Fresh insights into detonation nanodiamond aggregation: An X‐ray photoelectron spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance study

Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary parti...

Full description

Saved in:
Bibliographic Details
Published inEngineering reports (Hoboken, N.J.) Vol. 3; no. 3
Main Authors Katsiev, Khabiboulakh, Solovyeva, Vera, Mahfouz, Remi, Abou‐Hamad, Edy, Peng, Wei, Idriss, Hicham, Kirmani, Ahmad R.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling. The mechanism behind aggregation in detonation nanodiamonds is outlined. Surface oxygen functionalities, identified as COC species, cross‐link the primary particles (ca. 4‐5 nm) forming large polydisperse aggregates. A facile acid hydrolysis is proposed for de‐aggregating the diamonds in high yields.
AbstractList Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling.
Abstract Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling.
Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling. The mechanism behind aggregation in detonation nanodiamonds is outlined. Surface oxygen functionalities, identified as COC species, cross‐link the primary particles (ca. 4‐5 nm) forming large polydisperse aggregates. A facile acid hydrolysis is proposed for de‐aggregating the diamonds in high yields.
Author Kirmani, Ahmad R.
Solovyeva, Vera
Mahfouz, Remi
Katsiev, Khabiboulakh
Idriss, Hicham
Abou‐Hamad, Edy
Peng, Wei
Author_xml – sequence: 1
  givenname: Khabiboulakh
  surname: Katsiev
  fullname: Katsiev, Khabiboulakh
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Vera
  surname: Solovyeva
  fullname: Solovyeva, Vera
  organization: Lomonosov Moscow State University
– sequence: 3
  givenname: Remi
  surname: Mahfouz
  fullname: Mahfouz, Remi
  organization: King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC)
– sequence: 4
  givenname: Edy
  surname: Abou‐Hamad
  fullname: Abou‐Hamad, Edy
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Wei
  surname: Peng
  fullname: Peng, Wei
  organization: King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC)
– sequence: 6
  givenname: Hicham
  surname: Idriss
  fullname: Idriss, Hicham
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Ahmad R.
  orcidid: 0000-0002-8351-3762
  surname: Kirmani
  fullname: Kirmani, Ahmad R.
  email: ahmad.kirmani@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC)
BookMark eNp9UcFKHTEUDUWhVt30C7IuPptkMpMZdyJqBWk3FroL9yV35kVmkkcSLbPrJ_QP-m_9ksZ5LRQRVzncnHPu4Z53ZM8Hj4S85-yUMyY-oh_EKReVqt-QA1ErtWp51-z9h9-S45TuWSFzxVnFDsivq4hpQ51PbtjkVEAO1GIOHrILnnrwwTqYgrcUhiHisMzP6Lmn337_-BlhpttNyAFHNDkWRdouIJmwnU9o3mCcwhDh0U2YozMUPIxzcumkIEv9gxkRIp1g8JjLd4lTdnuDNOUHOx-R_R7GhMd_30Py9ery7uLT6vbL9c3F-e3KSC7rVWXsGjnjta1Zb5mRhvGqNaJaN8rWopF9UyvbtFXLWhAoQQKuoTPWtq0EMNUhudn52gD3ehvdBHHWAZxeBiEOGmLJN6JeG94p2TDVd5UEBR1a00veGxQcWyWKF9t5mXKGFLHXxuXlbDmCGzVn-qkv_dSXXvoqkg_PJP8ivEjmO_J3N-L8ClNffr4WO80faeutpQ
CitedBy_id crossref_primary_10_1039_D2TB01863B
crossref_primary_10_3390_nano11112772
crossref_primary_10_2139_ssrn_4049511
crossref_primary_10_3390_ijms241612568
crossref_primary_10_3390_app11125455
Cites_doi 10.1002/sia.5185
10.1016/j.diamond.2006.06.006
10.1002/pssb.201552232
10.1080/10408430902831987
10.1126/scitranslmed.3001713
10.1126/science.1189075
10.1073/pnas.1403768111
10.1016/j.diamond.2019.02.006
10.1021/acsanm.9b00614
10.1166/nnl.2011.1122
10.1039/C7RA04167E
10.1016/j.apsusc.2012.12.173
10.1038/s41598-017-14553-z
10.1149/MA2015-01/5/766
10.1021/cm500036x
10.1016/j.diamond.2007.07.014
10.1016/j.partic.2011.03.015
10.1021/jp901274f
10.1021/nn901008r
10.3390/ma3073818
10.1016/0266-3538(91)90021-G
10.1002/pssa.201600184
10.1039/b712614j
10.1016/j.ssnmr.2011.10.003
10.1016/j.diamond.2009.10.008
10.1007/978-3-211-75237-1_5
10.1038/nnano.2011.121
10.1021/nn100748k
10.1070/RC2001v070n07ABEH000665
10.1002/adma.200601452
10.1002/adma.201400577
10.1021/am100720n
10.1016/j.diamond.2007.08.008
10.1016/S0266-3538(96)00162-5
10.1016/j.vibspec.2016.01.010
10.1088/0957-4484/19/22/225201
10.1038/nmat2206
10.1134/1.1711440
10.1140/epjb/e2006-00314-7
10.1021/acs.jpcc.5b05259
10.1016/B978-081551524-1.50003-2
10.1038/s41598-018-36838-7
10.1002/adfm.201102670
10.1021/ja063303n
10.1080/10408436.2011.606930
10.1016/j.carbon.2005.02.020
10.1016/j.diamond.2012.05.005
10.1021/jp503053r
10.1038/nnano.2011.209
10.1016/j.carbon.2011.06.005
10.1016/j.carbon.2015.06.038
10.1016/j.diamond.2019.04.001
10.1039/c3nr00990d
10.1002/adma.201304166
10.1016/j.carbon.2014.08.094
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/eng2.12375
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2577-8196
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bc1974607f934a7a9edcf41fce21e872
10_1002_eng2_12375
ENG212375
Genre article
GrantInformation_xml – fundername: Russian Science Foundation
  funderid: 18‐13‐00337
– fundername: King Abdullah University of Science and Technology
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M7S
M~E
OK1
PIMPY
PTHSS
WIN
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
PQGLB
PUEGO
ID FETCH-LOGICAL-c4145-3cdbe1015d50fd0c4c0138c23b67d5264f657d683808a2e4a4aeba9cdd884aac3
IEDL.DBID DOA
ISSN 2577-8196
IngestDate Wed Aug 27 01:30:13 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Tue Jul 01 02:00:08 EDT 2025
Wed Jan 22 16:31:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4145-3cdbe1015d50fd0c4c0138c23b67d5264f657d683808a2e4a4aeba9cdd884aac3
ORCID 0000-0002-8351-3762
OpenAccessLink https://doaj.org/article/bc1974607f934a7a9edcf41fce21e872
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_bc1974607f934a7a9edcf41fce21e872
crossref_citationtrail_10_1002_eng2_12375
crossref_primary_10_1002_eng2_12375
wiley_primary_10_1002_eng2_12375_ENG212375
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Engineering reports (Hoboken, N.J.)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 7
2019; 93
2019; 95
2010; 19
2014; 26
2008; 7
2009; 113
2013; 5
2012; 10
2001
1991; 42
1997; 57
2015; 252
2006; 3‐22
2016; 83
2010; 3
2010; 2
2012; 22
2006; 128
2010; 4
2013; 270
2014; 118
2001; 70
2007; 365
2007; 19
2019; 9
2006; 52
2010; 329
2019; 2
2015; 94
2013; 45
2008; 19
2011; 40
2004; 46
2012; 27–28
2008
2007
2005; 43
2012; 37
2011; 3
2014; 111
2011; 6
2007; 16
2009; 34
2014; 80
2015; 119
2015
2016; 213
2009; 3
2012; 7
2011; 49
2007; 47
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Graham JM (e_1_2_9_30_1) 2001
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
Pefferkorn E (e_1_2_9_40_1) 2007
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Holt KB (e_1_2_9_12_1) 2007; 365
e_1_2_9_42_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Mochalin VN (e_1_2_9_14_1) 2015
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 46
  start-page: 636
  issue: 4
  year: 2004
  end-page: 643
  article-title: Surface chemistry of nanodiamonds
  publication-title: Phys Solid State
– volume: 3
  start-page: 2975
  issue: 10
  year: 2009
  end-page: 2988
  article-title: Structure/processing relationships of highly ordered Lead salt Nanocrystal Superlattices
  publication-title: ACS Nano
– volume: 113
  start-page: 10371
  issue: 24
  year: 2009
  end-page: 10378
  article-title: Solid‐state NMR study of nanodiamonds produced by the detonation technique
  publication-title: J Phys Chem C
– volume: 70
  start-page: 607
  issue: 7
  year: 2001
  end-page: 626
  article-title: Detonation synthesis ultradispersed diamonds: properties and applications
  publication-title: Russ Chem Rev
– year: 2001
– start-page: 741
  year: 2007
  end-page: 791
– volume: 252
  start-page: 2602
  issue: 11
  year: 2015
  end-page: 2607
  article-title: Low‐temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure
  publication-title: Physica Status Solidi (b)
– volume: 26
  start-page: 4717
  issue: 27
  year: 2014
  end-page: 4723
  article-title: Effect of solvent environment on colloidal‐quantum‐dot solar‐cell manufacturability and performance
  publication-title: Adv Mater
– volume: 2
  start-page: 3701
  issue: 6
  year: 2019
  end-page: 3710
  article-title: Removing non‐size‐dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation
  publication-title: ACS Appl Nano Mater
– volume: 213
  start-page: 2680
  issue: 10
  year: 2016
  end-page: 2686
  article-title: Plasma treatment of detonation and HPHT nanodiamonds in diffuse coplanar surface barrier discharge in H2/N2 flow
  publication-title: Phys Status Solidi (a)
– volume: 80
  start-page: 544
  year: 2014
  end-page: 550
  article-title: Thermochemistry of nanodiamond terminated by oxygen containing functional groups
  publication-title: Carbon
– volume: 45
  start-page: 937
  issue: 5
  year: 2013
  end-page: 942
  article-title: Effect of low current density electrochemical oxidation on the properties of carbon fiber‐reinforced epoxy resin composites
  publication-title: Surf Interface Anal
– volume: 3
  start-page: 68
  issue: 1
  year: 2011
  end-page: 74
  article-title: Deagglomeration of detonation nanodiamonds
  publication-title: Nanosci Nanotechnol Lett
– volume: 270
  start-page: 272
  year: 2013
  end-page: 280
  article-title: Effect of UV and electrochemical surface treatments on the adsorption and reaction of linear alcohols on non‐porous carbon fibre
  publication-title: Appl Surf Sci
– volume: 42
  start-page: 275
  issue: 1
  year: 1991
  end-page: 298
  article-title: Special issue interfaces in composites the chemistry of carbon fibre surfaces and its effect on interfacial phenomena in fibre/epoxy composites
  publication-title: Compos Sci Technol
– volume: 16
  start-page: 2018
  issue: 12
  year: 2007
  end-page: 2022
  article-title: Recent progress and perspectives in single‐digit nanodiamond
  publication-title: Diamond Relat Mater
– volume: 365
  start-page: 2845
  issue: 1861
  year: 2007
  end-page: 2861
  article-title: Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing
  publication-title: Philos Trans R Soc London A Math Phys Eng Sci
– volume: 119
  start-page: 27708
  issue: 49
  year: 2015
  end-page: 27720
  article-title: Size and purity control of HPHT Nanodiamonds down to 1 nm
  publication-title: J Phys Chem C
– volume: 7
  start-page: 14086
  issue: 1
  year: 2017
  article-title: Optical properties of functionalized nanodiamonds
  publication-title: Sci Rep
– volume: 19
  start-page: 1201
  issue: 9
  year: 2007
  end-page: 1206
  article-title: Preparation and behavior of brownish
  publication-title: Clear Nanodiamond Colloids Adv Mater
– volume: 94
  start-page: 79
  year: 2015
  end-page: 84
  article-title: On the relation between chemical composition and optical properties of detonation nanodiamonds
  publication-title: Carbon
– volume: 118
  start-page: 9621
  issue: 18
  year: 2014
  end-page: 9627
  article-title: Quantification of CC and CO surface carbons in detonation Nanodiamond by NMR
  publication-title: J Phys Chem C
– volume: 19
  start-page: 225201
  issue: 22
  year: 2008
  article-title: Nanodiamond particles forming photonic structures
  publication-title: Nanotechnology
– volume: 128
  start-page: 11635
  issue: 35
  year: 2006
  end-page: 11642
  article-title: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air
  publication-title: J Am Chem Soc
– volume: 95
  start-page: 55
  year: 2019
  end-page: 59
  article-title: Nanodiamond coating by polyethylenimine for optical limitation
  publication-title: Diamond Relat Mater
– volume: 93
  start-page: 150
  year: 2019
  end-page: 158
  article-title: Nanodiamond‐based energetic core‐shell composites: the route towards safer materials
  publication-title: Diamond Relat Mater
– volume: 111
  start-page: 9037
  issue: 25
  year: 2014
  end-page: 9041
  article-title: Packing density of rigid aggregates is independent of scale
  publication-title: Proc Natl Acad Sci
– volume: 3
  start-page: 3818
  issue: 7
  year: 2010
  end-page: 3844
  article-title: A comprehensive review on separation methods and techniques for single‐walled carbon nanotubes
  publication-title: Materials
– volume: 10
  start-page: 339
  issue: 3
  year: 2012
  end-page: 344
  article-title: Influence of thermal oxidation on as‐synthesized detonation nanodiamond
  publication-title: Particuology
– volume: 9
  start-page: 519
  issue: 1
  year: 2019
  article-title: Optical limiting properties of surface functionalized nanodiamonds probed by the Z‐scan method
  publication-title: Sci Rep
– volume: 27–28
  start-page: 45
  year: 2012
  end-page: 48
  article-title: Deaggregation of diamond nanoparticles studied by NMR
  publication-title: Diamond Relat Mater
– volume: 6
  start-page: 580
  issue: 9
  year: 2011
  end-page: 587
  article-title: Self‐assembly of self‐limiting monodisperse supraparticles from polydisperse nanoparticles
  publication-title: Nat Nanotechnol
– volume: 47
  start-page: 5090
  year: 2007
  end-page: 5092
  article-title: Removal of amorphous carbon for the efficient sidewall functionalisation of single‐walled carbon nanotubes
  publication-title: Chem Commun
– volume: 7
  start-page: 38973
  issue: 62
  year: 2017
  end-page: 38980
  article-title: Surface chemistry of water‐dispersed detonation nanodiamonds modified by atmospheric DC plasma afterglow
  publication-title: RSC Adv
– volume: 83
  start-page: 108
  year: 2016
  end-page: 114
  article-title: Oxidation and reduction of nanodiamond particles in colloidal solutions by laser irradiation or radio‐frequency plasma treatment
  publication-title: Vibr Spectrosc
– volume: 16
  start-page: 2044
  issue: 12
  year: 2007
  end-page: 2049
  article-title: Solid state nuclear magnetic resonance studies of nanocarbons
  publication-title: Diamond Relat Mater
– volume: 26
  start-page: 2766
  issue: 9
  year: 2014
  end-page: 2769
  article-title: Direct functionalization of nanodiamonds with maleimide
  publication-title: Chem Mater
– volume: 2
  start-page: 3289
  issue: 11
  year: 2010
  end-page: 3294
  article-title: Deaggregation of nanodiamond powders using salt‐ and sugar‐assisted milling
  publication-title: ACS Appl Mater Interfaces
– volume: 5
  start-page: 5017
  issue: 11
  year: 2013
  end-page: 5026
  article-title: Gram‐scale fractionation of nanodiamonds by density gradient ultracentrifugation
  publication-title: Nanoscale
– volume: 43
  start-page: 1722
  issue: 8
  year: 2005
  end-page: 1730
  article-title: Unusually tight aggregation in detonation nanodiamond: identification and disintegration
  publication-title: Carbon
– volume: 4
  start-page: 4824
  issue: 8
  year: 2010
  end-page: 4830
  article-title: Size‐dependent reactivity of diamond nanoparticles
  publication-title: ACS Nano
– volume: 7
  start-page: 11
  issue: 1
  year: 2012
  end-page: 23
  article-title: The properties and applications of nanodiamonds
  publication-title: Nat Nanotechnol
– volume: 3‐22
  year: 2006
– volume: 7
  start-page: 527
  issue: 7
  year: 2008
  end-page: 538
  article-title: The role of interparticle and external forces in nanoparticle assembly
  publication-title: Nat Mater
– volume: 40
  start-page: 144
  issue: 4
  year: 2011
  end-page: 154
  article-title: Solid state NMR study of nanodiamond surface chemistry
  publication-title: Solid State Nucl Magn Reson
– volume: 16
  start-page: 277
  issue: 2
  year: 2007
  end-page: 282
  article-title: Deaggregation of ultradispersed diamond from explosive detonation by a graphitization–oxidation method and by hydroiodic acid treatment
  publication-title: Diamond Relat Mater
– volume: 49
  start-page: 4322
  issue: 13
  year: 2011
  end-page: 4330
  article-title: Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres
  publication-title: Carbon
– volume: 37
  start-page: 276
  issue: 4
  year: 2012
  end-page: 303
  article-title: Nuclear magnetic resonance studies of Nanodiamonds
  publication-title: Crit Rev Solid State Mater Sci
– volume: 34
  start-page: 18
  issue: 1–2
  year: 2009
  end-page: 74
  article-title: Nanodiamond particles: properties and perspectives for bioapplications
  publication-title: Crit Rev Solid State Mater Sci
– year: 2015
  article-title: Biomedical Applications of Diamond Nanoparticles
  publication-title: ECS Meeting Abstracts
– volume: 329
  start-page: 542
  issue: 5991
  year: 2010
  end-page: 544
  article-title: Single‐shot readout of a single nuclear spin
  publication-title: Science
– volume: 22
  start-page: 890
  issue: 5
  year: 2012
  end-page: 906
  article-title: Functionality is key: recent progress in the surface modification of Nanodiamond
  publication-title: Adv Funct Mater
– volume: 57
  start-page: 1023
  issue: 8
  year: 1997
  end-page: 1032
  article-title: Plasma polymerisation for molecular engineering of carbon‐fibre surfaces for optimised composites
  publication-title: Compos Sci Technol
– volume: 19
  start-page: 260
  issue: 2–3
  year: 2010
  end-page: 267
  article-title: Seeding slurries based on detonation nanodiamond in DMSO
  publication-title: Diamond Relat Mater
– start-page: 119
  year: 2008
  end-page: 169
– volume: 52
  start-page: 397
  issue: 3
  year: 2006
  end-page: 402
  article-title: Nuclear magnetic resonance study of ultrananocrystalline diamonds
  publication-title: Eur Phys J B
– volume: 26
  start-page: 937
  issue: 6
  year: 2014
  end-page: 942
  article-title: The complete in‐gap electronic structure of colloidal quantum dot solids and its correlation with electronic transport and photovoltaic performance
  publication-title: Adv Mater
– volume: 3
  start-page: 73ra21
  issue: 73
  year: 2011
  end-page: 73ra21
  article-title: Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment
  publication-title: Sci Transl Med
– ident: e_1_2_9_45_1
  doi: 10.1002/sia.5185
– ident: e_1_2_9_34_1
  doi: 10.1016/j.diamond.2006.06.006
– ident: e_1_2_9_58_1
  doi: 10.1002/pssb.201552232
– ident: e_1_2_9_15_1
  doi: 10.1080/10408430902831987
– ident: e_1_2_9_13_1
  doi: 10.1126/scitranslmed.3001713
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1189075
– ident: e_1_2_9_39_1
  doi: 10.1073/pnas.1403768111
– ident: e_1_2_9_6_1
  doi: 10.1016/j.diamond.2019.02.006
– ident: e_1_2_9_25_1
  doi: 10.1021/acsanm.9b00614
– ident: e_1_2_9_32_1
  doi: 10.1166/nnl.2011.1122
– ident: e_1_2_9_57_1
  doi: 10.1039/C7RA04167E
– ident: e_1_2_9_49_1
  doi: 10.1016/j.apsusc.2012.12.173
– ident: e_1_2_9_9_1
  doi: 10.1038/s41598-017-14553-z
– year: 2015
  ident: e_1_2_9_14_1
  article-title: Biomedical Applications of Diamond Nanoparticles
  publication-title: ECS Meeting Abstracts
  doi: 10.1149/MA2015-01/5/766
– ident: e_1_2_9_23_1
  doi: 10.1021/cm500036x
– ident: e_1_2_9_52_1
  doi: 10.1016/j.diamond.2007.07.014
– ident: e_1_2_9_35_1
  doi: 10.1016/j.partic.2011.03.015
– ident: e_1_2_9_51_1
  doi: 10.1021/jp901274f
– ident: e_1_2_9_43_1
  doi: 10.1021/nn901008r
– ident: e_1_2_9_29_1
  doi: 10.3390/ma3073818
– ident: e_1_2_9_47_1
  doi: 10.1016/0266-3538(91)90021-G
– ident: e_1_2_9_36_1
  doi: 10.1002/pssa.201600184
– ident: e_1_2_9_38_1
  doi: 10.1039/b712614j
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ssnmr.2011.10.003
– ident: e_1_2_9_37_1
  doi: 10.1016/j.diamond.2009.10.008
– ident: e_1_2_9_41_1
  doi: 10.1007/978-3-211-75237-1_5
– ident: e_1_2_9_44_1
  doi: 10.1038/nnano.2011.121
– ident: e_1_2_9_33_1
  doi: 10.1021/nn100748k
– ident: e_1_2_9_21_1
  doi: 10.1070/RC2001v070n07ABEH000665
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.200601452
– ident: e_1_2_9_17_1
  doi: 10.1002/adma.201400577
– ident: e_1_2_9_27_1
  doi: 10.1021/am100720n
– ident: e_1_2_9_4_1
  doi: 10.1016/j.diamond.2007.08.008
– ident: e_1_2_9_46_1
  doi: 10.1016/S0266-3538(96)00162-5
– ident: e_1_2_9_59_1
  doi: 10.1016/j.vibspec.2016.01.010
– ident: e_1_2_9_10_1
  doi: 10.1088/0957-4484/19/22/225201
– ident: e_1_2_9_42_1
  doi: 10.1038/nmat2206
– ident: e_1_2_9_31_1
  doi: 10.1134/1.1711440
– volume-title: Biological Centrifugation
  year: 2001
  ident: e_1_2_9_30_1
– ident: e_1_2_9_55_1
  doi: 10.1140/epjb/e2006-00314-7
– ident: e_1_2_9_19_1
  doi: 10.1021/acs.jpcc.5b05259
– ident: e_1_2_9_5_1
  doi: 10.1016/B978-081551524-1.50003-2
– ident: e_1_2_9_8_1
  doi: 10.1038/s41598-018-36838-7
– ident: e_1_2_9_20_1
  doi: 10.1002/adfm.201102670
– ident: e_1_2_9_22_1
  doi: 10.1021/ja063303n
– start-page: 741
  volume-title: Handbook of Powder Technology
  year: 2007
  ident: e_1_2_9_40_1
– ident: e_1_2_9_53_1
  doi: 10.1080/10408436.2011.606930
– ident: e_1_2_9_2_1
  doi: 10.1016/j.carbon.2005.02.020
– ident: e_1_2_9_54_1
  doi: 10.1016/j.diamond.2012.05.005
– ident: e_1_2_9_56_1
  doi: 10.1021/jp503053r
– ident: e_1_2_9_3_1
  doi: 10.1038/nnano.2011.209
– ident: e_1_2_9_48_1
  doi: 10.1016/j.carbon.2011.06.005
– ident: e_1_2_9_16_1
  doi: 10.1016/j.carbon.2015.06.038
– ident: e_1_2_9_7_1
  doi: 10.1016/j.diamond.2019.04.001
– ident: e_1_2_9_28_1
  doi: 10.1039/c3nr00990d
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.201304166
– ident: e_1_2_9_24_1
  doi: 10.1016/j.carbon.2014.08.094
– volume: 365
  start-page: 2845
  issue: 1861
  year: 2007
  ident: e_1_2_9_12_1
  article-title: Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing
  publication-title: Philos Trans R Soc London A Math Phys Eng Sci
SSID ssj0002171030
Score 2.1867366
Snippet Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous...
Abstract Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms acid hydrolysis
aggregation
detonation nanodiamonds
ethereal bonds
nuclear magnetic resonance
thermogravimetric analysis
X‐ray photoelectron spectroscopy
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG7W9aIH8Ynjiwa9KBs36XTnIV5W2XERXDy4MLdQ_cou7HSGmSjszZ_gP_C_-Uus6mSyLojgrWkqJKTe3VVfMfZC-8obV0MioRSYoKCmo9OrEulRvVKfSsio3_nTcXF0Ij8u1GKHvd32wgz4ENOBG2lGtNek4KA3-5egoS604jXa3VJdY9ept5YK-oT8PJ2wYLBNM7Roupwq0RSjrE34pGL_8vErHikC918NVKOnmd9mt8YQkR8MPL3Ddly4y27-ARx4j_2cY5Z8ys_ChnLrDS76jlvXd8PZHg8QOmQ8ipjl0GJK3cb9N_wg8MWv7z_WcMFXp13fbafg8NhxSciW3epij1NUuKTCrW9nSxq5ZTiM4CV7uLI8EAoyrPkS2kBdkBw_pyPoDscjXu19djI__PL-KBlHLSRGZlIlubHaoXYqq1JvUyMN3WAakeuitAqDJl-o0hZVXqUVCCdBgtNQG2urSgKY_AHbDV1wDxl3TnglHZQeqdD7Vwq8dnWqC13kJpcz9nL7uxsz4pDTOIzzZkBQFg2xpomsmbHnE-1qQN_4K9U74tpEQYjZcaNbt82ogI02GaZORVr6Oke5hNpZ42WGgioyV5Vixl5Fnv_jPc3h8QcRV4_-h_gxuyGoECYWrj1hu_36q3uKkUyvn0WB_Q2l9_LR
  priority: 102
  providerName: Wiley-Blackwell
Title Fresh insights into detonation nanodiamond aggregation: An X‐ray photoelectron spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.12375
https://doaj.org/article/bc1974607f934a7a9edcf41fce21e872
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBZtTs2h9C902yQI2ktL3NiybMu9pWW3oZDQQwJ7M6O_TaArLxsnkEvoI_QN8m59ks7IzrKB0l56MUIMltCMNN_Yo28Ye6u98sbVkEioBAYouNPR6alEetxeqU8lZHTf-ei4PDyVX6fFdK3UF-WE9fTA_cLta5Mh5C3Tytc5vg9qZ42XGQ4gMqeqePqiz1sLpugMRqBN9bNWfKRi34WZ-IDHNCUUrnmgSNR_H5hGzzJ5wh4PkJAf9FN5yh648IxtrhEFPme3E4yKz_h5uKBY-gIbXcut69r-Wx4PEFpUNJqU5TDDEHoW-z_yg8Cnv378XMI1X5y1XXtX9YbHG5bEZNkurvc4ocA5JWpdnc-pxJbhMJCV7GHL8kCsx7Dkc5gFuvXIcTotUXU4HvlpX7DTyfjk82EylFZIjMxkkeTGaoe7sbBF6m1qpKE_lkbkuqxsgSDJl0VlS5WrVIFwEiQ4DbWxVikJYPItthHa4F4y7pzwhXRQeZRCb68K8NrVqS51mZtcjti7u-VuzMA7TuUvvjc9Y7JoSDVNVM2IvVnJLnq2jT9KfSKtrSSIITt2oN00g900_7KbEXsfdf6XcZrx8RcRW6_-x4iv2SNBCTExgW2bbXTLS7eDiKbTu-yhkN92ownj8-hm_Buwjftp
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKewAOFb9ioYAl4ABqaOI4f5U4LNBlS9s9ddGKS3D8k1ZindVuAO2NR-gb8AS8FE_CjJNNqYSQOPRmWaPEysxnzzgz3xDytDCpkToTHhcJgwAFkA6HXupxA_Dyjc9FgPXOR6N4OObvJ9Fkjfxc1cI0_BDdhRsiw-3XCHC8kN45Zw3VtmQvYeNNVjmVB3r5DSK2xav9t6DeZ4wN9o7fDL22qYAnecAjL5Sq0GCHkYp8o3zJJf6rkyws4kRF4B6YOEpUnIapnwqmueBCFyKTSqUpF0KG8NwrZAPdKADRRv_D-OO4u9QB_x7bdmFDuyiB3R_Mu6NEZTvnC75wCLpeARd9Y3e4DW6QzdYrpf3GjG6SNW1vket_cBXeJj8GEJif0FO7wHB-AYO6okrXVXOdSK2wFdgaWLWiooQovnTzu7Rv6eTX97O5WNLZSVVXq8Y71BV5IplmNVtuU3REp5gr9vV0il2-JBUtX8o2jBS1SLws5nQqSouFlxSWUyFbiKaOIvcOGV-KIu6SdVtZfY9QrZmJuBaJASlwONJImEJnfhEXcShD3iPPV587ly31OXbg-Jw3pM0sR9XkTjU98qSTnTWEH3-Veo1a6ySQpNtNVPMybzGfFzKAaC32E5OFAAWRaSUNDwAbLNBpwnrkhdP5P96T743eMTe6_z_Cj8nV4fHRYX64Pzp4QK4xzMNxeXNbZL2ef9EPwZGqi0et-VLy6bIR8xs1zjJn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVy68l4ABqaOLY-UHisNAuLYUVBxategmOf9JKrLPaDaC98Qi8AS_AU_EkjJ3slkoIiUNvljVKrMx89owz8w3Aw9JkRupcBEykFAMURDoeelnADMIrNCETkat3fjtK9sbs9YRPNuDnqham5YdYX7g5ZPj92gF8psz2CWmothV9ivtuukqpPNDLrxiwLZ7v76B2H1E63H3_ci_oegoEkkWMB7FUpUYz5IqHRoWSSferTtK4TFLF0TswCU9VksVZmAmqmWBClyKXSmUZE0LG-NxzsMnxGAx7sDn4MD4cr-900L13XbtcPzue4uaP1r1mRKXbJws-dQb6VgGnXWN_tg0vw6XOKSWD1oquwIa2V-HiH1SF1-DHEOPyI3JsFy6aX-CgqYnSTd3eJhIrbI2mhkatiKgwiK_8_DMysGTy69v3uViS2VHd1Ku-O8TXeDouzXq23CLOD526VLEvx1PX5EsS0dGlbOFIEet4l8WcTEVlXd0lweXUjixEE8-Qex3GZ6KIG9CztdU3gWhNDWdapAal0N_IuDClzsMyKZNYxqwPj1efu5Ad87lrwPGpaDmbaeFUU3jV9OHBWnbW8n38VeqF09pawnF0-4l6XhUd5ItSRhisJWFq8hiRIHKtpGERQoNGOktpH554nf_jPcXu6BX1o1v_I3wfzr_bGRZv9kcHt-ECdVk4PmvuDvSa-Wd9F92oprzXWS-Bj2cNmN_zWzGH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fresh+insights+into+detonation+nanodiamond+aggregation%3A+An+X%E2%80%90ray+photoelectron+spectroscopy%2C+thermogravimetric+analysis%2C+and+nuclear+magnetic+resonance+study&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Khabiboulakh+Katsiev&rft.au=Vera+Solovyeva&rft.au=Remi+Mahfouz&rft.au=Edy+Abou%E2%80%90Hamad&rft.date=2021-03-01&rft.pub=Wiley&rft.eissn=2577-8196&rft.volume=3&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feng2.12375&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bc1974607f934a7a9edcf41fce21e872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon