Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis

Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbol...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 34; p. 102031
Main Authors Mohapatra, Priyanka, Madhulika, Swati, Behera, Somalisa, Singh, Priya, Sa, Pratikshya, Prasad, Punit, Swain, Rajeeb Kumar, Sahoo, Sanjeeb Kumar
Format Journal Article
LanguageEnglish
Published Elsevier Inc 12.12.2023
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text
ISSN2162-2531
2162-2531
DOI10.1016/j.omtn.2023.102031

Cover

Abstract Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis. [Display omitted] Sahoo and colleagues showed that Nimbolide-based phytonanomedicine exhibited enhanced anti-tumor activity by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis in breast cancer stem cells (BCSCs).
AbstractList Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo . In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis. Sahoo and colleagues showed that Nimbolide-based phytonanomedicine exhibited enhanced anti-tumor activity by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis in breast cancer stem cells (BCSCs).
Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.
Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.
Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis. [Display omitted] Sahoo and colleagues showed that Nimbolide-based phytonanomedicine exhibited enhanced anti-tumor activity by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis in breast cancer stem cells (BCSCs).
ArticleNumber 102031
Author Madhulika, Swati
Sa, Pratikshya
Singh, Priya
Mohapatra, Priyanka
Swain, Rajeeb Kumar
Behera, Somalisa
Prasad, Punit
Sahoo, Sanjeeb Kumar
Author_xml – sequence: 1
  givenname: Priyanka
  surname: Mohapatra
  fullname: Mohapatra, Priyanka
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
– sequence: 2
  givenname: Swati
  surname: Madhulika
  fullname: Madhulika, Swati
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
– sequence: 3
  givenname: Somalisa
  surname: Behera
  fullname: Behera, Somalisa
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
– sequence: 4
  givenname: Priya
  surname: Singh
  fullname: Singh, Priya
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
– sequence: 5
  givenname: Pratikshya
  surname: Sa
  fullname: Sa, Pratikshya
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
– sequence: 6
  givenname: Punit
  surname: Prasad
  fullname: Prasad, Punit
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
– sequence: 7
  givenname: Rajeeb Kumar
  surname: Swain
  fullname: Swain, Rajeeb Kumar
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
– sequence: 8
  givenname: Sanjeeb Kumar
  surname: Sahoo
  fullname: Sahoo, Sanjeeb Kumar
  email: sanjeeb@ils.res.in
  organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
BookMark eNp9ks9u1DAQxiNUJMrSF-DkI5ds_SfxZiUkhAqFSqUgKOJoOZNJOktiL7a3ou_A0_AgPBNeUiTKob7YmpnvJ8_M97g4cN5hUTwVfCm40MebpZ-SW0ouVQ5IrsSD4lAKLUtZK3Hwz_tRcRTjhuejuZBaHhY_Lmhq_Ugdlq2N2DFnnZ-wIyCHjNwVtZQiawPamBhYBxhYTDiVI31FBjiOOXvDcEsDOkwELOA2-CHYaSI3MN-zVxfvLmP56fTjB1F-cen4188SbEJHjkUanB33dfY7xSfFw96OEY9u70Xx-fT15cnb8vz9m7OTl-clVKISJfK6w7rSXDYWVhY0Km3tisuqw0ppoZSWNQfgWvCqRcB11VTQibUGyBJUi-Js5nbebsw20GTDjfGWzJ-AD4OxIbcyorGAvURouFCrSjWyRQkd9H0nuqbWrc6sFzNru2vz3ABdCna8A72bcXRlBn9tBK-l4nlni-LZLSH4bzuMyUwU94O1Dv0uGtms-HrNV43Ipc1cCsHHGLA3QMkm8ns0jZlp9o4wuYfsCLN3hJkdkaXyP-nfL94rej6LMG_jmjCYCITZAx0FhJTHRffJfwNPRdUa
CitedBy_id crossref_primary_10_1002_bmc_6012
crossref_primary_10_1007_s00210_024_03542_5
crossref_primary_10_1007_s00210_024_03751_y
crossref_primary_10_1016_j_gofs_2024_01_004
crossref_primary_10_3390_ph17070949
Cites_doi 10.1089/ars.2012.4529
10.1016/j.biopha.2018.03.101
10.1038/nm.4409
10.1016/j.jchromb.2018.06.002
10.1016/j.omto.2021.02.014
10.1186/s13287-021-02321-w
10.1016/j.ijpharm.2018.01.016
10.1016/j.ccr.2012.11.009
10.1016/j.ijpharm.2022.121526
10.3390/ijms161023405
10.1038/nature07733
10.1016/j.drudis.2017.04.005
10.1016/j.addr.2010.10.008
10.2174/1871520622666220204115151
10.1016/j.lfs.2019.116986
10.1007/s11101-019-09627-x
10.1016/j.drudis.2020.06.003
10.3389/fgene.2019.00079
10.21037/sci.2018.10.05
10.1016/j.nano.2006.11.008
10.1038/nrc.2016.108
10.1021/mp050032z
10.4161/cbt.5.3.2384
10.3390/genes10110935
10.1038/s41571-021-00565-2
10.1016/j.tiv.2021.105293
10.2174/1381612821666141211115611
10.1007/s00432-021-03519-4
10.1002/mc.22202
10.1038/cddis.2013.50
10.1016/S0168-3659(99)00248-5
10.1002/mc.23277
10.1093/carcin/bgu155
10.1016/j.canlet.2017.02.023
10.3748/wjg.v7.i3.381
10.1016/j.redox.2018.04.015
10.1038/srep19819
10.1002/ijc.28697
10.1093/bioinformatics/18.11.1427
10.1038/onc.2016.304
10.1038/nrclinonc.2017.44
10.1002/gcc.20135
10.1021/acsabm.1c00141
10.1016/S0378-5173(03)00295-3
10.1038/sj.bjc.6604259
10.3390/ijms22158113
10.1038/nrclinonc.2016.66
10.1186/s12943-017-0596-9
10.1038/sj.onc.1209386
10.21037/gs.2016.08.03
10.3390/ijms22041886
10.1038/srep12465
10.1371/journal.pone.0098624
10.3390/ijms23126806
10.1016/j.biocel.2018.12.017
10.1016/j.celrep.2019.07.023
10.1016/j.stemcr.2019.08.015
10.1016/j.pharmthera.2012.11.002
10.1158/1535-7163.MCT-18-0409
10.1016/j.onano.2022.100055
10.1007/s00018-022-04295-1
10.1016/j.semcancer.2015.09.009
ContentType Journal Article
Copyright 2023 The Authors
2023 The Authors.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.omtn.2023.102031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
ExternalDocumentID oai_doaj_org_article_acef2ec801374382be2cdcffd1d856b6
PMC10523002
10_1016_j_omtn_2023_102031
S2162253123002445
GroupedDBID 0R~
53G
5VS
6I.
7X7
8FE
8FH
8FI
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFKRA
AFTJW
AITUG
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M41
M48
M7P
M~E
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
88I
8FJ
AAYWO
AAYXX
ABUWG
ADRAZ
CCPQU
CITATION
DWQXO
EJD
GNUQQ
HMCUK
HYE
IPNFZ
PHGZM
PHGZT
RIG
UKHRP
7X8
5PM
ID FETCH-LOGICAL-c4141-e05de546028ac7ac6e36aa7024de4361336250cc06104bece9484cd196cc28ae3
IEDL.DBID M48
ISSN 2162-2531
IngestDate Wed Aug 27 01:06:29 EDT 2025
Thu Aug 21 18:36:27 EDT 2025
Fri Sep 05 08:13:28 EDT 2025
Tue Jul 01 04:57:45 EDT 2025
Thu Apr 24 22:58:07 EDT 2025
Sat Apr 19 15:54:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wnt/β-catenin signaling
triple-negative breast cancer
nanomedicine
nimbolide
cancer stem cells
MT: Delivery Strategies
epigenetics
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4141-e05de546028ac7ac6e36aa7024de4361336250cc06104bece9484cd196cc28ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2023.102031
PQID 2870990781
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_acef2ec801374382be2cdcffd1d856b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10523002
proquest_miscellaneous_2870990781
crossref_citationtrail_10_1016_j_omtn_2023_102031
crossref_primary_10_1016_j_omtn_2023_102031
elsevier_sciencedirect_doi_10_1016_j_omtn_2023_102031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-12
PublicationDateYYYYMMDD 2023-12-12
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-12
  day: 12
PublicationDecade 2020
PublicationTitle Molecular therapy. Nucleic acids
PublicationYear 2023
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Cheng, Yu, Li, Mu, Gong, Wu, Liu, Zhou, Zeng, Wu (bib20) 2022; 79
Panyam, Sahoo, Prabha, Bargar, Labhasetwar (bib51) 2003; 262
Jang, Kim, Cho, Park, Jung, Lee, Hong, Nam (bib18) 2015; 5
Bailey-Downs, Thorpe, Disch, Bastian, Hauser, Farasyn, Berry, Hurst, Ihnat (bib63) 2014; 9
Ryoo, Choi, Ku, Kwak (bib53) 2018; 17
Zheng, Zhang, Zhou, Zhang, Meng (bib3) 2020; 11
Veeck, Niederacher, An, Klopocki, Wiesmann, Betz, Galm, Camara, Dürst, Kristiansen (bib19) 2006; 25
Xie, Chen, Shan, Shan, Tang, Zhou, Chen, Quan, Nie, Zhang (bib58) 2014; 135
Das, Mukherjee, Chatterjee, Jamal, Chatterji (bib34) 2019; 18
Singh, Sahoo (bib4) 2022; 616
Kahroba, Shirmohamadi, Hejazi, Samadi (bib54) 2019; 239
Cui, Krueger, Henne-Bruns, Kremer, Kalthoff (bib61) 2001; 7
Nivetha, Arvindh, Baba, Gade, Gopal, C., Reddy, Reddy, Nagini (bib12) 2022; 22
Dilnawaz, Acharya, Sahoo (bib50) 2018; 538
Song, Farzaneh (bib17) 2021; 12
Rivolta, Panariti, Lettiero, Sesana, Gasco, Gasco, Masserini, Miserocchi (bib28) 2011; 62
Bianchini, Balko, Mayer, Sanders, Gianni (bib2) 2016; 13
Hegde, Joshi (bib40) 2021; 147
Hason, Bartůněk (bib60) 2019; 10
Wang, Zhang, Dong, Nice, Huang, Wei (bib31) 2013; 4
Suzuki, Toyota, Carraway, Gabrielson, Ohmura, Fujikane, Nishikawa, Sogabe, Nojima, Sonoda (bib37) 2008; 98
Liang, Wang, Chang, Lee, Lin, Lee (bib38) 2019; 28
Saeg, Anbalagan (bib46) 2018; 5
Lo, Mehrotra, D'Costa, Fackler, Garrett-Mayer, Argani, Sukumar (bib21) 2006; 5
Diehn, Cho, Lobo, Kalisky, Dorie, Kulp, Qian, Lam, Ailles, Wong (bib52) 2009; 458
Li, Dahiya (bib64) 2002; 18
Singh, Minz, Sahoo (bib8) 2017; 22
Mohapatra, Singh, Singh, Sahoo, Sahoo (bib10) 2022; 7
Skvortsova, Debbage, Kumar, Skvortsov (bib30) 2015; 35
Acharya, Sahoo (bib42) 2011; 63
Batlle, Clevers (bib6) 2017; 23
Shan, Shin, Yang, Furmanski, Suh (bib33) 2021; 60
Mori, Yamawaki, Ishiguro, Yoshihara, Ueda, Sato, Ohata, Yoshida, Minamino, Okamoto, Enomoto (bib43) 2019; 13
Toh, Lim, Chow (bib16) 2017; 16
Carlos-Reyes, López-González, Meneses-Flores, Gallardo-Rincón, Ruíz-García, Marchat, Astudillo-de la Vega, Hernández de la Cruz, López-Camarillo (bib23) 2019; 10
Park, Kim, Ko, Kim, Mo, Yoon (bib44) 2022; 23
Nalla, Kalia, Khairnar (bib47) 2019; 107
Suriano, Vrcelj, Senz, Ferreira, Masoudi, Cox, Nabais, Lopes, Machado, Seruca (bib39) 2005; 42
Liu, Hou, Lin, Tsao, Hou (bib32) 2015; 16
Mohapatra, Singh, Sahoo (bib9) 2020; 25
Brabletz (bib35) 2012; 22
Wang, Wang, Li, Liu, Chen, Situ, Zhong, Guo, Lin, Shen, Chen (bib36) 2014; 35
Maeda, Wu, Sawa, Matsumura, Hori (bib41) 2000; 65
Baira, Khurana, Somagoni, Srinivas, Godugu, Talluri (bib59) 2018; 1092
Nakayama, Han, Kuroiwa, Azuma, Yamamoto, Semba (bib62) 2021; 22
Burnett, Lim, Li, Shah, Lim, Paholak, McDermott, Sun, Tsume, Bai (bib7) 2017; 394
Singh, Singh, Pradhan, Srivastava, Sahoo (bib5) 2021; 4
Subramani, Gonzalez, Arumugam, Nandy, Gonzalez, Medel, Camacho, Ortega, Bonkoungou, Narayan (bib14) 2016; 6
Zhan, Rindtorff, Boutros (bib48) 2017; 36
Arya, Das, Sahoo (bib27) 2018; 102
Bianchini, De Angelis, Licata, Gianni (bib1) 2022; 19
Pop, Enciu, Tarcomnicu, Gille, Tanase (bib22) 2019; 18
Liu, Fan (bib56) 2015; 21
Arumugam, Subramani, Lakshmanaswamy (bib11) 2021; 20
Shima, Yamada, Ishikawa, Endo (bib45) 2017; 6
Wu, Harder, Wong, Lang, Zhang (bib55) 2015; 54
Wu, Chu (bib15) 2021; 22
Sahoo, Parveen, Panda (bib49) 2007; 3
Shi, Kantoff, Wooster, Farokhzad (bib25) 2017; 17
Singh, Mohapatra, Kumar, Behera, Dixit, Sahoo (bib13) 2022; 79
Shibue, Weinberg (bib57) 2017; 14
Sahoo, Labhasetwar (bib26) 2005; 2
Shankar, Kumar, Srivastava (bib24) 2013; 138
Shi, Zhang, Zheng, Pan (bib29) 2012; 16
Das (10.1016/j.omtn.2023.102031_bib34) 2019; 18
Zheng (10.1016/j.omtn.2023.102031_bib3) 2020; 11
Batlle (10.1016/j.omtn.2023.102031_bib6) 2017; 23
Nivetha (10.1016/j.omtn.2023.102031_bib12) 2022; 22
Cheng (10.1016/j.omtn.2023.102031_bib20) 2022; 79
Saeg (10.1016/j.omtn.2023.102031_bib46) 2018; 5
Song (10.1016/j.omtn.2023.102031_bib17) 2021; 12
Subramani (10.1016/j.omtn.2023.102031_bib14) 2016; 6
Pop (10.1016/j.omtn.2023.102031_bib22) 2019; 18
Bianchini (10.1016/j.omtn.2023.102031_bib1) 2022; 19
Burnett (10.1016/j.omtn.2023.102031_bib7) 2017; 394
Mohapatra (10.1016/j.omtn.2023.102031_bib9) 2020; 25
Park (10.1016/j.omtn.2023.102031_bib44) 2022; 23
Hegde (10.1016/j.omtn.2023.102031_bib40) 2021; 147
Shibue (10.1016/j.omtn.2023.102031_bib57) 2017; 14
Singh (10.1016/j.omtn.2023.102031_bib4) 2022; 616
Sahoo (10.1016/j.omtn.2023.102031_bib49) 2007; 3
Brabletz (10.1016/j.omtn.2023.102031_bib35) 2012; 22
Veeck (10.1016/j.omtn.2023.102031_bib19) 2006; 25
Nakayama (10.1016/j.omtn.2023.102031_bib62) 2021; 22
Cui (10.1016/j.omtn.2023.102031_bib61) 2001; 7
Kahroba (10.1016/j.omtn.2023.102031_bib54) 2019; 239
Sahoo (10.1016/j.omtn.2023.102031_bib26) 2005; 2
Wang (10.1016/j.omtn.2023.102031_bib31) 2013; 4
Carlos-Reyes (10.1016/j.omtn.2023.102031_bib23) 2019; 10
Suzuki (10.1016/j.omtn.2023.102031_bib37) 2008; 98
Toh (10.1016/j.omtn.2023.102031_bib16) 2017; 16
Jang (10.1016/j.omtn.2023.102031_bib18) 2015; 5
Wang (10.1016/j.omtn.2023.102031_bib36) 2014; 35
Suriano (10.1016/j.omtn.2023.102031_bib39) 2005; 42
Singh (10.1016/j.omtn.2023.102031_bib8) 2017; 22
Mori (10.1016/j.omtn.2023.102031_bib43) 2019; 13
Shi (10.1016/j.omtn.2023.102031_bib29) 2012; 16
Liu (10.1016/j.omtn.2023.102031_bib56) 2015; 21
Singh (10.1016/j.omtn.2023.102031_bib5) 2021; 4
Li (10.1016/j.omtn.2023.102031_bib64) 2002; 18
Panyam (10.1016/j.omtn.2023.102031_bib51) 2003; 262
Zhan (10.1016/j.omtn.2023.102031_bib48) 2017; 36
Shi (10.1016/j.omtn.2023.102031_bib25) 2017; 17
Rivolta (10.1016/j.omtn.2023.102031_bib28) 2011; 62
Singh (10.1016/j.omtn.2023.102031_bib13) 2022; 79
Shankar (10.1016/j.omtn.2023.102031_bib24) 2013; 138
Diehn (10.1016/j.omtn.2023.102031_bib52) 2009; 458
Mohapatra (10.1016/j.omtn.2023.102031_bib10) 2022; 7
Baira (10.1016/j.omtn.2023.102031_bib59) 2018; 1092
Bailey-Downs (10.1016/j.omtn.2023.102031_bib63) 2014; 9
Arumugam (10.1016/j.omtn.2023.102031_bib11) 2021; 20
Wu (10.1016/j.omtn.2023.102031_bib15) 2021; 22
Shima (10.1016/j.omtn.2023.102031_bib45) 2017; 6
Skvortsova (10.1016/j.omtn.2023.102031_bib30) 2015; 35
Wu (10.1016/j.omtn.2023.102031_bib55) 2015; 54
Dilnawaz (10.1016/j.omtn.2023.102031_bib50) 2018; 538
Shan (10.1016/j.omtn.2023.102031_bib33) 2021; 60
Liang (10.1016/j.omtn.2023.102031_bib38) 2019; 28
Hason (10.1016/j.omtn.2023.102031_bib60) 2019; 10
Ryoo (10.1016/j.omtn.2023.102031_bib53) 2018; 17
Arya (10.1016/j.omtn.2023.102031_bib27) 2018; 102
Acharya (10.1016/j.omtn.2023.102031_bib42) 2011; 63
Nalla (10.1016/j.omtn.2023.102031_bib47) 2019; 107
Xie (10.1016/j.omtn.2023.102031_bib58) 2014; 135
Maeda (10.1016/j.omtn.2023.102031_bib41) 2000; 65
Liu (10.1016/j.omtn.2023.102031_bib32) 2015; 16
Bianchini (10.1016/j.omtn.2023.102031_bib2) 2016; 13
Lo (10.1016/j.omtn.2023.102031_bib21) 2006; 5
References_xml – volume: 62
  start-page: 45
  year: 2011
  end-page: 53
  ident: bib28
  article-title: Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles
  publication-title: J. Physiol. Pharmacol.
– volume: 22
  start-page: 699
  year: 2012
  end-page: 701
  ident: bib35
  article-title: EMT and MET in metastasis: where are the cancer stem cells?
  publication-title: Cancer Cell
– volume: 1092
  start-page: 191
  year: 2018
  end-page: 198
  ident: bib59
  article-title: First report on the pharmacokinetic profile of nimbolide, a novel anticancer agent in oral and intravenous administrated rats by LC/MS method
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
– volume: 25
  start-page: 1307
  year: 2020
  end-page: 1321
  ident: bib9
  article-title: Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells
  publication-title: Drug Discov. Today
– volume: 79
  year: 2022
  ident: bib13
  article-title: Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells
  publication-title: Toxicol. Vitro
– volume: 25
  start-page: 3479
  year: 2006
  end-page: 3488
  ident: bib19
  article-title: Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis
  publication-title: Oncogene
– volume: 21
  start-page: 1279
  year: 2015
  end-page: 1291
  ident: bib56
  article-title: The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links
  publication-title: Curr. Pharm. Des.
– volume: 65
  start-page: 271
  year: 2000
  end-page: 284
  ident: bib41
  article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review
  publication-title: J. Control. Release
– volume: 42
  start-page: 238
  year: 2005
  end-page: 246
  ident: bib39
  article-title: beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer
  publication-title: Genes Chromosomes Cancer
– volume: 22
  start-page: 2619
  year: 2022
  end-page: 2636
  ident: bib12
  article-title: Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signalling
  publication-title: Anti Cancer Agents Med. Chem.
– volume: 10
  start-page: 935
  year: 2019
  ident: bib60
  article-title: Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate
  publication-title: Genes
– volume: 18
  start-page: 1427
  year: 2002
  end-page: 1431
  ident: bib64
  article-title: MethPrimer: designing primers for methylation PCRs
  publication-title: Bioinformatics
– volume: 7
  start-page: 381
  year: 2001
  end-page: 386
  ident: bib61
  article-title: Orthotopic transplantation model of human gastrointestinal cancer and detection of micrometastases
  publication-title: World J. Gastroenterol.
– volume: 6
  year: 2016
  ident: bib14
  article-title: Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition
  publication-title: Sci. Rep.
– volume: 36
  start-page: 1461
  year: 2017
  end-page: 1473
  ident: bib48
  article-title: Wnt signaling in cancer
  publication-title: Oncogene
– volume: 13
  start-page: 730
  year: 2019
  end-page: 746
  ident: bib43
  article-title: ALDH-Dependent Glycolytic Activation Mediates Stemness and Paclitaxel Resistance in Patient-Derived Spheroid Models of Uterine Endometrial Cancer
  publication-title: Stem Cell Rep.
– volume: 458
  start-page: 780
  year: 2009
  end-page: 783
  ident: bib52
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
– volume: 16
  start-page: 29
  year: 2017
  ident: bib16
  article-title: Epigenetics in cancer stem cells
  publication-title: Mol. Cancer
– volume: 147
  start-page: 937
  year: 2021
  end-page: 971
  ident: bib40
  article-title: Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 22
  start-page: 952
  year: 2017
  end-page: 959
  ident: bib8
  article-title: Nanomedicine-mediated drug targeting of cancer stem cells
  publication-title: Drug Discov. Today
– volume: 11
  year: 2020
  ident: bib3
  article-title: The Breast Cancer Stem Cells Traits and Drug Resistance
  publication-title: Front. Pharmacol.
– volume: 107
  start-page: 140
  year: 2019
  end-page: 153
  ident: bib47
  article-title: Self-renewal signaling pathways in breast cancer stem cells
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 54
  start-page: 1494
  year: 2015
  end-page: 1502
  ident: bib55
  article-title: Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy?
  publication-title: Mol. Carcinog.
– volume: 10
  start-page: 79
  year: 2019
  ident: bib23
  article-title: Dietary Compounds as Epigenetic Modulating Agents in Cancer
  publication-title: Front. Genet.
– volume: 28
  start-page: 1511
  year: 2019
  end-page: 1525.e5
  ident: bib38
  article-title: SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control
  publication-title: Cell Rep.
– volume: 239
  year: 2019
  ident: bib54
  article-title: The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance
  publication-title: Life Sci.
– volume: 20
  start-page: 596
  year: 2021
  end-page: 606
  ident: bib11
  article-title: Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide
  publication-title: Mol. Ther. Oncolytics
– volume: 16
  start-page: 1215
  year: 2012
  end-page: 1228
  ident: bib29
  article-title: Reactive oxygen species in cancer stem cells
  publication-title: Antioxid. Redox Signal.
– volume: 18
  start-page: 1005
  year: 2019
  end-page: 1024
  ident: bib22
  article-title: Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation
  publication-title: Phytochem. Rev.
– volume: 135
  start-page: 635
  year: 2014
  end-page: 646
  ident: bib58
  article-title: Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway
  publication-title: Int. J. Cancer
– volume: 7
  year: 2022
  ident: bib10
  article-title: Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective
  publication-title: OpenNano
– volume: 79
  start-page: 280
  year: 2022
  ident: bib20
  article-title: Disruption of ZNF334 promotes triple-negative breast carcinoma malignancy through the SFRP1/Wnt/β-catenin signaling axis
  publication-title: Cell. Mol. Life Sci.
– volume: 2
  start-page: 373
  year: 2005
  end-page: 383
  ident: bib26
  article-title: Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention
  publication-title: Mol. Pharm.
– volume: 63
  start-page: 170
  year: 2011
  end-page: 183
  ident: bib42
  article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
  publication-title: Adv. Drug Deliv. Rev.
– volume: 17
  start-page: 246
  year: 2018
  end-page: 258
  ident: bib53
  article-title: High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance
  publication-title: Redox Biol.
– volume: 4
  start-page: 3670
  year: 2021
  end-page: 3685
  ident: bib5
  article-title: Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer
  publication-title: ACS Appl. Bio Mater.
– volume: 23
  start-page: 6806
  year: 2022
  ident: bib44
  article-title: Breast Cancer Metastasis: Mechanisms and Therapeutic Implications
  publication-title: Int. J. Mol. Sci.
– volume: 22
  start-page: 8113
  year: 2021
  ident: bib15
  article-title: Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications
  publication-title: Int. J. Mol. Sci.
– volume: 4
  start-page: e537
  year: 2013
  ident: bib31
  article-title: Redox homeostasis: the linchpin in stem cell self-renewal and differentiation
  publication-title: Cell Death Dis.
– volume: 616
  year: 2022
  ident: bib4
  article-title: Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer
  publication-title: Int. J. Pharm.
– volume: 5
  start-page: 39
  year: 2018
  ident: bib46
  article-title: Breast cancer stem cells and the challenges of eradication: a review of novel therapies
  publication-title: Stem Cell Investig.
– volume: 19
  start-page: 91
  year: 2022
  end-page: 113
  ident: bib1
  article-title: Treatment landscape of triple-negative breast cancer - expanded options, evolving needs
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 13
  start-page: 674
  year: 2016
  end-page: 690
  ident: bib2
  article-title: Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 23
  start-page: 1124
  year: 2017
  end-page: 1134
  ident: bib6
  article-title: Cancer stem cells revisited
  publication-title: Nat. Med.
– volume: 6
  start-page: 82
  year: 2017
  end-page: 88
  ident: bib45
  article-title: Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy?
  publication-title: Gland Surg.
– volume: 5
  year: 2015
  ident: bib18
  article-title: Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype
  publication-title: Sci. Rep.
– volume: 3
  start-page: 20
  year: 2007
  end-page: 31
  ident: bib49
  article-title: The present and future of nanotechnology in human health care
  publication-title: Nanomedicine.
– volume: 138
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib24
  article-title: Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition
  publication-title: Pharmacol. Ther.
– volume: 102
  start-page: 555
  year: 2018
  end-page: 566
  ident: bib27
  article-title: Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer
  publication-title: Biomed. Pharmacother.
– volume: 14
  start-page: 611
  year: 2017
  end-page: 629
  ident: bib57
  article-title: EMT, CSCs, and drug resistance: the mechanistic link and clinical implications
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 394
  start-page: 52
  year: 2017
  end-page: 64
  ident: bib7
  article-title: Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells
  publication-title: Cancer Lett.
– volume: 22
  start-page: 1886
  year: 2021
  ident: bib62
  article-title: The In Vivo Selection Method in Breast Cancer Metastasis
  publication-title: Int. J. Mol. Sci.
– volume: 18
  start-page: 680
  year: 2019
  end-page: 692
  ident: bib34
  article-title: Enhancing Chemosensitivity of Breast Cancer Stem Cells by Downregulating SOX2 and ABCG2 Using Wedelolactone-encapsulated Nanoparticles
  publication-title: Mol. Cancer Ther.
– volume: 5
  start-page: 281
  year: 2006
  end-page: 286
  ident: bib21
  article-title: Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer
  publication-title: Cancer Biol. Ther.
– volume: 9
  year: 2014
  ident: bib63
  article-title: Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression
  publication-title: PLoS One
– volume: 17
  start-page: 20
  year: 2017
  end-page: 37
  ident: bib25
  article-title: Cancer nanomedicine: progress, challenges and opportunities
  publication-title: Nat. Rev. Cancer
– volume: 35
  start-page: 39
  year: 2015
  end-page: 44
  ident: bib30
  article-title: Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling
  publication-title: Semin. Cancer Biol.
– volume: 538
  start-page: 263
  year: 2018
  end-page: 278
  ident: bib50
  article-title: Recent trends of nanomedicinal approaches in clinics
  publication-title: Int. J. Pharm.
– volume: 16
  start-page: 23405
  year: 2015
  end-page: 23424
  ident: bib32
  article-title: Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma
  publication-title: Int. J. Mol. Sci.
– volume: 262
  start-page: 1
  year: 2003
  end-page: 11
  ident: bib51
  article-title: Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles
  publication-title: Int. J. Pharm.
– volume: 60
  start-page: 73
  year: 2021
  end-page: 100
  ident: bib33
  article-title: Breast cancer stem cells: A review of their characteristics and the agents that affect them
  publication-title: Mol. Carcinog.
– volume: 35
  start-page: 2346
  year: 2014
  end-page: 2356
  ident: bib36
  article-title: Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway
  publication-title: Carcinogenesis
– volume: 98
  start-page: 1147
  year: 2008
  end-page: 1156
  ident: bib37
  article-title: Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer
  publication-title: Br. J. Cancer
– volume: 12
  start-page: 245
  year: 2021
  ident: bib17
  article-title: Signaling pathways governing breast cancer stem cells behavior
  publication-title: Stem Cell Res. Ther.
– volume: 16
  start-page: 1215
  year: 2012
  ident: 10.1016/j.omtn.2023.102031_bib29
  article-title: Reactive oxygen species in cancer stem cells
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4529
– volume: 102
  start-page: 555
  year: 2018
  ident: 10.1016/j.omtn.2023.102031_bib27
  article-title: Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.03.101
– volume: 23
  start-page: 1124
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib6
  article-title: Cancer stem cells revisited
  publication-title: Nat. Med.
  doi: 10.1038/nm.4409
– volume: 1092
  start-page: 191
  year: 2018
  ident: 10.1016/j.omtn.2023.102031_bib59
  article-title: First report on the pharmacokinetic profile of nimbolide, a novel anticancer agent in oral and intravenous administrated rats by LC/MS method
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2018.06.002
– volume: 20
  start-page: 596
  year: 2021
  ident: 10.1016/j.omtn.2023.102031_bib11
  article-title: Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide
  publication-title: Mol. Ther. Oncolytics
  doi: 10.1016/j.omto.2021.02.014
– volume: 12
  start-page: 245
  year: 2021
  ident: 10.1016/j.omtn.2023.102031_bib17
  article-title: Signaling pathways governing breast cancer stem cells behavior
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-021-02321-w
– volume: 538
  start-page: 263
  year: 2018
  ident: 10.1016/j.omtn.2023.102031_bib50
  article-title: Recent trends of nanomedicinal approaches in clinics
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.01.016
– volume: 22
  start-page: 699
  year: 2012
  ident: 10.1016/j.omtn.2023.102031_bib35
  article-title: EMT and MET in metastasis: where are the cancer stem cells?
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.11.009
– volume: 616
  year: 2022
  ident: 10.1016/j.omtn.2023.102031_bib4
  article-title: Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2022.121526
– volume: 16
  start-page: 23405
  year: 2015
  ident: 10.1016/j.omtn.2023.102031_bib32
  article-title: Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms161023405
– volume: 458
  start-page: 780
  year: 2009
  ident: 10.1016/j.omtn.2023.102031_bib52
  article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells
  publication-title: Nature
  doi: 10.1038/nature07733
– volume: 22
  start-page: 952
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib8
  article-title: Nanomedicine-mediated drug targeting of cancer stem cells
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.04.005
– volume: 63
  start-page: 170
  year: 2011
  ident: 10.1016/j.omtn.2023.102031_bib42
  article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.10.008
– volume: 22
  start-page: 2619
  year: 2022
  ident: 10.1016/j.omtn.2023.102031_bib12
  article-title: Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signalling
  publication-title: Anti Cancer Agents Med. Chem.
  doi: 10.2174/1871520622666220204115151
– volume: 239
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib54
  article-title: The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.116986
– volume: 18
  start-page: 1005
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib22
  article-title: Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-019-09627-x
– volume: 25
  start-page: 1307
  year: 2020
  ident: 10.1016/j.omtn.2023.102031_bib9
  article-title: Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2020.06.003
– volume: 10
  start-page: 79
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib23
  article-title: Dietary Compounds as Epigenetic Modulating Agents in Cancer
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00079
– volume: 5
  start-page: 39
  year: 2018
  ident: 10.1016/j.omtn.2023.102031_bib46
  article-title: Breast cancer stem cells and the challenges of eradication: a review of novel therapies
  publication-title: Stem Cell Investig.
  doi: 10.21037/sci.2018.10.05
– volume: 3
  start-page: 20
  year: 2007
  ident: 10.1016/j.omtn.2023.102031_bib49
  article-title: The present and future of nanotechnology in human health care
  publication-title: Nanomedicine.
  doi: 10.1016/j.nano.2006.11.008
– volume: 17
  start-page: 20
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib25
  article-title: Cancer nanomedicine: progress, challenges and opportunities
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.108
– volume: 2
  start-page: 373
  year: 2005
  ident: 10.1016/j.omtn.2023.102031_bib26
  article-title: Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention
  publication-title: Mol. Pharm.
  doi: 10.1021/mp050032z
– volume: 5
  start-page: 281
  year: 2006
  ident: 10.1016/j.omtn.2023.102031_bib21
  article-title: Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.5.3.2384
– volume: 10
  start-page: 935
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib60
  article-title: Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate
  publication-title: Genes
  doi: 10.3390/genes10110935
– volume: 19
  start-page: 91
  year: 2022
  ident: 10.1016/j.omtn.2023.102031_bib1
  article-title: Treatment landscape of triple-negative breast cancer - expanded options, evolving needs
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-021-00565-2
– volume: 79
  year: 2022
  ident: 10.1016/j.omtn.2023.102031_bib13
  article-title: Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells
  publication-title: Toxicol. Vitro
  doi: 10.1016/j.tiv.2021.105293
– volume: 21
  start-page: 1279
  year: 2015
  ident: 10.1016/j.omtn.2023.102031_bib56
  article-title: The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612821666141211115611
– volume: 147
  start-page: 937
  year: 2021
  ident: 10.1016/j.omtn.2023.102031_bib40
  article-title: Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-021-03519-4
– volume: 54
  start-page: 1494
  year: 2015
  ident: 10.1016/j.omtn.2023.102031_bib55
  article-title: Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy?
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.22202
– volume: 4
  start-page: e537
  year: 2013
  ident: 10.1016/j.omtn.2023.102031_bib31
  article-title: Redox homeostasis: the linchpin in stem cell self-renewal and differentiation
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.50
– volume: 65
  start-page: 271
  year: 2000
  ident: 10.1016/j.omtn.2023.102031_bib41
  article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(99)00248-5
– volume: 60
  start-page: 73
  year: 2021
  ident: 10.1016/j.omtn.2023.102031_bib33
  article-title: Breast cancer stem cells: A review of their characteristics and the agents that affect them
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.23277
– volume: 35
  start-page: 2346
  year: 2014
  ident: 10.1016/j.omtn.2023.102031_bib36
  article-title: Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgu155
– volume: 394
  start-page: 52
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib7
  article-title: Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.02.023
– volume: 7
  start-page: 381
  year: 2001
  ident: 10.1016/j.omtn.2023.102031_bib61
  article-title: Orthotopic transplantation model of human gastrointestinal cancer and detection of micrometastases
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v7.i3.381
– volume: 17
  start-page: 246
  year: 2018
  ident: 10.1016/j.omtn.2023.102031_bib53
  article-title: High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.04.015
– volume: 11
  year: 2020
  ident: 10.1016/j.omtn.2023.102031_bib3
  article-title: The Breast Cancer Stem Cells Traits and Drug Resistance
  publication-title: Front. Pharmacol.
– volume: 6
  year: 2016
  ident: 10.1016/j.omtn.2023.102031_bib14
  article-title: Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition
  publication-title: Sci. Rep.
  doi: 10.1038/srep19819
– volume: 135
  start-page: 635
  year: 2014
  ident: 10.1016/j.omtn.2023.102031_bib58
  article-title: Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28697
– volume: 18
  start-page: 1427
  year: 2002
  ident: 10.1016/j.omtn.2023.102031_bib64
  article-title: MethPrimer: designing primers for methylation PCRs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.11.1427
– volume: 36
  start-page: 1461
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib48
  article-title: Wnt signaling in cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2016.304
– volume: 14
  start-page: 611
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib57
  article-title: EMT, CSCs, and drug resistance: the mechanistic link and clinical implications
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.44
– volume: 42
  start-page: 238
  year: 2005
  ident: 10.1016/j.omtn.2023.102031_bib39
  article-title: beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20135
– volume: 4
  start-page: 3670
  year: 2021
  ident: 10.1016/j.omtn.2023.102031_bib5
  article-title: Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.1c00141
– volume: 262
  start-page: 1
  year: 2003
  ident: 10.1016/j.omtn.2023.102031_bib51
  article-title: Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(03)00295-3
– volume: 98
  start-page: 1147
  year: 2008
  ident: 10.1016/j.omtn.2023.102031_bib37
  article-title: Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6604259
– volume: 22
  start-page: 8113
  year: 2021
  ident: 10.1016/j.omtn.2023.102031_bib15
  article-title: Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22158113
– volume: 13
  start-page: 674
  year: 2016
  ident: 10.1016/j.omtn.2023.102031_bib2
  article-title: Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.66
– volume: 16
  start-page: 29
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib16
  article-title: Epigenetics in cancer stem cells
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-017-0596-9
– volume: 25
  start-page: 3479
  year: 2006
  ident: 10.1016/j.omtn.2023.102031_bib19
  article-title: Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209386
– volume: 62
  start-page: 45
  year: 2011
  ident: 10.1016/j.omtn.2023.102031_bib28
  article-title: Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles
  publication-title: J. Physiol. Pharmacol.
– volume: 6
  start-page: 82
  year: 2017
  ident: 10.1016/j.omtn.2023.102031_bib45
  article-title: Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy?
  publication-title: Gland Surg.
  doi: 10.21037/gs.2016.08.03
– volume: 22
  start-page: 1886
  year: 2021
  ident: 10.1016/j.omtn.2023.102031_bib62
  article-title: The In Vivo Selection Method in Breast Cancer Metastasis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22041886
– volume: 5
  year: 2015
  ident: 10.1016/j.omtn.2023.102031_bib18
  article-title: Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype
  publication-title: Sci. Rep.
  doi: 10.1038/srep12465
– volume: 9
  year: 2014
  ident: 10.1016/j.omtn.2023.102031_bib63
  article-title: Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098624
– volume: 23
  start-page: 6806
  year: 2022
  ident: 10.1016/j.omtn.2023.102031_bib44
  article-title: Breast Cancer Metastasis: Mechanisms and Therapeutic Implications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23126806
– volume: 107
  start-page: 140
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib47
  article-title: Self-renewal signaling pathways in breast cancer stem cells
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2018.12.017
– volume: 28
  start-page: 1511
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib38
  article-title: SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.07.023
– volume: 13
  start-page: 730
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib43
  article-title: ALDH-Dependent Glycolytic Activation Mediates Stemness and Paclitaxel Resistance in Patient-Derived Spheroid Models of Uterine Endometrial Cancer
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2019.08.015
– volume: 138
  start-page: 1
  year: 2013
  ident: 10.1016/j.omtn.2023.102031_bib24
  article-title: Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2012.11.002
– volume: 18
  start-page: 680
  year: 2019
  ident: 10.1016/j.omtn.2023.102031_bib34
  article-title: Enhancing Chemosensitivity of Breast Cancer Stem Cells by Downregulating SOX2 and ABCG2 Using Wedelolactone-encapsulated Nanoparticles
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-18-0409
– volume: 7
  year: 2022
  ident: 10.1016/j.omtn.2023.102031_bib10
  article-title: Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective
  publication-title: OpenNano
  doi: 10.1016/j.onano.2022.100055
– volume: 79
  start-page: 280
  year: 2022
  ident: 10.1016/j.omtn.2023.102031_bib20
  article-title: Disruption of ZNF334 promotes triple-negative breast carcinoma malignancy through the SFRP1/Wnt/β-catenin signaling axis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-022-04295-1
– volume: 35
  start-page: 39
  year: 2015
  ident: 10.1016/j.omtn.2023.102031_bib30
  article-title: Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2015.09.009
SSID ssj0000601262
Score 2.3434155
Snippet Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis,...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102031
SubjectTerms cancer stem cells
epigenetics
MT: Delivery Strategies
nanomedicine
nimbolide
Original
triple-negative breast cancer
Wnt/β-catenin signaling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV2wQUBDDS0ZCbJBVO3Fey_IYVUgdIWhFd5afamDGqTqpRP-Br-FD-CbudZJqsikbtomTOLnHucf28TEhr32DaadyjAdhmSyMYI1rOPPSaKm91KHB1cjHq_LoVH46K852tvpCTdhgDzx8uANtfci8rdEaDyetjM-ssyE44eqiNMlsmzd8pzM1_IPhx5t2E81EmbEMkDaumBnEXd2mR_PTLEfrAp6LWVZK5v2z5LRDPufSyZ1ctLxP7o0kkh4OlX9A7vj4kOwfRuhAb67pG5pknWm8fJ_8WrUb061b5xlmLEejjt00o07beN6att9Sg-L0nloEwSVFd2e2bn94igP7cPaa-gv07cQljxSNMJOqawN5j3aBflgdn2zZ1-WXz4J9i_3Bn98MhVaxjRT1IRqXvFP9s90-IqfLjyfvj9i4BQOzUkjBPC-cL2QJLETbStvS56XWFSR252UOVADyX8GtBVbAJcDBN7KW1kGzthYu8fljshe76J8QmhuXwdFcaxMk9sqbUFem4XnuyhCCXxAxhUDZ0Z8ct8lYq0mI9l1h2BSGTQ1hW5C3N9dcDO4ct5Z-h5G9KYnO2ukA4E2NeFP_wtuCFBMu1EhSBvIBt2pvffirCUQKWjBGT0ffXW0VTjUDJ6hqKFPP0DWr6fxMbM-TF7hIw_o8e_o_3u0ZuYs1RrWOyJ6Tvf7yyr8AztWbl6l5_QXBuS6W
  priority: 102
  providerName: Directory of Open Access Journals
Title Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis
URI https://dx.doi.org/10.1016/j.omtn.2023.102031
https://www.proquest.com/docview/2870990781
https://pubmed.ncbi.nlm.nih.gov/PMC10523002
https://doaj.org/article/acef2ec801374382be2cdcffd1d856b6
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELWq8sILAgpiuVRGQrwgQ5w4tweEymVVIe0KQVf0LfKVGnadskml7j_wNXwI38RMNimNVFW8Jo432pnJObZnzhDyzJYIO7lhkeOaiVRxVpoyYlYoKaQV0pVYjTybZ4cL8fE4Pd4hQ7uj_g9srlzaYT-pxXr58vzn5g0E_Ot_uVr1qkUt0zhBJYIIy6pvADJluBib9XR_-2WGz3HXYzTmWcxi8L--jubqaUZY1Un6jyDrEiUdJ1ReQqjpbXKrp5b0YOsLd8iODXfJ3kGAZfVqQ5_TLtmz20XfI7_mfqXqpTeWIY4ZGmSoh3N26sOJV75tqMKU9ZZqdI01Rc1ntvQ_LMXtfri7ofYU1TyxEJKiPGaX67UCNKS1o-_ns6OGfZl-_sTZ19C--vObYfpV8IFi1ojEQngqz31zjyymH47eHbK-MQPTggvObJQam4oMuInUudSZTTIpc4B7Y0UCBAFQMY20Bq4QCXASW4pCaAPBrjU8YpP7ZDfUwT4gNFEmhquJlMoJXKuXrshVGSWJyZxzdkL4YIJK96rl2DxjWQ3pad8rNFuFZqu2ZpuQFxfPnG41O64d_RYtezES9ba7C_X6W9WHbyW1dbHVBQo04tGpsrE22jnDTZFmKpuQdPCLqqcuW0oCU_lrf_zp4EQVxDVaTwZbnzUVHkADU8gLGFOMvGv0puM7wZ90CuG82-yP4of_Mf0jchNfCFN0ePyY7LbrM_sEiFar9rsNiv0uhv4C834rjA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nimbolide-based+nanomedicine+inhibits+breast+cancer+stem-like+cells+by+epigenetic+reprogramming+of+DNMTs-SFRP1-Wnt%2F%CE%B2-catenin+signaling+axis&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Mohapatra%2C+Priyanka&rft.au=Madhulika%2C+Swati&rft.au=Behera%2C+Somalisa&rft.au=Singh%2C+Priya&rft.date=2023-12-12&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=34&rft.spage=102031&rft_id=info:doi/10.1016%2Fj.omtn.2023.102031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon