Non-linear viscoelastic response of magnetic fiber suspensions in oscillatory shear

This paper reports the first study on the large amplitude oscillatory shear flow for magnetic fiber suspensions subject to a magnetic field perpendicular to the flow. The suspensions used in our experiments consisted of cobalt microfibers of the average length of 37 μm and diameter of 4.9 μm, disper...

Full description

Saved in:
Bibliographic Details
Published inJournal of non-Newtonian fluid mechanics Vol. 166; no. 7; pp. 373 - 385
Main Authors Kuzhir, P., Gómez-Ramírez, A., López-López, M.T., Bossis, G., Zubarev, A.Yu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports the first study on the large amplitude oscillatory shear flow for magnetic fiber suspensions subject to a magnetic field perpendicular to the flow. The suspensions used in our experiments consisted of cobalt microfibers of the average length of 37 μm and diameter of 4.9 μm, dispersed in a silicon oil. Rheological measurements have been carried out at imposed stress using a controlled stress magnetorheometer. The stress dependence of the shear moduli presented a staircase-like decrease with, at least, two viscoelastic quasi-plateaus corresponding to the onset of microscopic and macroscopic scale rearrangement of the suspension structure, respectively. The frequency behavior of the shear moduli followed a power-law trend at low frequencies and the storage modulus showed a high-frequency plateau, typical for Maxwell behavior. Our simple single relaxation time model fitted reasonably well the rheological data. To explain a relatively high viscous response of the fiber suspension, we supposed a coexistence of percolating and pivoting aggregates. Our simulations revealed that the former became unstable beyond some critical stress and broke in their middle part. At high stresses, the free aggregates were progressively destroyed by shear forces that contributed to a drastic decrease of the moduli. We have also measured and predicted the output strain waveforms and stress–strain hysteresis loops. With the growing stress, the shape of the stress–strain loops changed progressively from near-ellipsoidal one to the rounded-end rectangular one due to a progressive transition from a linear viscoelastic to a viscoplastic Bingham-like behavior.
AbstractList This paper reports the first study on the large amplitude oscillatory shear flow for magnetic fiber suspensions subject to a magnetic field perpendicular to the flow. The suspensions used in our experiments consisted of cobalt microfibers of the average length of 37 [micro]m and diameter of 4.9 [micro]m, dispersed in a silicon oil. Rheological measurements have been carried out at imposed stress using a controlled stress magnetorheometer. The stress dependence of the shear moduli presented a staircase-like decrease with, at least, two viscoelastic quasi-plateaus corresponding to the onset of microscopic and macroscopic scale rearrangement of the suspension structure, respectively. The frequency behavior of the shear moduli followed a power-law trend at low frequencies and the storage modulus showed a high-frequency plateau, typical for Maxwell behavior. Our simple single relaxation time model fitted reasonably well the rheological data. To explain a relatively high viscous response of the fiber suspension, we supposed a coexistence of percolating and pivoting aggregates. Our simulations revealed that the former became unstable beyond some critical stress and broke in their middle part. At high stresses, the free aggregates were progressively destroyed by shear forces that contributed to a drastic decrease of the moduli. We have also measured and predicted the output strain waveforms and stress-strain hysteresis loops. With the growing stress, the shape of the stress-strain loops changed progressively from near-ellipsoidal one to the rounded-end rectangular one due to a progressive transition from a linear viscoelastic to a viscoplastic Bingham-like behavior.
This paper reports the first study on the large amplitude oscillatory shear flow for magnetic fiber suspensions subject to a magnetic field perpendicular to the flow. The suspensions used in our experiments consisted of cobalt microfibers of the average length of 37 μm and diameter of 4.9 μm, dispersed in a silicon oil. Rheological measurements have been carried out at imposed stress using a controlled stress magnetorheometer. The stress dependence of the shear moduli presented a staircase-like decrease with, at least, two viscoelastic quasi-plateaus corresponding to the onset of microscopic and macroscopic scale rearrangement of the suspension structure, respectively. The frequency behavior of the shear moduli followed a power-law trend at low frequencies and the storage modulus showed a high-frequency plateau, typical for Maxwell behavior. Our simple single relaxation time model fitted reasonably well the rheological data. To explain a relatively high viscous response of the fiber suspension, we supposed a coexistence of percolating and pivoting aggregates. Our simulations revealed that the former became unstable beyond some critical stress and broke in their middle part. At high stresses, the free aggregates were progressively destroyed by shear forces that contributed to a drastic decrease of the moduli. We have also measured and predicted the output strain waveforms and stress–strain hysteresis loops. With the growing stress, the shape of the stress–strain loops changed progressively from near-ellipsoidal one to the rounded-end rectangular one due to a progressive transition from a linear viscoelastic to a viscoplastic Bingham-like behavior.
This paper reports the first study on the large amplitude oscillatory shear flow for magnetic fiber suspensions subject to a magnetic field perpendicular to the flow. The suspensions used in our experiments consisted of cobalt microfibers of the average length of 37 µm and diameter of 4.9 µm, dispersed in a silicon oil. Rheological measurements have been carried out at imposed stress using a controlled stress magnetorheometer. The stress dependence of the shear moduli presented a staircase-like decrease with, at least, two viscoelastic quasi-plateaus corresponding to the onset of microscopic- and macroscopic scale rearrangement of the suspension structure, respectively. The frequency behavior of the shear moduli followed a power-law trend at low frequencies and the storage modulus showed a high-frequency plateau, typical for Maxwell behavior. Our simple single relaxation time model fitted reasonably well the rheological data. To explain a relatively high viscous response of the fiber suspension, we supposed a coexistence of percolating and pivoting aggregates. Our simulations revealed that the former became unstable beyond some critical stress and broke in their middle part. At high stresses, the free aggregates were progressively destroyed by shear forces that contributed to a drastic decrease of the moduli. We have also measured and predicted the output strain waveforms and stress-strain hysteresis loops. With the growing stress, the shape of the stress-strain loops changed progressively from near-ellipsoidal one to the rounded-end rectangular one due to a progressive transition from a linear viscoelastic to a viscoplastic Bingham-like behavior.
Author Zubarev, A.Yu
Kuzhir, P.
López-López, M.T.
Gómez-Ramírez, A.
Bossis, G.
Author_xml – sequence: 1
  givenname: P.
  surname: Kuzhir
  fullname: Kuzhir, P.
  email: kuzhir@unice.fr
  organization: Laboratory of Condensed Matter Physics, University of Nice – Sophia Antipolis, Parc Valrose 06108, Nice Cedex 2 France
– sequence: 2
  givenname: A.
  surname: Gómez-Ramírez
  fullname: Gómez-Ramírez, A.
  email: anagr@ugr.es
  organization: Department of Applied Physics, University of Granada, Avda. Fuentenueva s/n, 18017 Granada, Spain
– sequence: 3
  givenname: M.T.
  surname: López-López
  fullname: López-López, M.T.
  email: modesto@ugr.es
  organization: Department of Applied Physics, University of Granada, Avda. Fuentenueva s/n, 18017 Granada, Spain
– sequence: 4
  givenname: G.
  surname: Bossis
  fullname: Bossis, G.
  email: bossis@unice.fr
  organization: Laboratory of Condensed Matter Physics, University of Nice – Sophia Antipolis, Parc Valrose 06108, Nice Cedex 2 France
– sequence: 5
  givenname: A.Yu
  surname: Zubarev
  fullname: Zubarev, A.Yu
  email: Andrey.Zubarev@usu.ru
  organization: Department of Mathematical Physics, Ural State University, Lenin Av. 51, 620083 Ekaterinburg, Russia
BackLink https://hal.science/hal-00576618$$DView record in HAL
BookMark eNqFkE9LAzEQxYNUsK1-Ai97Ew-7ZvZPkh48lKJWKHpQzyGbztqUbVKTbaHf3qwVDx40DBmYvPfI_EZkYJ1FQi6BZkCB3ayztbXNJsspQEZjUXFChiB4keasgAEZ0oLzlOYVPyOjENY0nqpgQ_Ly5GzaGovKJ3sTtMNWhc7oxGPYOhswcU2yUe8W-2FjavRJ2IUt2mDic2Js4oI2bas65w9JWMWgc3LaqDbgxXcfk7f7u9fZPF08PzzOpotUl1B2KeQNUl5XE06xKqt4aVbmXOslLJFVhaC8UVAqIZgAUVdQMyi4aiY1aMUmvBiT62PuSrVy681G-YN0ysj5dCH7WdyRMwZiD1F7ddRuvfvYYejkJm6L8d8W3S5IwXIuSpaLqCyOSu1dCB6bn2igsqct1_KLtuxpSxqL9q7JL5c2neoio84r0_7jvT16McLaG_QyEkWrcWk86k4unfnT_wkhUZ5V
CitedBy_id crossref_primary_10_1007_s13367_021_0025_x
crossref_primary_10_1039_C4SM01103A
crossref_primary_10_1039_D0SM01082K
crossref_primary_10_1039_C2SM27115J
crossref_primary_10_1016_j_colsurfa_2018_04_051
crossref_primary_10_1021_la502878v
crossref_primary_10_1039_c3sm51128f
crossref_primary_10_1039_c1sm06059g
crossref_primary_10_1016_j_polymer_2012_07_023
crossref_primary_10_1063_5_0205277
crossref_primary_10_1007_s00396_014_3245_5
crossref_primary_10_1016_j_ijbiomac_2023_128543
crossref_primary_10_1080_19475411_2022_2130466
Cites_doi 10.1007/s00397-002-0285-4
10.1039/b906505a
10.1122/1.550222
10.1063/1.471176
10.1007/s00397-003-0318-7
10.1122/1.550353
10.1142/S0217979296001744
10.1016/j.jnnfm.2008.12.004
10.1016/0301-9322(74)90018-4
10.1122/1.550838
10.1017/S0022112071000879
10.1016/j.colsurfa.2006.11.050
10.1017/S002211207000191X
10.1122/1.3302804
10.1039/b705871c
10.1088/0964-1726/17/01/015028
10.1007/BF00396555
10.1142/S0217979207045979
10.1016/j.jcis.2004.08.128
10.1177/1045389X09356007
10.1122/1.550441
10.1122/1.2970095
10.1006/jcis.1994.1379
10.1016/S0304-3886(97)00105-8
10.1103/PhysRevLett.75.2827
10.1063/1.3498804
10.1016/S0377-0257(98)00096-2
10.1122/1.3005402
10.1103/PhysRevE.57.756
10.1122/1.3523477
10.1007/s00397-010-0450-0
10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
10.1088/0964-1726/17/4/045022
10.1016/S0921-5093(02)00932-2
10.1122/1.3479043
10.1063/1.3259358
10.1557/S0883769400030785
10.1122/1.550403
10.1122/1.1582854
10.1122/1.3005405
10.1122/1.550944
10.1142/S0217979202012645
10.1007/s00397-010-0445-x
10.1016/S0927-7757(98)00468-3
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TG
KL.
1XC
VOOES
DOI 10.1016/j.jnnfm.2011.01.008
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1873-2631
EndPage 385
ExternalDocumentID oai_HAL_hal_00576618v1
10_1016_j_jnnfm_2011_01_008
S0377025711000255
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VOH
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TG
KL.
1XC
VOOES
ID FETCH-LOGICAL-c414t-12fe07b5970e5450e5c6427ccd1de653807fa14a886818b51b6137af9b1ca6973
IEDL.DBID .~1
ISSN 0377-0257
IngestDate Fri May 09 12:14:15 EDT 2025
Fri Jul 11 05:05:00 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Tue Jul 01 00:25:51 EDT 2025
Fri Feb 23 02:19:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Oscillatory shear
Magnetorheology
Non-linear viscoelasticity
Fiber suspension
non-linear viscoelasticity
oscillatory shear
fiber suspension
magnetorheology
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-12fe07b5970e5450e5c6427ccd1de653807fa14a886818b51b6137af9b1ca6973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9068-7795
0000-0001-8347-8904
OpenAccessLink https://hal.science/hal-00576618
PQID 862784628
PQPubID 23462
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00576618v1
proquest_miscellaneous_862784628
crossref_primary_10_1016_j_jnnfm_2011_01_008
crossref_citationtrail_10_1016_j_jnnfm_2011_01_008
elsevier_sciencedirect_doi_10_1016_j_jnnfm_2011_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of non-Newtonian fluid mechanics
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Urreta, Leicht, Sanchez, Agirre, Kuzhir, Magnac (bib0270) 2010; 21
Li, Du, Guo (bib0150) 2004; 371
Bossis, Lemaire, Volkova, Clercx (bib0225) 1997; 41
Martin, Adolf, Halsey (bib0250) 1994; 167
Otsubo (bib0070) 1999; 153
López-López, Kuzhir, Durán, Bossis (bib0200) 2010; 54
Shulman, Kordonsky (bib0005) 1982
Brenner (bib0230) 1974; 1
Bird, Hassager, Armstrong, Curtiss (bib0260) 1987
Kawai, Kunio, Fumikazu (bib0090) 2002; 16
Ngatu, Wereley, Karli, Bell (bib0020) 2008; 17
Ramos-Tejada, Espin, Perea, Delgado (bib0080) 2009; 159
Claracq, Sarrazin, Montfort (bib0155) 2004; 43
Berthier (bib0205) 1993
de Vicente, Segovia-Guitérrez, Anablo-Reyes, Vereda, Hidalgo-Alvarez (bib0045) 2009; 131
McLeish, Jordan, Shaw (bib0165) 1991; 35
Ginder, Davis, Elie (bib0210) 1996; 10
Martin, Odinek (bib0125) 1995; 75
Wilhelm (bib0110) 2002; 287
Asano, Suto, Yatsuzuka (bib0065) 1997; 40–41
Ginder (bib0010) 1998; 23
Jordan, Shaw, McLeish (bib0175) 1992; 36
Macosco (bib0220) 1994
Giacomin, Dealy (bib0100) 1993; vol. 4
Tsuda, Takeda, Ogura, Otsubo (bib0075) 2007; 299
Kanu, Shaw (bib0085) 1998; 42
Bell, Karli, Vavreck, Zimmerman, Ngatu, Wereley (bib0030) 2008; 17
Bell, Miller, Karli, Vavreck, Zimmerman (bib0025) 2007; 21
de Vicente, López-López, Durán, Bossis (bib0160) 2005; 282
Parthasarathy, Klingenberg (bib0135) 1999; 81
Kor, See (bib0095) 2010; 49
Jiles (bib0180) 1991
Sim, Ahn, Lee (bib0245) 2003; 47
Lopez-Lopez, Rodriguez-Arco, Zubarev, Iskakova, Duran (bib0265) 2010; 108
Martin, Odinek, Halsey, Kamien (bib0140) 1998; 57
Pokrovskiy (bib0235) 1978
Martin, Anderson (bib0255) 1996; 104
Ewoldt, Hosoi, McKinley (bib0115) 2008; 52
Gómez-Ramírez, López-López, Durán, González-Caballero (bib0050) 2009; 5
Li, Du, Chen, Yeo, Guo (bib0145) 2003; 42
Gómez-Ramírez, Kuzhir, López-López, Bossis, Meunier, Durán (bib0060) 2011; 55
Bird, Armstrong, Hassager (bib0240) 1987
Batchelor (bib0190) 1971; 46
Hyun, Nam, Wilhelm, Ahn, Lee (bib0105) 2003; 15
Klingenberg (bib0170) 1993; 37
Kuzhir, López-López, Bossis (bib0055) 2009; 53
Batchelor (bib0185) 1970; 44
Parthasarathy, Klingenberg (bib0130) 1995; 34
Laun, Gabriel, Kieburg (bib0275) 2010; 54
Läuger, Stettin (bib0215) 2010; 49
Gamota, Wineman, Filisko (bib0120) 1993; 37
López-López, Vertelov, Bossis, Kuzhir, Durán (bib0035) 2007; 17
López-López, Kuzhir, Bossis (bib0040) 2009; 53
Lopez-Lopez (10.1016/j.jnnfm.2011.01.008_bib0265) 2010; 108
Jiles (10.1016/j.jnnfm.2011.01.008_bib0180) 1991
Tsuda (10.1016/j.jnnfm.2011.01.008_bib0075) 2007; 299
Läuger (10.1016/j.jnnfm.2011.01.008_bib0215) 2010; 49
Batchelor (10.1016/j.jnnfm.2011.01.008_bib0185) 1970; 44
Macosco (10.1016/j.jnnfm.2011.01.008_bib0220) 1994
Pokrovskiy (10.1016/j.jnnfm.2011.01.008_bib0235) 1978
Otsubo (10.1016/j.jnnfm.2011.01.008_bib0070) 1999; 153
Giacomin (10.1016/j.jnnfm.2011.01.008_bib0100) 1993; vol. 4
de Vicente (10.1016/j.jnnfm.2011.01.008_bib0160) 2005; 282
Sim (10.1016/j.jnnfm.2011.01.008_bib0245) 2003; 47
Kor (10.1016/j.jnnfm.2011.01.008_bib0095) 2010; 49
Berthier (10.1016/j.jnnfm.2011.01.008_bib0205) 1993
Ngatu (10.1016/j.jnnfm.2011.01.008_bib0020) 2008; 17
Kanu (10.1016/j.jnnfm.2011.01.008_bib0085) 1998; 42
Claracq (10.1016/j.jnnfm.2011.01.008_bib0155) 2004; 43
Martin (10.1016/j.jnnfm.2011.01.008_bib0250) 1994; 167
Bossis (10.1016/j.jnnfm.2011.01.008_bib0225) 1997; 41
López-López (10.1016/j.jnnfm.2011.01.008_bib0035) 2007; 17
Martin (10.1016/j.jnnfm.2011.01.008_bib0125) 1995; 75
Batchelor (10.1016/j.jnnfm.2011.01.008_bib0190) 1971; 46
Bird (10.1016/j.jnnfm.2011.01.008_bib0260) 1987
Bell (10.1016/j.jnnfm.2011.01.008_bib0030) 2008; 17
López-López (10.1016/j.jnnfm.2011.01.008_bib0040) 2009; 53
López-López (10.1016/j.jnnfm.2011.01.008_bib0200) 2010; 54
Klingenberg (10.1016/j.jnnfm.2011.01.008_bib0170) 1993; 37
Hyun (10.1016/j.jnnfm.2011.01.008_bib0105) 2003; 15
Shulman (10.1016/j.jnnfm.2011.01.008_bib0005) 1982
Bell (10.1016/j.jnnfm.2011.01.008_bib0025) 2007; 21
Bird (10.1016/j.jnnfm.2011.01.008_bib0240) 1987
Li (10.1016/j.jnnfm.2011.01.008_bib0150) 2004; 371
Wilhelm (10.1016/j.jnnfm.2011.01.008_bib0110) 2002; 287
Jordan (10.1016/j.jnnfm.2011.01.008_bib0175) 1992; 36
Urreta (10.1016/j.jnnfm.2011.01.008_bib0270) 2010; 21
Martin (10.1016/j.jnnfm.2011.01.008_bib0140) 1998; 57
Ginder (10.1016/j.jnnfm.2011.01.008_bib0010) 1998; 23
Kuzhir (10.1016/j.jnnfm.2011.01.008_bib0055) 2009; 53
Ginder (10.1016/j.jnnfm.2011.01.008_bib0210) 1996; 10
Gómez-Ramírez (10.1016/j.jnnfm.2011.01.008_bib0060) 2011; 55
Laun (10.1016/j.jnnfm.2011.01.008_bib0275) 2010; 54
de Vicente (10.1016/j.jnnfm.2011.01.008_bib0045) 2009; 131
Parthasarathy (10.1016/j.jnnfm.2011.01.008_bib0135) 1999; 81
Martin (10.1016/j.jnnfm.2011.01.008_bib0255) 1996; 104
Kawai (10.1016/j.jnnfm.2011.01.008_bib0090) 2002; 16
Gamota (10.1016/j.jnnfm.2011.01.008_bib0120) 1993; 37
McLeish (10.1016/j.jnnfm.2011.01.008_bib0165) 1991; 35
Brenner (10.1016/j.jnnfm.2011.01.008_bib0230) 1974; 1
Ewoldt (10.1016/j.jnnfm.2011.01.008_bib0115) 2008; 52
Parthasarathy (10.1016/j.jnnfm.2011.01.008_bib0130) 1995; 34
Asano (10.1016/j.jnnfm.2011.01.008_bib0065) 1997; 40–41
Ramos-Tejada (10.1016/j.jnnfm.2011.01.008_bib0080) 2009; 159
Li (10.1016/j.jnnfm.2011.01.008_bib0145) 2003; 42
Gómez-Ramírez (10.1016/j.jnnfm.2011.01.008_bib0050) 2009; 5
References_xml – volume: 153
  start-page: 459
  year: 1999
  end-page: 466
  ident: bib0070
  article-title: Electrorheology of whiskers suspensions
  publication-title: Colloids Surf. A
– volume: 104
  start-page: 4814
  year: 1996
  end-page: 4827
  ident: bib0255
  article-title: Chain model of electrorheology
  publication-title: J. Chem. Phys.
– volume: 37
  start-page: 199
  year: 1993
  end-page: 214
  ident: bib0170
  article-title: Simulation of the dynamic oscillatory response of electrorheological suspensions: demonstration of a relaxation mechanism
  publication-title: J. Rheol.
– year: 1982
  ident: bib0005
  article-title: Magnetorheological Effect
– volume: 17
  start-page: 015028
  year: 2008
  ident: bib0030
  article-title: Magnetorheology of submicron diameter iron microwires dispersed in silicon oil
  publication-title: Smart Mater. Struct.
– volume: 16
  start-page: 2548
  year: 2002
  end-page: 2554
  ident: bib0090
  article-title: Effects of shape and size of dispersoid on electrorheology
  publication-title: Int. J. Mod. Phys. B
– volume: 47
  start-page: 879
  year: 2003
  end-page: 895
  ident: bib0245
  article-title: Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow
  publication-title: J. Rheol.
– volume: 36
  start-page: 441
  year: 1992
  end-page: 463
  ident: bib0175
  article-title: Viscoelastic response of electrorheological fluids. II. Field strength and strain dependence
  publication-title: J. Rheol.
– volume: 21
  start-page: 1491
  year: 2010
  end-page: 1499
  ident: bib0270
  article-title: Hydrodynamic bearing lubricated with magnetic fluids
  publication-title: J. Intel. Mater. Syst. Struct.
– volume: 21
  start-page: 5018
  year: 2007
  end-page: 5025
  ident: bib0025
  article-title: Influence of particle shape on the properties of magnetorheological fluids
  publication-title: Int. J. Mod. Phys. B
– volume: 81
  start-page: 83
  year: 1999
  end-page: 104
  ident: bib0135
  article-title: Large amplitude oscillatory shear of ER suspensions
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 282
  start-page: 193
  year: 2005
  end-page: 201
  ident: bib0160
  article-title: A slender-body micromechanical model for viscoelasticity of magnetic colloids: comparison with preliminary experimental data
  publication-title: J. Coll. Int. Sci.
– volume: 54
  start-page: 1119
  year: 2010
  end-page: 1136
  ident: bib0200
  article-title: Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses
  publication-title: J. Rheol.
– volume: 17
  start-page: 3839
  year: 2007
  end-page: 3844
  ident: bib0035
  article-title: New magnetorheological fluids based on magnetic fibers
  publication-title: J. Mater. Chem.
– volume: 44
  start-page: 419
  year: 1970
  end-page: 440
  ident: bib0185
  article-title: Slender-body theory for particles of arbitrary cross-section in Stokes flow
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 26
  year: 1998
  end-page: 29
  ident: bib0010
  article-title: Behavior of magnetorheological fluids
  publication-title: MRS Bull.
– volume: 49
  start-page: 741
  year: 2010
  end-page: 756
  ident: bib0095
  article-title: The electrorheological response of elongated particles
  publication-title: Rheol. Acta
– volume: 42
  start-page: 280
  year: 2003
  end-page: 286
  ident: bib0145
  article-title: Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear
  publication-title: Rheol. Acta
– year: 1994
  ident: bib0220
  article-title: Rheology. Principles, Measurements, and Applications
– volume: 287
  start-page: 83
  year: 2002
  end-page: 105
  ident: bib0110
  article-title: Fourier-transform rheology
  publication-title: Macromol. Mater. Eng.
– volume: 43
  start-page: 38
  year: 2004
  end-page: 49
  ident: bib0155
  article-title: Viscoelastic properties of magnetorheological fluids
  publication-title: Rheol. Acta
– volume: 10
  start-page: 3293
  year: 1996
  end-page: 3303
  ident: bib0210
  article-title: Rheology of magnetorheological fluids: models and measurements
  publication-title: Int. J. Mod. Phys. B
– volume: 299
  start-page: 262
  year: 2007
  end-page: 267
  ident: bib0075
  article-title: Electrorheological behavior of whisker suspensions under oscillatory shear
  publication-title: Colloids Surf. A
– volume: 40–41
  start-page: 573
  year: 1997
  end-page: 578
  ident: bib0065
  article-title: Influence of the particle configuration on electrorheological effect
  publication-title: J. Electrostat.
– volume: 5
  start-page: 3888
  year: 2009
  end-page: 3895
  ident: bib0050
  article-title: Influence of particle shape on the magnetic and magnetorheological properties of nanoparticle suspensions
  publication-title: Soft Matter
– volume: 75
  start-page: 2827
  year: 1995
  end-page: 2830
  ident: bib0125
  article-title: Aggregation, fragmentation, and the nonlinear dynamics of electrorheological fluids in oscillatory shear
  publication-title: Phys. Rev. Lett.
– year: 1978
  ident: bib0235
  article-title: Statistical Mechanics of Diluted Suspensions
– volume: 42
  start-page: 657
  year: 1998
  end-page: 660
  ident: bib0085
  article-title: Enhanced electrorheological fluids using anisotropic particles
  publication-title: J. Rheol.
– volume: 52
  start-page: 1427
  year: 2008
  end-page: 1458
  ident: bib0115
  article-title: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
  publication-title: J. Rheol.
– volume: 1
  start-page: 195
  year: 1974
  end-page: 341
  ident: bib0230
  article-title: Rheology of a dilute suspension of axisymmetric Brownian particles
  publication-title: Int. J. Multiphase Flow
– volume: 167
  start-page: 437
  year: 1994
  end-page: 452
  ident: bib0250
  article-title: Electrorheology of a model colloidal fluid
  publication-title: J. Coll. Int. Sci.
– volume: 55
  start-page: 43
  year: 2011
  end-page: 67
  ident: bib0060
  article-title: Steady shear flow of magnetic fiber suspensions: theory and comparison with experiments
  publication-title: J. Rheol.
– volume: 53
  start-page: 115
  year: 2009
  end-page: 126
  ident: bib0040
  article-title: Magnetorheology of fiber suspensions. I. Experimental
  publication-title: J. Rheol.
– volume: 57
  start-page: 756
  year: 1998
  end-page: 775
  ident: bib0140
  article-title: Structure and dynamics of electrorheological fluids
  publication-title: Phys. Rev. E
– volume: 35
  start-page: 427
  year: 1991
  end-page: 448
  ident: bib0165
  article-title: Viscoelastic response of electrorheological fluids. I. Frequency dependence
  publication-title: J. Rheol.
– year: 1987
  ident: bib0240
  article-title: Dynamics of Polymeric Liquids. Volume I. Fluid Mechanics
– year: 1991
  ident: bib0180
  article-title: Introduction to Magnetism and Magnetic Materials
– volume: 46
  start-page: 813
  year: 1971
  end-page: 829
  ident: bib0190
  article-title: The stress generated in a non-dilute suspension of elongated particles by pure straining motion
  publication-title: J. Fluid Mech.
– volume: 108
  start-page: 083503
  year: 2010
  ident: bib0265
  article-title: Effect of gap thickness on the viscoelasticity of magnetorheological fluids
  publication-title: J. Appl. Phys.
– volume: 34
  start-page: 417
  year: 1995
  end-page: 429
  ident: bib0130
  article-title: A microstructural investigation of the nonlinear response of electrorheological suspensions
  publication-title: Rheol. Acta
– volume: 41
  start-page: 687
  year: 1997
  end-page: 704
  ident: bib0225
  article-title: Yield stress in magnetorheological and electrorheological fluids: a comparison between microscopic and macroscopic structural models
  publication-title: J. Rheol.
– volume: 49
  start-page: 909
  year: 2010
  end-page: 930
  ident: bib0215
  article-title: Differences between stress and strain control in the non-linear behavior of complex fluids
  publication-title: Rheol. Acta
– volume: 131
  start-page: 194902
  year: 2009
  ident: bib0045
  article-title: Dynamic rheology of sphere- and rod-based magnetorheological fluids
  publication-title: J. Chem. Phys.
– volume: 159
  start-page: 34
  year: 2009
  end-page: 40
  ident: bib0080
  article-title: Electrorheology of suspensions of elongated goethite particles
  publication-title: J. Non-Newton. Fluid Mech.
– year: 1987
  ident: bib0260
  article-title: Dynamics of Polymeric Liquids Volume II. Kinetic Theory
– volume: 17
  start-page: 045022
  year: 2008
  ident: bib0020
  article-title: Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires
  publication-title: Smart Mater. Struct.
– volume: 371
  start-page: 9
  year: 2004
  end-page: 15
  ident: bib0150
  article-title: Dynamic behavior of MR suspensions at moderate flux densities
  publication-title: Mater. Sci. Eng. A
– volume: 15
  start-page: 97
  year: 2003
  end-page: 105
  ident: bib0105
  article-title: Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow
  publication-title: Korea-Australia Rheol. J.
– volume: 37
  start-page: 919
  year: 1993
  end-page: 933
  ident: bib0120
  article-title: Fourier transform analysis: nonlinear dynamic response of an electrorheological material
  publication-title: J. Rheol.
– volume: 54
  start-page: 327
  year: 2010
  end-page: 354
  ident: bib0275
  article-title: Twin gap magnetorheometer using ferromagnetic steel plates—Performance and validation
  publication-title: J. Rheol.
– volume: 53
  start-page: 127
  year: 2009
  end-page: 151
  ident: bib0055
  article-title: Magnetorheology of fiber suspensions. II. Theory
  publication-title: J. Rheol.
– year: 1993
  ident: bib0205
  article-title: Optique des milieux composites
  publication-title: Polytechnica, Paris
– volume: vol. 4
  year: 1993
  ident: bib0100
  publication-title: Techniques in Rheological Measurements
– volume: 42
  start-page: 280
  year: 2003
  ident: 10.1016/j.jnnfm.2011.01.008_bib0145
  article-title: Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-002-0285-4
– volume: 5
  start-page: 3888
  year: 2009
  ident: 10.1016/j.jnnfm.2011.01.008_bib0050
  article-title: Influence of particle shape on the magnetic and magnetorheological properties of nanoparticle suspensions
  publication-title: Soft Matter
  doi: 10.1039/b906505a
– volume: 35
  start-page: 427
  year: 1991
  ident: 10.1016/j.jnnfm.2011.01.008_bib0165
  article-title: Viscoelastic response of electrorheological fluids. I. Frequency dependence
  publication-title: J. Rheol.
  doi: 10.1122/1.550222
– volume: 104
  start-page: 4814
  year: 1996
  ident: 10.1016/j.jnnfm.2011.01.008_bib0255
  article-title: Chain model of electrorheology
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471176
– volume: 43
  start-page: 38
  year: 2004
  ident: 10.1016/j.jnnfm.2011.01.008_bib0155
  article-title: Viscoelastic properties of magnetorheological fluids
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-003-0318-7
– volume: 36
  start-page: 441
  year: 1992
  ident: 10.1016/j.jnnfm.2011.01.008_bib0175
  article-title: Viscoelastic response of electrorheological fluids. II. Field strength and strain dependence
  publication-title: J. Rheol.
  doi: 10.1122/1.550353
– volume: 10
  start-page: 3293
  year: 1996
  ident: 10.1016/j.jnnfm.2011.01.008_bib0210
  article-title: Rheology of magnetorheological fluids: models and measurements
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979296001744
– volume: 159
  start-page: 34
  year: 2009
  ident: 10.1016/j.jnnfm.2011.01.008_bib0080
  article-title: Electrorheology of suspensions of elongated goethite particles
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2008.12.004
– volume: 1
  start-page: 195
  year: 1974
  ident: 10.1016/j.jnnfm.2011.01.008_bib0230
  article-title: Rheology of a dilute suspension of axisymmetric Brownian particles
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(74)90018-4
– volume: 41
  start-page: 687
  year: 1997
  ident: 10.1016/j.jnnfm.2011.01.008_bib0225
  article-title: Yield stress in magnetorheological and electrorheological fluids: a comparison between microscopic and macroscopic structural models
  publication-title: J. Rheol.
  doi: 10.1122/1.550838
– volume: 46
  start-page: 813
  year: 1971
  ident: 10.1016/j.jnnfm.2011.01.008_bib0190
  article-title: The stress generated in a non-dilute suspension of elongated particles by pure straining motion
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112071000879
– volume: 299
  start-page: 262
  year: 2007
  ident: 10.1016/j.jnnfm.2011.01.008_bib0075
  article-title: Electrorheological behavior of whisker suspensions under oscillatory shear
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2006.11.050
– year: 1994
  ident: 10.1016/j.jnnfm.2011.01.008_bib0220
– volume: 44
  start-page: 419
  year: 1970
  ident: 10.1016/j.jnnfm.2011.01.008_bib0185
  article-title: Slender-body theory for particles of arbitrary cross-section in Stokes flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211207000191X
– volume: 54
  start-page: 327
  year: 2010
  ident: 10.1016/j.jnnfm.2011.01.008_bib0275
  article-title: Twin gap magnetorheometer using ferromagnetic steel plates—Performance and validation
  publication-title: J. Rheol.
  doi: 10.1122/1.3302804
– volume: 17
  start-page: 3839
  year: 2007
  ident: 10.1016/j.jnnfm.2011.01.008_bib0035
  article-title: New magnetorheological fluids based on magnetic fibers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b705871c
– volume: 15
  start-page: 97
  year: 2003
  ident: 10.1016/j.jnnfm.2011.01.008_bib0105
  article-title: Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow
  publication-title: Korea-Australia Rheol. J.
– volume: 17
  start-page: 015028
  year: 2008
  ident: 10.1016/j.jnnfm.2011.01.008_bib0030
  article-title: Magnetorheology of submicron diameter iron microwires dispersed in silicon oil
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/01/015028
– volume: 34
  start-page: 417
  year: 1995
  ident: 10.1016/j.jnnfm.2011.01.008_bib0130
  article-title: A microstructural investigation of the nonlinear response of electrorheological suspensions
  publication-title: Rheol. Acta
  doi: 10.1007/BF00396555
– volume: 21
  start-page: 5018
  year: 2007
  ident: 10.1016/j.jnnfm.2011.01.008_bib0025
  article-title: Influence of particle shape on the properties of magnetorheological fluids
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979207045979
– volume: 282
  start-page: 193
  year: 2005
  ident: 10.1016/j.jnnfm.2011.01.008_bib0160
  article-title: A slender-body micromechanical model for viscoelasticity of magnetic colloids: comparison with preliminary experimental data
  publication-title: J. Coll. Int. Sci.
  doi: 10.1016/j.jcis.2004.08.128
– volume: 21
  start-page: 1491
  year: 2010
  ident: 10.1016/j.jnnfm.2011.01.008_bib0270
  article-title: Hydrodynamic bearing lubricated with magnetic fluids
  publication-title: J. Intel. Mater. Syst. Struct.
  doi: 10.1177/1045389X09356007
– volume: vol. 4
  year: 1993
  ident: 10.1016/j.jnnfm.2011.01.008_bib0100
– year: 1993
  ident: 10.1016/j.jnnfm.2011.01.008_bib0205
  article-title: Optique des milieux composites
  publication-title: Polytechnica, Paris
– volume: 37
  start-page: 199
  year: 1993
  ident: 10.1016/j.jnnfm.2011.01.008_bib0170
  article-title: Simulation of the dynamic oscillatory response of electrorheological suspensions: demonstration of a relaxation mechanism
  publication-title: J. Rheol.
  doi: 10.1122/1.550441
– volume: 52
  start-page: 1427
  year: 2008
  ident: 10.1016/j.jnnfm.2011.01.008_bib0115
  article-title: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
  publication-title: J. Rheol.
  doi: 10.1122/1.2970095
– volume: 167
  start-page: 437
  year: 1994
  ident: 10.1016/j.jnnfm.2011.01.008_bib0250
  article-title: Electrorheology of a model colloidal fluid
  publication-title: J. Coll. Int. Sci.
  doi: 10.1006/jcis.1994.1379
– volume: 40–41
  start-page: 573
  year: 1997
  ident: 10.1016/j.jnnfm.2011.01.008_bib0065
  article-title: Influence of the particle configuration on electrorheological effect
  publication-title: J. Electrostat.
  doi: 10.1016/S0304-3886(97)00105-8
– volume: 75
  start-page: 2827
  year: 1995
  ident: 10.1016/j.jnnfm.2011.01.008_bib0125
  article-title: Aggregation, fragmentation, and the nonlinear dynamics of electrorheological fluids in oscillatory shear
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.2827
– volume: 108
  start-page: 083503
  year: 2010
  ident: 10.1016/j.jnnfm.2011.01.008_bib0265
  article-title: Effect of gap thickness on the viscoelasticity of magnetorheological fluids
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3498804
– volume: 81
  start-page: 83
  year: 1999
  ident: 10.1016/j.jnnfm.2011.01.008_bib0135
  article-title: Large amplitude oscillatory shear of ER suspensions
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/S0377-0257(98)00096-2
– volume: 53
  start-page: 115
  year: 2009
  ident: 10.1016/j.jnnfm.2011.01.008_bib0040
  article-title: Magnetorheology of fiber suspensions. I. Experimental
  publication-title: J. Rheol.
  doi: 10.1122/1.3005402
– volume: 57
  start-page: 756
  year: 1998
  ident: 10.1016/j.jnnfm.2011.01.008_bib0140
  article-title: Structure and dynamics of electrorheological fluids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.756
– year: 1978
  ident: 10.1016/j.jnnfm.2011.01.008_bib0235
– year: 1987
  ident: 10.1016/j.jnnfm.2011.01.008_bib0260
– volume: 55
  start-page: 43
  year: 2011
  ident: 10.1016/j.jnnfm.2011.01.008_bib0060
  article-title: Steady shear flow of magnetic fiber suspensions: theory and comparison with experiments
  publication-title: J. Rheol.
  doi: 10.1122/1.3523477
– volume: 49
  start-page: 909
  year: 2010
  ident: 10.1016/j.jnnfm.2011.01.008_bib0215
  article-title: Differences between stress and strain control in the non-linear behavior of complex fluids
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-010-0450-0
– volume: 287
  start-page: 83
  year: 2002
  ident: 10.1016/j.jnnfm.2011.01.008_bib0110
  article-title: Fourier-transform rheology
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
– year: 1982
  ident: 10.1016/j.jnnfm.2011.01.008_bib0005
– year: 1991
  ident: 10.1016/j.jnnfm.2011.01.008_bib0180
– volume: 17
  start-page: 045022
  year: 2008
  ident: 10.1016/j.jnnfm.2011.01.008_bib0020
  article-title: Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/4/045022
– volume: 371
  start-page: 9
  year: 2004
  ident: 10.1016/j.jnnfm.2011.01.008_bib0150
  article-title: Dynamic behavior of MR suspensions at moderate flux densities
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00932-2
– volume: 54
  start-page: 1119
  year: 2010
  ident: 10.1016/j.jnnfm.2011.01.008_bib0200
  article-title: Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses
  publication-title: J. Rheol.
  doi: 10.1122/1.3479043
– year: 1987
  ident: 10.1016/j.jnnfm.2011.01.008_bib0240
– volume: 131
  start-page: 194902
  year: 2009
  ident: 10.1016/j.jnnfm.2011.01.008_bib0045
  article-title: Dynamic rheology of sphere- and rod-based magnetorheological fluids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3259358
– volume: 23
  start-page: 26
  year: 1998
  ident: 10.1016/j.jnnfm.2011.01.008_bib0010
  article-title: Behavior of magnetorheological fluids
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400030785
– volume: 37
  start-page: 919
  year: 1993
  ident: 10.1016/j.jnnfm.2011.01.008_bib0120
  article-title: Fourier transform analysis: nonlinear dynamic response of an electrorheological material
  publication-title: J. Rheol.
  doi: 10.1122/1.550403
– volume: 47
  start-page: 879
  year: 2003
  ident: 10.1016/j.jnnfm.2011.01.008_bib0245
  article-title: Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow
  publication-title: J. Rheol.
  doi: 10.1122/1.1582854
– volume: 53
  start-page: 127
  year: 2009
  ident: 10.1016/j.jnnfm.2011.01.008_bib0055
  article-title: Magnetorheology of fiber suspensions. II. Theory
  publication-title: J. Rheol.
  doi: 10.1122/1.3005405
– volume: 42
  start-page: 657
  year: 1998
  ident: 10.1016/j.jnnfm.2011.01.008_bib0085
  article-title: Enhanced electrorheological fluids using anisotropic particles
  publication-title: J. Rheol.
  doi: 10.1122/1.550944
– volume: 16
  start-page: 2548
  year: 2002
  ident: 10.1016/j.jnnfm.2011.01.008_bib0090
  article-title: Effects of shape and size of dispersoid on electrorheology
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979202012645
– volume: 49
  start-page: 741
  year: 2010
  ident: 10.1016/j.jnnfm.2011.01.008_bib0095
  article-title: The electrorheological response of elongated particles
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-010-0445-x
– volume: 153
  start-page: 459
  year: 1999
  ident: 10.1016/j.jnnfm.2011.01.008_bib0070
  article-title: Electrorheology of whiskers suspensions
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(98)00468-3
SSID ssj0000536
Score 2.0262167
Snippet This paper reports the first study on the large amplitude oscillatory shear flow for magnetic fiber suspensions subject to a magnetic field perpendicular to...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 373
SubjectTerms Engineering Sciences
Fiber suspension
Fluid mechanics
Fluids mechanics
Magnetorheology
Mechanics
Non-linear viscoelasticity
Oscillatory shear
Physics
Title Non-linear viscoelastic response of magnetic fiber suspensions in oscillatory shear
URI https://dx.doi.org/10.1016/j.jnnfm.2011.01.008
https://www.proquest.com/docview/862784628
https://hal.science/hal-00576618
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLCy8EW9ZiJHQuDhxOlYIVF5dAInNsh0bisCpmrYjv527xAGBBANKlMGxFce-3CP-7jMhRyrmwiaJjZzhuMyY80iB2EQu1antKA0WHROcbwdp_4FfPSaPc-SsyYVBWGXQ_bVOr7R1KGmH0WyPhsP2XXwqBFhsgaRn6BljBjsXKOUn718wDxCyer1SiAhrN8xDFcbrxXv3Fng8GTKd_mad5p8RJvlDW1cm6GKFLAXfkfbq7q2SOevXyHLwI2n4Sst1cjcofITuoxrT2bA0hQUXGdrQcQ2ItbRw9E09eUxgpA4xI7ScliPEssNtOvQUKS5BQHAFnpa46fUGebg4vz_rR2HzhMhwxicR6zgbCw3xQmzBS4KLgVBDGJOz3KYJ8sw7xbjKshRstk6YBsMulOtqZlTaFaebpOULb7cIFbnRSZ5px5XgmYIjVl0OcY62zHUc2yadZtCkCcziuMHFq2wgZC-yGmmJIy1jOONsmxx_NhrVxBp_V0-b2ZDf5EOC6v-74SHM3ecjkE2737uRWIaJuOCeZDN4A9pMrYTPC9dMlLfFtJQQ8IkM83d3_tuBXbJY_4dGtM8eaU3GU7sPjsxEH1SSekAWepfX_cEH3ErybQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BedheNmCbxsaHhfa4qHHrxOljhUABSl8AiTfLduytCJyqafn7d9c4TJsEDyhRHpyc4pzPd-fc3c8AP3QqpMsyl3grKMxYiUSj2CQ-N7kbaIMWnQqcr6Z5eSsu7rK7DTjpamEorTLq_lanr7V1bOlHbvbns1n_Oh1KiRZbEugZecabsEXoVFkPtsbnl-X0r0LOhm3IUsqECDrwoXWa130I_jFCeXICO33JQG3-pkzJ_xT22gqdbcOH6D6ycdvDHdhwYRc-RleSxYnafILraR0S8iD1gj3NGls79JKRhi3anFjHas8e9a9ANYzMU9oIa1bNnNLZ8TabBUYolygjFIRnDe17_Rluz05vTsok7p-QWMHFMuED71JpcMmQOnSU8GJxtSGtrXjl8oyg5r3mQhdFjmbbZNygbZfajwy3Oh_J4RfohTq4r8BkZU1WFcYLLUWh8Uj1CHk9NI77ged7MOiYpmwEF6c9Lh5Ul0V2r9acVsRpleKZFnvw85lo3mJrvP543o2G-kdEFGr_1wmPceyeX0GA2uV4oqiNanHRQyme8AtYN7QKZxiFTXRw9apRuOaTBZXwfntrB47gXXlzNVGT8-nld3jf_pam5J996C0XK3eAfs3SHEa5_QMs7PUe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-linear+viscoelastic+response+of+magnetic+fiber+suspensions+in+oscillatory+shear&rft.jtitle=Journal+of+non-Newtonian+fluid+mechanics&rft.au=Kuzhir%2C+P&rft.au=Gomez-Ramirez%2C+A&rft.au=Lopez-Lopez%2C+M+T&rft.au=Bossis%2C+G&rft.date=2011-04-01&rft.issn=0377-0257&rft.volume=166&rft.issue=7-8&rft.spage=373&rft.epage=385&rft_id=info:doi/10.1016%2Fj.jnnfm.2011.01.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0257&client=summon