Adaptive interference mitigation space‐time array reconfiguration by joint selection of antenna and delay tap
Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation...
Saved in:
Published in | IET radar, sonar & navigation Vol. 18; no. 3; pp. 448 - 462 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration.
Combining the STAP technique and joint selection of antenna and delay tap, we devise a space‐time array reconfiguration technique applied to GNSS. The reconstructed space‐time array can induce a high SINR when using fewer antennas and delay taps, thus reducing the design cost and achieving superior interference suppression performance. |
---|---|
AbstractList | Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration.
Combining the STAP technique and joint selection of antenna and delay tap, we devise a space‐time array reconfiguration technique applied to GNSS. The reconstructed space‐time array can induce a high SINR when using fewer antennas and delay taps, thus reducing the design cost and achieving superior interference suppression performance. Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration. Abstract Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the conventional space‐time array necessitates multiple antennas and time delay taps, resulting in a heavy burden on both hardware and computation resources. Thus, lowering the cost and complexity of STAP becomes a considerable problem demanding prompt solutions. This work designs a space‐time array reconfiguration scheme based on the joint selection strategy of the antenna and delay tap to address this problem. The reconstructed array can induce a high signal to interference plus noise power ratio (SINR) when using fewer antennas and delay taps. The space‐time correlation coefficient (STCC) is first presented to manifest the influence of reconfiguration on output SINR. Then, we formulate the space‐time array reconfiguration mathematical model, aiming to minimise STCC. Two reconfiguration methods are provided to solve the optimal array configuration of antennas and delay taps that can reach the minimum STCC and maximum SINR. The optimal antenna‐delay tap pairs are finally selected to comprise the reconstructed array. Substantial simulation experiments verify that the presented scheme and strategy are effective and reliable in space‐time array reconfiguration. |
Author | Sun, Yandong Gong, Yanyun Zhang, Zhaolin Xie, Jian Wang, Ling |
Author_xml | – sequence: 1 givenname: Yandong orcidid: 0000-0002-2000-0580 surname: Sun fullname: Sun, Yandong organization: Northwestern Polytechnical University – sequence: 2 givenname: Jian orcidid: 0000-0001-9654-064X surname: Xie fullname: Xie, Jian email: xiejian@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 3 givenname: Yanyun surname: Gong fullname: Gong, Yanyun organization: Northwestern Polytechnical University – sequence: 4 givenname: Zhaolin surname: Zhang fullname: Zhang, Zhaolin organization: Northwestern Polytechnical University – sequence: 5 givenname: Ling surname: Wang fullname: Wang, Ling organization: Northwestern Polytechnical University |
BookMark | eNp9kM1qGzEUhUVIIL-bPIHWASfSjDSeWZrQNgbTQpusxZ2rKyMzloxGSfGuj9Bn7JNE8bRZlNLVuVy-c3R1ztlxiIEYu5biVgrV3aUxVLeyUm13xM7kXMtZO--q4_e5VafsfBw3QmjdqO6MxYWFXfYvxH3IlBwlCkh867NfQ_Yx8HEHSL9-_Mx-SxxSgj1PhDE4v35OE9Lv-SYWPx9pIDysouNQAkOAopZbGoovw-6SnTgYRrr6rRfs6eOHx_uH2erLp-X9YjVDJVU3q0GpFmtoACV1fecaJ4WrpdVzrcqMolC1Fg4rhVoi1nPVWKup6gmL1hdsOeXaCBuzS34LaW8ieHNYxLQ2kLLHgYywChyovmmUU20l-lpQeU0oZ4UWGkuWmLIwxXFM5Az6fPh5TuAHI4V5K9-8lW8O5RfLzV-WPyf8E5YT_N0PtP8Pab5--1xNnlfK75p6 |
CitedBy_id | crossref_primary_10_3390_rs17061018 crossref_primary_10_3390_s24124007 crossref_primary_10_1038_s41598_024_83857_8 |
Cites_doi | 10.1109/lsp.2013.2295943 10.1109/tim.2017.2728420 10.1007/978-1-84800-155-8_7 10.1109/18.737524 10.1109/78.80767 10.1109/maes.2004.1263229 10.1109/tsp.2010.2044250 10.1109/tap.2020.2977732 10.1109/twc.2021.3085753 10.1049/iet-rsn.2018.5350 10.1017/CBO9780511804441 10.1109/tvt.2017.2704610 10.1109/jsen.2016.2632308 10.1109/taes.2022.3229284 10.1049/iet-rsn.2020.0189 10.1109/jproc.2016.2529600 10.2528/pierm20070302 10.1109/tap.2003.816333 10.1214/aoms/1177729893 10.1049/iet-rsn.2013.0286 10.1049/iet-rsn.2015.0307 10.1109/7.845257 10.1016/j.sigpro.2012.10.021 10.1049/rsn2.12211 10.1002/j.2161-4296.2010.tb01769.x 10.1109/lsp.2021.3099074 10.1007/s10898-009-9456-5 10.1109/msp.2010.936019 10.1016/j.sigpro.2020.107939 10.1007/978-1-4757-2809-5 10.1109/tsp.2014.2312332 10.1109/tsp.2012.2197747 10.1049/iet-rsn.2015.0044 10.3390/rs14010048 10.1109/78.212753 10.1049/iet-rsn.2017.0482 10.1016/j.sigpro.2018.11.013 10.1109/taes.2011.5937257 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/rsn2.12489 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8792 |
EndPage | 462 |
ExternalDocumentID | oai_doaj_org_article_0d4afa4b664f4820b30ef1004fd0505c 10_1049_rsn2_12489 RSN212489 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61871459; 61901382; 61971355; 62271412 – fundername: Innovation Capability Support Program of Shaanxi funderid: 2021KJXX‐89 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU DU5 EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ NXXTH O9- OCL OK1 P62 PTHSS QWB RIE RNS ROL RUI S0W U5U UNMZH ZL0 AAYXX CITATION IDLOA IMI PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c4149-3a448c3a6ac1e9b9f6f10f31d57546f1c0149350fc24c51cc3746dd5e2becdd53 |
IEDL.DBID | DOA |
ISSN | 1751-8784 |
IngestDate | Wed Aug 27 01:10:41 EDT 2025 Tue Jul 01 05:12:51 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Jan 22 16:13:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4149-3a448c3a6ac1e9b9f6f10f31d57546f1c0149350fc24c51cc3746dd5e2becdd53 |
ORCID | 0000-0001-9654-064X 0000-0002-2000-0580 |
OpenAccessLink | https://doaj.org/article/0d4afa4b664f4820b30ef1004fd0505c |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d4afa4b664f4820b30ef1004fd0505c crossref_citationtrail_10_1049_rsn2_12489 crossref_primary_10_1049_rsn2_12489 wiley_primary_10_1049_rsn2_12489_RSN212489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | IET radar, sonar & navigation |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2012; 60 1991; 39 2021; 20 2010; 58 2010; 57 2023; 59 1950; 21 2019; 13 2002; 12 2017; 66 2021; 28 1993; 41 2021; 182 2016; 10 1998 2008 2013; 93 2020; 14 2006; 4 2004 2016; 104 2018; 67 2014; 62 2003; 51 1998; 44 2014; 21 2021; 14 2010; 27 2010; 47 2000; 36 2020; 96 2004; 19 2022 2017; 17 2019; 157 2020; 68 2014 2011; 47 2018; 12 2014; 8 2022; 16 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 Klemm R. (e_1_2_11_8_1) 2002 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Cormen T.H. (e_1_2_11_43_1) 2022 Ge H. (e_1_2_11_23_1) 2006; 4 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_42_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – volume: 14 start-page: 1984 issue: 12 year: 2020 end-page: 1990 article-title: Distortionless