Fresh insights into detonation nanodiamond aggregation: An X‐ray photoelectron spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance study
Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary parti...
Saved in:
Published in | Engineering reports (Hoboken, N.J.) Vol. 3; no. 3 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling.
The mechanism behind aggregation in detonation nanodiamonds is outlined. Surface oxygen functionalities, identified as COC species, cross‐link the primary particles (ca. 4‐5 nm) forming large polydisperse aggregates. A facile acid hydrolysis is proposed for de‐aggregating the diamonds in high yields. |
---|---|
AbstractList | Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling. Abstract Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling. Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross‐linker. Solid‐state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as‐received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre‐ or post‐hydrolysis treatment such as surface functionalization or milling. The mechanism behind aggregation in detonation nanodiamonds is outlined. Surface oxygen functionalities, identified as COC species, cross‐link the primary particles (ca. 4‐5 nm) forming large polydisperse aggregates. A facile acid hydrolysis is proposed for de‐aggregating the diamonds in high yields. |
Author | Kirmani, Ahmad R. Solovyeva, Vera Mahfouz, Remi Katsiev, Khabiboulakh Idriss, Hicham Abou‐Hamad, Edy Peng, Wei |
Author_xml | – sequence: 1 givenname: Khabiboulakh surname: Katsiev fullname: Katsiev, Khabiboulakh organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Vera surname: Solovyeva fullname: Solovyeva, Vera organization: Lomonosov Moscow State University – sequence: 3 givenname: Remi surname: Mahfouz fullname: Mahfouz, Remi organization: King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) – sequence: 4 givenname: Edy surname: Abou‐Hamad fullname: Abou‐Hamad, Edy organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Wei surname: Peng fullname: Peng, Wei organization: King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) – sequence: 6 givenname: Hicham surname: Idriss fullname: Idriss, Hicham organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Ahmad R. orcidid: 0000-0002-8351-3762 surname: Kirmani fullname: Kirmani, Ahmad R. email: ahmad.kirmani@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) |
BookMark | eNp9UcFKHTEUDUWhVt30C7IuPptkMpMZdyJqBWk3FroL9yV35kVmkkcSLbPrJ_QP-m_9ksZ5LRQRVzncnHPu4Z53ZM8Hj4S85-yUMyY-oh_EKReVqt-QA1ErtWp51-z9h9-S45TuWSFzxVnFDsivq4hpQ51PbtjkVEAO1GIOHrILnnrwwTqYgrcUhiHisMzP6Lmn337_-BlhpttNyAFHNDkWRdouIJmwnU9o3mCcwhDh0U2YozMUPIxzcumkIEv9gxkRIp1g8JjLd4lTdnuDNOUHOx-R_R7GhMd_30Py9ery7uLT6vbL9c3F-e3KSC7rVWXsGjnjta1Zb5mRhvGqNaJaN8rWopF9UyvbtFXLWhAoQQKuoTPWtq0EMNUhudn52gD3ehvdBHHWAZxeBiEOGmLJN6JeG94p2TDVd5UEBR1a00veGxQcWyWKF9t5mXKGFLHXxuXlbDmCGzVn-qkv_dSXXvoqkg_PJP8ivEjmO_J3N-L8ClNffr4WO80faeutpQ |
CitedBy_id | crossref_primary_10_1039_D2TB01863B crossref_primary_10_3390_nano11112772 crossref_primary_10_2139_ssrn_4049511 crossref_primary_10_3390_ijms241612568 crossref_primary_10_3390_app11125455 |
Cites_doi | 10.1002/sia.5185 10.1016/j.diamond.2006.06.006 10.1002/pssb.201552232 10.1080/10408430902831987 10.1126/scitranslmed.3001713 10.1126/science.1189075 10.1073/pnas.1403768111 10.1016/j.diamond.2019.02.006 10.1021/acsanm.9b00614 10.1166/nnl.2011.1122 10.1039/C7RA04167E 10.1016/j.apsusc.2012.12.173 10.1038/s41598-017-14553-z 10.1149/MA2015-01/5/766 10.1021/cm500036x 10.1016/j.diamond.2007.07.014 10.1016/j.partic.2011.03.015 10.1021/jp901274f 10.1021/nn901008r 10.3390/ma3073818 10.1016/0266-3538(91)90021-G 10.1002/pssa.201600184 10.1039/b712614j 10.1016/j.ssnmr.2011.10.003 10.1016/j.diamond.2009.10.008 10.1007/978-3-211-75237-1_5 10.1038/nnano.2011.121 10.1021/nn100748k 10.1070/RC2001v070n07ABEH000665 10.1002/adma.200601452 10.1002/adma.201400577 10.1021/am100720n 10.1016/j.diamond.2007.08.008 10.1016/S0266-3538(96)00162-5 10.1016/j.vibspec.2016.01.010 10.1088/0957-4484/19/22/225201 10.1038/nmat2206 10.1134/1.1711440 10.1140/epjb/e2006-00314-7 10.1021/acs.jpcc.5b05259 10.1016/B978-081551524-1.50003-2 10.1038/s41598-018-36838-7 10.1002/adfm.201102670 10.1021/ja063303n 10.1080/10408436.2011.606930 10.1016/j.carbon.2005.02.020 10.1016/j.diamond.2012.05.005 10.1021/jp503053r 10.1038/nnano.2011.209 10.1016/j.carbon.2011.06.005 10.1016/j.carbon.2015.06.038 10.1016/j.diamond.2019.04.001 10.1039/c3nr00990d 10.1002/adma.201304166 10.1016/j.carbon.2014.08.094 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons, Ltd. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/eng2.12375 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2577-8196 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_bc1974607f934a7a9edcf41fce21e872 10_1002_eng2_12375 ENG212375 |
Genre | article |
GrantInformation_xml | – fundername: Russian Science Foundation funderid: 18‐13‐00337 – fundername: King Abdullah University of Science and Technology |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC M7S M~E OK1 PIMPY PTHSS WIN AAYXX ADMLS CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY PQGLB PUEGO |
ID | FETCH-LOGICAL-c4145-3cdbe1015d50fd0c4c0138c23b67d5264f657d683808a2e4a4aeba9cdd884aac3 |
IEDL.DBID | DOA |
ISSN | 2577-8196 |
IngestDate | Wed Aug 27 01:30:13 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Tue Jul 01 02:00:08 EDT 2025 Wed Jan 22 16:31:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4145-3cdbe1015d50fd0c4c0138c23b67d5264f657d683808a2e4a4aeba9cdd884aac3 |
ORCID | 0000-0002-8351-3762 |
OpenAccessLink | https://doaj.org/article/bc1974607f934a7a9edcf41fce21e872 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bc1974607f934a7a9edcf41fce21e872 crossref_citationtrail_10_1002_eng2_12375 crossref_primary_10_1002_eng2_12375 wiley_primary_10_1002_eng2_12375_ENG212375 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | Engineering reports (Hoboken, N.J.) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 7 2019; 93 2019; 95 2010; 19 2014; 26 2008; 7 2009; 113 2013; 5 2012; 10 2001 1991; 42 1997; 57 2015; 252 2006; 3‐22 2016; 83 2010; 3 2010; 2 2012; 22 2006; 128 2010; 4 2013; 270 2014; 118 2001; 70 2007; 365 2007; 19 2019; 9 2006; 52 2010; 329 2019; 2 2015; 94 2013; 45 2008; 19 2011; 40 2004; 46 2012; 27–28 2008 2007 2005; 43 2012; 37 2011; 3 2014; 111 2011; 6 2007; 16 2009; 34 2014; 80 2015; 119 2015 2016; 213 2009; 3 2012; 7 2011; 49 2007; 47 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Graham JM (e_1_2_9_30_1) 2001 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 Pefferkorn E (e_1_2_9_40_1) 2007 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Holt KB (e_1_2_9_12_1) 2007; 365 e_1_2_9_42_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Mochalin VN (e_1_2_9_14_1) 2015 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 46 start-page: 636 issue: 4 year: 2004 end-page: 643 article-title: Surface chemistry of nanodiamonds publication-title: Phys Solid State – volume: 3 start-page: 2975 issue: 10 year: 2009 end-page: 2988 article-title: Structure/processing relationships of highly ordered Lead salt Nanocrystal Superlattices publication-title: ACS Nano – volume: 113 start-page: 10371 issue: 24 year: 2009 end-page: 10378 article-title: Solid‐state NMR study of nanodiamonds produced by the detonation technique publication-title: J Phys Chem C – volume: 70 start-page: 607 issue: 7 year: 2001 end-page: 626 article-title: Detonation synthesis ultradispersed diamonds: properties and applications publication-title: Russ Chem Rev – year: 2001 – start-page: 741 year: 2007 end-page: 791 – volume: 252 start-page: 2602 issue: 11 year: 2015 end-page: 2607 article-title: Low‐temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure publication-title: Physica Status Solidi (b) – volume: 26 start-page: 4717 issue: 27 year: 2014 end-page: 4723 article-title: Effect of solvent environment on colloidal‐quantum‐dot solar‐cell manufacturability and performance publication-title: Adv Mater – volume: 2 start-page: 3701 issue: 6 year: 2019 end-page: 3710 article-title: Removing non‐size‐dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation publication-title: ACS Appl Nano Mater – volume: 213 start-page: 2680 issue: 10 year: 2016 end-page: 2686 article-title: Plasma treatment of detonation and HPHT nanodiamonds in diffuse coplanar surface barrier discharge in H2/N2 flow publication-title: Phys Status Solidi (a) – volume: 80 start-page: 544 year: 2014 end-page: 550 article-title: Thermochemistry of nanodiamond terminated by oxygen containing functional groups publication-title: Carbon – volume: 45 start-page: 937 issue: 5 year: 2013 end-page: 942 article-title: Effect of low current density electrochemical oxidation on the properties of carbon fiber‐reinforced epoxy resin composites publication-title: Surf Interface Anal – volume: 3 start-page: 68 issue: 1 year: 2011 end-page: 74 article-title: Deagglomeration of detonation nanodiamonds publication-title: Nanosci Nanotechnol Lett – volume: 270 start-page: 272 year: 2013 end-page: 280 article-title: Effect of UV and electrochemical surface treatments on the adsorption and reaction of linear alcohols on non‐porous carbon fibre publication-title: Appl Surf Sci – volume: 42 start-page: 275 issue: 1 year: 1991 end-page: 298 article-title: Special issue interfaces in composites the chemistry of carbon fibre surfaces and its effect on interfacial phenomena in fibre/epoxy composites publication-title: Compos Sci Technol – volume: 16 start-page: 2018 issue: 12 year: 2007 end-page: 2022 article-title: Recent progress and perspectives in single‐digit nanodiamond publication-title: Diamond Relat Mater – volume: 365 start-page: 2845 issue: 1861 year: 2007 end-page: 2861 article-title: Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing publication-title: Philos Trans R Soc London A Math Phys Eng Sci – volume: 119 start-page: 27708 issue: 49 year: 2015 end-page: 27720 article-title: Size and purity control of HPHT Nanodiamonds down to 1 nm publication-title: J Phys Chem C – volume: 7 start-page: 14086 issue: 1 year: 2017 article-title: Optical properties of functionalized nanodiamonds publication-title: Sci Rep – volume: 19 start-page: 1201 issue: 9 year: 2007 end-page: 1206 article-title: Preparation and behavior of brownish publication-title: Clear Nanodiamond Colloids Adv Mater – volume: 94 start-page: 79 year: 2015 end-page: 84 article-title: On the relation between chemical composition and optical properties of detonation nanodiamonds publication-title: Carbon – volume: 118 start-page: 9621 issue: 18 year: 2014 end-page: 9627 article-title: Quantification of CC and CO surface carbons in detonation Nanodiamond by NMR publication-title: J Phys Chem C – volume: 19 start-page: 225201 issue: 22 year: 2008 article-title: Nanodiamond particles forming photonic structures publication-title: Nanotechnology – volume: 128 start-page: 11635 issue: 35 year: 2006 end-page: 11642 article-title: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air publication-title: J Am Chem Soc – volume: 95 start-page: 55 year: 2019 end-page: 59 article-title: Nanodiamond coating by polyethylenimine for optical limitation publication-title: Diamond Relat Mater – volume: 93 start-page: 150 year: 2019 end-page: 158 article-title: Nanodiamond‐based energetic core‐shell composites: the route towards safer materials publication-title: Diamond Relat Mater – volume: 111 start-page: 9037 issue: 25 year: 2014 end-page: 9041 article-title: Packing density of rigid aggregates is independent of scale publication-title: Proc Natl Acad Sci – volume: 3 start-page: 3818 issue: 7 year: 2010 end-page: 3844 article-title: A comprehensive review on separation methods and techniques for single‐walled carbon nanotubes publication-title: Materials – volume: 10 start-page: 339 issue: 3 year: 2012 end-page: 344 article-title: Influence of thermal oxidation on as‐synthesized detonation nanodiamond publication-title: Particuology – volume: 9 start-page: 519 issue: 1 year: 2019 article-title: Optical limiting properties of surface functionalized nanodiamonds probed by the Z‐scan method publication-title: Sci Rep – volume: 27–28 start-page: 45 year: 2012 end-page: 48 article-title: Deaggregation of diamond nanoparticles studied by NMR publication-title: Diamond Relat Mater – volume: 6 start-page: 580 issue: 9 year: 2011 end-page: 587 article-title: Self‐assembly of self‐limiting monodisperse supraparticles from polydisperse nanoparticles publication-title: Nat Nanotechnol – volume: 47 start-page: 5090 year: 2007 end-page: 5092 article-title: Removal of amorphous carbon for the efficient sidewall functionalisation of single‐walled carbon nanotubes publication-title: Chem Commun – volume: 7 start-page: 38973 issue: 62 year: 2017 end-page: 38980 article-title: Surface chemistry of water‐dispersed detonation nanodiamonds modified by atmospheric DC plasma afterglow publication-title: RSC Adv – volume: 83 start-page: 108 year: 2016 end-page: 114 article-title: Oxidation and reduction of nanodiamond particles in colloidal solutions by laser irradiation or radio‐frequency plasma treatment publication-title: Vibr Spectrosc – volume: 16 start-page: 2044 issue: 12 year: 2007 end-page: 2049 article-title: Solid state nuclear magnetic resonance studies of nanocarbons publication-title: Diamond Relat Mater – volume: 26 start-page: 2766 issue: 9 year: 2014 end-page: 2769 article-title: Direct functionalization of nanodiamonds with maleimide publication-title: Chem Mater – volume: 2 start-page: 3289 issue: 11 year: 2010 end-page: 3294 article-title: Deaggregation of nanodiamond powders using salt‐ and sugar‐assisted milling publication-title: ACS Appl Mater Interfaces – volume: 5 start-page: 5017 issue: 11 year: 2013 end-page: 5026 article-title: Gram‐scale fractionation of nanodiamonds by density gradient ultracentrifugation publication-title: Nanoscale – volume: 43 start-page: 1722 issue: 8 year: 2005 end-page: 1730 article-title: Unusually tight aggregation in detonation nanodiamond: identification and disintegration publication-title: Carbon – volume: 4 start-page: 4824 issue: 8 year: 2010 end-page: 4830 article-title: Size‐dependent reactivity of diamond nanoparticles publication-title: ACS Nano – volume: 7 start-page: 11 issue: 1 year: 2012 end-page: 23 article-title: The properties and applications of nanodiamonds publication-title: Nat Nanotechnol – volume: 3‐22 year: 2006 – volume: 7 start-page: 527 issue: 7 year: 2008 end-page: 538 article-title: The role of interparticle and external forces in nanoparticle assembly publication-title: Nat Mater – volume: 40 start-page: 144 issue: 4 year: 2011 end-page: 154 article-title: Solid state NMR study of nanodiamond surface chemistry publication-title: Solid State Nucl Magn Reson – volume: 16 start-page: 277 issue: 2 year: 2007 end-page: 282 article-title: Deaggregation of ultradispersed diamond from explosive detonation by a graphitization–oxidation method and by hydroiodic acid treatment publication-title: Diamond Relat Mater – volume: 49 start-page: 4322 issue: 13 year: 2011 end-page: 4330 article-title: Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres publication-title: Carbon – volume: 37 start-page: 276 issue: 4 year: 2012 end-page: 303 article-title: Nuclear magnetic resonance studies of Nanodiamonds publication-title: Crit Rev Solid State Mater Sci – volume: 34 start-page: 18 issue: 1–2 year: 2009 end-page: 74 article-title: Nanodiamond particles: properties and perspectives for bioapplications publication-title: Crit Rev Solid State Mater Sci – year: 2015 article-title: Biomedical Applications of Diamond Nanoparticles publication-title: ECS Meeting Abstracts – volume: 329 start-page: 542 issue: 5991 year: 2010 end-page: 544 article-title: Single‐shot readout of a single nuclear spin publication-title: Science – volume: 22 start-page: 890 issue: 5 year: 2012 end-page: 906 article-title: Functionality is key: recent progress in the surface modification of Nanodiamond publication-title: Adv Funct Mater – volume: 57 start-page: 1023 issue: 8 year: 1997 end-page: 1032 article-title: Plasma polymerisation for molecular engineering of carbon‐fibre surfaces for optimised composites publication-title: Compos Sci Technol – volume: 19 start-page: 260 issue: 2–3 year: 2010 end-page: 267 article-title: Seeding slurries based on detonation nanodiamond in DMSO publication-title: Diamond Relat Mater – start-page: 119 year: 2008 end-page: 169 – volume: 52 start-page: 397 issue: 3 year: 2006 end-page: 402 article-title: Nuclear magnetic resonance study of ultrananocrystalline diamonds publication-title: Eur Phys J B – volume: 26 start-page: 937 issue: 6 year: 2014 end-page: 942 article-title: The complete in‐gap electronic structure of colloidal quantum dot solids and its correlation with electronic transport and photovoltaic performance publication-title: Adv Mater – volume: 3 start-page: 73ra21 issue: 73 year: 2011 end-page: 73ra21 article-title: Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment publication-title: Sci Transl Med – ident: e_1_2_9_45_1 doi: 10.1002/sia.5185 – ident: e_1_2_9_34_1 doi: 10.1016/j.diamond.2006.06.006 – ident: e_1_2_9_58_1 doi: 10.1002/pssb.201552232 – ident: e_1_2_9_15_1 doi: 10.1080/10408430902831987 – ident: e_1_2_9_13_1 doi: 10.1126/scitranslmed.3001713 – ident: e_1_2_9_11_1 doi: 10.1126/science.1189075 – ident: e_1_2_9_39_1 doi: 10.1073/pnas.1403768111 – ident: e_1_2_9_6_1 doi: 10.1016/j.diamond.2019.02.006 – ident: e_1_2_9_25_1 doi: 10.1021/acsanm.9b00614 – ident: e_1_2_9_32_1 doi: 10.1166/nnl.2011.1122 – ident: e_1_2_9_57_1 doi: 10.1039/C7RA04167E – ident: e_1_2_9_49_1 doi: 10.1016/j.apsusc.2012.12.173 – ident: e_1_2_9_9_1 doi: 10.1038/s41598-017-14553-z – year: 2015 ident: e_1_2_9_14_1 article-title: Biomedical Applications of Diamond Nanoparticles publication-title: ECS Meeting Abstracts doi: 10.1149/MA2015-01/5/766 – ident: e_1_2_9_23_1 doi: 10.1021/cm500036x – ident: e_1_2_9_52_1 doi: 10.1016/j.diamond.2007.07.014 – ident: e_1_2_9_35_1 doi: 10.1016/j.partic.2011.03.015 – ident: e_1_2_9_51_1 doi: 10.1021/jp901274f – ident: e_1_2_9_43_1 doi: 10.1021/nn901008r – ident: e_1_2_9_29_1 doi: 10.3390/ma3073818 – ident: e_1_2_9_47_1 doi: 10.1016/0266-3538(91)90021-G – ident: e_1_2_9_36_1 doi: 10.1002/pssa.201600184 – ident: e_1_2_9_38_1 doi: 10.1039/b712614j – ident: e_1_2_9_50_1 doi: 10.1016/j.ssnmr.2011.10.003 – ident: e_1_2_9_37_1 doi: 10.1016/j.diamond.2009.10.008 – ident: e_1_2_9_41_1 doi: 10.1007/978-3-211-75237-1_5 – ident: e_1_2_9_44_1 doi: 10.1038/nnano.2011.121 – ident: e_1_2_9_33_1 doi: 10.1021/nn100748k – ident: e_1_2_9_21_1 doi: 10.1070/RC2001v070n07ABEH000665 – ident: e_1_2_9_26_1 doi: 10.1002/adma.200601452 – ident: e_1_2_9_17_1 doi: 10.1002/adma.201400577 – ident: e_1_2_9_27_1 doi: 10.1021/am100720n – ident: e_1_2_9_4_1 doi: 10.1016/j.diamond.2007.08.008 – ident: e_1_2_9_46_1 doi: 10.1016/S0266-3538(96)00162-5 – ident: e_1_2_9_59_1 doi: 10.1016/j.vibspec.2016.01.010 – ident: e_1_2_9_10_1 doi: 10.1088/0957-4484/19/22/225201 – ident: e_1_2_9_42_1 doi: 10.1038/nmat2206 – ident: e_1_2_9_31_1 doi: 10.1134/1.1711440 – volume-title: Biological Centrifugation year: 2001 ident: e_1_2_9_30_1 – ident: e_1_2_9_55_1 doi: 10.1140/epjb/e2006-00314-7 – ident: e_1_2_9_19_1 doi: 10.1021/acs.jpcc.5b05259 – ident: e_1_2_9_5_1 doi: 10.1016/B978-081551524-1.50003-2 – ident: e_1_2_9_8_1 doi: 10.1038/s41598-018-36838-7 – ident: e_1_2_9_20_1 doi: 10.1002/adfm.201102670 – ident: e_1_2_9_22_1 doi: 10.1021/ja063303n – start-page: 741 volume-title: Handbook of Powder Technology year: 2007 ident: e_1_2_9_40_1 – ident: e_1_2_9_53_1 doi: 10.1080/10408436.2011.606930 – ident: e_1_2_9_2_1 doi: 10.1016/j.carbon.2005.02.020 – ident: e_1_2_9_54_1 doi: 10.1016/j.diamond.2012.05.005 – ident: e_1_2_9_56_1 doi: 10.1021/jp503053r – ident: e_1_2_9_3_1 doi: 10.1038/nnano.2011.209 – ident: e_1_2_9_48_1 doi: 10.1016/j.carbon.2011.06.005 – ident: e_1_2_9_16_1 doi: 10.1016/j.carbon.2015.06.038 – ident: e_1_2_9_7_1 doi: 10.1016/j.diamond.2019.04.001 – ident: e_1_2_9_28_1 doi: 10.1039/c3nr00990d – ident: e_1_2_9_18_1 doi: 10.1002/adma.201304166 – ident: e_1_2_9_24_1 doi: 10.1016/j.carbon.2014.08.094 – volume: 365 start-page: 2845 issue: 1861 year: 2007 ident: e_1_2_9_12_1 article-title: Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing publication-title: Philos Trans R Soc London A Math Phys Eng Sci |
SSID | ssj0002171030 |
Score | 2.1867366 |
Snippet | Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an amorphous... Abstract Detonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer‐sized primary crystalline particles embedded in an... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | acid hydrolysis aggregation detonation nanodiamonds ethereal bonds nuclear magnetic resonance thermogravimetric analysis X‐ray photoelectron spectroscopy |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG7W9aIH8Ynjiwa9KBs36XTnIV5W2XERXDy4MLdQ_cou7HSGmSjszZ_gP_C_-Uus6mSyLojgrWkqJKTe3VVfMfZC-8obV0MioRSYoKCmo9OrEulRvVKfSsio3_nTcXF0Ij8u1GKHvd32wgz4ENOBG2lGtNek4KA3-5egoS604jXa3VJdY9ept5YK-oT8PJ2wYLBNM7Roupwq0RSjrE34pGL_8vErHikC918NVKOnmd9mt8YQkR8MPL3Ddly4y27-ARx4j_2cY5Z8ys_ChnLrDS76jlvXd8PZHg8QOmQ8ipjl0GJK3cb9N_wg8MWv7z_WcMFXp13fbafg8NhxSciW3epij1NUuKTCrW9nSxq5ZTiM4CV7uLI8EAoyrPkS2kBdkBw_pyPoDscjXu19djI__PL-KBlHLSRGZlIlubHaoXYqq1JvUyMN3WAakeuitAqDJl-o0hZVXqUVCCdBgtNQG2urSgKY_AHbDV1wDxl3TnglHZQeqdD7Vwq8dnWqC13kJpcz9nL7uxsz4pDTOIzzZkBQFg2xpomsmbHnE-1qQN_4K9U74tpEQYjZcaNbt82ogI02GaZORVr6Oke5hNpZ42WGgioyV5Vixl5Fnv_jPc3h8QcRV4_-h_gxuyGoECYWrj1hu_36q3uKkUyvn0WB_Q2l9_LR priority: 102 providerName: Wiley-Blackwell |
Title | Fresh insights into detonation nanodiamond aggregation: An X‐ray photoelectron spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance study |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.12375 https://doaj.org/article/bc1974607f934a7a9edcf41fce21e872 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBZtTs2h9C902yQI2ktL3NiybMu9pWW3oZDQQwJ7M6O_TaArLxsnkEvoI_QN8m59ks7IzrKB0l56MUIMltCMNN_Yo28Ye6u98sbVkEioBAYouNPR6alEetxeqU8lZHTf-ei4PDyVX6fFdK3UF-WE9fTA_cLta5Mh5C3Tytc5vg9qZ42XGQ4gMqeqePqiz1sLpugMRqBN9bNWfKRi34WZ-IDHNCUUrnmgSNR_H5hGzzJ5wh4PkJAf9FN5yh648IxtrhEFPme3E4yKz_h5uKBY-gIbXcut69r-Wx4PEFpUNJqU5TDDEHoW-z_yg8Cnv378XMI1X5y1XXtX9YbHG5bEZNkurvc4ocA5JWpdnc-pxJbhMJCV7GHL8kCsx7Dkc5gFuvXIcTotUXU4HvlpX7DTyfjk82EylFZIjMxkkeTGaoe7sbBF6m1qpKE_lkbkuqxsgSDJl0VlS5WrVIFwEiQ4DbWxVikJYPItthHa4F4y7pzwhXRQeZRCb68K8NrVqS51mZtcjti7u-VuzMA7TuUvvjc9Y7JoSDVNVM2IvVnJLnq2jT9KfSKtrSSIITt2oN00g900_7KbEXsfdf6XcZrx8RcRW6_-x4iv2SNBCTExgW2bbXTLS7eDiKbTu-yhkN92ownj8-hm_Buwjftp |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKewAOFb9ioYAl4ABqaOI4f5U4LNBlS9s9ddGKS3D8k1ZindVuAO2NR-gb8AS8FE_CjJNNqYSQOPRmWaPEysxnzzgz3xDytDCpkToTHhcJgwAFkA6HXupxA_Dyjc9FgPXOR6N4OObvJ9Fkjfxc1cI0_BDdhRsiw-3XCHC8kN45Zw3VtmQvYeNNVjmVB3r5DSK2xav9t6DeZ4wN9o7fDL22qYAnecAjL5Sq0GCHkYp8o3zJJf6rkyws4kRF4B6YOEpUnIapnwqmueBCFyKTSqUpF0KG8NwrZAPdKADRRv_D-OO4u9QB_x7bdmFDuyiB3R_Mu6NEZTvnC75wCLpeARd9Y3e4DW6QzdYrpf3GjG6SNW1vket_cBXeJj8GEJif0FO7wHB-AYO6okrXVXOdSK2wFdgaWLWiooQovnTzu7Rv6eTX97O5WNLZSVVXq8Y71BV5IplmNVtuU3REp5gr9vV0il2-JBUtX8o2jBS1SLws5nQqSouFlxSWUyFbiKaOIvcOGV-KIu6SdVtZfY9QrZmJuBaJASlwONJImEJnfhEXcShD3iPPV587ly31OXbg-Jw3pM0sR9XkTjU98qSTnTWEH3-Veo1a6ySQpNtNVPMybzGfFzKAaC32E5OFAAWRaSUNDwAbLNBpwnrkhdP5P96T743eMTe6_z_Cj8nV4fHRYX64Pzp4QK4xzMNxeXNbZL2ef9EPwZGqi0et-VLy6bIR8xs1zjJn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgVy68l4ABqaOLY-UHisNAuLYUVBxategmOf9JKrLPaDaC98Qi8AS_AU_EkjJ3slkoIiUNvljVKrMx89owz8w3Aw9JkRupcBEykFAMURDoeelnADMIrNCETkat3fjtK9sbs9YRPNuDnqham5YdYX7g5ZPj92gF8psz2CWmothV9ivtuukqpPNDLrxiwLZ7v76B2H1E63H3_ci_oegoEkkWMB7FUpUYz5IqHRoWSSferTtK4TFLF0TswCU9VksVZmAmqmWBClyKXSmUZE0LG-NxzsMnxGAx7sDn4MD4cr-900L13XbtcPzue4uaP1r1mRKXbJws-dQb6VgGnXWN_tg0vw6XOKSWD1oquwIa2V-HiH1SF1-DHEOPyI3JsFy6aX-CgqYnSTd3eJhIrbI2mhkatiKgwiK_8_DMysGTy69v3uViS2VHd1Ku-O8TXeDouzXq23CLOD526VLEvx1PX5EsS0dGlbOFIEet4l8WcTEVlXd0lweXUjixEE8-Qex3GZ6KIG9CztdU3gWhNDWdapAal0N_IuDClzsMyKZNYxqwPj1efu5Ad87lrwPGpaDmbaeFUU3jV9OHBWnbW8n38VeqF09pawnF0-4l6XhUd5ItSRhisJWFq8hiRIHKtpGERQoNGOktpH554nf_jPcXu6BX1o1v_I3wfzr_bGRZv9kcHt-ECdVk4PmvuDvSa-Wd9F92oprzXWS-Bj2cNmN_zWzGH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fresh+insights+into+detonation+nanodiamond+aggregation%3A+An+X%E2%80%90ray+photoelectron+spectroscopy%2C+thermogravimetric+analysis%2C+and+nuclear+magnetic+resonance+study&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Khabiboulakh+Katsiev&rft.au=Vera+Solovyeva&rft.au=Remi+Mahfouz&rft.au=Edy+Abou%E2%80%90Hamad&rft.date=2021-03-01&rft.pub=Wiley&rft.eissn=2577-8196&rft.volume=3&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feng2.12375&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bc1974607f934a7a9edcf41fce21e872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon |