Deep learning method for predicting electromagnetic emission spectrum of aerospace equipment
This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contra...
Saved in:
Published in | IET science, measurement & technology Vol. 18; no. 4; pp. 193 - 201 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Wiley
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment.
Aiming at the typical and unpredictable spike signals in the electromagnetic compatibility test spectrum, a data decomposition method is adopted to extract such signals on the basis of a certain threshold and reconstruct them into a data sequence. After data decomposition, two data sequences are formed, and a long short‐term memory network is used for training and predicting the electromagnetic emission spectrum. In the process of network training, Bayesian optimization is used to optimize the network hyperparameter. |
---|---|
AbstractList | Abstract This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment. This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment. Aiming at the typical and unpredictable spike signals in the electromagnetic compatibility test spectrum, a data decomposition method is adopted to extract such signals on the basis of a certain threshold and reconstruct them into a data sequence. After data decomposition, two data sequences are formed, and a long short‐term memory network is used for training and predicting the electromagnetic emission spectrum. In the process of network training, Bayesian optimization is used to optimize the network hyperparameter. This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold‐based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short‐term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment. |
Author | Zhang, Yuting |
Author_xml | – sequence: 1 givenname: Yuting orcidid: 0000-0003-1680-6597 surname: Zhang fullname: Zhang, Yuting email: zhang_sch@163.com organization: Beijing Engineering Research Center of EMC and Antenna Test Technology |
BookMark | eNp9UE1LxDAUDLKCunrxF-QsrOa1TZMeZf0ExYPrTQhp8rpmaZuaRMR_b3dXPYh4eo_3ZoaZOSCT3vdIyDGwU2BFdRa7lJ1CBkLukH0QHGZS5mzys2fZHjmIccUYLznAPnm-QBxoizr0rl_SDtOLt7TxgQ4BrTNpfcUWTQq-08sekzMUOxej8z2Nw_rx1lHfUI3Bx0EbpPj65oYO-3RIdhvdRjz6mlPydHW5mN_M7h6ub-fndzNTQCFnPOc2F9Iil6JEgTU3nBXIpKzQAIM6MwDAcshMM-pjUzaoKyG5YCzPhcmn5Hara71eqSG4TocP5bVTm4MPS6XDaLxFVdelrcoysxqrwkihmRF1o3UBloGt5ajFtlpmjBMDNsq4pNOYNgXtWgVMrZtW66bVpumRcvKL8m3hTzBswe-uxY9_kOrxfpFtOZ9vmpLc |
CitedBy_id | crossref_primary_10_1109_LEMCPA_2024_3454427 crossref_primary_10_5194_ars_22_53_2024 |
Cites_doi | 10.1109/CompComm.2017.8322623 10.1109/TEMC.2021.3117845 10.1007/s00422-012-0490-x 10.1109/TEMC.2022.3181142 10.1109/TAP.2008.919195 10.1109/ISEMC.2016.7571672 10.1109/TEMC.2022.3169820 10.1109/LSP.2006.882094 10.1016/S0925-2312(00)00331-3 10.1109/TSA.2005.845810 10.32604/cmc.2019.04567 10.1109/TEMC.2020.3025132 10.1109/TCAD.2018.2878192 10.1109/TEMC.2019.2908354 10.1109/TEMC.2020.3004251 10.1109/TEMC.2020.2995828 10.1109/TEMC.2021.3119277 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/smt2.12178 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8830 |
EndPage | 201 |
ExternalDocumentID | oai_doaj_org_article_bb6d9662dae94c87a0c7bfaa41d01db8 10_1049_smt2_12178 SMT212178 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62201035 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHJG AAJGR ABJCF ABMDY ABQXS ACCMX ACESK ACGFS ACIWK ACXQS ADEYR AEGXH AFAZI AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PTHSS QWB RNS ROL RUI S0W U5U UNMZH ZL0 AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION WIN |
ID | FETCH-LOGICAL-c4148-535d378de5876e7eb5c504e0889ec101b2c1110312cfaceef6fea9785700337c3 |
IEDL.DBID | 24P |
ISSN | 1751-8822 |
IngestDate | Wed Aug 27 01:24:32 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Tue Jul 01 05:17:37 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4148-535d378de5876e7eb5c504e0889ec101b2c1110312cfaceef6fea9785700337c3 |
ORCID | 0000-0003-1680-6597 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsmt2.12178 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bb6d9662dae94c87a0c7bfaa41d01db8 crossref_citationtrail_10_1049_smt2_12178 crossref_primary_10_1049_smt2_12178 wiley_primary_10_1049_smt2_12178_SMT212178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | IET science, measurement & technology |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2022 2020; 62 2020 2019; 59 2019; 38 2008; 56 2017 2016 2005 2022; 64 2015 2021; 63 2021; 41 2012; 106 2001; 36 2007; 14 2005; 13 e_1_2_10_23_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_21_1 e_1_2_10_11_1 e_1_2_10_22_1 (e_1_2_10_24_1) 2022 Ni P. (e_1_2_10_20_1) 2021; 41 e_1_2_10_2_1 Qiu X. (e_1_2_10_18_1) 2020 (e_1_2_10_25_1) 2015 e_1_2_10_4_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 Konakalla S.A.R. (e_1_2_10_13_1) 2020 e_1_2_10_8_1 e_1_2_10_14_1 (e_1_2_10_17_1) 2017 e_1_2_10_7_1 Yuan M. (e_1_2_10_12_1) 2005 e_1_2_10_15_1 |
References_xml | – volume: 63 start-page: 888 issue: 3 year: 2021 end-page: 901 article-title: Low‐ and high‐frequency extrapolation of band‐limited frequency responses to extract delay causal time responses publication-title: IEEE Trans. Electromagn. Compat. – volume: 106 start-page: 201 issue: 4–5 year: 2012 end-page: 217 article-title: Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks publication-title: Biol. Cybern – start-page: 353 year: 2016 end-page: 357 – volume: 13 start-page: 377 issue: 3 year: 2005 end-page: 387 article-title: Predictive hidden Markov model selection for speech recognition publication-title: IEEE Trans. Speech Audio Process. – volume: 64 start-page: 1506 issue: 5 year: 2022 end-page: 1513 article-title: An effective EMI source reconstruction method based on phaseless near‐field and dynamic differential evolution publication-title: IEEE Trans. Electromagn. Compat. – volume: 64 start-page: 405 issue: 2 year: 2022 end-page: 417 article-title: HilbertNet: A probabilistic machine learning framework for frequency response extrapolation of electromagnetic structures publication-title: IEEE Trans. Electromagn. Compat. – volume: 56 start-page: 933 issue: 4 year: 2008 end-page: 943 article-title: Extrapolation of time and frequency responses of resonant antennas using damped sinusoids and orthogonal polynomials publication-title: IEEE Trans. Antennas Propag. – start-page: 615 year: 2005 end-page: 618 – start-page: 643 year: 2017 end-page: 647 – volume: 62 start-page: 433 issue: 2 year: 2020 end-page: 442 article-title: Assessment of the Huygens’ box method with different sources near obstacles publication-title: IEEE Trans. Electromagn. Compat. – volume: 64 start-page: 1219 issue: 4 year: 2022 end-page: 1229 article-title: A Bayesian estimation of confidence limits for multi‐state system vulnerability assessment with IEMI publication-title: IEEE Trans. Electromagn. Compat. – year: 2022 – year: 2020 – start-page: 1 issue: 99 year: 2020 end-page: 8 article-title: Spectrum based optimal filtering for short‐term phasor data prediction publication-title: IEEE J. Mag – volume: 38 start-page: 2086 issue: 11 year: 2019 end-page: 2098 article-title: An efficient extrapolation method of band‐limited S‐parameters for extracting causal impulse responses publication-title: IEEE Trans. Comput. Aided Design Integrated Circuits Syst. – volume: 63 start-page: 11 issue: 1 year: 2021 end-page: 18 article-title: A novel RFI mitigation method using source rotation publication-title: IEEE Electromagn. Compat. – volume: 59 start-page: 31 issue: 1 year: 2019 end-page: 55 article-title: A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem publication-title: Comput. Mater. Continua – volume: 63 start-page: 571 issue: 2 year: 2021 end-page: 579 article-title: Near‐field prediction in complex environment based on phaseless scanned fields and machine learning publication-title: IEEE Trans. Electromagn. Compat. – volume: 41 start-page: 121 issue: 4 year: 2021 end-page: 126 article-title: Fault diagnosis of satellite attitude actuator based on recurrent neural network publication-title: Chinese Space Sci. Technol – volume: 14 start-page: 129 issue: 2 year: 2007 end-page: 132 article-title: Bayesian model selection for Markov, hidden Markov, and multinomial models publication-title: IEEE Signal Process. Lett – year: 2017 – volume: 36 start-page: 235 issue: 1–4 year: 2001 end-page: 242 article-title: Bayesian learning for recurrent neural networks publication-title: Neurocomputing – year: 2015 – volume: 64 start-page: 358 issue: 2 year: 2022 end-page: 366 article-title: Radio‐frequency interference estimation for multiple random noise sources publication-title: IEEE Trans. Electromagn. Compat. – ident: e_1_2_10_19_1 doi: 10.1109/CompComm.2017.8322623 – ident: e_1_2_10_3_1 doi: 10.1109/TEMC.2021.3117845 – ident: e_1_2_10_22_1 doi: 10.1007/s00422-012-0490-x – ident: e_1_2_10_6_1 doi: 10.1109/TEMC.2022.3181142 – volume-title: Requirements for the Control of Electromagnetic Interference Characteristics of Subsystem and Equipment year: 2015 ident: e_1_2_10_25_1 – ident: e_1_2_10_9_1 doi: 10.1109/TAP.2008.919195 – ident: e_1_2_10_2_1 doi: 10.1109/ISEMC.2016.7571672 – start-page: 1 issue: 99 year: 2020 ident: e_1_2_10_13_1 article-title: Spectrum based optimal filtering for short‐term phasor data prediction publication-title: IEEE J. Mag – volume: 41 start-page: 121 issue: 4 year: 2021 ident: e_1_2_10_20_1 article-title: Fault diagnosis of satellite attitude actuator based on recurrent neural network publication-title: Chinese Space Sci. Technol – ident: e_1_2_10_21_1 doi: 10.1109/TEMC.2022.3169820 – ident: e_1_2_10_14_1 doi: 10.1109/LSP.2006.882094 – ident: e_1_2_10_23_1 doi: 10.1016/S0925-2312(00)00331-3 – ident: e_1_2_10_15_1 doi: 10.1109/TSA.2005.845810 – start-page: 615 volume-title: Proceedings of the IEEE Antennas Propagation Society International Symposium year: 2005 ident: e_1_2_10_12_1 – ident: e_1_2_10_8_1 doi: 10.32604/cmc.2019.04567 – volume-title: Neural Networks and Deep Learning year: 2020 ident: e_1_2_10_18_1 – ident: e_1_2_10_10_1 doi: 10.1109/TEMC.2020.3025132 – ident: e_1_2_10_11_1 doi: 10.1109/TCAD.2018.2878192 – volume-title: Space Engineering‐Electromagnetic Compatibility year: 2022 ident: e_1_2_10_24_1 – ident: e_1_2_10_7_1 doi: 10.1109/TEMC.2019.2908354 – volume-title: Electromagnetic Compatibility Requirements for Space Equipment and Systems. year: 2017 ident: e_1_2_10_17_1 – ident: e_1_2_10_5_1 doi: 10.1109/TEMC.2020.3004251 – ident: e_1_2_10_4_1 doi: 10.1109/TEMC.2020.2995828 – ident: e_1_2_10_16_1 doi: 10.1109/TEMC.2021.3119277 |
SSID | ssj0056511 |
Score | 2.354776 |
Snippet | This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace... Abstract This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 193 |
SubjectTerms | aerospace testing Bayes rule data analysis data decomposition deep learning electromagnetic compatibility long short‐term memory spectrum prediction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXAb0oLN3NJrvN0SdFqBdb6EFY8pgtgn1Y2__vTHZbKohevC1L2ISZTeabZPJ9jF1mMoHSCx-V7VxEUgsbWcxtI2-0y2OTJhnQiW73Oev05dNADdakvqgmrKIHrgzXsjbzCMmFN6Cla-cmdrktjZGJjxNvwzVfjHnLZKpagxGlBOVdjI1JhBhSLIlJpW59juaCOBVIWG0tFAXG_u8INYSYxx22XWNDflONaZdtwHiPba0xBu6z13uAKa-lHoa80n_mCDz5dEZHLlTEzGtpm5EZjumKIidJN9oU4-Fa5Wwx4pOSG8BBYcIMHD4Wb6Fq6ID1Hx96d52oFkiInKSNQJUqn-ZtDwrXNMjBKqdiCVS5BA7nmhUOlzKctsKV-D0osxIMpo3EaZ-muUsPWWM8GcMR45Q4QeZisETJp5VVXmtfWgTfuZVSNtnV0laFq9nDScTivQin2FIXZNci2LXJLlZtpxVnxo-tbsnkqxbEcx1eoPeL2vvFX95vsuvgsF_6KV66PRGejv-jxxO2KRDXVNVip6yBXoMzxCVzex5-wS98I-Ea priority: 102 providerName: Directory of Open Access Journals |
Title | Deep learning method for predicting electromagnetic emission spectrum of aerospace equipment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsmt2.12178 https://doaj.org/article/bb6d9662dae94c87a0c7bfaa41d01db8 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qvehBfGJ9saAXhWCy2WQb8OKrFKEi2EIPQtjHpAj2YWn_vzObtFoQwVsIk02Yzcx-szvzDWMXqYygcMIFRVOJQGbCBAZj28DpzKpQx1EKdKLbeU7bPfnUT_o1drOohSn5IZYbbmQZ3l-TgWtTdiFBUEtFr8OZIG4E1Vxj61RbS8z5Qr4s_DAiFd99F9fHKEAcKRbkpDK7_n52ZTnyrP2rKNUvM61ttlXhQ35bTugOq8Fol23-YA3cY28PABNetXsY8LIHNEfwySdTOnahRGZetbcZ6sGIyhQ5tXWjjTHuSyun8yEfF1wDfhQGzcDhc_7uM4f2Wa_12L1vB1WThMBK2gxM4sTFqukgQb8GCkxik1ACZS-BRXszwqI7Q9MVtsDxoEgL0Bg6Eq99HCsbH7D6aDyCQ8YpeILUhmCIli9LTOKyzBUGAbgyUsoGu1zoKrcVgzg1svjI_Um2zHLSa-712mDnS9lJyZvxq9QdqXwpQVzX_sZ4Osgr08mNSR0GZcJpyKRtKh1aZQqtZeTCyBkc5MpP2B_vyV87XeGvjv4jfMw2BGKYMjPshNVxduAUMcjMnPlf7cxH8F-OkdkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eD-qDeOJtQF8Uim2aNu2j17IeK4Ir-CCUHNNFcA9X_f_OpN3VBRF8K2Walkln8s1k8g1jh6mMoHTCBWWmRCBzYQKDsW3gdG5VqOMoBdrRbd2lzUd5_ZQ81bU5dBam4ocYJ9zIMry_JgOnhHQVcEoiyXzvfggiR1DZNJuVqVBkl0LejxwxQhXffhcXyChAIClG7KQyP_l-dmI98rT9kzDVrzONJbZYA0R-Ws3oMpuC3gpb-EEbuMqeLwAGvO730OFVE2iO6JMPhrTvQpXMvO5v09WdHp1T5NTXjTJj3J-tHH52eb_kGvCjMGoGDm-fL750aI09Ni7b582g7pIQWEnZwCROXKwyBwk6NlBgEpuEEqh8CSwanBEW_RnarrAljgdlWoLG2JGI7eNY2XidzfT6PdhgnKInSG0Ihnj58sQkLs9daRCBKyOl3GRHI10VtqYQp04Wr4XfypZ5QXotvF432cFYdlARZ_wqdUYqH0sQ2bW_0R92itp2CmNSh1GZcBpyaTOlQ6tMqbWMXBg5g4Mc-wn74z3FQ6st_NXWf4T32Vyz3botbq_ubrbZvEBAU5WJ7bAZnCnYRUDyYfb8b_cFLcDbdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9swEBdZAmX7MNa1o-legvXLBqa2LFsx7Eu3LKSPhMGSEcrA6HEKheXRLP3_eyc72QKlsG_GnGRz0p1-J51-x9hJLhPwTrjId5SIZCFMZDC2jZwurIp1muRAJ7qDYd4fy4tJNmmwz5u7MBU_xHbDjSwj-Gsy8KXzVbwpiSPzz2wtiBtBdZ6wFtHk4Zxunf0cX483nhixSqi_iytkEiGSFBt6Ulmc_m29syAF3v5dnBoWmt4L9rxGiPysGtJ91oD5S_bsH97AA_arC7DkdcGHKa-qQHOEn3y5ooMXSmXmdYGbmZ7O6aIip8JutDXGw-XK1d2MLzzXgD-FYTNwuL27CblDh2zc-zb62o_qMgmRlbQdmKWZS1XHQYaeDRSYzGaxBMpfAosWZ4RFh4bGK6zH_sDnHjQGj8Rsn6bKpq9Yc76YwxHjFD5BbmMwRMxXZCZzReG8QQiujJSyzT5udFXamkOcSln8LsNZtixK0msZ9NpmH7ayy4o540GpL6TyrQSxXYcXi9W0rI2nNCZ3GJYJp6GQtqN0bJXxWsvExYkz2MmnMGCPfKf8MRiJ8HT8P8Lv2d73bq-8Oh9evmZPBQKaKk3sDWviQMFbBCRr866ed_cridxv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+method+for+predicting+electromagnetic+emission+spectrum+of+aerospace+equipment&rft.jtitle=IET+science%2C+measurement+%26+technology&rft.au=Zhang%2C+Yuting&rft.date=2024-06-01&rft.issn=1751-8822&rft.eissn=1751-8830&rft.volume=18&rft.issue=4&rft.spage=193&rft.epage=201&rft_id=info:doi/10.1049%2Fsmt2.12178&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_smt2_12178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8822&client=summon |