Torque ripple reduction of brushless DC motor with convex arc‐type permanent magnets based on robust optimization design
The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual co...
Saved in:
Published in | IET electric power applications Vol. 16; no. 5; pp. 565 - 574 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.05.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual condition, the robustness optimization is performed in the paper. Firstly, an improving convex arc type permanent magnet structure is adopted to improve air gap flux density and suppress the cogging torque. Secondly, the structure parameters of the magnetic pole are selected as optimization variables, and the magnetization angle, remanence and position of the permanent magnet, static and dynamic rotor eccentricity are considered as noise factors. To improve the overall robustness of the motor under different operating conditions, the dynamic Taguchi method is used to optimize the robustness of the motor, and the test data is processed through the relation analysis method to obtain the optimal combination of control factors. Finally, the prototype is manufactured for the experiment. Compared with the single‐operating conditions robust optimization results, the robust optimization method improves the robustness of the motor. The cogging torque amplitude is reduced by 39.2%. The torque ripple is 38.4% lower than that before optimization. |
---|---|
AbstractList | The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual condition, the robustness optimization is performed in the paper. Firstly, an improving convex arc type permanent magnet structure is adopted to improve air gap flux density and suppress the cogging torque. Secondly, the structure parameters of the magnetic pole are selected as optimization variables, and the magnetization angle, remanence and position of the permanent magnet, static and dynamic rotor eccentricity are considered as noise factors. To improve the overall robustness of the motor under different operating conditions, the dynamic Taguchi method is used to optimize the robustness of the motor, and the test data is processed through the relation analysis method to obtain the optimal combination of control factors. Finally, the prototype is manufactured for the experiment. Compared with the single‐operating conditions robust optimization results, the robust optimization method improves the robustness of the motor. The cogging torque amplitude is reduced by 39.2%. The torque ripple is 38.4% lower than that before optimization. Abstract The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect the cogging torque and torque ripple amplitude and performance consistency. In order to reduce the torque ripple of the motor in the actual condition, the robustness optimization is performed in the paper. Firstly, an improving convex arc type permanent magnet structure is adopted to improve air gap flux density and suppress the cogging torque. Secondly, the structure parameters of the magnetic pole are selected as optimization variables, and the magnetization angle, remanence and position of the permanent magnet, static and dynamic rotor eccentricity are considered as noise factors. To improve the overall robustness of the motor under different operating conditions, the dynamic Taguchi method is used to optimize the robustness of the motor, and the test data is processed through the relation analysis method to obtain the optimal combination of control factors. Finally, the prototype is manufactured for the experiment. Compared with the single‐operating conditions robust optimization results, the robust optimization method improves the robustness of the motor. The cogging torque amplitude is reduced by 39.2%. The torque ripple is 38.4% lower than that before optimization. |
Author | Zhang, Sheng Wei, Jinsong Gao, Caixia Xu, Xiaozhuo Ai, Liwang Feng, Haichao |
Author_xml | – sequence: 1 givenname: Haichao orcidid: 0000-0002-6270-4025 surname: Feng fullname: Feng, Haichao organization: Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization – sequence: 2 givenname: Sheng surname: Zhang fullname: Zhang, Sheng organization: Henan Polytechnic University – sequence: 3 givenname: Jinsong surname: Wei fullname: Wei, Jinsong organization: Henan Polytechnic University – sequence: 4 givenname: Xiaozhuo orcidid: 0000-0003-0817-979X surname: Xu fullname: Xu, Xiaozhuo email: xxz@hpu.edu.cn organization: Henan Polytechnic University – sequence: 5 givenname: Caixia orcidid: 0000-0003-2247-1543 surname: Gao fullname: Gao, Caixia organization: Henan Polytechnic University – sequence: 6 givenname: Liwang orcidid: 0000-0002-2329-1766 surname: Ai fullname: Ai, Liwang organization: Henan Polytechnic University |
BookMark | eNp9kU1OwzAQhS1UJKCw4QReIxVsJ3HsJSrlR6oEC1hbTjJuXSVxsF2grDgCZ-QkpC2wQIjV_Oi9TzN6B2jQuhYQOqbklJJUnkHdsVPKaM530D7NMzoSPJeDn56TPXQQwoKQLOMp30ev984_LgF723V1X6BaltG6FjuDC78M8xpCwBdj3LjoPH62cY5L1z7BC9a-_Hh7j6sOcAe-0S20ETd61kIMuNABKtxzvCuWIWLXRdvYV71hVxDsrD1Eu0bXAY6-6hA9XE7ux9ej6e3Vzfh8OipTmvJRIQWrSM4LWrDESAkgOGOmSqjMtKH9HghLJGVJJsvKMCJFLglooiUTJE-TIbrZciunF6rzttF-pZy2arNwfqa0j7asQVGTMcMggUTyNNFcpLkQPBO5kP0IVc8iW1bpXQgejCpt3DwVvba1okStc1DrHNQmh95y8svyfcKfYroVP9saVv8o1WR6x7aeT688nHE |
CitedBy_id | crossref_primary_10_1049_elp2_12367 crossref_primary_10_1007_s42417_023_01208_9 crossref_primary_10_1049_elp2_12490 crossref_primary_10_53898_josse2024411 crossref_primary_10_32397_tesea_vol4_n2_535 |
Cites_doi | 10.1109/TIE.2008.918403 10.1109/TMAG.2011.2125795 10.1109/TTE.2018.2859038 10.1109/TEC.2020.3048051 10.1109/TMAG.2014.2325711 10.1109/TMAG.2004.825027 10.1002/jnm.2569 10.1109/TMAG.2009.2012820 10.1049/ip-epa:19971205 10.1109/20.706828 10.1109/TMAG.2009.2012561 10.1109/TMAG.2011.2147326 10.1109/TASC.2018.2882426 10.1109/TMAG.2010.2057514 10.1109/TMAG.2006.879077 10.1109/TIA.2011.2154350 10.1109/TMAG.2005.862756 10.1109/TMAG.2009.2022639 10.1109/TMAG.2006.871452 10.1109/TMAG.2005.846478 10.1109/TMAG.2013.2269906 10.1109/TASC.2020.2971672 10.1109/TIE.2011.2143379 10.1109/TIA.2002.802989 10.1109/TIE.2014.2341601 10.1109/60.900501 10.1109/TMAG.2020.3034882 10.1109/20.951313 10.1109/20.800636 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/elp2.12176 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8679 |
EndPage | 574 |
ExternalDocumentID | oai_doaj_org_article_1f52f2e3e39643a68478865878943aed 10_1049_elp2_12176 ELP212176 |
Genre | article |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 2QL 4.4 4IJ 5GY 6IK 6OB 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ O9- OCL OK1 P62 PTHSS QWB RIE RNS RUI S0W U5U UNMZH ZL0 ~ZZ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
ID | FETCH-LOGICAL-c4146-b982d076b1b23f99ee8622fd3195af16b1e023912359cdf2098790ea0a9280743 |
IEDL.DBID | DOA |
ISSN | 1751-8660 |
IngestDate | Wed Aug 27 00:41:49 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Tue Aug 05 12:04:53 EDT 2025 Wed Jan 22 16:24:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4146-b982d076b1b23f99ee8622fd3195af16b1e023912359cdf2098790ea0a9280743 |
ORCID | 0000-0002-6270-4025 0000-0003-2247-1543 0000-0002-2329-1766 0000-0003-0817-979X |
OpenAccessLink | https://doaj.org/article/1f52f2e3e39643a68478865878943aed |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1f52f2e3e39643a68478865878943aed crossref_citationtrail_10_1049_elp2_12176 crossref_primary_10_1049_elp2_12176 wiley_primary_10_1049_elp2_12176_ELP212176 |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | IET electric power applications |
PublicationYear | 2022 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2002; 38 2009; 45 2004; 40 2013; 49 2009 2005; 41 2008; 55 2020; 33 2012; 59 2002 2012; 32 2021; 36 2021; 57 2006; 42 2010; 46 2018; 4 2000; 15 2020; 30 2015; 62 1997; 144 1999; 35 2019; 29 2001; 37 2011; 47 2014; 50 2018; 31 1998; 34 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_17_1 Park Y. (e_1_2_9_16_1) 2020; 30 e_1_2_9_18_1 e_1_2_9_22_1 Guo H. (e_1_2_9_30_1) 2012; 32 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 Deng J.L. (e_1_2_9_35_1) 2002 e_1_2_9_4_1 e_1_2_9_3_1 Zhou Y. (e_1_2_9_14_1) 2015; 62 e_1_2_9_2_1 CheshmehBeigi H.M. (e_1_2_9_19_1) 2020; 33 e_1_2_9_9_1 Moradi Cheshmeh Beigi H. (e_1_2_9_20_1) 2018; 31 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 57 start-page: 1 issue: 1 year: 2021 end-page: 11 article-title: Analytical calculation of surface‐inset PM in‐wheel motors and reduction of torque ripple publication-title: IEEE Trans. Magn – volume: 55 start-page: 2246 issue: 6 year: 2008 end-page: 2257 article-title: Overview of permanent‐magnet brushless drives for electric and hybrid electric vehicles publication-title: IEEE Trans. Ind. Electron – volume: 30 start-page: 1 issue: 4 year: 2020 end-page: 5 article-title: Efficiency improvement of permanent magnet BLDC with Halbach magnet array for drone publication-title: IEEE Trans. Appl. Supercond – volume: 35 start-page: 3700 issue: 5 year: 1999 end-page: 3702 article-title: Application of Taguchi method to robust design of BLDC motor performance publication-title: IEEE Trans. Magn – volume: 32 start-page: 88 issue: 24 year: 2012 end-page: 95 article-title: Robust design for reducing torque ripple in permanent magnet synchronous motor publication-title: Proc. CSEE – volume: 42 start-page: 3485 issue: 10 year: 2006 end-page: 3487 article-title: The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization publication-title: IEEE Trans. Magn – volume: 41 start-page: 1796 issue: 5 year: 2005 end-page: 1799 article-title: Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method publication-title: IEEE Trans. Magn – volume: 45 start-page: 4601 issue: 10 year: 2009 end-page: 4604 article-title: Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors publication-title: IEEE Trans. Magn – volume: 42 start-page: 442 issue: 3 year: 2006 end-page: 445 article-title: Effect of magnet segmentation on the cogging torque in surface‐mounted permanent‐magnet motors publication-title: IEEE Trans. Magn – volume: 29 start-page: 1 issue: 2 year: 2019 end-page: 6 article-title: Robust design optimization of a high‐temperature superconducting linear synchronous motor based on Taguchi method publication-title: IEEE Trans. Appl. Supercond – volume: 46 start-page: 3928 issue: 11 year: 2010 end-page: 3932 article-title: A novel air‐gap profile of single‐phase permanent‐magnet brushless DC motor for starting torque improvement and cogging torque reduction publication-title: IEEE Trans. Magn – volume: 45 start-page: 1780 issue: 3 year: 2009 end-page: 1783 article-title: Multiobjective optimal design for interior permanent magnet synchronous motor publication-title: IEEE Trans. Magn – volume: 40 start-page: 1244 issue: 2 year: 2004 end-page: 1247 article-title: Analysis of cogging torque considering tolerance of axial displacement on BLDC motor by using a stochastic simulation coupled with 3‐D EMCN publication-title: IEEE Trans. Magn – volume: 36 start-page: 2152 issue: 3 year: 2021 end-page: 2162 article-title: Methods to improve the cogging torque robustness under manufacturing tolerances for the permanent magnet synchronous machine publication-title: IEEE Trans. Energy Convers – volume: 62 start-page: 1629 issue: 3 year: 2015 end-page: 1638 article-title: Intelligent sensorless antilock braking system for brushless in‐wheel electric vehicles publication-title: IEEE Trans. Ind. Electron – volume: 144 start-page: 325 issue: 5 year: 1997 end-page: 330 article-title: Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF publication-title: IEE Proc. Elec. Power Appl – volume: 38 start-page: 1259 issue: 5 year: 2002 end-page: 1265 article-title: Design techniques for reducing the cogging torque in surface‐mounted PM motors publication-title: IEEE Trans. Ind. Appl – volume: 4 start-page: 877 issue: 4 year: 2018 end-page: 887 article-title: Numerical and experimental investigation of an improved flux path brushless‐DC machine for variable speed applications publication-title: IEEE Trans. Transp. Electrification – volume: 59 start-page: 2414 issue: 6 year: 2012 end-page: 2425 article-title: Comparison of analytical models of cogging torque in surface‐mounted PM machines publication-title: IEEE Trans. Ind. Electron – volume: 42 start-page: 1135 issue: 4 year: 2006 end-page: 1138 article-title: The optimization of pole arc coefficient to reduce cogging torque in surface‐mounted permanent magnet motors publication-title: IEEE Trans. Magn – volume: 50 start-page: 1 issue: 11 year: 2014 end-page: 4 article-title: Modeling and analyzing of surface‐mounted permanent‐magnet synchronous machineswith optimized magnetic pole shape publication-title: IEEE Trans. Magn – year: 2002 – volume: 45 start-page: 1210 issue: 3 year: 2009 end-page: 1213 article-title: Additional cogging torque components in permanent‐magnet motors due to manufacturing imperfections publication-title: IEEE Trans. Magn – volume: 47 start-page: 2142 issue: 8 year: 2011 end-page: 2148 article-title: Statistical analysis of the effect of magnet placement on cogging torque in fractional pitch permanent magnet motors publication-title: IEEE Trans. Magn – volume: 15 start-page: 407 issue: 4 year: 2000 end-page: 412 article-title: Influence of design parameters on cogging torque in permanent magnet machines publication-title: IEEE Trans. Energy Convers – volume: 47 start-page: 2269 issue: 9 year: 2011 end-page: 2276 article-title: Cogging torque in cost‐effective surface‐mounted permanent‐magnet machines publication-title: IEEE Trans. Magn – volume: 49 start-page: 5522 issue: 11 year: 2013 end-page: 5532 article-title: Influence of manufacturing tolerances on the electromotive force in permanent‐magnet motors publication-title: IEEE Trans. Magn – volume: 37 start-page: 2806 issue: 4 year: 2001 end-page: 2809 article-title: Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors publication-title: IEEE Trans. Magn – volume: 31 start-page: 339 issue: No. 2 year: 2018 end-page: 345 article-title: Design, optimization and FEM analysis of a surface‐mounted permanent‐magnet brushless DC motor publication-title: IJE Trans. B: Appl – volume: 62 start-page: 3438 issue: 6 year: 2015 end-page: 3447 article-title: Analytical calculation of magnetic field and cogging torque in surface‐mounted permanent‐magnet machines accounting for any eccentric rotor shape publication-title: IEEE Trans. Ind. Electron – volume: 34 start-page: 2135 issue: 4 year: 1998 end-page: 2137 article-title: The robust design approach for reducing cogging torque in permanent magnet motors publication-title: IEEE Trans. Magn – volume: 33 issue: 2 year: 2020 article-title: Slotless tubular PM generator with dual quasi‐Halbach magnetized PM Array: Analytical and numerical magnetic field analysis, special issue on advance solution methods for modeling complex electromagnetic publication-title: Int. J. Numer. Model. Electron. Network. Dev. Field – volume: 47 start-page: 1661 issue: 4 year: 2011 end-page: 1669 article-title: Cogging torque minimization in pm motors using robust design approach publication-title: IEEE Trans. Ind. Appl – ident: e_1_2_9_2_1 doi: 10.1109/TIE.2008.918403 – ident: e_1_2_9_24_1 doi: 10.1109/TMAG.2011.2125795 – ident: e_1_2_9_18_1 doi: 10.1109/TTE.2018.2859038 – ident: e_1_2_9_22_1 doi: 10.1109/TEC.2020.3048051 – ident: e_1_2_9_15_1 doi: 10.1109/TMAG.2014.2325711 – ident: e_1_2_9_21_1 doi: 10.1109/TMAG.2004.825027 – volume: 33 start-page: e2569 issue: 2 year: 2020 ident: e_1_2_9_19_1 article-title: Slotless tubular PM generator with dual quasi‐Halbach magnetized PM Array: Analytical and numerical magnetic field analysis, special issue on advance solution methods for modeling complex electromagnetic publication-title: Int. J. Numer. Model. Electron. Network. Dev. Field doi: 10.1002/jnm.2569 – ident: e_1_2_9_34_1 doi: 10.1109/TMAG.2009.2012820 – ident: e_1_2_9_9_1 doi: 10.1049/ip-epa:19971205 – ident: e_1_2_9_26_1 doi: 10.1109/20.706828 – volume: 32 start-page: 88 issue: 24 year: 2012 ident: e_1_2_9_30_1 article-title: Robust design for reducing torque ripple in permanent magnet synchronous motor publication-title: Proc. CSEE – ident: e_1_2_9_23_1 doi: 10.1109/TMAG.2009.2012561 – ident: e_1_2_9_13_1 doi: 10.1109/TMAG.2011.2147326 – volume: 62 start-page: 3438 issue: 6 year: 2015 ident: e_1_2_9_14_1 article-title: Analytical calculation of magnetic field and cogging torque in surface‐mounted permanent‐magnet machines accounting for any eccentric rotor shape publication-title: IEEE Trans. Ind. Electron – ident: e_1_2_9_31_1 doi: 10.1109/TASC.2018.2882426 – ident: e_1_2_9_17_1 doi: 10.1109/TMAG.2010.2057514 – ident: e_1_2_9_33_1 doi: 10.1109/TMAG.2006.879077 – ident: e_1_2_9_28_1 doi: 10.1109/TIA.2011.2154350 – ident: e_1_2_9_11_1 doi: 10.1109/TMAG.2005.862756 – ident: e_1_2_9_32_1 doi: 10.1109/TMAG.2009.2022639 – ident: e_1_2_9_7_1 doi: 10.1109/TMAG.2006.871452 – volume: 31 start-page: 339 issue: 2 year: 2018 ident: e_1_2_9_20_1 article-title: Design, optimization and FEM analysis of a surface‐mounted permanent‐magnet brushless DC motor publication-title: IJE Trans. B: Appl – ident: e_1_2_9_27_1 doi: 10.1109/TMAG.2005.846478 – ident: e_1_2_9_12_1 – volume-title: The basic knowledge of grey theory year: 2002 ident: e_1_2_9_35_1 – ident: e_1_2_9_25_1 doi: 10.1109/TMAG.2013.2269906 – volume: 30 start-page: 1 issue: 4 year: 2020 ident: e_1_2_9_16_1 article-title: Efficiency improvement of permanent magnet BLDC with Halbach magnet array for drone publication-title: IEEE Trans. Appl. Supercond doi: 10.1109/TASC.2020.2971672 – ident: e_1_2_9_5_1 doi: 10.1109/TIE.2011.2143379 – ident: e_1_2_9_10_1 doi: 10.1109/TIA.2002.802989 – ident: e_1_2_9_3_1 doi: 10.1109/TIE.2014.2341601 – ident: e_1_2_9_4_1 doi: 10.1109/60.900501 – ident: e_1_2_9_6_1 doi: 10.1109/TMAG.2020.3034882 – ident: e_1_2_9_8_1 doi: 10.1109/20.951313 – ident: e_1_2_9_29_1 doi: 10.1109/20.800636 |
SSID | ssj0055646 |
Score | 2.3515341 |
Snippet | The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which affect... Abstract The mass production of the motors causes tolerance of shape and dimension, deviation of permanent magnet remanence and rotor eccentricity error, which... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 565 |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-COhFodimbdKAF5-IqHhQ8FaSNNHDbrt0d0E8-RP8jf4SZ9LuqiCCp5YwbWEm80g63xdC9lQsM6UND5xTIkicE-BSiUPeW8k006nQCHC-ueWXD8nVY_o4RY7GWJiGH2Ky4Yae4eM1OrjSzSkkUNSiEbt9htwIgk-TWcTWYkMfS-7GcThNeYMtEmkUZJyHY3LSRB5-PfsjHXnW_p9Vqk8zF4tkoa0P6XFj0CUyZctlMv-NNXCFvN5XNURzCu7e78IFyVdRvbRyVNejwXMXohc9O6VghaqmuNNKfXP5C4VZ_fH2jtuutI8huYSUQ3vqqbTDAcWEVlB4T13p0WBIK4gmvRamSQvf6bFKHi7O708vg_YIhcAkoJJAy4wVoeA60ix2UloLKxjmCnC8VLkIxi2iWxEwK03hWCgzIUOrQiU9TU68RmbKqrTrhMJSVptMGJ5pqPI0UyaynEWGFU5zaXiH7I81mZuWXxyPuejm_j93InPUeu613iG7E9l-w6rxq9QJGmQigUzYfqCqn_LWsfLIpcwxG9sYmcUUz_A8ACirBBLLK1t0yIE35x_fyc-v75i_2_iP8CaZY4iF8N2PW2RmWI_sNlQoQ73jJ-InTpziOg priority: 102 providerName: Wiley-Blackwell |
Title | Torque ripple reduction of brushless DC motor with convex arc‐type permanent magnets based on robust optimization design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Felp2.12176 https://doaj.org/article/1f52f2e3e39643a68478865878943aed |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSsQwEICD7kkP4i-uP0tALwrFbdqmzVFXRURlDwreSpImeljb0u2CePIRfEafxJm0u6wgevHUUkJTJpOZSTrzhZBDGYhEKs09a2XshdbGMKVCi9xbwRRTUaywwPn2jl89hNeP0ePcUV-YE9bggRvBnfg2YpaZwARIjpI8Qd47uM0YweHSZGh9wedNF1ONDY4i3tQVxZHvJZz3p2DSUJyYUcmQqYCUkTlX5Ij93yNU52IuV8lKGxvS0-ab1siCydfJ8hwxcIO83RcVWHIKU70cwQXBqyhaWliqqsn4eQSWi54PKIxAUVHcZaUusfyVgkZ_vn_glist0Rzn4G7oi3zKTT2m6MwyCu-pCjUZ17QAS_LSlmjSzGV5bJKHy4v7wZXXHp_g6RDsn6dEwrJ-zJWvWGCFMAZWL8xmMOkiaX14brCyFYtlhc4sSDGJRd_IvhQOkRNskU5e5GabUFjGKp3EmicKIjzFpPYNZ75mmVVcaN4lR1NJprpli-MRF6PU_eMORYpST53Uu-Rg1rZsiBo_tjrDAZm1QAq2ewC6kba6kf6lG11y7Ibzl37Si5shc3c7_9HjLlliWB_hMiL3SKeuJmYfopZa9cgiC4c9p6Zf3-PprA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAcEBQQC_2xRDmAFLFxEic-9FD6oy3dVhx2UcUl2I5dDttkld1VW048Ql-kL8WTMONkFyohJA49JYpGTjTj-c3MZ4AtFclMaSMC51QaxM6lqFKxI9xbyTXXSappwPn4RPSG8cfT5HQJbuazMA0-xKLgRprh7TUpOBWkm4QzJpBMOxpzAkdIRdtTeWSvLjBjm2wf7qF433B-sD_Y7QXtoQKBidEqBFpmvMDkXYeaR05KazGm567ArZgoF-JzS_OeNEIqTeF4F5Ny2bWqq6QHjolw3XuwQmEUKtHKzufhl-Hc9CeJaMaZ0iQMMiG6czzUWL7__bW3PKA_KOB2YOw928FjeNSGpGyn2UNPYMmWq_DwD6DCp_B9UNXoQBhamPEIL4T3ShJllWO6nk2-jdBgsr1dhoKvakbFXeb72S8Zsuznj2uq9LIxeYESvRw7V2elnU4Y-dCC4Tp1pWeTKavQgJ23k6Gs8M0lz2B4Jwx-DstlVdoXwDB71iZLjcg0BpaaKxNawUPDC6eFNKIDb-eczE0LaU4na4xy_2s9ljlxPfdc78DrBe24AfL4K9UHEsiCgsC3_YOqPstbXc5Dl3DHbWQjAjNTIqMjCDCSSwnLXtmiA--8OP_xnny__4n7u5f_Q7wJ93uD437ePzw5egUPOI1i-ObLNVie1jO7jgHSVG-025LB17vWhF80Sx8K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAfEUW16WgANIEYmTOPGhh9LtqqWl6qGLKi7Bduxy2CZRdlc8TvyE_hB-Fb-EGSe7UAkhcegpUTRyohnPy5n5BuC5imWutBGBcyoLEucyVKnEEe6t5JrrNNPU4PzuSOxNkren6eka_Fj2wnT4EKsDN9IMb69JwZvSdflmQhiZdtpwwkbIRF9SeWC_fsaEbba1P0LpvuB8vHuysxf0MwUCk6BRCLTMeYm5u440j52U1mJIz12JOzFVLsLnlto9qYNUmtLxEHNyGVoVKulxY2Jc9xqsp-gGwwGsb7-ffJgsLX-aiq6bKUujIBciXMKhJvL176-95AD9nIDLcbF3bONbcLOPSNl2t4Vuw5qt7sDGHziFd-HbSd2i_2BoYJopXgjulQTKasd0u5h9mqK9ZKMdhnKvW0Znu8yXs39hyLKf3y_ooJc15AQqdHLsXJ1Vdj5j5EJLhuu0tV7M5qxG-3XeN4ay0teW3IPJlTD4PgyqurIPgGHyrE2eGZFrjCs1VyaygkeGl04LacQQXi45WZge0ZwGa0wL_2c9kQVxvfBcH8KzFW3T4Xj8leoNCWRFQdjb_kHdnhW9KheRS7njNrYxYZkpkdMEAgzkMoKyV7Ycwisvzn-8p9g9POb-bvN_iJ_C9ePRuDjcPzp4CDc4NWL40stHMJi3C_sYw6O5ftLvSgYfr1oRfgEX3B4q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Torque+ripple+reduction+of+brushless+DC+motor+with+convex+arc%E2%80%90type+permanent+magnets+based+on+robust+optimization+design&rft.jtitle=IET+electric+power+applications&rft.au=Haichao+Feng&rft.au=Sheng+Zhang&rft.au=Jinsong+Wei&rft.au=Xiaozhuo+Xu&rft.date=2022-05-01&rft.pub=Wiley&rft.issn=1751-8660&rft.eissn=1751-8679&rft.volume=16&rft.issue=5&rft.spage=565&rft.epage=574&rft_id=info:doi/10.1049%2Felp2.12176&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f52f2e3e39643a68478865878943aed |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8660&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8660&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8660&client=summon |