Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis
Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbol...
Saved in:
Published in | Molecular therapy. Nucleic acids Vol. 34; p. 102031 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
12.12.2023
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2162-2531 2162-2531 |
DOI | 10.1016/j.omtn.2023.102031 |
Cover
Abstract | Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.
[Display omitted]
Sahoo and colleagues showed that Nimbolide-based phytonanomedicine exhibited enhanced anti-tumor activity by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis in breast cancer stem cells (BCSCs). |
---|---|
AbstractList | Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated
in vitro
and
in vivo
.
In vitro
studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further,
in vivo
results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.
Sahoo and colleagues showed that Nimbolide-based phytonanomedicine exhibited enhanced anti-tumor activity by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis in breast cancer stem cells (BCSCs). Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis. Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis. Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis. [Display omitted] Sahoo and colleagues showed that Nimbolide-based phytonanomedicine exhibited enhanced anti-tumor activity by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis in breast cancer stem cells (BCSCs). |
ArticleNumber | 102031 |
Author | Madhulika, Swati Sa, Pratikshya Singh, Priya Mohapatra, Priyanka Swain, Rajeeb Kumar Behera, Somalisa Prasad, Punit Sahoo, Sanjeeb Kumar |
Author_xml | – sequence: 1 givenname: Priyanka surname: Mohapatra fullname: Mohapatra, Priyanka organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India – sequence: 2 givenname: Swati surname: Madhulika fullname: Madhulika, Swati organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India – sequence: 3 givenname: Somalisa surname: Behera fullname: Behera, Somalisa organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India – sequence: 4 givenname: Priya surname: Singh fullname: Singh, Priya organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India – sequence: 5 givenname: Pratikshya surname: Sa fullname: Sa, Pratikshya organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India – sequence: 6 givenname: Punit surname: Prasad fullname: Prasad, Punit organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India – sequence: 7 givenname: Rajeeb Kumar surname: Swain fullname: Swain, Rajeeb Kumar organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India – sequence: 8 givenname: Sanjeeb Kumar surname: Sahoo fullname: Sahoo, Sanjeeb Kumar email: sanjeeb@ils.res.in organization: Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India |
BookMark | eNp9ks9u1DAQxiNUJMrSF-DkI5ds_SfxZiUkhAqFSqUgKOJoOZNJOktiL7a3ou_A0_AgPBNeUiTKob7YmpnvJ8_M97g4cN5hUTwVfCm40MebpZ-SW0ouVQ5IrsSD4lAKLUtZK3Hwz_tRcRTjhuejuZBaHhY_Lmhq_Ugdlq2N2DFnnZ-wIyCHjNwVtZQiawPamBhYBxhYTDiVI31FBjiOOXvDcEsDOkwELOA2-CHYaSI3MN-zVxfvLmP56fTjB1F-cen4188SbEJHjkUanB33dfY7xSfFw96OEY9u70Xx-fT15cnb8vz9m7OTl-clVKISJfK6w7rSXDYWVhY0Km3tisuqw0ppoZSWNQfgWvCqRcB11VTQibUGyBJUi-Js5nbebsw20GTDjfGWzJ-AD4OxIbcyorGAvURouFCrSjWyRQkd9H0nuqbWrc6sFzNru2vz3ABdCna8A72bcXRlBn9tBK-l4nlni-LZLSH4bzuMyUwU94O1Dv0uGtms-HrNV43Ipc1cCsHHGLA3QMkm8ns0jZlp9o4wuYfsCLN3hJkdkaXyP-nfL94rej6LMG_jmjCYCITZAx0FhJTHRffJfwNPRdUa |
CitedBy_id | crossref_primary_10_1002_bmc_6012 crossref_primary_10_1007_s00210_024_03542_5 crossref_primary_10_1007_s00210_024_03751_y crossref_primary_10_1016_j_gofs_2024_01_004 crossref_primary_10_3390_ph17070949 |
Cites_doi | 10.1089/ars.2012.4529 10.1016/j.biopha.2018.03.101 10.1038/nm.4409 10.1016/j.jchromb.2018.06.002 10.1016/j.omto.2021.02.014 10.1186/s13287-021-02321-w 10.1016/j.ijpharm.2018.01.016 10.1016/j.ccr.2012.11.009 10.1016/j.ijpharm.2022.121526 10.3390/ijms161023405 10.1038/nature07733 10.1016/j.drudis.2017.04.005 10.1016/j.addr.2010.10.008 10.2174/1871520622666220204115151 10.1016/j.lfs.2019.116986 10.1007/s11101-019-09627-x 10.1016/j.drudis.2020.06.003 10.3389/fgene.2019.00079 10.21037/sci.2018.10.05 10.1016/j.nano.2006.11.008 10.1038/nrc.2016.108 10.1021/mp050032z 10.4161/cbt.5.3.2384 10.3390/genes10110935 10.1038/s41571-021-00565-2 10.1016/j.tiv.2021.105293 10.2174/1381612821666141211115611 10.1007/s00432-021-03519-4 10.1002/mc.22202 10.1038/cddis.2013.50 10.1016/S0168-3659(99)00248-5 10.1002/mc.23277 10.1093/carcin/bgu155 10.1016/j.canlet.2017.02.023 10.3748/wjg.v7.i3.381 10.1016/j.redox.2018.04.015 10.1038/srep19819 10.1002/ijc.28697 10.1093/bioinformatics/18.11.1427 10.1038/onc.2016.304 10.1038/nrclinonc.2017.44 10.1002/gcc.20135 10.1021/acsabm.1c00141 10.1016/S0378-5173(03)00295-3 10.1038/sj.bjc.6604259 10.3390/ijms22158113 10.1038/nrclinonc.2016.66 10.1186/s12943-017-0596-9 10.1038/sj.onc.1209386 10.21037/gs.2016.08.03 10.3390/ijms22041886 10.1038/srep12465 10.1371/journal.pone.0098624 10.3390/ijms23126806 10.1016/j.biocel.2018.12.017 10.1016/j.celrep.2019.07.023 10.1016/j.stemcr.2019.08.015 10.1016/j.pharmthera.2012.11.002 10.1158/1535-7163.MCT-18-0409 10.1016/j.onano.2022.100055 10.1007/s00018-022-04295-1 10.1016/j.semcancer.2015.09.009 |
ContentType | Journal Article |
Copyright | 2023 The Authors 2023 The Authors. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: 2023 The Authors. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.omtn.2023.102031 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2162-2531 |
ExternalDocumentID | oai_doaj_org_article_acef2ec801374382be2cdcffd1d856b6 PMC10523002 10_1016_j_omtn_2023_102031 S2162253123002445 |
GroupedDBID | 0R~ 53G 5VS 6I. 7X7 8FE 8FH 8FI AACTN AAEDW AAFTH AALRI AAMRU AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFKRA AFTJW AITUG ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI DIK EBS FDB FYUFA GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M41 M48 M7P M~E O9- OK1 PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ 88I 8FJ AAYWO AAYXX ABUWG ADRAZ CCPQU CITATION DWQXO EJD GNUQQ HMCUK HYE IPNFZ PHGZM PHGZT RIG UKHRP 7X8 5PM |
ID | FETCH-LOGICAL-c4141-e05de546028ac7ac6e36aa7024de4361336250cc06104bece9484cd196cc28ae3 |
IEDL.DBID | M48 |
ISSN | 2162-2531 |
IngestDate | Wed Aug 27 01:06:29 EDT 2025 Thu Aug 21 18:36:27 EDT 2025 Fri Sep 05 08:13:28 EDT 2025 Tue Jul 01 04:57:45 EDT 2025 Thu Apr 24 22:58:07 EDT 2025 Sat Apr 19 15:54:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wnt/β-catenin signaling triple-negative breast cancer nanomedicine nimbolide cancer stem cells MT: Delivery Strategies epigenetics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4141-e05de546028ac7ac6e36aa7024de4361336250cc06104bece9484cd196cc28ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2023.102031 |
PQID | 2870990781 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acef2ec801374382be2cdcffd1d856b6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10523002 proquest_miscellaneous_2870990781 crossref_citationtrail_10_1016_j_omtn_2023_102031 crossref_primary_10_1016_j_omtn_2023_102031 elsevier_sciencedirect_doi_10_1016_j_omtn_2023_102031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-12 |
PublicationDateYYYYMMDD | 2023-12-12 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Molecular therapy. Nucleic acids |
PublicationYear | 2023 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Cheng, Yu, Li, Mu, Gong, Wu, Liu, Zhou, Zeng, Wu (bib20) 2022; 79 Panyam, Sahoo, Prabha, Bargar, Labhasetwar (bib51) 2003; 262 Jang, Kim, Cho, Park, Jung, Lee, Hong, Nam (bib18) 2015; 5 Bailey-Downs, Thorpe, Disch, Bastian, Hauser, Farasyn, Berry, Hurst, Ihnat (bib63) 2014; 9 Ryoo, Choi, Ku, Kwak (bib53) 2018; 17 Zheng, Zhang, Zhou, Zhang, Meng (bib3) 2020; 11 Veeck, Niederacher, An, Klopocki, Wiesmann, Betz, Galm, Camara, Dürst, Kristiansen (bib19) 2006; 25 Xie, Chen, Shan, Shan, Tang, Zhou, Chen, Quan, Nie, Zhang (bib58) 2014; 135 Das, Mukherjee, Chatterjee, Jamal, Chatterji (bib34) 2019; 18 Singh, Sahoo (bib4) 2022; 616 Kahroba, Shirmohamadi, Hejazi, Samadi (bib54) 2019; 239 Cui, Krueger, Henne-Bruns, Kremer, Kalthoff (bib61) 2001; 7 Nivetha, Arvindh, Baba, Gade, Gopal, C., Reddy, Reddy, Nagini (bib12) 2022; 22 Dilnawaz, Acharya, Sahoo (bib50) 2018; 538 Song, Farzaneh (bib17) 2021; 12 Rivolta, Panariti, Lettiero, Sesana, Gasco, Gasco, Masserini, Miserocchi (bib28) 2011; 62 Bianchini, Balko, Mayer, Sanders, Gianni (bib2) 2016; 13 Hegde, Joshi (bib40) 2021; 147 Hason, Bartůněk (bib60) 2019; 10 Wang, Zhang, Dong, Nice, Huang, Wei (bib31) 2013; 4 Suzuki, Toyota, Carraway, Gabrielson, Ohmura, Fujikane, Nishikawa, Sogabe, Nojima, Sonoda (bib37) 2008; 98 Liang, Wang, Chang, Lee, Lin, Lee (bib38) 2019; 28 Saeg, Anbalagan (bib46) 2018; 5 Lo, Mehrotra, D'Costa, Fackler, Garrett-Mayer, Argani, Sukumar (bib21) 2006; 5 Diehn, Cho, Lobo, Kalisky, Dorie, Kulp, Qian, Lam, Ailles, Wong (bib52) 2009; 458 Li, Dahiya (bib64) 2002; 18 Singh, Minz, Sahoo (bib8) 2017; 22 Mohapatra, Singh, Singh, Sahoo, Sahoo (bib10) 2022; 7 Skvortsova, Debbage, Kumar, Skvortsov (bib30) 2015; 35 Acharya, Sahoo (bib42) 2011; 63 Batlle, Clevers (bib6) 2017; 23 Shan, Shin, Yang, Furmanski, Suh (bib33) 2021; 60 Mori, Yamawaki, Ishiguro, Yoshihara, Ueda, Sato, Ohata, Yoshida, Minamino, Okamoto, Enomoto (bib43) 2019; 13 Toh, Lim, Chow (bib16) 2017; 16 Carlos-Reyes, López-González, Meneses-Flores, Gallardo-Rincón, Ruíz-García, Marchat, Astudillo-de la Vega, Hernández de la Cruz, López-Camarillo (bib23) 2019; 10 Park, Kim, Ko, Kim, Mo, Yoon (bib44) 2022; 23 Nalla, Kalia, Khairnar (bib47) 2019; 107 Suriano, Vrcelj, Senz, Ferreira, Masoudi, Cox, Nabais, Lopes, Machado, Seruca (bib39) 2005; 42 Liu, Hou, Lin, Tsao, Hou (bib32) 2015; 16 Mohapatra, Singh, Sahoo (bib9) 2020; 25 Brabletz (bib35) 2012; 22 Wang, Wang, Li, Liu, Chen, Situ, Zhong, Guo, Lin, Shen, Chen (bib36) 2014; 35 Maeda, Wu, Sawa, Matsumura, Hori (bib41) 2000; 65 Baira, Khurana, Somagoni, Srinivas, Godugu, Talluri (bib59) 2018; 1092 Nakayama, Han, Kuroiwa, Azuma, Yamamoto, Semba (bib62) 2021; 22 Burnett, Lim, Li, Shah, Lim, Paholak, McDermott, Sun, Tsume, Bai (bib7) 2017; 394 Singh, Singh, Pradhan, Srivastava, Sahoo (bib5) 2021; 4 Subramani, Gonzalez, Arumugam, Nandy, Gonzalez, Medel, Camacho, Ortega, Bonkoungou, Narayan (bib14) 2016; 6 Zhan, Rindtorff, Boutros (bib48) 2017; 36 Arya, Das, Sahoo (bib27) 2018; 102 Bianchini, De Angelis, Licata, Gianni (bib1) 2022; 19 Pop, Enciu, Tarcomnicu, Gille, Tanase (bib22) 2019; 18 Liu, Fan (bib56) 2015; 21 Arumugam, Subramani, Lakshmanaswamy (bib11) 2021; 20 Shima, Yamada, Ishikawa, Endo (bib45) 2017; 6 Wu, Harder, Wong, Lang, Zhang (bib55) 2015; 54 Wu, Chu (bib15) 2021; 22 Sahoo, Parveen, Panda (bib49) 2007; 3 Shi, Kantoff, Wooster, Farokhzad (bib25) 2017; 17 Singh, Mohapatra, Kumar, Behera, Dixit, Sahoo (bib13) 2022; 79 Shibue, Weinberg (bib57) 2017; 14 Sahoo, Labhasetwar (bib26) 2005; 2 Shankar, Kumar, Srivastava (bib24) 2013; 138 Shi, Zhang, Zheng, Pan (bib29) 2012; 16 Das (10.1016/j.omtn.2023.102031_bib34) 2019; 18 Zheng (10.1016/j.omtn.2023.102031_bib3) 2020; 11 Batlle (10.1016/j.omtn.2023.102031_bib6) 2017; 23 Nivetha (10.1016/j.omtn.2023.102031_bib12) 2022; 22 Cheng (10.1016/j.omtn.2023.102031_bib20) 2022; 79 Saeg (10.1016/j.omtn.2023.102031_bib46) 2018; 5 Song (10.1016/j.omtn.2023.102031_bib17) 2021; 12 Subramani (10.1016/j.omtn.2023.102031_bib14) 2016; 6 Pop (10.1016/j.omtn.2023.102031_bib22) 2019; 18 Bianchini (10.1016/j.omtn.2023.102031_bib1) 2022; 19 Burnett (10.1016/j.omtn.2023.102031_bib7) 2017; 394 Mohapatra (10.1016/j.omtn.2023.102031_bib9) 2020; 25 Park (10.1016/j.omtn.2023.102031_bib44) 2022; 23 Hegde (10.1016/j.omtn.2023.102031_bib40) 2021; 147 Shibue (10.1016/j.omtn.2023.102031_bib57) 2017; 14 Singh (10.1016/j.omtn.2023.102031_bib4) 2022; 616 Sahoo (10.1016/j.omtn.2023.102031_bib49) 2007; 3 Brabletz (10.1016/j.omtn.2023.102031_bib35) 2012; 22 Veeck (10.1016/j.omtn.2023.102031_bib19) 2006; 25 Nakayama (10.1016/j.omtn.2023.102031_bib62) 2021; 22 Cui (10.1016/j.omtn.2023.102031_bib61) 2001; 7 Kahroba (10.1016/j.omtn.2023.102031_bib54) 2019; 239 Sahoo (10.1016/j.omtn.2023.102031_bib26) 2005; 2 Wang (10.1016/j.omtn.2023.102031_bib31) 2013; 4 Carlos-Reyes (10.1016/j.omtn.2023.102031_bib23) 2019; 10 Suzuki (10.1016/j.omtn.2023.102031_bib37) 2008; 98 Toh (10.1016/j.omtn.2023.102031_bib16) 2017; 16 Jang (10.1016/j.omtn.2023.102031_bib18) 2015; 5 Wang (10.1016/j.omtn.2023.102031_bib36) 2014; 35 Suriano (10.1016/j.omtn.2023.102031_bib39) 2005; 42 Singh (10.1016/j.omtn.2023.102031_bib8) 2017; 22 Mori (10.1016/j.omtn.2023.102031_bib43) 2019; 13 Shi (10.1016/j.omtn.2023.102031_bib29) 2012; 16 Liu (10.1016/j.omtn.2023.102031_bib56) 2015; 21 Singh (10.1016/j.omtn.2023.102031_bib5) 2021; 4 Li (10.1016/j.omtn.2023.102031_bib64) 2002; 18 Panyam (10.1016/j.omtn.2023.102031_bib51) 2003; 262 Zhan (10.1016/j.omtn.2023.102031_bib48) 2017; 36 Shi (10.1016/j.omtn.2023.102031_bib25) 2017; 17 Rivolta (10.1016/j.omtn.2023.102031_bib28) 2011; 62 Singh (10.1016/j.omtn.2023.102031_bib13) 2022; 79 Shankar (10.1016/j.omtn.2023.102031_bib24) 2013; 138 Diehn (10.1016/j.omtn.2023.102031_bib52) 2009; 458 Mohapatra (10.1016/j.omtn.2023.102031_bib10) 2022; 7 Baira (10.1016/j.omtn.2023.102031_bib59) 2018; 1092 Bailey-Downs (10.1016/j.omtn.2023.102031_bib63) 2014; 9 Arumugam (10.1016/j.omtn.2023.102031_bib11) 2021; 20 Wu (10.1016/j.omtn.2023.102031_bib15) 2021; 22 Shima (10.1016/j.omtn.2023.102031_bib45) 2017; 6 Skvortsova (10.1016/j.omtn.2023.102031_bib30) 2015; 35 Wu (10.1016/j.omtn.2023.102031_bib55) 2015; 54 Dilnawaz (10.1016/j.omtn.2023.102031_bib50) 2018; 538 Shan (10.1016/j.omtn.2023.102031_bib33) 2021; 60 Liang (10.1016/j.omtn.2023.102031_bib38) 2019; 28 Hason (10.1016/j.omtn.2023.102031_bib60) 2019; 10 Ryoo (10.1016/j.omtn.2023.102031_bib53) 2018; 17 Arya (10.1016/j.omtn.2023.102031_bib27) 2018; 102 Acharya (10.1016/j.omtn.2023.102031_bib42) 2011; 63 Nalla (10.1016/j.omtn.2023.102031_bib47) 2019; 107 Xie (10.1016/j.omtn.2023.102031_bib58) 2014; 135 Maeda (10.1016/j.omtn.2023.102031_bib41) 2000; 65 Liu (10.1016/j.omtn.2023.102031_bib32) 2015; 16 Bianchini (10.1016/j.omtn.2023.102031_bib2) 2016; 13 Lo (10.1016/j.omtn.2023.102031_bib21) 2006; 5 |
References_xml | – volume: 62 start-page: 45 year: 2011 end-page: 53 ident: bib28 article-title: Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles publication-title: J. Physiol. Pharmacol. – volume: 22 start-page: 699 year: 2012 end-page: 701 ident: bib35 article-title: EMT and MET in metastasis: where are the cancer stem cells? publication-title: Cancer Cell – volume: 1092 start-page: 191 year: 2018 end-page: 198 ident: bib59 article-title: First report on the pharmacokinetic profile of nimbolide, a novel anticancer agent in oral and intravenous administrated rats by LC/MS method publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. – volume: 25 start-page: 1307 year: 2020 end-page: 1321 ident: bib9 article-title: Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells publication-title: Drug Discov. Today – volume: 79 year: 2022 ident: bib13 article-title: Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells publication-title: Toxicol. Vitro – volume: 25 start-page: 3479 year: 2006 end-page: 3488 ident: bib19 article-title: Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis publication-title: Oncogene – volume: 21 start-page: 1279 year: 2015 end-page: 1291 ident: bib56 article-title: The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links publication-title: Curr. Pharm. Des. – volume: 65 start-page: 271 year: 2000 end-page: 284 ident: bib41 article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review publication-title: J. Control. Release – volume: 42 start-page: 238 year: 2005 end-page: 246 ident: bib39 article-title: beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer publication-title: Genes Chromosomes Cancer – volume: 22 start-page: 2619 year: 2022 end-page: 2636 ident: bib12 article-title: Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signalling publication-title: Anti Cancer Agents Med. Chem. – volume: 10 start-page: 935 year: 2019 ident: bib60 article-title: Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate publication-title: Genes – volume: 18 start-page: 1427 year: 2002 end-page: 1431 ident: bib64 article-title: MethPrimer: designing primers for methylation PCRs publication-title: Bioinformatics – volume: 7 start-page: 381 year: 2001 end-page: 386 ident: bib61 article-title: Orthotopic transplantation model of human gastrointestinal cancer and detection of micrometastases publication-title: World J. Gastroenterol. – volume: 6 year: 2016 ident: bib14 article-title: Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition publication-title: Sci. Rep. – volume: 36 start-page: 1461 year: 2017 end-page: 1473 ident: bib48 article-title: Wnt signaling in cancer publication-title: Oncogene – volume: 13 start-page: 730 year: 2019 end-page: 746 ident: bib43 article-title: ALDH-Dependent Glycolytic Activation Mediates Stemness and Paclitaxel Resistance in Patient-Derived Spheroid Models of Uterine Endometrial Cancer publication-title: Stem Cell Rep. – volume: 458 start-page: 780 year: 2009 end-page: 783 ident: bib52 article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells publication-title: Nature – volume: 16 start-page: 29 year: 2017 ident: bib16 article-title: Epigenetics in cancer stem cells publication-title: Mol. Cancer – volume: 147 start-page: 937 year: 2021 end-page: 971 ident: bib40 article-title: Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors publication-title: J. Cancer Res. Clin. Oncol. – volume: 22 start-page: 952 year: 2017 end-page: 959 ident: bib8 article-title: Nanomedicine-mediated drug targeting of cancer stem cells publication-title: Drug Discov. Today – volume: 11 year: 2020 ident: bib3 article-title: The Breast Cancer Stem Cells Traits and Drug Resistance publication-title: Front. Pharmacol. – volume: 107 start-page: 140 year: 2019 end-page: 153 ident: bib47 article-title: Self-renewal signaling pathways in breast cancer stem cells publication-title: Int. J. Biochem. Cell Biol. – volume: 54 start-page: 1494 year: 2015 end-page: 1502 ident: bib55 article-title: Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy? publication-title: Mol. Carcinog. – volume: 10 start-page: 79 year: 2019 ident: bib23 article-title: Dietary Compounds as Epigenetic Modulating Agents in Cancer publication-title: Front. Genet. – volume: 28 start-page: 1511 year: 2019 end-page: 1525.e5 ident: bib38 article-title: SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control publication-title: Cell Rep. – volume: 239 year: 2019 ident: bib54 article-title: The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance publication-title: Life Sci. – volume: 20 start-page: 596 year: 2021 end-page: 606 ident: bib11 article-title: Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide publication-title: Mol. Ther. Oncolytics – volume: 16 start-page: 1215 year: 2012 end-page: 1228 ident: bib29 article-title: Reactive oxygen species in cancer stem cells publication-title: Antioxid. Redox Signal. – volume: 18 start-page: 1005 year: 2019 end-page: 1024 ident: bib22 article-title: Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation publication-title: Phytochem. Rev. – volume: 135 start-page: 635 year: 2014 end-page: 646 ident: bib58 article-title: Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway publication-title: Int. J. Cancer – volume: 7 year: 2022 ident: bib10 article-title: Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective publication-title: OpenNano – volume: 79 start-page: 280 year: 2022 ident: bib20 article-title: Disruption of ZNF334 promotes triple-negative breast carcinoma malignancy through the SFRP1/Wnt/β-catenin signaling axis publication-title: Cell. Mol. Life Sci. – volume: 2 start-page: 373 year: 2005 end-page: 383 ident: bib26 article-title: Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention publication-title: Mol. Pharm. – volume: 63 start-page: 170 year: 2011 end-page: 183 ident: bib42 article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect publication-title: Adv. Drug Deliv. Rev. – volume: 17 start-page: 246 year: 2018 end-page: 258 ident: bib53 article-title: High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance publication-title: Redox Biol. – volume: 4 start-page: 3670 year: 2021 end-page: 3685 ident: bib5 article-title: Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer publication-title: ACS Appl. Bio Mater. – volume: 23 start-page: 6806 year: 2022 ident: bib44 article-title: Breast Cancer Metastasis: Mechanisms and Therapeutic Implications publication-title: Int. J. Mol. Sci. – volume: 22 start-page: 8113 year: 2021 ident: bib15 article-title: Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications publication-title: Int. J. Mol. Sci. – volume: 4 start-page: e537 year: 2013 ident: bib31 article-title: Redox homeostasis: the linchpin in stem cell self-renewal and differentiation publication-title: Cell Death Dis. – volume: 616 year: 2022 ident: bib4 article-title: Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer publication-title: Int. J. Pharm. – volume: 5 start-page: 39 year: 2018 ident: bib46 article-title: Breast cancer stem cells and the challenges of eradication: a review of novel therapies publication-title: Stem Cell Investig. – volume: 19 start-page: 91 year: 2022 end-page: 113 ident: bib1 article-title: Treatment landscape of triple-negative breast cancer - expanded options, evolving needs publication-title: Nat. Rev. Clin. Oncol. – volume: 13 start-page: 674 year: 2016 end-page: 690 ident: bib2 article-title: Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease publication-title: Nat. Rev. Clin. Oncol. – volume: 23 start-page: 1124 year: 2017 end-page: 1134 ident: bib6 article-title: Cancer stem cells revisited publication-title: Nat. Med. – volume: 6 start-page: 82 year: 2017 end-page: 88 ident: bib45 article-title: Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? publication-title: Gland Surg. – volume: 5 year: 2015 ident: bib18 article-title: Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype publication-title: Sci. Rep. – volume: 3 start-page: 20 year: 2007 end-page: 31 ident: bib49 article-title: The present and future of nanotechnology in human health care publication-title: Nanomedicine. – volume: 138 start-page: 1 year: 2013 end-page: 17 ident: bib24 article-title: Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition publication-title: Pharmacol. Ther. – volume: 102 start-page: 555 year: 2018 end-page: 566 ident: bib27 article-title: Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer publication-title: Biomed. Pharmacother. – volume: 14 start-page: 611 year: 2017 end-page: 629 ident: bib57 article-title: EMT, CSCs, and drug resistance: the mechanistic link and clinical implications publication-title: Nat. Rev. Clin. Oncol. – volume: 394 start-page: 52 year: 2017 end-page: 64 ident: bib7 article-title: Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells publication-title: Cancer Lett. – volume: 22 start-page: 1886 year: 2021 ident: bib62 article-title: The In Vivo Selection Method in Breast Cancer Metastasis publication-title: Int. J. Mol. Sci. – volume: 18 start-page: 680 year: 2019 end-page: 692 ident: bib34 article-title: Enhancing Chemosensitivity of Breast Cancer Stem Cells by Downregulating SOX2 and ABCG2 Using Wedelolactone-encapsulated Nanoparticles publication-title: Mol. Cancer Ther. – volume: 5 start-page: 281 year: 2006 end-page: 286 ident: bib21 article-title: Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer publication-title: Cancer Biol. Ther. – volume: 9 year: 2014 ident: bib63 article-title: Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression publication-title: PLoS One – volume: 17 start-page: 20 year: 2017 end-page: 37 ident: bib25 article-title: Cancer nanomedicine: progress, challenges and opportunities publication-title: Nat. Rev. Cancer – volume: 35 start-page: 39 year: 2015 end-page: 44 ident: bib30 article-title: Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling publication-title: Semin. Cancer Biol. – volume: 538 start-page: 263 year: 2018 end-page: 278 ident: bib50 article-title: Recent trends of nanomedicinal approaches in clinics publication-title: Int. J. Pharm. – volume: 16 start-page: 23405 year: 2015 end-page: 23424 ident: bib32 article-title: Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma publication-title: Int. J. Mol. Sci. – volume: 262 start-page: 1 year: 2003 end-page: 11 ident: bib51 article-title: Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles publication-title: Int. J. Pharm. – volume: 60 start-page: 73 year: 2021 end-page: 100 ident: bib33 article-title: Breast cancer stem cells: A review of their characteristics and the agents that affect them publication-title: Mol. Carcinog. – volume: 35 start-page: 2346 year: 2014 end-page: 2356 ident: bib36 article-title: Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway publication-title: Carcinogenesis – volume: 98 start-page: 1147 year: 2008 end-page: 1156 ident: bib37 article-title: Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer publication-title: Br. J. Cancer – volume: 12 start-page: 245 year: 2021 ident: bib17 article-title: Signaling pathways governing breast cancer stem cells behavior publication-title: Stem Cell Res. Ther. – volume: 16 start-page: 1215 year: 2012 ident: 10.1016/j.omtn.2023.102031_bib29 article-title: Reactive oxygen species in cancer stem cells publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4529 – volume: 102 start-page: 555 year: 2018 ident: 10.1016/j.omtn.2023.102031_bib27 article-title: Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.03.101 – volume: 23 start-page: 1124 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib6 article-title: Cancer stem cells revisited publication-title: Nat. Med. doi: 10.1038/nm.4409 – volume: 1092 start-page: 191 year: 2018 ident: 10.1016/j.omtn.2023.102031_bib59 article-title: First report on the pharmacokinetic profile of nimbolide, a novel anticancer agent in oral and intravenous administrated rats by LC/MS method publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2018.06.002 – volume: 20 start-page: 596 year: 2021 ident: 10.1016/j.omtn.2023.102031_bib11 article-title: Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide publication-title: Mol. Ther. Oncolytics doi: 10.1016/j.omto.2021.02.014 – volume: 12 start-page: 245 year: 2021 ident: 10.1016/j.omtn.2023.102031_bib17 article-title: Signaling pathways governing breast cancer stem cells behavior publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-021-02321-w – volume: 538 start-page: 263 year: 2018 ident: 10.1016/j.omtn.2023.102031_bib50 article-title: Recent trends of nanomedicinal approaches in clinics publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.01.016 – volume: 22 start-page: 699 year: 2012 ident: 10.1016/j.omtn.2023.102031_bib35 article-title: EMT and MET in metastasis: where are the cancer stem cells? publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.11.009 – volume: 616 year: 2022 ident: 10.1016/j.omtn.2023.102031_bib4 article-title: Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2022.121526 – volume: 16 start-page: 23405 year: 2015 ident: 10.1016/j.omtn.2023.102031_bib32 article-title: Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161023405 – volume: 458 start-page: 780 year: 2009 ident: 10.1016/j.omtn.2023.102031_bib52 article-title: Association of reactive oxygen species levels and radioresistance in cancer stem cells publication-title: Nature doi: 10.1038/nature07733 – volume: 22 start-page: 952 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib8 article-title: Nanomedicine-mediated drug targeting of cancer stem cells publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.04.005 – volume: 63 start-page: 170 year: 2011 ident: 10.1016/j.omtn.2023.102031_bib42 article-title: PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.10.008 – volume: 22 start-page: 2619 year: 2022 ident: 10.1016/j.omtn.2023.102031_bib12 article-title: Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signalling publication-title: Anti Cancer Agents Med. Chem. doi: 10.2174/1871520622666220204115151 – volume: 239 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib54 article-title: The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116986 – volume: 18 start-page: 1005 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib22 article-title: Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation publication-title: Phytochem. Rev. doi: 10.1007/s11101-019-09627-x – volume: 25 start-page: 1307 year: 2020 ident: 10.1016/j.omtn.2023.102031_bib9 article-title: Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2020.06.003 – volume: 10 start-page: 79 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib23 article-title: Dietary Compounds as Epigenetic Modulating Agents in Cancer publication-title: Front. Genet. doi: 10.3389/fgene.2019.00079 – volume: 5 start-page: 39 year: 2018 ident: 10.1016/j.omtn.2023.102031_bib46 article-title: Breast cancer stem cells and the challenges of eradication: a review of novel therapies publication-title: Stem Cell Investig. doi: 10.21037/sci.2018.10.05 – volume: 3 start-page: 20 year: 2007 ident: 10.1016/j.omtn.2023.102031_bib49 article-title: The present and future of nanotechnology in human health care publication-title: Nanomedicine. doi: 10.1016/j.nano.2006.11.008 – volume: 17 start-page: 20 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib25 article-title: Cancer nanomedicine: progress, challenges and opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.108 – volume: 2 start-page: 373 year: 2005 ident: 10.1016/j.omtn.2023.102031_bib26 article-title: Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention publication-title: Mol. Pharm. doi: 10.1021/mp050032z – volume: 5 start-page: 281 year: 2006 ident: 10.1016/j.omtn.2023.102031_bib21 article-title: Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.5.3.2384 – volume: 10 start-page: 935 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib60 article-title: Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate publication-title: Genes doi: 10.3390/genes10110935 – volume: 19 start-page: 91 year: 2022 ident: 10.1016/j.omtn.2023.102031_bib1 article-title: Treatment landscape of triple-negative breast cancer - expanded options, evolving needs publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-021-00565-2 – volume: 79 year: 2022 ident: 10.1016/j.omtn.2023.102031_bib13 article-title: Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells publication-title: Toxicol. Vitro doi: 10.1016/j.tiv.2021.105293 – volume: 21 start-page: 1279 year: 2015 ident: 10.1016/j.omtn.2023.102031_bib56 article-title: The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links publication-title: Curr. Pharm. Des. doi: 10.2174/1381612821666141211115611 – volume: 147 start-page: 937 year: 2021 ident: 10.1016/j.omtn.2023.102031_bib40 article-title: Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-021-03519-4 – volume: 54 start-page: 1494 year: 2015 ident: 10.1016/j.omtn.2023.102031_bib55 article-title: Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy? publication-title: Mol. Carcinog. doi: 10.1002/mc.22202 – volume: 4 start-page: e537 year: 2013 ident: 10.1016/j.omtn.2023.102031_bib31 article-title: Redox homeostasis: the linchpin in stem cell self-renewal and differentiation publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.50 – volume: 65 start-page: 271 year: 2000 ident: 10.1016/j.omtn.2023.102031_bib41 article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review publication-title: J. Control. Release doi: 10.1016/S0168-3659(99)00248-5 – volume: 60 start-page: 73 year: 2021 ident: 10.1016/j.omtn.2023.102031_bib33 article-title: Breast cancer stem cells: A review of their characteristics and the agents that affect them publication-title: Mol. Carcinog. doi: 10.1002/mc.23277 – volume: 35 start-page: 2346 year: 2014 ident: 10.1016/j.omtn.2023.102031_bib36 article-title: Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway publication-title: Carcinogenesis doi: 10.1093/carcin/bgu155 – volume: 394 start-page: 52 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib7 article-title: Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.02.023 – volume: 7 start-page: 381 year: 2001 ident: 10.1016/j.omtn.2023.102031_bib61 article-title: Orthotopic transplantation model of human gastrointestinal cancer and detection of micrometastases publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v7.i3.381 – volume: 17 start-page: 246 year: 2018 ident: 10.1016/j.omtn.2023.102031_bib53 article-title: High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance publication-title: Redox Biol. doi: 10.1016/j.redox.2018.04.015 – volume: 11 year: 2020 ident: 10.1016/j.omtn.2023.102031_bib3 article-title: The Breast Cancer Stem Cells Traits and Drug Resistance publication-title: Front. Pharmacol. – volume: 6 year: 2016 ident: 10.1016/j.omtn.2023.102031_bib14 article-title: Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition publication-title: Sci. Rep. doi: 10.1038/srep19819 – volume: 135 start-page: 635 year: 2014 ident: 10.1016/j.omtn.2023.102031_bib58 article-title: Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway publication-title: Int. J. Cancer doi: 10.1002/ijc.28697 – volume: 18 start-page: 1427 year: 2002 ident: 10.1016/j.omtn.2023.102031_bib64 article-title: MethPrimer: designing primers for methylation PCRs publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.11.1427 – volume: 36 start-page: 1461 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib48 article-title: Wnt signaling in cancer publication-title: Oncogene doi: 10.1038/onc.2016.304 – volume: 14 start-page: 611 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib57 article-title: EMT, CSCs, and drug resistance: the mechanistic link and clinical implications publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.44 – volume: 42 start-page: 238 year: 2005 ident: 10.1016/j.omtn.2023.102031_bib39 article-title: beta-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20135 – volume: 4 start-page: 3670 year: 2021 ident: 10.1016/j.omtn.2023.102031_bib5 article-title: Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.1c00141 – volume: 262 start-page: 1 year: 2003 ident: 10.1016/j.omtn.2023.102031_bib51 article-title: Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(03)00295-3 – volume: 98 start-page: 1147 year: 2008 ident: 10.1016/j.omtn.2023.102031_bib37 article-title: Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6604259 – volume: 22 start-page: 8113 year: 2021 ident: 10.1016/j.omtn.2023.102031_bib15 article-title: Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22158113 – volume: 13 start-page: 674 year: 2016 ident: 10.1016/j.omtn.2023.102031_bib2 article-title: Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.66 – volume: 16 start-page: 29 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib16 article-title: Epigenetics in cancer stem cells publication-title: Mol. Cancer doi: 10.1186/s12943-017-0596-9 – volume: 25 start-page: 3479 year: 2006 ident: 10.1016/j.omtn.2023.102031_bib19 article-title: Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis publication-title: Oncogene doi: 10.1038/sj.onc.1209386 – volume: 62 start-page: 45 year: 2011 ident: 10.1016/j.omtn.2023.102031_bib28 article-title: Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles publication-title: J. Physiol. Pharmacol. – volume: 6 start-page: 82 year: 2017 ident: 10.1016/j.omtn.2023.102031_bib45 article-title: Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy? publication-title: Gland Surg. doi: 10.21037/gs.2016.08.03 – volume: 22 start-page: 1886 year: 2021 ident: 10.1016/j.omtn.2023.102031_bib62 article-title: The In Vivo Selection Method in Breast Cancer Metastasis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22041886 – volume: 5 year: 2015 ident: 10.1016/j.omtn.2023.102031_bib18 article-title: Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype publication-title: Sci. Rep. doi: 10.1038/srep12465 – volume: 9 year: 2014 ident: 10.1016/j.omtn.2023.102031_bib63 article-title: Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression publication-title: PLoS One doi: 10.1371/journal.pone.0098624 – volume: 23 start-page: 6806 year: 2022 ident: 10.1016/j.omtn.2023.102031_bib44 article-title: Breast Cancer Metastasis: Mechanisms and Therapeutic Implications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23126806 – volume: 107 start-page: 140 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib47 article-title: Self-renewal signaling pathways in breast cancer stem cells publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2018.12.017 – volume: 28 start-page: 1511 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib38 article-title: SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.023 – volume: 13 start-page: 730 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib43 article-title: ALDH-Dependent Glycolytic Activation Mediates Stemness and Paclitaxel Resistance in Patient-Derived Spheroid Models of Uterine Endometrial Cancer publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2019.08.015 – volume: 138 start-page: 1 year: 2013 ident: 10.1016/j.omtn.2023.102031_bib24 article-title: Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2012.11.002 – volume: 18 start-page: 680 year: 2019 ident: 10.1016/j.omtn.2023.102031_bib34 article-title: Enhancing Chemosensitivity of Breast Cancer Stem Cells by Downregulating SOX2 and ABCG2 Using Wedelolactone-encapsulated Nanoparticles publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-18-0409 – volume: 7 year: 2022 ident: 10.1016/j.omtn.2023.102031_bib10 article-title: Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective publication-title: OpenNano doi: 10.1016/j.onano.2022.100055 – volume: 79 start-page: 280 year: 2022 ident: 10.1016/j.omtn.2023.102031_bib20 article-title: Disruption of ZNF334 promotes triple-negative breast carcinoma malignancy through the SFRP1/Wnt/β-catenin signaling axis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-022-04295-1 – volume: 35 start-page: 39 year: 2015 ident: 10.1016/j.omtn.2023.102031_bib30 article-title: Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2015.09.009 |
SSID | ssj0000601262 |
Score | 2.3434155 |
Snippet | Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis,... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102031 |
SubjectTerms | cancer stem cells epigenetics MT: Delivery Strategies nanomedicine nimbolide Original triple-negative breast cancer Wnt/β-catenin signaling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV2wQUBDDS0ZCbJBVO3Fey_IYVUgdIWhFd5afamDGqTqpRP-Br-FD-CbudZJqsikbtomTOLnHucf28TEhr32DaadyjAdhmSyMYI1rOPPSaKm91KHB1cjHq_LoVH46K852tvpCTdhgDzx8uANtfci8rdEaDyetjM-ssyE44eqiNMlsmzd8pzM1_IPhx5t2E81EmbEMkDaumBnEXd2mR_PTLEfrAp6LWVZK5v2z5LRDPufSyZ1ctLxP7o0kkh4OlX9A7vj4kOwfRuhAb67pG5pknWm8fJ_8WrUb061b5xlmLEejjt00o07beN6att9Sg-L0nloEwSVFd2e2bn94igP7cPaa-gv07cQljxSNMJOqawN5j3aBflgdn2zZ1-WXz4J9i_3Bn98MhVaxjRT1IRqXvFP9s90-IqfLjyfvj9i4BQOzUkjBPC-cL2QJLETbStvS56XWFSR252UOVADyX8GtBVbAJcDBN7KW1kGzthYu8fljshe76J8QmhuXwdFcaxMk9sqbUFem4XnuyhCCXxAxhUDZ0Z8ct8lYq0mI9l1h2BSGTQ1hW5C3N9dcDO4ct5Z-h5G9KYnO2ukA4E2NeFP_wtuCFBMu1EhSBvIBt2pvffirCUQKWjBGT0ffXW0VTjUDJ6hqKFPP0DWr6fxMbM-TF7hIw_o8e_o_3u0ZuYs1RrWOyJ6Tvf7yyr8AztWbl6l5_QXBuS6W priority: 102 providerName: Directory of Open Access Journals |
Title | Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis |
URI | https://dx.doi.org/10.1016/j.omtn.2023.102031 https://www.proquest.com/docview/2870990781 https://pubmed.ncbi.nlm.nih.gov/PMC10523002 https://doaj.org/article/acef2ec801374382be2cdcffd1d856b6 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELWq8sILAgpiuVRGQrwgQ5w4tweEymVVIe0KQVf0LfKVGnadskml7j_wNXwI38RMNimNVFW8Jo432pnJObZnzhDyzJYIO7lhkeOaiVRxVpoyYlYoKaQV0pVYjTybZ4cL8fE4Pd4hQ7uj_g9srlzaYT-pxXr58vzn5g0E_Ot_uVr1qkUt0zhBJYIIy6pvADJluBib9XR_-2WGz3HXYzTmWcxi8L--jubqaUZY1Un6jyDrEiUdJ1ReQqjpbXKrp5b0YOsLd8iODXfJ3kGAZfVqQ5_TLtmz20XfI7_mfqXqpTeWIY4ZGmSoh3N26sOJV75tqMKU9ZZqdI01Rc1ntvQ_LMXtfri7ofYU1TyxEJKiPGaX67UCNKS1o-_ns6OGfZl-_sTZ19C--vObYfpV8IFi1ojEQngqz31zjyymH47eHbK-MQPTggvObJQam4oMuInUudSZTTIpc4B7Y0UCBAFQMY20Bq4QCXASW4pCaAPBrjU8YpP7ZDfUwT4gNFEmhquJlMoJXKuXrshVGSWJyZxzdkL4YIJK96rl2DxjWQ3pad8rNFuFZqu2ZpuQFxfPnG41O64d_RYtezES9ba7C_X6W9WHbyW1dbHVBQo04tGpsrE22jnDTZFmKpuQdPCLqqcuW0oCU_lrf_zp4EQVxDVaTwZbnzUVHkADU8gLGFOMvGv0puM7wZ90CuG82-yP4of_Mf0jchNfCFN0ePyY7LbrM_sEiFar9rsNiv0uhv4C834rjA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nimbolide-based+nanomedicine+inhibits+breast+cancer+stem-like+cells+by+epigenetic+reprogramming+of+DNMTs-SFRP1-Wnt%2F%CE%B2-catenin+signaling+axis&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Mohapatra%2C+Priyanka&rft.au=Madhulika%2C+Swati&rft.au=Behera%2C+Somalisa&rft.au=Singh%2C+Priya&rft.date=2023-12-12&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=34&rft.spage=102031&rft_id=info:doi/10.1016%2Fj.omtn.2023.102031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon |