Adaptive interference mitigation space‐time array reconfiguration by joint selection of antenna and delay tap

Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation...

Full description

Saved in:
Bibliographic Details
Published inIET radar, sonar & navigation Vol. 18; no. 3; pp. 448 - 462
Main Authors Sun, Yandong, Xie, Jian, Gong, Yanyun, Zhang, Zhaolin, Wang, Ling
Format Journal Article
LanguageEnglish
Published Wiley 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration. Combining the STAP technique and joint selection of antenna and delay tap, we devise a space‐time array reconfiguration technique applied to GNSS. The reconstructed space‐time array can induce a high SINR when using fewer antennas and delay taps, thus reducing the design cost and achieving superior interference suppression performance.
AbstractList Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration. Combining the STAP technique and joint selection of antenna and delay tap, we devise a space‐time array reconfiguration technique applied to GNSS. The reconstructed space‐time array can induce a high SINR when using fewer antennas and delay taps, thus reducing the design cost and achieving superior interference suppression performance.
Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration.
Abstract Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration.
Author Sun, Yandong
Gong, Yanyun
Zhang, Zhaolin
Xie, Jian
Wang, Ling
Author_xml – sequence: 1
  givenname: Yandong
  orcidid: 0000-0002-2000-0580
  surname: Sun
  fullname: Sun, Yandong
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Jian
  orcidid: 0000-0001-9654-064X
  surname: Xie
  fullname: Xie, Jian
  email: xiejian@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Yanyun
  surname: Gong
  fullname: Gong, Yanyun
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: Zhaolin
  surname: Zhang
  fullname: Zhang, Zhaolin
  organization: Northwestern Polytechnical University
– sequence: 5
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
  organization: Northwestern Polytechnical University
BookMark eNp9kM1qGzEUhUVIIL-bPIHWASfSjDSeWZrQNgbTQpusxZ2rKyMzloxGSfGuj9Bn7JNE8bRZlNLVuVy-c3R1ztlxiIEYu5biVgrV3aUxVLeyUm13xM7kXMtZO--q4_e5VafsfBw3QmjdqO6MxYWFXfYvxH3IlBwlCkh867NfQ_Yx8HEHSL9-_Mx-SxxSgj1PhDE4v35OE9Lv-SYWPx9pIDysouNQAkOAopZbGoovw-6SnTgYRrr6rRfs6eOHx_uH2erLp-X9YjVDJVU3q0GpFmtoACV1fecaJ4WrpdVzrcqMolC1Fg4rhVoi1nPVWKup6gmL1hdsOeXaCBuzS34LaW8ieHNYxLQ2kLLHgYywChyovmmUU20l-lpQeU0oZ4UWGkuWmLIwxXFM5Az6fPh5TuAHI4V5K9-8lW8O5RfLzV-WPyf8E5YT_N0PtP8Pab5--1xNnlfK75p6
CitedBy_id crossref_primary_10_3390_rs17061018
crossref_primary_10_3390_s24124007
crossref_primary_10_1038_s41598_024_83857_8
Cites_doi 10.1109/lsp.2013.2295943
10.1109/tim.2017.2728420
10.1007/978-1-84800-155-8_7
10.1109/18.737524
10.1109/78.80767
10.1109/maes.2004.1263229
10.1109/tsp.2010.2044250
10.1109/tap.2020.2977732
10.1109/twc.2021.3085753
10.1049/iet-rsn.2018.5350
10.1017/CBO9780511804441
10.1109/tvt.2017.2704610
10.1109/jsen.2016.2632308
10.1109/taes.2022.3229284
10.1049/iet-rsn.2020.0189
10.1109/jproc.2016.2529600
10.2528/pierm20070302
10.1109/tap.2003.816333
10.1214/aoms/1177729893
10.1049/iet-rsn.2013.0286
10.1049/iet-rsn.2015.0307
10.1109/7.845257
10.1016/j.sigpro.2012.10.021
10.1049/rsn2.12211
10.1002/j.2161-4296.2010.tb01769.x
10.1109/lsp.2021.3099074
10.1007/s10898-009-9456-5
10.1109/msp.2010.936019
10.1016/j.sigpro.2020.107939
10.1007/978-1-4757-2809-5
10.1109/tsp.2014.2312332
10.1109/tsp.2012.2197747
10.1049/iet-rsn.2015.0044
10.3390/rs14010048
10.1109/78.212753
10.1049/iet-rsn.2017.0482
10.1016/j.sigpro.2018.11.013
10.1109/taes.2011.5937257
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/rsn2.12489
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 462
ExternalDocumentID oai_doaj_org_article_0d4afa4b664f4820b30ef1004fd0505c
10_1049_rsn2_12489
RSN212489
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61871459; 61901382; 61971355; 62271412
– fundername: Innovation Capability Support Program of Shaanxi
  funderid: 2021KJXX‐89
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAYXX
CITATION
IDLOA
IMI
PHGZM
PHGZT
WIN
ID FETCH-LOGICAL-c4149-3a448c3a6ac1e9b9f6f10f31d57546f1c0149350fc24c51cc3746dd5e2becdd53
IEDL.DBID DOA
ISSN 1751-8784
IngestDate Wed Aug 27 01:10:41 EDT 2025
Tue Jul 01 05:12:51 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Jan 22 16:13:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4149-3a448c3a6ac1e9b9f6f10f31d57546f1c0149350fc24c51cc3746dd5e2becdd53
ORCID 0000-0001-9654-064X
0000-0002-2000-0580
OpenAccessLink https://doaj.org/article/0d4afa4b664f4820b30ef1004fd0505c
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_0d4afa4b664f4820b30ef1004fd0505c
crossref_citationtrail_10_1049_rsn2_12489
crossref_primary_10_1049_rsn2_12489
wiley_primary_10_1049_rsn2_12489_RSN212489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2012; 60
1991; 39
2021; 20
2010; 58
2010; 57
2023; 59
1950; 21
2019; 13
2002; 12
2017; 66
2021; 28
1993; 41
2021; 182
2016; 10
1998
2008
2013; 93
2020; 14
2006; 4
2004
2016; 104
2018; 67
2014; 62
2003; 51
1998; 44
2014; 21
2021; 14
2010; 27
2010; 47
2000; 36
2020; 96
2004; 19
2022
2017; 17
2019; 157
2020; 68
2014
2011; 47
2018; 12
2014; 8
2022; 16
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
Klemm R. (e_1_2_11_8_1) 2002
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Cormen T.H. (e_1_2_11_43_1) 2022
Ge H. (e_1_2_11_23_1) 2006; 4
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_42_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 14
  start-page: 1984
  issue: 12
  year: 2020
  end-page: 1990
  article-title: Distortionless pseudo‐code tracking space‐time adaptive processor based on the pi criterion for gnss receiver
  publication-title: IET Radar, Sonar Navig.
– volume: 17
  start-page: 238
  issue: 2
  year: 2017
  end-page: 239
  article-title: Clutter rank estimation for reduce‐dimension space‐time adaptive processing mimo radar
  publication-title: IEEE Sensor. J.
– volume: 19
  start-page: 19
  issue: 1
  year: 2004
  end-page: 35
  article-title: A stap overview
  publication-title: IEEE Aero. Electron. Syst. Mag.
– volume: 47
  start-page: 29
  issue: 1
  year: 2010
  end-page: 51
  article-title: A sequential parametric convex approximation method with applications to nonconvex truss topology design problems
  publication-title: J. Global Optim.
– volume: 68
  start-page: 4583
  issue: 6
  year: 2020
  end-page: 4592
  article-title: Adaptive interference suppression of phase‐only thinned arrays via convex optimization
  publication-title: IEEE Trans. Antenn. Propag.
– volume: 66
  start-page: 2813
  issue: 11
  year: 2017
  end-page: 2824
  article-title: Adaptive time taps of stap under channel mismatch for gnss antenna arrays
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  issue: 1
  year: 2021
  article-title: Optimal order of time‐domain adaptive filter for anti‐jamming navigation receiver
  publication-title: Rem. Sens.
– volume: 39
  start-page: 76
  issue: 1
  year: 1991
  end-page: 84
  article-title: An eigenanalysis interference canceler
  publication-title: IEEE Trans. Signal Process.
– volume: 41
  start-page: 1716
  issue: 4
  year: 1993
  end-page: 1721
  article-title: Estimation of a signal waveform from noisy data using low‐rank approximation to a data matrix
  publication-title: IEEE Trans. Signal Process.
– volume: 44
  start-page: 2943
  issue: 7
  year: 1998
  end-page: 2959
  article-title: A multistage representation of the wiener filter based on orthogonal projections
  publication-title: IEEE Trans. Inf. Theor.
– volume: 28
  start-page: 1545
  year: 2021
  end-page: 1549
  article-title: Coupled coarray tensor cpd for doa estimation with coprime l‐shaped array
  publication-title: IEEE Signal Process. Lett.
– start-page: 95
  year: 2008
  end-page: 110
– volume: 59
  start-page: 3493
  issue: 4
  year: 2023
  end-page: 3504
  article-title: Radio frequency interference mitigation via nonnegative matrix factorization for gnss
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 67
  start-page: 1099
  issue: 2
  year: 2018
  end-page: 1112
  article-title: A robust and efficient algorithm for coprime array adaptive beamforming
  publication-title: IEEE Trans. Veh. Technol.
– volume: 57
  start-page: 87
  issue: 2
  year: 2010
  end-page: 100
  article-title: An optimal adaptive filtering algorithm with zero antenna‐induced bias for gnss antenna arrays
  publication-title: Navigation
– volume: 51
  start-page: 2227
  issue: 9
  year: 2003
  end-page: 2237
  article-title: The impact of sensor positioning on the array manifold
  publication-title: IEEE Trans. Antenn. Propag.
– volume: 21
  start-page: 124
  issue: 1
  year: 1950
  end-page: 127
  article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
  publication-title: Ann. Math. Stat.
– volume: 93
  start-page: 3264
  issue: 12
  year: 2013
  end-page: 3277
  article-title: Principles of minimum variance robust adaptive beamforming design
  publication-title: Signal Process.
– year: 2014
– year: 1998
– volume: 12
  year: 2002
– volume: 96
  start-page: 89
  year: 2020
  end-page: 97
  article-title: Adaptive antijamming based on space‐time 2‐d sparse array for gnss receivers
  publication-title: Prog. Electromagn. Res. M
– volume: 20
  start-page: 7568
  issue: 11
  year: 2021
  end-page: 7580
  article-title: Multi direction‐of‐arrival tracking using rigid and flexible antenna arrays
  publication-title: IEEE Trans. Wireless Commun.
– volume: 12
  start-page: 757
  issue: 7
  year: 2018
  end-page: 765
  article-title: Eigensubspace method for space‐time adaptive processing in the presence of non‐i.i.d. clutter and array errors
  publication-title: IET Radar, Sonar Navig.
– volume: 27
  start-page: 20
  issue: 3
  year: 2010
  end-page: 34
  article-title: Semidefinite relaxation of quadratic optimization problems
  publication-title: IEEE Signal Process. Mag.
– volume: 182
  year: 2021
  article-title: Robust adaptive beamforming based on a method for steering vector estimation and interference covariance matrix reconstruction
  publication-title: Signal Process.
– volume: 10
  start-page: 435
  issue: 3
  year: 2016
  end-page: 441
  article-title: L1‐regularised joint iterative optimisation space‐time adaptive processing algorithm
  publication-title: IET Radar, Sonar Navig.
– volume: 60
  start-page: 4003
  issue: 8
  year: 2012
  end-page: 4016
  article-title: Adaptive widely linear reduced‐rank interference suppression based on the multistage wiener filter
  publication-title: IEEE Trans. Signal Process.
– volume: 21
  start-page: 265
  issue: 3
  year: 2014
  end-page: 269
  article-title: Adaptive widely linear reduced‐rank beamforming based on joint iterative optimization
  publication-title: IEEE Signal Process. Lett.
– year: 2022
– volume: 58
  start-page: 2983
  issue: 6
  year: 2010
  end-page: 2997
  article-title: Adaptive reduced‐rank constrained constant modulus algorithms based on joint iterative optimization of filters for beamforming
  publication-title: IEEE Trans. Signal Process.
– year: 2004
– volume: 36
  start-page: 664
  issue: 2
  year: 2000
  end-page: 676
  article-title: Reduced‐rank stap performance analysis
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 13
  start-page: 700
  issue: 5
  year: 2019
  end-page: 711
  article-title: Interference mitigation for gnss receivers with dual‐polarised sensitive arrays in the joint space‐frequency‐polarisation domain
  publication-title: IET Radar, Sonar Navig.
– volume: 8
  start-page: 885
  issue: 8
  year: 2014
  end-page: 894
  article-title: Direction of arrival estimation with a sparse uniform array of orthogonally oriented and spatially separated dipole‐triads
  publication-title: IET Radar, Sonar Navig.
– volume: 16
  start-page: 668
  issue: 4
  year: 2022
  end-page: 677
  article-title: Adaptive beamforming algorithm for coprime array based on interference and noise covariance matrix reconstruction
  publication-title: IET Radar, Sonar Navig.
– volume: 104
  start-page: 1246
  issue: 6
  year: 2016
  end-page: 1257
  article-title: Overview of spatial processing approaches for gnss structural interference detection and mitigation
  publication-title: Proc. IEEE
– volume: 47
  start-page: 1668
  issue: 3
  year: 2011
  end-page: 1684
  article-title: Reduced‐rank stap algorithms using joint iterative optimization of filters
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 4
  start-page: 14
  year: 2006
  end-page: 19
  article-title: Data dimension reduction using krylov subspaces: making adaptive beamformers robust to model order‐determination
  publication-title: IEEE Proc. Int. Conf. Acoust. Speech Signal Process
– volume: 62
  start-page: 2385
  issue: 9
  year: 2014
  end-page: 2396
  article-title: Reconfigurable adaptive array beamforming by antenna selection
  publication-title: IEEE Trans. Signal Process.
– volume: 157
  start-page: 78
  year: 2019
  end-page: 87
  article-title: Reduced‐dimension space‐time adaptive processing with sparse constraints on beam‐Doppler selection
  publication-title: Signal Process.
– volume: 10
  start-page: 726
  issue: 4
  year: 2016
  end-page: 734
  article-title: Slow radar target detection in heterogeneous clutter using thinned space‐time adaptive processing
  publication-title: IET Radar, Sonar Navig.
– volume-title: Principles of Space‐Time Adaptive Processing
  year: 2002
  ident: e_1_2_11_8_1
– ident: e_1_2_11_22_1
  doi: 10.1109/lsp.2013.2295943
– ident: e_1_2_11_26_1
  doi: 10.1109/tim.2017.2728420
– volume: 4
  start-page: 14
  year: 2006
  ident: e_1_2_11_23_1
  article-title: Data dimension reduction using krylov subspaces: making adaptive beamformers robust to model order‐determination
  publication-title: IEEE Proc. Int. Conf. Acoust. Speech Signal Process
– ident: e_1_2_11_37_1
  doi: 10.1007/978-1-84800-155-8_7
– ident: e_1_2_11_18_1
  doi: 10.1109/18.737524
– ident: e_1_2_11_14_1
  doi: 10.1109/78.80767
– ident: e_1_2_11_32_1
  doi: 10.1109/maes.2004.1263229
– ident: e_1_2_11_21_1
  doi: 10.1109/tsp.2010.2044250
– ident: e_1_2_11_5_1
  doi: 10.1109/tap.2020.2977732
– ident: e_1_2_11_30_1
  doi: 10.1109/twc.2021.3085753
– ident: e_1_2_11_2_1
  doi: 10.1049/iet-rsn.2018.5350
– ident: e_1_2_11_35_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_11_3_1
  doi: 10.1109/tvt.2017.2704610
– ident: e_1_2_11_15_1
  doi: 10.1109/jsen.2016.2632308
– ident: e_1_2_11_33_1
  doi: 10.1109/taes.2022.3229284
– ident: e_1_2_11_42_1
  doi: 10.1049/iet-rsn.2020.0189
– ident: e_1_2_11_7_1
  doi: 10.1109/jproc.2016.2529600
– ident: e_1_2_11_27_1
  doi: 10.2528/pierm20070302
– ident: e_1_2_11_24_1
  doi: 10.1109/tap.2003.816333
– ident: e_1_2_11_34_1
  doi: 10.1214/aoms/1177729893
– ident: e_1_2_11_29_1
  doi: 10.1049/iet-rsn.2013.0286
– ident: e_1_2_11_25_1
  doi: 10.1049/iet-rsn.2015.0307
– ident: e_1_2_11_13_1
  doi: 10.1109/7.845257
– ident: e_1_2_11_28_1
  doi: 10.1016/j.sigpro.2012.10.021
– volume-title: Introduction to Algorithms
  year: 2022
  ident: e_1_2_11_43_1
– ident: e_1_2_11_4_1
  doi: 10.1049/rsn2.12211
– ident: e_1_2_11_41_1
  doi: 10.1002/j.2161-4296.2010.tb01769.x
– ident: e_1_2_11_31_1
  doi: 10.1109/lsp.2021.3099074
– ident: e_1_2_11_40_1
  doi: 10.1007/s10898-009-9456-5
– ident: e_1_2_11_38_1
  doi: 10.1109/msp.2010.936019
– ident: e_1_2_11_6_1
  doi: 10.1016/j.sigpro.2020.107939
– ident: e_1_2_11_39_1
  doi: 10.1007/978-1-4757-2809-5
– ident: e_1_2_11_10_1
  doi: 10.1109/tsp.2014.2312332
– ident: e_1_2_11_19_1
  doi: 10.1109/tsp.2012.2197747
– ident: e_1_2_11_36_1
– ident: e_1_2_11_9_1
  doi: 10.1049/iet-rsn.2015.0044
– ident: e_1_2_11_11_1
  doi: 10.3390/rs14010048
– ident: e_1_2_11_16_1
  doi: 10.1109/78.212753
– ident: e_1_2_11_17_1
  doi: 10.1049/iet-rsn.2017.0482
– ident: e_1_2_11_12_1
  doi: 10.1016/j.sigpro.2018.11.013
– ident: e_1_2_11_20_1
  doi: 10.1109/taes.2011.5937257
SSID ssj0055649
Score 2.386826
Snippet Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the...
Abstract Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression....
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 448
SubjectTerms adaptive antenna arrays
adaptive signal processing
array signal processing
interference suppression
satellite navigation
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-COhFobptpnELXlQUERTxAd5KnrKi7VLXw978Cf5Gf4kzaXdVEMFTQplQmOnMfNMk3zC2tU-7Q1rHkZQuiSBxLlK-Y6NUd7xw1sR164SLS3l2B-f36f0YOxjehan5IUY_3MgzQrwmB1e67kKCoBaNWL0UyS5mp042zibpbi0d6EvgahiH01QG8Iv5MUaf78CQnBSyva-1P9JRYO3_iVJDmjmdZTMNPuSHtUHn2Jgr5tn0N9bABVYeWtWjKMWJ66FqLuzx525Nl1EWHKOEcR9v79Q4nquqUgMeCl_ffXitLc71gD-WuJ6_hEY49Kj0nNRcFApHy4k-csD7qrfI7k5Pbo_PoqZvQmQAC55IKKy5jFBSmdhlOvPSx20vYovQDHBuqCwSadubBEwaGyP2QVqbugQNiqNYYhNFWbhlxhE8Ce-k9giUILYa62XvAGxqMw8Ym1pse6i-3DSk4tTb4ikPm9uQ5aTqPKi6xTZHsr2aSuNXqSOywkiC6K_Dg7J6yBtvytsWlFegpQQPiGG0aDtP3HfeUmc-02I7wYZ_vCe_vrlMwmzlP8KrbCpBWFOfQltjE_3q1a0jLOnrjfD1fQLc-OAQ
  priority: 102
  providerName: Wiley-Blackwell
Title Adaptive interference mitigation space‐time array reconfiguration by joint selection of antenna and delay tap
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12489
https://doaj.org/article/0d4afa4b664f4820b30ef1004fd0505c
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxNBFB80p3oQtRVTbRioFwtrszNvJ9ljFEMpGEQN5LbMX6m0u2GbHHLrR-hn9JP0vZlNiCB68TTD8JZZ3nv7_jCzvx9jb0d0OmRMninlRQbC-0yHscsKMw7SO5sn6oTPM3Uxh8tFsdij-qI7YQkeOCnufOhABw1GKQiA6crIoQ8EcxYckbBZir6Y87bNVIrBRaFi4Yu5McfvfQxbYFIoz9vbWrzHrEbE7nupKCL2_16hxhQzfcaedrUhn6R3es4e-foFe7KHGHjImonTS4pQnHAe2u5nPX5zlaAymppjhLD-1909kcZz3bZ6w2PTG65-rJO1udnwnw0-z28jCQ4tNYGTiuta4-g4QUdu-Eovj9h8-un7x4us40zILGCzk0mN_ZaVWmmb-9KUQaGygswdlmWAc0stkSyGwQqwRW6tHIFyrvACjYmjfMl6dVP7V4xj4SSDVyagmiF3Bnvl4AFc4coAGJf67N1WfZXtAMWJ1-K6igfbUFak6iqqus9Od7LLBKPxR6kPZIWdBEFfxwV0iKpziOpfDtFnZ9GGf9mn-vptJuLs-H_s-JodCCx10s20N6y3atf-BEuVlRmwxwK-DKJvPgCD3eg_
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoHFoOCGgRy9MSvVApsIknZnNcEGhpYQ-FrRCXyE9EVZJVWA574yfwG_klzDjZLUioUk-xrLEieTwz3_jxDWNfD-h0SOs4ktIlESTORcp3bJTqjhfOmrgunXDel70BfL9Kr5q7OfQWpuaHmG64kWUEf00GThvSdcIJRJJZ3RfJHoanTvaBzRGswUU91_01uB5MXHGayoB_MUTGaPYdmPCTQrb_d_SbiBSI-98C1RBpThbZQgMRebfW6RKbccUym39FHPiZlV2rhuSoONE9VM2bPX53WzNmlAVHR2Hc8-MT1Y7nqqrUmIfc19_ePNRK53rMf5c4nt-HWjjUVXpOM10UCr-WE4PkmI_U8AsbnBxfHvWipnRCZABznkgoTLuMUFKZ2GU689LHbS9ii-gMsG0oMxJp25sETBobIw5AWpu6BHWKX7HCZouycKuMI34S3kntEStBbDWmzN4B2NRmHtA9tdjuZPpy0_CKU3mLP3k434Ysp6nOw1S32M5UdlizabwrdUhamEoQA3boKKubvDGovG1BeQVaSvCAMEaLtvNEf-ctFeczLfYt6PAf_8l_XvST0Fr7H-Ft9rF3eX6Wn532f6yzTwminPpS2gabHVUPbhNRykhvNWvxBVkr5Us
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC7WWRA9iE8cnw16UYgm6ereCXgZH8P6GkQdWbyEftWyosmQnT3MzZ_gb_SXWN3JjC6I4KmbpppAVarqq3T6K4D7e_F0yNoi0zqUGZYhZIYmPlN2QjJ4V_StE97O9f4CXx2ogx14srkL0_NDbD-4Rc9I8To6-NJTX29i5MjsjpvyEWenSXUGdhWnpXwEu9NPi8-LTSRWSif4yxmyYK-f4IaeFKvHv3efSkiJt_80Tk2JZnYRLgwIUUx7k16CndBchvN_8AZegXbqzTLGKRHZHrrhyp74dtQTZrSN4Djhws_vP2LreGG6zqxFKn3p6PCkt7mwa_Gl5f3iOLXCiUstiajopjE8ehEJJNdiZZZXYTF78fHZfjZ0TsgccsmTScNVl5NGG1eEylakqchJFp7BGfLcxcJIqpxciU4Vzsk91N6rULJJeZTXYNS0TbgOguGTpKAtMVTCwluumCkgeuUrQo5OY3iwUV_tBlrx2N3ia52Ot7Gqo6rrpOox3NvKLnsyjb9KPY1W2EpEAuy00HaH9eBPde7RkEGrNRIyirEyDxTZ78jH3nxuDA-TDf_xnPr9h3mZZjf-R_gunH33fFa_eTl_fRPOlYxx-l_SbsFo1Z2E24xRVvbO8Cr-AvAm5Gs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+interference+mitigation+space%E2%80%90time+array+reconfiguration+by+joint+selection+of+antenna+and+delay+tap&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Yandong+Sun&rft.au=Jian+Xie&rft.au=Yanyun+Gong&rft.au=Zhaolin+Zhang&rft.date=2024-03-01&rft.pub=Wiley&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=18&rft.issue=3&rft.spage=448&rft.epage=462&rft_id=info:doi/10.1049%2Frsn2.12489&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0d4afa4b664f4820b30ef1004fd0505c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon