: A general purpose RNA-cleaving DNA enzyme publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.9.4262 – volume: 50 start-page: 8954 issue: 16 year: 2021 end-page: 8994 ident: CR17 article-title: Biosensing with DNAzymes publication-title: Chem Soc Rev doi: 10.1039/d1cs00240f – volume: 90 start-page: 6199 issue: 10 year: 2018 end-page: 6205 ident: CR35 article-title: In situ visualization of hERG potassium channel via dual signal amplification publication-title: Anal Chem doi: 10.1021/acs.analchem.8b00725 – volume: 186 start-page: 559 issue: 8 year: 2019 ident: CR33 article-title: A triply amplified electrochemical lead(II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly publication-title: Microchim Acta doi: 10.1007/s00604-019-3612-5 – volume: 878 start-page: 114657 year: 2020 ident: CR9 article-title: High index facets-Ag nanoflower enabled efficient electrochemical detection of lead in blood serum and cosmetics publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2020.114657 – volume: 1 start-page: 223 issue: 4 year: 1994 end-page: 229 ident: CR18 article-title: A DNA enzyme that cleaves RNA publication-title: Chem Biol doi: 10.1016/1074-5521(94)90014-0 – volume: 90 start-page: 6519 issue: 11 year: 2018 end-page: 6525 ident: CR15 article-title: Application of calcium-binding motif of E-cadherin for electrochemical detection of Pb(II) publication-title: Anal Chem doi: 10.1021/acs.analchem.7b05458 – volume: 59 start-page: 3573 issue: 9 year: 2020 end-page: 3577 ident: CR23 article-title: Target self-enhanced selectivity in metal-specific DNAzymes publication-title: Angew Chem Int Ed doi: 10.1002/anie.201915675 – volume: 185 start-page: 447 issue: 10 year: 2018 ident: CR30 article-title: Fluorometric determination of zinc(II) by using DNAzyme-modified magnetic microbeads publication-title: Microchim Acta doi: 10.1007/s00604-018-2977-1 – volume: 311 start-page: 127898 year: 2020 ident: CR22 article-title: Ultra-sensitive detection of Pb based on DNAzymes coupling with multicycle strand displacement amplification (M-SDA) and nano-graphene oxide publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2020.127898 – volume: 811 start-page: 81 year: 2014 end-page: 87 ident: CR29 article-title: Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis publication-title: Anal Chim Acta doi: 10.1016/j.aca.2013.12.017 – volume: 186 start-page: 715 issue: 11 year: 2019 ident: CR26 article-title: Fluorometric determination of microRNA using arched probe-mediated isothermal exponential amplification combined with DNA-templated silver nanoclusters publication-title: Microchim Acta doi: 10.1007/s00604-019-3836-4 – volume: 15 start-page: 1902989 issue: 42 year: 2019 ident: CR31 article-title: Applications of catalytic hairpin assembly reaction in biosensing publication-title: Small doi: 10.1002/smll.201902989 – volume: 90 start-page: 6323 issue: 10 year: 2018 end-page: 6331 ident: CR12 article-title: Multielement determination of trace heavy metals in water by microwave-induced plasma atomic emission spectrometry after extraction in unconventional single-salt aqueous biphasic system publication-title: Anal Chem doi: 10.1021/acs.analchem.8b01136 – volume: 999 start-page: 155 year: 2018 end-page: 160 ident: CR27 article-title: Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification publication-title: Anal Chim Acta doi: 10.1016/j.aca.2017.11.016 – volume: 186 start-page: 661 issue: 9 year: 2019 ident: CR34 article-title: Catalytic hairpin assembly-assisted lateral flow assay for visual determination of microRNA-21 using gold nanoparticles publication-title: Microchim Acta doi: 10.1007/s00604-019-3743-8 – volume: 187 start-page: 365 issue: 6 year: 2020 ident: CR32 article-title: Ratiometric fluorescent 3D DNA walker and catalyzed hairpin assembly for determination ofmicroRNA publication-title: Microchim Acta doi: 10.1007/s00604-020-04324-5 – volume: 901 start-page: 115756 year: 2021 ident: CR8 article-title: A hydrogel electrochemical electrode for simultaneous measurement of cadmium ions and lead ions publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2021.115756 – volume: 880 start-page: 114828 year: 2021 ident: CR10 article-title: A novel photoelectrochemical strategy for lead ion detection based on CdSe quantum dots co-sensitized ZnO-CdS nanostructure publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2020.114828 – volume: 56 start-page: 1721 issue: 10 year: 2021 end-page: 1729 ident: CR11 article-title: A microextraction method based on precipitation for the simultaneous separation and preconcentration of cadmium and lead before their determination by FAAS: experimental design methodology publication-title: Sep Sci Technol doi: 10.1080/01496395.2020.1788597 – volume: 90 start-page: 9796 issue: 16 year: 2018 end-page: 9804 ident: CR5 article-title: Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells publication-title: Anal Chem doi: 10.1021/acs.analchem.8b01574 – volume: 21 start-page: 602 issue: 2 year: 2021 ident: CR28 article-title: Biosensors based on isothermal DNA amplification for bacterial detection in food safety and environmental monitoring publication-title: Sensors doi: 10.3390/s21020602 – volume: 28 start-page: 58994 issue: 42 year: 2021 end-page: 59002 ident: CR7 article-title: A review on detection of heavy metals from aqueous media using nanomaterial-based sensors publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-07865-7 – volume: 88 start-page: 6820 issue: 13 year: 2016 end-page: 6826 ident: CR14 article-title: Selective solid-phase extraction of lead ions in water samples using three-dimensional ion-imprinted polymers publication-title: Anal Chem doi: 10.1021/acs.analchem.6b01291 – volume: 2 start-page: 655 issue: 10 year: 1995 ident: 5673_CR20 publication-title: Chem Biol doi: 10.1016/1074-5521(95)90028-4 – volume: 88 start-page: 6820 issue: 13 year: 2016 ident: 5673_CR14 publication-title: Anal Chem doi: 10.1021/acs.analchem.6b01291 – volume: 878 start-page: 114657 year: 2020 ident: 5673_CR9 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2020.114657 – volume: 186 start-page: 661 issue: 9 year: 2019 ident: 5673_CR34 publication-title: Microchim Acta doi: 10.1007/s00604-019-3743-8 – volume: 1 start-page: 223 issue: 4 year: 1994 ident: 5673_CR18 publication-title: Chem Biol doi: 10.1016/1074-5521(94)90014-0 – volume: 187 start-page: 365 issue: 6 year: 2020 ident: 5673_CR32 publication-title: Microchim Acta doi: 10.1007/s00604-020-04324-5 – volume: 901 start-page: 115756 year: 2021 ident: 5673_CR8 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2021.115756 – volume: 880 start-page: 114828 year: 2021 ident: 5673_CR10 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2020.114828 – volume: 15 start-page: 1902989 issue: 42 year: 2019 ident: 5673_CR31 publication-title: Small doi: 10.1002/smll.201902989 – volume: 28 start-page: 58994 issue: 42 year: 2021 ident: 5673_CR7 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-07865-7 – volume: 999 start-page: 155 year: 2018 ident: 5673_CR27 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2017.11.016 – volume: 811 start-page: 81 year: 2014 ident: 5673_CR29 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2013.12.017 – volume: 90 start-page: 6519 issue: 11 year: 2018 ident: 5673_CR15 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b05458 – volume: 186 start-page: 559 issue: 8 year: 2019 ident: 5673_CR33 publication-title: Microchim Acta doi: 10.1007/s00604-019-3612-5 – volume: 58 start-page: 3913 issue: 12 year: 2019 ident: 5673_CR1 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201814282 – volume: 20 start-page: 537 issue: 4 year: 2019 ident: 5673_CR25 publication-title: ChemBioChem doi: 10.1002/cbic.201800322 – volume: 185 start-page: 447 issue: 10 year: 2018 ident: 5673_CR30 publication-title: Microchim Acta doi: 10.1007/s00604-018-2977-1 – volume: 59 start-page: 1891 issue: 5 year: 2020 ident: 5673_CR24 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201912514 – volume: 105 start-page: 37 year: 2018 ident: 5673_CR3 publication-title: Trends Analyt Chem doi: 10.1016/j.trac.2018.04.012 – volume: 56 start-page: 1721 issue: 10 year: 2021 ident: 5673_CR11 publication-title: Sep Sci Technol doi: 10.1080/01496395.2020.1788597 – volume: 50 start-page: 8954 issue: 16 year: 2021 ident: 5673_CR17 publication-title: Chem Soc Rev doi: 10.1039/d1cs00240f – volume: 87 start-page: 2555 issue: 5 year: 2015 ident: 5673_CR6 publication-title: Anal Chem doi: 10.1021/acs.analchem.5b00040 – volume: 6 start-page: 833 year: 2019 ident: 5673_CR16 publication-title: Toxicol Rep doi: 10.1016/j.toxrep.2019.08.001 – volume: 52 start-page: 3275 issue: 12 year: 2019 ident: 5673_CR21 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.9b00419 – volume: 90 start-page: 9796 issue: 16 year: 2018 ident: 5673_CR5 publication-title: Anal Chem doi: 10.1021/acs.analchem.8b01574 – volume: 90 start-page: 6323 issue: 10 year: 2018 ident: 5673_CR12 publication-title: Anal Chem doi: 10.1021/acs.analchem.8b01136 – volume: 140 start-page: 17656 issue: 50 year: 2018 ident: 5673_CR2 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b09867 – volume: 21 start-page: 602 issue: 2 year: 2021 ident: 5673_CR28 publication-title: Sensors doi: 10.3390/s21020602 – volume: 90 start-page: 6199 issue: 10 year: 2018 ident: 5673_CR35 publication-title: Anal Chem doi: 10.1021/acs.analchem.8b00725 – volume: 59 start-page: 3573 issue: 9 year: 2020 ident: 5673_CR23 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201915675 – volume: 311 start-page: 127898 year: 2020 ident: 5673_CR22 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2020.127898 – volume: 94 start-page: 4262 issue: 9 year: 1997 ident: 5673_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.9.4262 – volume: 25 start-page: 15651 issue: 16 year: 2018 ident: 5673_CR4 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-1733-8 – volume: 177 start-page: 106071 year: 2021 ident: 5673_CR13 publication-title: Spectrochim Acta B doi: 10.1016/j.sab.2021.106071 – volume: 186 start-page: 715 issue: 11 year: 2019 ident: 5673_CR26 publication-title: Microchim Acta doi: 10.1007/s00604-019-3836-4 |
SSID | ssj0017624 |
Score | 2.374214 |
Snippet | A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving... A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | Analytical Chemistry Biosensing Techniques Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science DNA DNA, Catalytic Fluorescence Heavy metals Initiators Ions Lead Microengineering Nanochemistry Nanotechnology Original Paper Selectivity Substrates Technology application |
Title | Self-powered DNA nanomachines for fluorescence detection of lead |
URI | https://link.springer.com/article/10.1007/s00604-023-05673-7 https://www.ncbi.nlm.nih.gov/pubmed/36809414 https://www.proquest.com/docview/2778647027 https://www.proquest.com/docview/2778980323 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gAXxJu0ZWUkJA5gaf1I7NxIH9sKRC-wUjlZiT05LUnV3f3_jL1JgAqQOOUQ27Lm4ZnRzHwD8Eb4vC6VRx5QI9d5MLwp9Jw3wfq2iUOP0hSFz1fF5VJ_vM6vh6aw9VjtPqYk00s9NbtF6BDNycZwMtpGcbMHB3mM3UmKl7Kacgek3gP2csFVYeTQKvPnM34zR3cf5V-s0p00abI-i0fwcHAbWbXj82O4h90TuH86Tmt7Ch--4KrlN3HmGQZ2dlWxru7676lUEteMXFPWrrb9bUJv8sgCblIRVsf6lq2I0c9guTj_enrJh-kI3GuhN1wYW-RGqhJb8orIbfIUYGIwQdh2rlBoH4Ega-9FU-pGBrS5DrI2TaNUoCBFPYf9ru_wJbBGaNouRE3OHYVr0gpdo7aYy3Zeei0zECORnB-gw-MEi5WbQI8TYR0R1iXCOpPBu2nPzQ4445-r30bau6hVdLKvh-YAul_Ep3KViQlOS-5ZBscje9ygbmsnIwqeNiQLGbyefhMHYvaj7rDf7taUdq6kyuDFjq3TxVRhKcwVOoP3I59_Hv73Wx_-3_IjeCCT6MUKtmPY39xu8RW5NJtmBnt2cTGDg-rk7GQRvxffPp3Pklz_AGfp61c |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQL4k2ggJGQOICl9SOxc2NVqBZo90JX6s2K7clpm1Td3f_P2JsEqACJsx-yZmzPN5qZbwDeilA2tQrII2rkuoyG-0rPuI82tD41PcpdFM6W1WKlv16UF0NR2GbMdh9DkvmnnordEnWI5mRjOBlto7i5DXcIDNiUyLWS8yl2QM974F6uuKqMHEpl_rzHb-bo5qf8i1W6ESbN1ufkPtwbYCOb7_X8AG5h9xAOj8dubY_g43dct_wq9TzDyD4t56xruv4yp0rihhE0Ze16119n9qaALOI2J2F1rG_ZmhT9GFYnn8-PF3zojsCDFnrLhbFVaaSqsSVURLApkIOJ0URh25lCoUMigmxCEL7WXka0pY6yMd4rFclJUU_goOs7fAbMC03LhWgI3JG7Jq3QDWqLpWxnddCyADEKyYWBOjx1sFi7ifQ4C9aRYF0WrDMFvJ_WXO2JM_45-12SvUuvinYOzVAcQOdL_FRublKA0xI8K-BoVI8bntvGycSCpw252AW8mYZJAyn60XTY7_ZzajtTUhXwdK_W6WCqsuTmCl3Ah1HPPzf_-6mf_9_013C4OD87dadflt9ewF2Zr2HKZjuCg-31Dl8SvNn6V_k2_wBuxOpe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkaAvqFwltICRkHgAq-sjsfPGqmVVrhUSrNQ3Kz7ytCSrNvv_O3aOlqog8exD1ozt-UYz8w3AW-byqhQuUB9koDL3itpCzqj12tU2Nj1KXRS-L4vTlfxylp9dq-JP2e5jSLKvaYgsTU13tPH10VT4FmlEJEV7Q9GAK0HVXbiH3zGL93rF51McAZ_6wMNcUFEoPpTN3L7HH6bp5gd9zULdCJkmS7TYg4cDhCTzXueP4E5oHsOD47Fz2xP4-DOsa7qJ_c-CJyfLOWmqpv2d0ibDBUGYSur1tj1PTE4uEB-6lJDVkLYma1T6U1gtPv06PqVDpwTqJJMdZUoXueKiDDUiJIRQDp3N4JVnup6JwKSLpJCVc8yW0nIfdC49r5S1Qnh0WMQz2GnaJjwHYpnE5YxVCPTQdeOaySpIHXJez0oneQZsFJJxA4147GaxNhMBchKsQcGaJFijMng_rdn0JBr_nP0uyt7EF4Y7u2ooFMDzRa4qM1cx2KkRqmVwOKrHDE_vwvDIiCcVutsZvJmGUQMxElI1od32c0o9E1xksN-rdTqYKDS6vExm8GHU89Xmfz_1i_-b_hru_zhZmG-fl18PYJenWxgT2w5hpzvfhpeIdDr7Kl3mS0gC7po |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-powered+DNA+nanomachines+for+fluorescence+detection+of+lead&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Li%2C+Xiang-Ling&rft.au=Jiang%2C+Han&rft.au=Zhao%2C+Lei&rft.au=Song%2C+Tian+shun&rft.date=2023-03-01&rft.pub=Springer&rft.issn=0026-3672&rft.volume=190&rft.issue=3&rft_id=info:doi/10.1007%2Fs00604-023-05673-7&rft.externalDocID=A738168560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon |