Torque ripple reduction of brushless DC motor with convex arc‐type permanent magnets based on robust optimization design

The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual co...

Full description

Saved in:
Bibliographic Details
Published inIET electric power applications Vol. 16; no. 5; pp. 565 - 574
Main Authors Feng, Haichao, Zhang, Sheng, Wei, Jinsong, Xu, Xiaozhuo, Gao, Caixia, Ai, Liwang
Format Journal Article
LanguageEnglish
Published Wiley 01.05.2022
Online AccessGet full text

Cover

Loading…
Abstract The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual condition, the robustness optimization is performed in the paper. Firstly, an improving convex arc type permanent magnet structure is adopted to improve air gap flux density and suppress the cogging torque. Secondly, the structure parameters of the magnetic pole are selected as optimization variables, and the magnetization angle, remanence and position of the permanent magnet, static and dynamic rotor eccentricity are considered as noise factors. To improve the overall robustness of the motor under different operating conditions, the dynamic Taguchi method is used to optimize the robustness of the motor, and the test data is processed through the relation analysis method to obtain the optimal combination of control factors. Finally, the prototype is manufactured for the experiment. Compared with the single‐operating conditions robust optimization results, the robust optimization method improves the robustness of the motor. The cogging torque amplitude is reduced by 39.2%. The torque ripple is 38.4% lower than that before optimization.
AbstractList The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual condition, the robustness optimization is performed in the paper. Firstly, an improving convex arc type permanent magnet structure is adopted to improve air gap flux density and suppress the cogging torque. Secondly, the structure parameters of the magnetic pole are selected as optimization variables, and the magnetization angle, remanence and position of the permanent magnet, static and dynamic rotor eccentricity are considered as noise factors. To improve the overall robustness of the motor under different operating conditions, the dynamic Taguchi method is used to optimize the robustness of the motor, and the test data is processed through the relation analysis method to obtain the optimal combination of control factors. Finally, the prototype is manufactured for the experiment. Compared with the single‐operating conditions robust optimization results, the robust optimization method improves the robustness of the motor. The cogging torque amplitude is reduced by 39.2%. The torque ripple is 38.4% lower than that before optimization.
Abstract The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual condition, the robustness optimization is performed in the paper. Firstly, an improving convex arc type permanent magnet structure is adopted to improve air gap flux density and suppress the cogging torque. Secondly, the structure parameters of the magnetic pole are selected as optimization variables, and the magnetization angle, remanence and position of the permanent magnet, static and dynamic rotor eccentricity are considered as noise factors. To improve the overall robustness of the motor under different operating conditions, the dynamic Taguchi method is used to optimize the robustness of the motor, and the test data is processed through the relation analysis method to obtain the optimal combination of control factors. Finally, the prototype is manufactured for the experiment. Compared with the single‐operating conditions robust optimization results, the robust optimization method improves the robustness of the motor. The cogging torque amplitude is reduced by 39.2%. The torque ripple is 38.4% lower than that before optimization.
Author Zhang, Sheng
Wei, Jinsong
Gao, Caixia
Xu, Xiaozhuo
Ai, Liwang
Feng, Haichao
Author_xml – sequence: 1
  givenname: Haichao
  orcidid: 0000-0002-6270-4025
  surname: Feng
  fullname: Feng, Haichao
  organization: Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization
– sequence: 2
  givenname: Sheng
  surname: Zhang
  fullname: Zhang, Sheng
  organization: Henan Polytechnic University
– sequence: 3
  givenname: Jinsong
  surname: Wei
  fullname: Wei, Jinsong
  organization: Henan Polytechnic University
– sequence: 4
  givenname: Xiaozhuo
  orcidid: 0000-0003-0817-979X
  surname: Xu
  fullname: Xu, Xiaozhuo
  email: xxz@hpu.edu.cn
  organization: Henan Polytechnic University
– sequence: 5
  givenname: Caixia
  orcidid: 0000-0003-2247-1543
  surname: Gao
  fullname: Gao, Caixia
  organization: Henan Polytechnic University
– sequence: 6
  givenname: Liwang
  orcidid: 0000-0002-2329-1766
  surname: Ai
  fullname: Ai, Liwang
  organization: Henan Polytechnic University
BookMark eNp9kU1OwzAQhS1UJKCw4QReIxVsJ3HsJSrlR6oEC1hbTjJuXSVxsF2grDgCZ-QkpC2wQIjV_Oi9TzN6B2jQuhYQOqbklJJUnkHdsVPKaM530D7NMzoSPJeDn56TPXQQwoKQLOMp30ev984_LgF723V1X6BaltG6FjuDC78M8xpCwBdj3LjoPH62cY5L1z7BC9a-_Hh7j6sOcAe-0S20ETd61kIMuNABKtxzvCuWIWLXRdvYV71hVxDsrD1Eu0bXAY6-6hA9XE7ux9ej6e3Vzfh8OipTmvJRIQWrSM4LWrDESAkgOGOmSqjMtKH9HghLJGVJJsvKMCJFLglooiUTJE-TIbrZciunF6rzttF-pZy2arNwfqa0j7asQVGTMcMggUTyNNFcpLkQPBO5kP0IVc8iW1bpXQgejCpt3DwVvba1okStc1DrHNQmh95y8svyfcKfYroVP9saVv8o1WR6x7aeT688nHE
CitedBy_id crossref_primary_10_1049_elp2_12367
crossref_primary_10_1007_s42417_023_01208_9
crossref_primary_10_1049_elp2_12490
crossref_primary_10_53898_josse2024411
crossref_primary_10_32397_tesea_vol4_n2_535
Cites_doi 10.1109/TIE.2008.918403
10.1109/TMAG.2011.2125795
10.1109/TTE.2018.2859038
10.1109/TEC.2020.3048051
10.1109/TMAG.2014.2325711
10.1109/TMAG.2004.825027
10.1002/jnm.2569
10.1109/TMAG.2009.2012820
10.1049/ip-epa:19971205
10.1109/20.706828
10.1109/TMAG.2009.2012561
10.1109/TMAG.2011.2147326
10.1109/TASC.2018.2882426
10.1109/TMAG.2010.2057514
10.1109/TMAG.2006.879077
10.1109/TIA.2011.2154350
10.1109/TMAG.2005.862756
10.1109/TMAG.2009.2022639
10.1109/TMAG.2006.871452
10.1109/TMAG.2005.846478
10.1109/TMAG.2013.2269906
10.1109/TASC.2020.2971672
10.1109/TIE.2011.2143379
10.1109/TIA.2002.802989
10.1109/TIE.2014.2341601
10.1109/60.900501
10.1109/TMAG.2020.3034882
10.1109/20.951313
10.1109/20.800636
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/elp2.12176
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8679
EndPage 574
ExternalDocumentID oai_doaj_org_article_1f52f2e3e39643a68478865878943aed
10_1049_elp2_12176
ELP212176
Genre article
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
2QL
4.4
4IJ
5GY
6IK
6OB
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
U5U
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4146-b982d076b1b23f99ee8622fd3195af16b1e023912359cdf2098790ea0a9280743
IEDL.DBID DOA
ISSN 1751-8660
IngestDate Wed Aug 27 00:41:49 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Tue Aug 05 12:04:53 EDT 2025
Wed Jan 22 16:24:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4146-b982d076b1b23f99ee8622fd3195af16b1e023912359cdf2098790ea0a9280743
ORCID 0000-0002-6270-4025
0000-0003-2247-1543
0000-0002-2329-1766
0000-0003-0817-979X
OpenAccessLink https://doaj.org/article/1f52f2e3e39643a68478865878943aed
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1f52f2e3e39643a68478865878943aed
crossref_citationtrail_10_1049_elp2_12176
crossref_primary_10_1049_elp2_12176
wiley_primary_10_1049_elp2_12176_ELP212176
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle IET electric power applications
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2002; 38
2009; 45
2004; 40
2013; 49
2009
2005; 41
2008; 55
2020; 33
2012; 59
2002
2012; 32
2021; 36
2021; 57
2006; 42
2010; 46
2018; 4
2000; 15
2020; 30
2015; 62
1997; 144
1999; 35
2019; 29
2001; 37
2011; 47
2014; 50
2018; 31
1998; 34
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_17_1
Park Y. (e_1_2_9_16_1) 2020; 30
e_1_2_9_18_1
e_1_2_9_22_1
Guo H. (e_1_2_9_30_1) 2012; 32
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Deng J.L. (e_1_2_9_35_1) 2002
e_1_2_9_4_1
e_1_2_9_3_1
Zhou Y. (e_1_2_9_14_1) 2015; 62
e_1_2_9_2_1
CheshmehBeigi H.M. (e_1_2_9_19_1) 2020; 33
e_1_2_9_9_1
Moradi Cheshmeh Beigi H. (e_1_2_9_20_1) 2018; 31
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 57
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  article-title: Analytical calculation of surface‐inset PM in‐wheel motors and reduction of torque ripple
  publication-title: IEEE Trans. Magn
– volume: 55
  start-page: 2246
  issue: 6
  year: 2008
  end-page: 2257
  article-title: Overview of permanent‐magnet brushless drives for electric and hybrid electric vehicles
  publication-title: IEEE Trans. Ind. Electron
– volume: 30
  start-page: 1
  issue: 4
  year: 2020
  end-page: 5
  article-title: Efficiency improvement of permanent magnet BLDC with Halbach magnet array for drone
  publication-title: IEEE Trans. Appl. Supercond
– volume: 35
  start-page: 3700
  issue: 5
  year: 1999
  end-page: 3702
  article-title: Application of Taguchi method to robust design of BLDC motor performance
  publication-title: IEEE Trans. Magn
– volume: 32
  start-page: 88
  issue: 24
  year: 2012
  end-page: 95
  article-title: Robust design for reducing torque ripple in permanent magnet synchronous motor
  publication-title: Proc. CSEE
– volume: 42
  start-page: 3485
  issue: 10
  year: 2006
  end-page: 3487
  article-title: The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization
  publication-title: IEEE Trans. Magn
– volume: 41
  start-page: 1796
  issue: 5
  year: 2005
  end-page: 1799
  article-title: Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method
  publication-title: IEEE Trans. Magn
– volume: 45
  start-page: 4601
  issue: 10
  year: 2009
  end-page: 4604
  article-title: Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors
  publication-title: IEEE Trans. Magn
– volume: 42
  start-page: 442
  issue: 3
  year: 2006
  end-page: 445
  article-title: Effect of magnet segmentation on the cogging torque in surface‐mounted permanent‐magnet motors
  publication-title: IEEE Trans. Magn
– volume: 29
  start-page: 1
  issue: 2
  year: 2019
  end-page: 6
  article-title: Robust design optimization of a high‐temperature superconducting linear synchronous motor based on Taguchi method
  publication-title: IEEE Trans. Appl. Supercond
– volume: 46
  start-page: 3928
  issue: 11
  year: 2010
  end-page: 3932
  article-title: A novel air‐gap profile of single‐phase permanent‐magnet brushless DC motor for starting torque improvement and cogging torque reduction
  publication-title: IEEE Trans. Magn
– volume: 45
  start-page: 1780
  issue: 3
  year: 2009
  end-page: 1783
  article-title: Multiobjective optimal design for interior permanent magnet synchronous motor
  publication-title: IEEE Trans. Magn
– volume: 40
  start-page: 1244
  issue: 2
  year: 2004
  end-page: 1247
  article-title: Analysis of cogging torque considering tolerance of axial displacement on BLDC motor by using a stochastic simulation coupled with 3‐D EMCN
  publication-title: IEEE Trans. Magn
– volume: 36
  start-page: 2152
  issue: 3
  year: 2021
  end-page: 2162
  article-title: Methods to improve the cogging torque robustness under manufacturing tolerances for the permanent magnet synchronous machine
  publication-title: IEEE Trans. Energy Convers
– volume: 62
  start-page: 1629
  issue: 3
  year: 2015
  end-page: 1638
  article-title: Intelligent sensorless antilock braking system for brushless in‐wheel electric vehicles
  publication-title: IEEE Trans. Ind. Electron
– volume: 144
  start-page: 325
  issue: 5
  year: 1997
  end-page: 330
  article-title: Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF
  publication-title: IEE Proc. Elec. Power Appl
– volume: 38
  start-page: 1259
  issue: 5
  year: 2002
  end-page: 1265
  article-title: Design techniques for reducing the cogging torque in surface‐mounted PM motors
  publication-title: IEEE Trans. Ind. Appl
– volume: 4
  start-page: 877
  issue: 4
  year: 2018
  end-page: 887
  article-title: Numerical and experimental investigation of an improved flux path brushless‐DC machine for variable speed applications
  publication-title: IEEE Trans. Transp. Electrification
– volume: 59
  start-page: 2414
  issue: 6
  year: 2012
  end-page: 2425
  article-title: Comparison of analytical models of cogging torque in surface‐mounted PM machines
  publication-title: IEEE Trans. Ind. Electron
– volume: 42
  start-page: 1135
  issue: 4
  year: 2006
  end-page: 1138
  article-title: The optimization of pole arc coefficient to reduce cogging torque in surface‐mounted permanent magnet motors
  publication-title: IEEE Trans. Magn
– volume: 50
  start-page: 1
  issue: 11
  year: 2014
  end-page: 4
  article-title: Modeling and analyzing of surface‐mounted permanent‐magnet synchronous machineswith optimized magnetic pole shape
  publication-title: IEEE Trans. Magn
– year: 2002
– volume: 45
  start-page: 1210
  issue: 3
  year: 2009
  end-page: 1213
  article-title: Additional cogging torque components in permanent‐magnet motors due to manufacturing imperfections
  publication-title: IEEE Trans. Magn
– volume: 47
  start-page: 2142
  issue: 8
  year: 2011
  end-page: 2148
  article-title: Statistical analysis of the effect of magnet placement on cogging torque in fractional pitch permanent magnet motors
  publication-title: IEEE Trans. Magn
– volume: 15
  start-page: 407
  issue: 4
  year: 2000
  end-page: 412
  article-title: Influence of design parameters on cogging torque in permanent magnet machines
  publication-title: IEEE Trans. Energy Convers
– volume: 47
  start-page: 2269
  issue: 9
  year: 2011
  end-page: 2276
  article-title: Cogging torque in cost‐effective surface‐mounted permanent‐magnet machines
  publication-title: IEEE Trans. Magn
– volume: 49
  start-page: 5522
  issue: 11
  year: 2013
  end-page: 5532
  article-title: Influence of manufacturing tolerances on the electromotive force in permanent‐magnet motors
  publication-title: IEEE Trans. Magn
– volume: 37
  start-page: 2806
  issue: 4
  year: 2001
  end-page: 2809
  article-title: Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors
  publication-title: IEEE Trans. Magn
– volume: 31
  start-page: 339
  issue: No. 2
  year: 2018
  end-page: 345
  article-title: Design, optimization and FEM analysis of a surface‐mounted permanent‐magnet brushless DC motor
  publication-title: IJE Trans. B: Appl
– volume: 62
  start-page: 3438
  issue: 6
  year: 2015
  end-page: 3447
  article-title: Analytical calculation of magnetic field and cogging torque in surface‐mounted permanent‐magnet machines accounting for any eccentric rotor shape
  publication-title: IEEE Trans. Ind. Electron
– volume: 34
  start-page: 2135
  issue: 4
  year: 1998
  end-page: 2137
  article-title: The robust design approach for reducing cogging torque in permanent magnet motors
  publication-title: IEEE Trans. Magn
– volume: 33
  issue: 2
  year: 2020
  article-title: Slotless tubular PM generator with dual quasi‐Halbach magnetized PM Array: Analytical and numerical magnetic field analysis, special issue on advance solution methods for modeling complex electromagnetic
  publication-title: Int. J. Numer. Model. Electron. Network. Dev. Field
– volume: 47
  start-page: 1661
  issue: 4
  year: 2011
  end-page: 1669
  article-title: Cogging torque minimization in pm motors using robust design approach
  publication-title: IEEE Trans. Ind. Appl
– ident: e_1_2_9_2_1
  doi: 10.1109/TIE.2008.918403
– ident: e_1_2_9_24_1
  doi: 10.1109/TMAG.2011.2125795
– ident: e_1_2_9_18_1
  doi: 10.1109/TTE.2018.2859038
– ident: e_1_2_9_22_1
  doi: 10.1109/TEC.2020.3048051
– ident: e_1_2_9_15_1
  doi: 10.1109/TMAG.2014.2325711
– ident: e_1_2_9_21_1
  doi: 10.1109/TMAG.2004.825027
– volume: 33
  start-page: e2569
  issue: 2
  year: 2020
  ident: e_1_2_9_19_1
  article-title: Slotless tubular PM generator with dual quasi‐Halbach magnetized PM Array: Analytical and numerical magnetic field analysis, special issue on advance solution methods for modeling complex electromagnetic
  publication-title: Int. J. Numer. Model. Electron. Network. Dev. Field
  doi: 10.1002/jnm.2569
– ident: e_1_2_9_34_1
  doi: 10.1109/TMAG.2009.2012820
– ident: e_1_2_9_9_1
  doi: 10.1049/ip-epa:19971205
– ident: e_1_2_9_26_1
  doi: 10.1109/20.706828
– volume: 32
  start-page: 88
  issue: 24
  year: 2012
  ident: e_1_2_9_30_1
  article-title: Robust design for reducing torque ripple in permanent magnet synchronous motor
  publication-title: Proc. CSEE
– ident: e_1_2_9_23_1
  doi: 10.1109/TMAG.2009.2012561
– ident: e_1_2_9_13_1
  doi: 10.1109/TMAG.2011.2147326
– volume: 62
  start-page: 3438
  issue: 6
  year: 2015
  ident: e_1_2_9_14_1
  article-title: Analytical calculation of magnetic field and cogging torque in surface‐mounted permanent‐magnet machines accounting for any eccentric rotor shape
  publication-title: IEEE Trans. Ind. Electron
– ident: e_1_2_9_31_1
  doi: 10.1109/TASC.2018.2882426
– ident: e_1_2_9_17_1
  doi: 10.1109/TMAG.2010.2057514
– ident: e_1_2_9_33_1
  doi: 10.1109/TMAG.2006.879077
– ident: e_1_2_9_28_1
  doi: 10.1109/TIA.2011.2154350
– ident: e_1_2_9_11_1
  doi: 10.1109/TMAG.2005.862756
– ident: e_1_2_9_32_1
  doi: 10.1109/TMAG.2009.2022639
– ident: e_1_2_9_7_1
  doi: 10.1109/TMAG.2006.871452
– volume: 31
  start-page: 339
  issue: 2
  year: 2018
  ident: e_1_2_9_20_1
  article-title: Design, optimization and FEM analysis of a surface‐mounted permanent‐magnet brushless DC motor
  publication-title: IJE Trans. B: Appl
– ident: e_1_2_9_27_1
  doi: 10.1109/TMAG.2005.846478
– ident: e_1_2_9_12_1
– volume-title: The basic knowledge of grey theory
  year: 2002
  ident: e_1_2_9_35_1
– ident: e_1_2_9_25_1
  doi: 10.1109/TMAG.2013.2269906
– volume: 30
  start-page: 1
  issue: 4
  year: 2020
  ident: e_1_2_9_16_1
  article-title: Efficiency improvement of permanent magnet BLDC with Halbach magnet array for drone
  publication-title: IEEE Trans. Appl. Supercond
  doi: 10.1109/TASC.2020.2971672
– ident: e_1_2_9_5_1
  doi: 10.1109/TIE.2011.2143379
– ident: e_1_2_9_10_1
  doi: 10.1109/TIA.2002.802989
– ident: e_1_2_9_3_1
  doi: 10.1109/TIE.2014.2341601
– ident: e_1_2_9_4_1
  doi: 10.1109/60.900501
– ident: e_1_2_9_6_1
  doi: 10.1109/TMAG.2020.3034882
– ident: e_1_2_9_8_1
  doi: 10.1109/20.951313
– ident: e_1_2_9_29_1
  doi: 10.1109/20.800636
SSID ssj0055646
Score 2.3515341
Snippet The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect...
Abstract The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 565
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-COhFodimbdKAF5-IqHhQ8FaSNNHDbrt0d0E8-RP8jf4SZ9LuqiCCp5YwbWEm80g63xdC9lQsM6UND5xTIkicE-BSiUPeW8k006nQCHC-ueWXD8nVY_o4RY7GWJiGH2Ky4Yae4eM1OrjSzSkkUNSiEbt9htwIgk-TWcTWYkMfS-7GcThNeYMtEmkUZJyHY3LSRB5-PfsjHXnW_p9Vqk8zF4tkoa0P6XFj0CUyZctlMv-NNXCFvN5XNURzCu7e78IFyVdRvbRyVNejwXMXohc9O6VghaqmuNNKfXP5C4VZ_fH2jtuutI8huYSUQ3vqqbTDAcWEVlB4T13p0WBIK4gmvRamSQvf6bFKHi7O708vg_YIhcAkoJJAy4wVoeA60ix2UloLKxjmCnC8VLkIxi2iWxEwK03hWCgzIUOrQiU9TU68RmbKqrTrhMJSVptMGJ5pqPI0UyaynEWGFU5zaXiH7I81mZuWXxyPuejm_j93InPUeu613iG7E9l-w6rxq9QJGmQigUzYfqCqn_LWsfLIpcwxG9sYmcUUz_A8ACirBBLLK1t0yIE35x_fyc-v75i_2_iP8CaZY4iF8N2PW2RmWI_sNlQoQ73jJ-InTpziOg
  priority: 102
  providerName: Wiley-Blackwell
Title Torque ripple reduction of brushless DC motor with convex arc‐type permanent magnets based on robust optimization design
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Felp2.12176
https://doaj.org/article/1f52f2e3e39643a68478865878943aed
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSsQwEICD7kkP4i-uP0tALwrFbdqmzVFXRURlDwreSpImeljb0u2CePIRfEafxJm0u6wgevHUUkJTJpOZSTrzhZBDGYhEKs09a2XshdbGMKVCi9xbwRRTUaywwPn2jl89hNeP0ePcUV-YE9bggRvBnfg2YpaZwARIjpI8Qd47uM0YweHSZGh9wedNF1ONDY4i3tQVxZHvJZz3p2DSUJyYUcmQqYCUkTlX5Ij93yNU52IuV8lKGxvS0-ab1siCydfJ8hwxcIO83RcVWHIKU70cwQXBqyhaWliqqsn4eQSWi54PKIxAUVHcZaUusfyVgkZ_vn_glist0Rzn4G7oi3zKTT2m6MwyCu-pCjUZ17QAS_LSlmjSzGV5bJKHy4v7wZXXHp_g6RDsn6dEwrJ-zJWvWGCFMAZWL8xmMOkiaX14brCyFYtlhc4sSDGJRd_IvhQOkRNskU5e5GabUFjGKp3EmicKIjzFpPYNZ75mmVVcaN4lR1NJprpli-MRF6PU_eMORYpST53Uu-Rg1rZsiBo_tjrDAZm1QAq2ewC6kba6kf6lG11y7Ibzl37Si5shc3c7_9HjLlliWB_hMiL3SKeuJmYfopZa9cgiC4c9p6Zf3-PprA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAcEBQQC_2xRDmAFLFxEic-9FD6oy3dVhx2UcUl2I5dDttkld1VW048Ql-kL8WTMONkFyohJA49JYpGTjTj-c3MZ4AtFclMaSMC51QaxM6lqFKxI9xbyTXXSappwPn4RPSG8cfT5HQJbuazMA0-xKLgRprh7TUpOBWkm4QzJpBMOxpzAkdIRdtTeWSvLjBjm2wf7qF433B-sD_Y7QXtoQKBidEqBFpmvMDkXYeaR05KazGm567ArZgoF-JzS_OeNEIqTeF4F5Ny2bWqq6QHjolw3XuwQmEUKtHKzufhl-Hc9CeJaMaZ0iQMMiG6czzUWL7__bW3PKA_KOB2YOw928FjeNSGpGyn2UNPYMmWq_DwD6DCp_B9UNXoQBhamPEIL4T3ShJllWO6nk2-jdBgsr1dhoKvakbFXeb72S8Zsuznj2uq9LIxeYESvRw7V2elnU4Y-dCC4Tp1pWeTKavQgJ23k6Gs8M0lz2B4Jwx-DstlVdoXwDB71iZLjcg0BpaaKxNawUPDC6eFNKIDb-eczE0LaU4na4xy_2s9ljlxPfdc78DrBe24AfL4K9UHEsiCgsC3_YOqPstbXc5Dl3DHbWQjAjNTIqMjCDCSSwnLXtmiA--8OP_xnny__4n7u5f_Q7wJ93uD437ePzw5egUPOI1i-ObLNVie1jO7jgHSVG-025LB17vWhF80Sx8K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAfEUW16WgANIEYmTOPGhh9LtqqWl6qGLKi7Bduxy2CZRdlc8TvyE_hB-Fb-EGSe7UAkhcegpUTRyohnPy5n5BuC5imWutBGBcyoLEucyVKnEEe6t5JrrNNPU4PzuSOxNkren6eka_Fj2wnT4EKsDN9IMb69JwZvSdflmQhiZdtpwwkbIRF9SeWC_fsaEbba1P0LpvuB8vHuysxf0MwUCk6BRCLTMeYm5u440j52U1mJIz12JOzFVLsLnlto9qYNUmtLxEHNyGVoVKulxY2Jc9xqsp-gGwwGsb7-ffJgsLX-aiq6bKUujIBciXMKhJvL176-95AD9nIDLcbF3bONbcLOPSNl2t4Vuw5qt7sDGHziFd-HbSd2i_2BoYJopXgjulQTKasd0u5h9mqK9ZKMdhnKvW0Znu8yXs39hyLKf3y_ooJc15AQqdHLsXJ1Vdj5j5EJLhuu0tV7M5qxG-3XeN4ay0teW3IPJlTD4PgyqurIPgGHyrE2eGZFrjCs1VyaygkeGl04LacQQXi45WZge0ZwGa0wL_2c9kQVxvfBcH8KzFW3T4Xj8leoNCWRFQdjb_kHdnhW9KheRS7njNrYxYZkpkdMEAgzkMoKyV7Ycwisvzn-8p9g9POb-bvN_iJ_C9ePRuDjcPzp4CDc4NWL40stHMJi3C_sYw6O5ftLvSgYfr1oRfgEX3B4q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Torque+ripple+reduction+of+brushless+DC+motor+with+convex+arc%E2%80%90type+permanent+magnets+based+on+robust+optimization+design&rft.jtitle=IET+electric+power+applications&rft.au=Haichao+Feng&rft.au=Sheng+Zhang&rft.au=Jinsong+Wei&rft.au=Xiaozhuo+Xu&rft.date=2022-05-01&rft.pub=Wiley&rft.issn=1751-8660&rft.eissn=1751-8679&rft.volume=16&rft.issue=5&rft.spage=565&rft.epage=574&rft_id=info:doi/10.1049%2Felp2.12176&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f52f2e3e39643a68478865878943aed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8660&client=summon