pseudo‐code tracking space‐time adaptive processor based on the pi criterion for gnss receiver publication-title: IET Radar, Sonar Navig. – volume: 17 start-page: 238 issue: 2 year: 2017 end-page: 239 article-title: Clutter rank estimation for reduce‐dimension space‐time adaptive processing mimo radar publication-title: IEEE Sensor. J. – volume: 19 start-page: 19 issue: 1 year: 2004 end-page: 35 article-title: A stap overview publication-title: IEEE Aero. Electron. Syst. Mag. – volume: 47 start-page: 29 issue: 1 year: 2010 end-page: 51 article-title: A sequential parametric convex approximation method with applications to nonconvex truss topology design problems publication-title: J. Global Optim. – volume: 68 start-page: 4583 issue: 6 year: 2020 end-page: 4592 article-title: Adaptive interference suppression of phase‐only thinned arrays via convex optimization publication-title: IEEE Trans. Antenn. Propag. – volume: 66 start-page: 2813 issue: 11 year: 2017 end-page: 2824 article-title: Adaptive time taps of stap under channel mismatch for gnss antenna arrays publication-title: IEEE Trans. Instrum. Meas. – volume: 14 issue: 1 year: 2021 article-title: Optimal order of time‐domain adaptive filter for anti‐jamming navigation receiver publication-title: Rem. Sens. – volume: 39 start-page: 76 issue: 1 year: 1991 end-page: 84 article-title: An eigenanalysis interference canceler publication-title: IEEE Trans. Signal Process. – volume: 41 start-page: 1716 issue: 4 year: 1993 end-page: 1721 article-title: Estimation of a signal waveform from noisy data using low‐rank approximation to a data matrix publication-title: IEEE Trans. Signal Process. – volume: 44 start-page: 2943 issue: 7 year: 1998 end-page: 2959 article-title: A multistage representation of the wiener filter based on orthogonal projections publication-title: IEEE Trans. Inf. Theor. – volume: 28 start-page: 1545 year: 2021 end-page: 1549 article-title: Coupled coarray tensor cpd for doa estimation with coprime l‐shaped array publication-title: IEEE Signal Process. Lett. – start-page: 95 year: 2008 end-page: 110 – volume: 59 start-page: 3493 issue: 4 year: 2023 end-page: 3504 article-title: Radio frequency interference mitigation via nonnegative matrix factorization for gnss publication-title: IEEE Trans. Aero. Electron. Syst. – volume: 67 start-page: 1099 issue: 2 year: 2018 end-page: 1112 article-title: A robust and efficient algorithm for coprime array adaptive beamforming publication-title: IEEE Trans. Veh. Technol. – volume: 57 start-page: 87 issue: 2 year: 2010 end-page: 100 article-title: An optimal adaptive filtering algorithm with zero antenna‐induced bias for gnss antenna arrays publication-title: Navigation – volume: 51 start-page: 2227 issue: 9 year: 2003 end-page: 2237 article-title: The impact of sensor positioning on the array manifold publication-title: IEEE Trans. Antenn. Propag. – volume: 21 start-page: 124 issue: 1 year: 1950 end-page: 127 article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix publication-title: Ann. Math. Stat. – volume: 93 start-page: 3264 issue: 12 year: 2013 end-page: 3277 article-title: Principles of minimum variance robust adaptive beamforming design publication-title: Signal Process. – year: 2014 – year: 1998 – volume: 12 year: 2002 – volume: 96 start-page: 89 year: 2020 end-page: 97 article-title: Adaptive antijamming based on space‐time 2‐d sparse array for gnss receivers publication-title: Prog. Electromagn. Res. M – volume: 20 start-page: 7568 issue: 11 year: 2021 end-page: 7580 article-title: Multi direction‐of‐arrival tracking using rigid and flexible antenna arrays publication-title: IEEE Trans. Wireless Commun. – volume: 12 start-page: 757 issue: 7 year: 2018 end-page: 765 article-title: Eigensubspace method for space‐time adaptive processing in the presence of non‐i.i.d. clutter and array errors publication-title: IET Radar, Sonar Navig. – volume: 27 start-page: 20 issue: 3 year: 2010 end-page: 34 article-title: Semidefinite relaxation of quadratic optimization problems publication-title: IEEE Signal Process. Mag. – volume: 182 year: 2021 article-title: Robust adaptive beamforming based on a method for steering vector estimation and interference covariance matrix reconstruction publication-title: Signal Process. – volume: 10 start-page: 435 issue: 3 year: 2016 end-page: 441 article-title: L1‐regularised joint iterative optimisation space‐time adaptive processing algorithm publication-title: IET Radar, Sonar Navig. – volume: 60 start-page: 4003 issue: 8 year: 2012 end-page: 4016 article-title: Adaptive widely linear reduced‐rank interference suppression based on the multistage wiener filter publication-title: IEEE Trans. Signal Process. – volume: 21 start-page: 265 issue: 3 year: 2014 end-page: 269 article-title: Adaptive widely linear reduced‐rank beamforming based on joint iterative optimization publication-title: IEEE Signal Process. Lett. – year: 2022 – volume: 58 start-page: 2983 issue: 6 year: 2010 end-page: 2997 article-title: Adaptive reduced‐rank constrained constant modulus algorithms based on joint iterative optimization of filters for beamforming publication-title: IEEE Trans. Signal Process. – year: 2004 – volume: 36 start-page: 664 issue: 2 year: 2000 end-page: 676 article-title: Reduced‐rank stap performance analysis publication-title: IEEE Trans. Aero. Electron. Syst. – volume: 13 start-page: 700 issue: 5 year: 2019 end-page: 711 article-title: Interference mitigation for gnss receivers with dual‐polarised sensitive arrays in the joint space‐frequency‐polarisation domain publication-title: IET Radar, Sonar Navig. – volume: 8 start-page: 885 issue: 8 year: 2014 end-page: 894 article-title: Direction of arrival estimation with a sparse uniform array of orthogonally oriented and spatially separated dipole‐triads publication-title: IET Radar, Sonar Navig. – volume: 16 start-page: 668 issue: 4 year: 2022 end-page: 677 article-title: Adaptive beamforming algorithm for coprime array based on interference and noise covariance matrix reconstruction publication-title: IET Radar, Sonar Navig. – volume: 104 start-page: 1246 issue: 6 year: 2016 end-page: 1257 article-title: Overview of spatial processing approaches for gnss structural interference detection and mitigation publication-title: Proc. IEEE – volume: 47 start-page: 1668 issue: 3 year: 2011 end-page: 1684 article-title: Reduced‐rank stap algorithms using joint iterative optimization of filters publication-title: IEEE Trans. Aero. Electron. Syst. – volume: 4 start-page: 14 year: 2006 end-page: 19 article-title: Data dimension reduction using krylov subspaces: making adaptive beamformers robust to model order‐determination publication-title: IEEE Proc. Int. Conf. Acoust. Speech Signal Process – volume: 62 start-page: 2385 issue: 9 year: 2014 end-page: 2396 article-title: Reconfigurable adaptive array beamforming by antenna selection publication-title: IEEE Trans. Signal Process. – volume: 157 start-page: 78 year: 2019 end-page: 87 article-title: Reduced‐dimension space‐time adaptive processing with sparse constraints on beam‐Doppler selection publication-title: Signal Process. – volume: 10 start-page: 726 issue: 4 year: 2016 end-page: 734 article-title: Slow radar target detection in heterogeneous clutter using thinned space‐time adaptive processing publication-title: IET Radar, Sonar Navig. – volume-title: Principles of Space‐Time Adaptive Processing year: 2002 ident: e_1_2_11_8_1 – ident: e_1_2_11_22_1 doi: 10.1109/lsp.2013.2295943 – ident: e_1_2_11_26_1 doi: 10.1109/tim.2017.2728420 – volume: 4 start-page: 14 year: 2006 ident: e_1_2_11_23_1 article-title: Data dimension reduction using krylov subspaces: making adaptive beamformers robust to model order‐determination publication-title: IEEE Proc. Int. Conf. Acoust. Speech Signal Process – ident: e_1_2_11_37_1 doi: 10.1007/978-1-84800-155-8_7 – ident: e_1_2_11_18_1 doi: 10.1109/18.737524 – ident: e_1_2_11_14_1 doi: 10.1109/78.80767 – ident: e_1_2_11_32_1 doi: 10.1109/maes.2004.1263229 – ident: e_1_2_11_21_1 doi: 10.1109/tsp.2010.2044250 – ident: e_1_2_11_5_1 doi: 10.1109/tap.2020.2977732 – ident: e_1_2_11_30_1 doi: 10.1109/twc.2021.3085753 – ident: e_1_2_11_2_1 doi: 10.1049/iet-rsn.2018.5350 – ident: e_1_2_11_35_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_11_3_1 doi: 10.1109/tvt.2017.2704610 – ident: e_1_2_11_15_1 doi: 10.1109/jsen.2016.2632308 – ident: e_1_2_11_33_1 doi: 10.1109/taes.2022.3229284 – ident: e_1_2_11_42_1 doi: 10.1049/iet-rsn.2020.0189 – ident: e_1_2_11_7_1 doi: 10.1109/jproc.2016.2529600 – ident: e_1_2_11_27_1 doi: 10.2528/pierm20070302 – ident: e_1_2_11_24_1 doi: 10.1109/tap.2003.816333 – ident: e_1_2_11_34_1 doi: 10.1214/aoms/1177729893 – ident: e_1_2_11_29_1 doi: 10.1049/iet-rsn.2013.0286 – ident: e_1_2_11_25_1 doi: 10.1049/iet-rsn.2015.0307 – ident: e_1_2_11_13_1 doi: 10.1109/7.845257 – ident: e_1_2_11_28_1 doi: 10.1016/j.sigpro.2012.10.021 – volume-title: Introduction to Algorithms year: 2022 ident: e_1_2_11_43_1 – ident: e_1_2_11_4_1 doi: 10.1049/rsn2.12211 – ident: e_1_2_11_41_1 doi: 10.1002/j.2161-4296.2010.tb01769.x – ident: e_1_2_11_31_1 doi: 10.1109/lsp.2021.3099074 – ident: e_1_2_11_40_1 doi: 10.1007/s10898-009-9456-5 – ident: e_1_2_11_38_1 doi: 10.1109/msp.2010.936019 – ident: e_1_2_11_6_1 doi: 10.1016/j.sigpro.2020.107939 – ident: e_1_2_11_39_1 doi: 10.1007/978-1-4757-2809-5 – ident: e_1_2_11_10_1 doi: 10.1109/tsp.2014.2312332 – ident: e_1_2_11_19_1 doi: 10.1109/tsp.2012.2197747 – ident: e_1_2_11_36_1 – ident: e_1_2_11_9_1 doi: 10.1049/iet-rsn.2015.0044 – ident: e_1_2_11_11_1 doi: 10.3390/rs14010048 – ident: e_1_2_11_16_1 doi: 10.1109/78.212753 – ident: e_1_2_11_17_1 doi: 10.1049/iet-rsn.2017.0482 – ident: e_1_2_11_12_1 doi: 10.1016/j.sigpro.2018.11.013 – ident: e_1_2_11_20_1 doi: 10.1109/taes.2011.5937257 |
SSID | ssj0055649 |
Score | 2.386826 |
Snippet | Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression. Nevertheless, the... Abstract Space‐time adaptive processing (STAP) array has found extensive use in the global navigation satellite system for interference suppression.... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 448 |
SubjectTerms | adaptive antenna arrays adaptive signal processing array signal processing interference suppression satellite navigation |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-COhFobptpnELXlQUERTxAd5KnrKi7VLXw978Cf5Gf4kzaXdVEMFTQplQmOnMfNMk3zC2tU-7Q1rHkZQuiSBxLlK-Y6NUd7xw1sR164SLS3l2B-f36f0YOxjehan5IUY_3MgzQrwmB1e67kKCoBaNWL0UyS5mp042zibpbi0d6EvgahiH01QG8Iv5MUaf78CQnBSyva-1P9JRYO3_iVJDmjmdZTMNPuSHtUHn2Jgr5tn0N9bABVYeWtWjKMWJ66FqLuzx525Nl1EWHKOEcR9v79Q4nquqUgMeCl_ffXitLc71gD-WuJ6_hEY49Kj0nNRcFApHy4k-csD7qrfI7k5Pbo_PoqZvQmQAC55IKKy5jFBSmdhlOvPSx20vYovQDHBuqCwSadubBEwaGyP2QVqbugQNiqNYYhNFWbhlxhE8Ce-k9giUILYa62XvAGxqMw8Ym1pse6i-3DSk4tTb4ikPm9uQ5aTqPKi6xTZHsr2aSuNXqSOywkiC6K_Dg7J6yBtvytsWlFegpQQPiGG0aDtP3HfeUmc-02I7wYZ_vCe_vrlMwmzlP8KrbCpBWFOfQltjE_3q1a0jLOnrjfD1fQLc-OAQ priority: 102 providerName: Wiley-Blackwell |
Title | Adaptive interference mitigation space‐time array reconfiguration by joint selection of antenna and delay tap |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12489 https://doaj.org/article/0d4afa4b664f4820b30ef1004fd0505c |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxNBFB80p3oQtRVTbRioFwtrszNvJ9ljFEMpGEQN5LbMX6m0u2GbHHLrR-hn9JP0vZlNiCB68TTD8JZZ3nv7_jCzvx9jb0d0OmRMninlRQbC-0yHscsKMw7SO5sn6oTPM3Uxh8tFsdij-qI7YQkeOCnufOhABw1GKQiA6crIoQ8EcxYckbBZir6Y87bNVIrBRaFi4Yu5McfvfQxbYFIoz9vbWrzHrEbE7nupKCL2_16hxhQzfcaedrUhn6R3es4e-foFe7KHGHjImonTS4pQnHAe2u5nPX5zlaAymppjhLD-1909kcZz3bZ6w2PTG65-rJO1udnwnw0-z28jCQ4tNYGTiuta4-g4QUdu-Eovj9h8-un7x4us40zILGCzk0mN_ZaVWmmb-9KUQaGygswdlmWAc0stkSyGwQqwRW6tHIFyrvACjYmjfMl6dVP7V4xj4SSDVyagmiF3Bnvl4AFc4coAGJf67N1WfZXtAMWJ1-K6igfbUFak6iqqus9Od7LLBKPxR6kPZIWdBEFfxwV0iKpziOpfDtFnZ9GGf9mn-vptJuLs-H_s-JodCCx10s20N6y3atf-BEuVlRmwxwK-DKJvPgCD3eg_ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoHFoOCGgRy9MSvVApsIknZnNcEGhpYQ-FrRCXyE9EVZJVWA574yfwG_klzDjZLUioUk-xrLEieTwz3_jxDWNfD-h0SOs4ktIlESTORcp3bJTqjhfOmrgunXDel70BfL9Kr5q7OfQWpuaHmG64kWUEf00GThvSdcIJRJJZ3RfJHoanTvaBzRGswUU91_01uB5MXHGayoB_MUTGaPYdmPCTQrb_d_SbiBSI-98C1RBpThbZQgMRebfW6RKbccUym39FHPiZlV2rhuSoONE9VM2bPX53WzNmlAVHR2Hc8-MT1Y7nqqrUmIfc19_ePNRK53rMf5c4nt-HWjjUVXpOM10UCr-WE4PkmI_U8AsbnBxfHvWipnRCZABznkgoTLuMUFKZ2GU689LHbS9ii-gMsG0oMxJp25sETBobIw5AWpu6BHWKX7HCZouycKuMI34S3kntEStBbDWmzN4B2NRmHtA9tdjuZPpy0_CKU3mLP3k434Ysp6nOw1S32M5UdlizabwrdUhamEoQA3boKKubvDGovG1BeQVaSvCAMEaLtvNEf-ctFeczLfYt6PAf_8l_XvST0Fr7H-Ft9rF3eX6Wn532f6yzTwminPpS2gabHVUPbhNRykhvNWvxBVkr5Us |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC7WWRA9iE8cnw16UYgm6ereCXgZH8P6GkQdWbyEftWyosmQnT3MzZ_gb_SXWN3JjC6I4KmbpppAVarqq3T6K4D7e_F0yNoi0zqUGZYhZIYmPlN2QjJ4V_StE97O9f4CXx2ogx14srkL0_NDbD-4Rc9I8To6-NJTX29i5MjsjpvyEWenSXUGdhWnpXwEu9NPi8-LTSRWSif4yxmyYK-f4IaeFKvHv3efSkiJt_80Tk2JZnYRLgwIUUx7k16CndBchvN_8AZegXbqzTLGKRHZHrrhyp74dtQTZrSN4Djhws_vP2LreGG6zqxFKn3p6PCkt7mwa_Gl5f3iOLXCiUstiajopjE8ehEJJNdiZZZXYTF78fHZfjZ0TsgccsmTScNVl5NGG1eEylakqchJFp7BGfLcxcJIqpxciU4Vzsk91N6rULJJeZTXYNS0TbgOguGTpKAtMVTCwluumCkgeuUrQo5OY3iwUV_tBlrx2N3ia52Ot7Gqo6rrpOox3NvKLnsyjb9KPY1W2EpEAuy00HaH9eBPde7RkEGrNRIyirEyDxTZ78jH3nxuDA-TDf_xnPr9h3mZZjf-R_gunH33fFa_eTl_fRPOlYxx-l_SbsFo1Z2E24xRVvbO8Cr-AvAm5Gs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+interference+mitigation+space%E2%80%90time+array+reconfiguration+by+joint+selection+of+antenna+and+delay+tap&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Yandong+Sun&rft.au=Jian+Xie&rft.au=Yanyun+Gong&rft.au=Zhaolin+Zhang&rft.date=2024-03-01&rft.pub=Wiley&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=18&rft.issue=3&rft.spage=448&rft.epage=462&rft_id=info:doi/10.1049%2Frsn2.12489&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0d4afa4b664f4820b30ef1004fd0505c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon |