Deep learning method for predicting electromagnetic emission spectrum of aerospace equipment

This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contra...

Full description

Saved in:
Bibliographic Details
Published inIET science, measurement & technology Vol. 18; no. 4; pp. 193 - 201
Main Author Zhang, Yuting
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment. Aiming at the typical and unpredictable spike signals in the electromagnetic compatibility test spectrum, a data decomposition method is adopted to extract such signals on the basis of a certain threshold and reconstruct them into a data sequence. After data decomposition, two data sequences are formed, and a long short‐term memory network is used for training and predicting the electromagnetic emission spectrum. In the process of network training, Bayesian optimization is used to optimize the network hyperparameter.
AbstractList Abstract This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment.
This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment. Aiming at the typical and unpredictable spike signals in the electromagnetic compatibility test spectrum, a data decomposition method is adopted to extract such signals on the basis of a certain threshold and reconstruct them into a data sequence. After data decomposition, two data sequences are formed, and a long short‐term memory network is used for training and predicting the electromagnetic emission spectrum. In the process of network training, Bayesian optimization is used to optimize the network hyperparameter.
This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment.
Author Zhang, Yuting
Author_xml – sequence: 1
  givenname: Yuting
  orcidid: 0000-0003-1680-6597
  surname: Zhang
  fullname: Zhang, Yuting
  email: zhang_sch@163.com
  organization: Beijing Engineering Research Center of EMC and Antenna Test Technology
BookMark eNp9UE1LxDAUDLKCunrxF-QsrOa1TZMeZf0ExYPrTQhp8rpmaZuaRMR_b3dXPYh4eo_3ZoaZOSCT3vdIyDGwU2BFdRa7lJ1CBkLukH0QHGZS5mzys2fZHjmIccUYLznAPnm-QBxoizr0rl_SDtOLt7TxgQ4BrTNpfcUWTQq-08sekzMUOxej8z2Nw_rx1lHfUI3Bx0EbpPj65oYO-3RIdhvdRjz6mlPydHW5mN_M7h6ub-fndzNTQCFnPOc2F9Iil6JEgTU3nBXIpKzQAIM6MwDAcshMM-pjUzaoKyG5YCzPhcmn5Hara71eqSG4TocP5bVTm4MPS6XDaLxFVdelrcoysxqrwkihmRF1o3UBloGt5ajFtlpmjBMDNsq4pNOYNgXtWgVMrZtW66bVpumRcvKL8m3hTzBswe-uxY9_kOrxfpFtOZ9vmpLc
CitedBy_id crossref_primary_10_1109_LEMCPA_2024_3454427
crossref_primary_10_5194_ars_22_53_2024
Cites_doi 10.1109/CompComm.2017.8322623
10.1109/TEMC.2021.3117845
10.1007/s00422-012-0490-x
10.1109/TEMC.2022.3181142
10.1109/TAP.2008.919195
10.1109/ISEMC.2016.7571672
10.1109/TEMC.2022.3169820
10.1109/LSP.2006.882094
10.1016/S0925-2312(00)00331-3
10.1109/TSA.2005.845810
10.32604/cmc.2019.04567
10.1109/TEMC.2020.3025132
10.1109/TCAD.2018.2878192
10.1109/TEMC.2019.2908354
10.1109/TEMC.2020.3004251
10.1109/TEMC.2020.2995828
10.1109/TEMC.2021.3119277
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/smt2.12178
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8830
EndPage 201
ExternalDocumentID oai_doaj_org_article_bb6d9662dae94c87a0c7bfaa41d01db8
10_1049_smt2_12178
SMT212178
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62201035
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
AEGXH
AFAZI
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PTHSS
QWB
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
WIN
ID FETCH-LOGICAL-c4148-535d378de5876e7eb5c504e0889ec101b2c1110312cfaceef6fea9785700337c3
IEDL.DBID 24P
ISSN 1751-8822
IngestDate Wed Aug 27 01:24:32 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Tue Jul 01 05:17:37 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4148-535d378de5876e7eb5c504e0889ec101b2c1110312cfaceef6fea9785700337c3
ORCID 0000-0003-1680-6597
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsmt2.12178
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_bb6d9662dae94c87a0c7bfaa41d01db8
crossref_citationtrail_10_1049_smt2_12178
crossref_primary_10_1049_smt2_12178
wiley_primary_10_1049_smt2_12178_SMT212178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle IET science, measurement & technology
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2022
2020; 62
2020
2019; 59
2019; 38
2008; 56
2017
2016
2005
2022; 64
2015
2021; 63
2021; 41
2012; 106
2001; 36
2007; 14
2005; 13
e_1_2_10_23_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_21_1
e_1_2_10_11_1
e_1_2_10_22_1
(e_1_2_10_24_1) 2022
Ni P. (e_1_2_10_20_1) 2021; 41
e_1_2_10_2_1
Qiu X. (e_1_2_10_18_1) 2020
(e_1_2_10_25_1) 2015
e_1_2_10_4_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
Konakalla S.A.R. (e_1_2_10_13_1) 2020
e_1_2_10_8_1
e_1_2_10_14_1
(e_1_2_10_17_1) 2017
e_1_2_10_7_1
Yuan M. (e_1_2_10_12_1) 2005
e_1_2_10_15_1
References_xml – volume: 63
  start-page: 888
  issue: 3
  year: 2021
  end-page: 901
  article-title: Low‐ and high‐frequency extrapolation of band‐limited frequency responses to extract delay causal time responses
  publication-title: IEEE Trans. Electromagn. Compat.
– volume: 106
  start-page: 201
  issue: 4–5
  year: 2012
  end-page: 217
  article-title: Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks
  publication-title: Biol. Cybern
– start-page: 353
  year: 2016
  end-page: 357
– volume: 13
  start-page: 377
  issue: 3
  year: 2005
  end-page: 387
  article-title: Predictive hidden Markov model selection for speech recognition
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 64
  start-page: 1506
  issue: 5
  year: 2022
  end-page: 1513
  article-title: An effective EMI source reconstruction method based on phaseless near‐field and dynamic differential evolution
  publication-title: IEEE Trans. Electromagn. Compat.
– volume: 64
  start-page: 405
  issue: 2
  year: 2022
  end-page: 417
  article-title: HilbertNet: A probabilistic machine learning framework for frequency response extrapolation of electromagnetic structures
  publication-title: IEEE Trans. Electromagn. Compat.
– volume: 56
  start-page: 933
  issue: 4
  year: 2008
  end-page: 943
  article-title: Extrapolation of time and frequency responses of resonant antennas using damped sinusoids and orthogonal polynomials
  publication-title: IEEE Trans. Antennas Propag.
– start-page: 615
  year: 2005
  end-page: 618
– start-page: 643
  year: 2017
  end-page: 647
– volume: 62
  start-page: 433
  issue: 2
  year: 2020
  end-page: 442
  article-title: Assessment of the Huygens’ box method with different sources near obstacles
  publication-title: IEEE Trans. Electromagn. Compat.
– volume: 64
  start-page: 1219
  issue: 4
  year: 2022
  end-page: 1229
  article-title: A Bayesian estimation of confidence limits for multi‐state system vulnerability assessment with IEMI
  publication-title: IEEE Trans. Electromagn. Compat.
– year: 2022
– year: 2020
– start-page: 1
  issue: 99
  year: 2020
  end-page: 8
  article-title: Spectrum based optimal filtering for short‐term phasor data prediction
  publication-title: IEEE J. Mag
– volume: 38
  start-page: 2086
  issue: 11
  year: 2019
  end-page: 2098
  article-title: An efficient extrapolation method of band‐limited S‐parameters for extracting causal impulse responses
  publication-title: IEEE Trans. Comput. Aided Design Integrated Circuits Syst.
– volume: 63
  start-page: 11
  issue: 1
  year: 2021
  end-page: 18
  article-title: A novel RFI mitigation method using source rotation
  publication-title: IEEE Electromagn. Compat.
– volume: 59
  start-page: 31
  issue: 1
  year: 2019
  end-page: 55
  article-title: A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem
  publication-title: Comput. Mater. Continua
– volume: 63
  start-page: 571
  issue: 2
  year: 2021
  end-page: 579
  article-title: Near‐field prediction in complex environment based on phaseless scanned fields and machine learning
  publication-title: IEEE Trans. Electromagn. Compat.
– volume: 41
  start-page: 121
  issue: 4
  year: 2021
  end-page: 126
  article-title: Fault diagnosis of satellite attitude actuator based on recurrent neural network
  publication-title: Chinese Space Sci. Technol
– volume: 14
  start-page: 129
  issue: 2
  year: 2007
  end-page: 132
  article-title: Bayesian model selection for Markov, hidden Markov, and multinomial models
  publication-title: IEEE Signal Process. Lett
– year: 2017
– volume: 36
  start-page: 235
  issue: 1–4
  year: 2001
  end-page: 242
  article-title: Bayesian learning for recurrent neural networks
  publication-title: Neurocomputing
– year: 2015
– volume: 64
  start-page: 358
  issue: 2
  year: 2022
  end-page: 366
  article-title: Radio‐frequency interference estimation for multiple random noise sources
  publication-title: IEEE Trans. Electromagn. Compat.
– ident: e_1_2_10_19_1
  doi: 10.1109/CompComm.2017.8322623
– ident: e_1_2_10_3_1
  doi: 10.1109/TEMC.2021.3117845
– ident: e_1_2_10_22_1
  doi: 10.1007/s00422-012-0490-x
– ident: e_1_2_10_6_1
  doi: 10.1109/TEMC.2022.3181142
– volume-title: Requirements for the Control of Electromagnetic Interference Characteristics of Subsystem and Equipment
  year: 2015
  ident: e_1_2_10_25_1
– ident: e_1_2_10_9_1
  doi: 10.1109/TAP.2008.919195
– ident: e_1_2_10_2_1
  doi: 10.1109/ISEMC.2016.7571672
– start-page: 1
  issue: 99
  year: 2020
  ident: e_1_2_10_13_1
  article-title: Spectrum based optimal filtering for short‐term phasor data prediction
  publication-title: IEEE J. Mag
– volume: 41
  start-page: 121
  issue: 4
  year: 2021
  ident: e_1_2_10_20_1
  article-title: Fault diagnosis of satellite attitude actuator based on recurrent neural network
  publication-title: Chinese Space Sci. Technol
– ident: e_1_2_10_21_1
  doi: 10.1109/TEMC.2022.3169820
– ident: e_1_2_10_14_1
  doi: 10.1109/LSP.2006.882094
– ident: e_1_2_10_23_1
  doi: 10.1016/S0925-2312(00)00331-3
– ident: e_1_2_10_15_1
  doi: 10.1109/TSA.2005.845810
– start-page: 615
  volume-title: Proceedings of the IEEE Antennas Propagation Society International Symposium
  year: 2005
  ident: e_1_2_10_12_1
– ident: e_1_2_10_8_1
  doi: 10.32604/cmc.2019.04567
– volume-title: Neural Networks and Deep Learning
  year: 2020
  ident: e_1_2_10_18_1
– ident: e_1_2_10_10_1
  doi: 10.1109/TEMC.2020.3025132
– ident: e_1_2_10_11_1
  doi: 10.1109/TCAD.2018.2878192
– volume-title: Space Engineering‐Electromagnetic Compatibility
  year: 2022
  ident: e_1_2_10_24_1
– ident: e_1_2_10_7_1
  doi: 10.1109/TEMC.2019.2908354
– volume-title: Electromagnetic Compatibility Requirements for Space Equipment and Systems.
  year: 2017
  ident: e_1_2_10_17_1
– ident: e_1_2_10_5_1
  doi: 10.1109/TEMC.2020.3004251
– ident: e_1_2_10_4_1
  doi: 10.1109/TEMC.2020.2995828
– ident: e_1_2_10_16_1
  doi: 10.1109/TEMC.2021.3119277
SSID ssj0056511
Score 2.354776
Snippet This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace...
Abstract This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 193
SubjectTerms aerospace testing
Bayes rule
data analysis
data decomposition
deep learning
electromagnetic compatibility
long short‐term memory
spectrum prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXAb0oLN3NJrvN0SdFqBdb6EFY8pgtgn1Y2__vTHZbKohevC1L2ISZTeabZPJ9jF1mMoHSCx-V7VxEUgsbWcxtI2-0y2OTJhnQiW73Oev05dNADdakvqgmrKIHrgzXsjbzCMmFN6Cla-cmdrktjZGJjxNvwzVfjHnLZKpagxGlBOVdjI1JhBhSLIlJpW59juaCOBVIWG0tFAXG_u8INYSYxx22XWNDflONaZdtwHiPba0xBu6z13uAKa-lHoa80n_mCDz5dEZHLlTEzGtpm5EZjumKIidJN9oU4-Fa5Wwx4pOSG8BBYcIMHD4Wb6Fq6ID1Hx96d52oFkiInKSNQJUqn-ZtDwrXNMjBKqdiCVS5BA7nmhUOlzKctsKV-D0osxIMpo3EaZ-muUsPWWM8GcMR45Q4QeZisETJp5VVXmtfWgTfuZVSNtnV0laFq9nDScTivQin2FIXZNci2LXJLlZtpxVnxo-tbsnkqxbEcx1eoPeL2vvFX95vsuvgsF_6KV66PRGejv-jxxO2KRDXVNVip6yBXoMzxCVzex5-wS98I-Ea
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep learning method for predicting electromagnetic emission spectrum of aerospace equipment
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsmt2.12178
https://doaj.org/article/bb6d9662dae94c87a0c7bfaa41d01db8
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qvehBfGJ9saAXhWCy2WQb8OKrFKEi2EIPQtjHpAj2YWn_vzObtFoQwVsIk02Yzcx-szvzDWMXqYygcMIFRVOJQGbCBAZj28DpzKpQx1EKdKLbeU7bPfnUT_o1drOohSn5IZYbbmQZ3l-TgWtTdiFBUEtFr8OZIG4E1Vxj61RbS8z5Qr4s_DAiFd99F9fHKEAcKRbkpDK7_n52ZTnyrP2rKNUvM61ttlXhQ35bTugOq8Fol23-YA3cY28PABNetXsY8LIHNEfwySdTOnahRGZetbcZ6sGIyhQ5tXWjjTHuSyun8yEfF1wDfhQGzcDhc_7uM4f2Wa_12L1vB1WThMBK2gxM4sTFqukgQb8GCkxik1ACZS-BRXszwqI7Q9MVtsDxoEgL0Bg6Eq99HCsbH7D6aDyCQ8YpeILUhmCIli9LTOKyzBUGAbgyUsoGu1zoKrcVgzg1svjI_Um2zHLSa-712mDnS9lJyZvxq9QdqXwpQVzX_sZ4Osgr08mNSR0GZcJpyKRtKh1aZQqtZeTCyBkc5MpP2B_vyV87XeGvjv4jfMw2BGKYMjPshNVxduAUMcjMnPlf7cxH8F-OkdkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eD-qDeOJtQF8Uim2aNu2j17IeK4Ir-CCUHNNFcA9X_f_OpN3VBRF8K2Walkln8s1k8g1jh6mMoHTCBWWmRCBzYQKDsW3gdG5VqOMoBdrRbd2lzUd5_ZQ81bU5dBam4ocYJ9zIMry_JgOnhHQVcEoiyXzvfggiR1DZNJuVqVBkl0LejxwxQhXffhcXyChAIClG7KQyP_l-dmI98rT9kzDVrzONJbZYA0R-Ws3oMpuC3gpb-EEbuMqeLwAGvO730OFVE2iO6JMPhrTvQpXMvO5v09WdHp1T5NTXjTJj3J-tHH52eb_kGvCjMGoGDm-fL750aI09Ni7b582g7pIQWEnZwCROXKwyBwk6NlBgEpuEEqh8CSwanBEW_RnarrAljgdlWoLG2JGI7eNY2XidzfT6PdhgnKInSG0Ihnj58sQkLs9daRCBKyOl3GRHI10VtqYQp04Wr4XfypZ5QXotvF432cFYdlARZ_wqdUYqH0sQ2bW_0R92itp2CmNSh1GZcBpyaTOlQ6tMqbWMXBg5g4Mc-wn74z3FQ6st_NXWf4T32Vyz3botbq_ubrbZvEBAU5WJ7bAZnCnYRUDyYfb8b_cFLcDbdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9swEBdZAmX7MNa1o-legvXLBqa2LFsx7Eu3LKSPhMGSEcrA6HEKheXRLP3_eyc72QKlsG_GnGRz0p1-J51-x9hJLhPwTrjId5SIZCFMZDC2jZwurIp1muRAJ7qDYd4fy4tJNmmwz5u7MBU_xHbDjSwj-Gsy8KXzVbwpiSPzz2wtiBtBdZ6wFtHk4Zxunf0cX483nhixSqi_iytkEiGSFBt6Ulmc_m29syAF3v5dnBoWmt4L9rxGiPysGtJ91oD5S_bsH97AA_arC7DkdcGHKa-qQHOEn3y5ooMXSmXmdYGbmZ7O6aIip8JutDXGw-XK1d2MLzzXgD-FYTNwuL27CblDh2zc-zb62o_qMgmRlbQdmKWZS1XHQYaeDRSYzGaxBMpfAosWZ4RFh4bGK6zH_sDnHjQGj8Rsn6bKpq9Yc76YwxHjFD5BbmMwRMxXZCZzReG8QQiujJSyzT5udFXamkOcSln8LsNZtixK0msZ9NpmH7ayy4o540GpL6TyrQSxXYcXi9W0rI2nNCZ3GJYJp6GQtqN0bJXxWsvExYkz2MmnMGCPfKf8MRiJ8HT8P8Lv2d73bq-8Oh9evmZPBQKaKk3sDWviQMFbBCRr866ed_cridxv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+method+for+predicting+electromagnetic+emission+spectrum+of+aerospace+equipment&rft.jtitle=IET+science%2C+measurement+%26+technology&rft.au=Zhang%2C+Yuting&rft.date=2024-06-01&rft.issn=1751-8822&rft.eissn=1751-8830&rft.volume=18&rft.issue=4&rft.spage=193&rft.epage=201&rft_id=info:doi/10.1049%2Fsmt2.12178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_smt2_12178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8822&client=summon