Adaptively hybrid fractal image coding
An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignor...
Saved in:
Published in | IET image processing Vol. 18; no. 7; pp. 1745 - 1758 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-9659 1751-9667 |
DOI | 10.1049/ipr2.13060 |
Cover
Abstract | An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image.
To improve the performance of the existing fractal coding methods, an adaptive method is proposed to divide the range blocks into two categories and adopted different encoding strategies for different types of range blocks. It can achieve better‐decoded image quality with faster encoding speed, fewer bits per pixel, and comparable decoding speed. |
---|---|
AbstractList | An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image. Abstract An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image. An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image. To improve the performance of the existing fractal coding methods, an adaptive method is proposed to divide the range blocks into two categories and adopted different encoding strategies for different types of range blocks. It can achieve better‐decoded image quality with faster encoding speed, fewer bits per pixel, and comparable decoding speed. |
Author | Jin, Guohua Bi, Sheng Wang, Qiang |
Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0003-2874-8590 surname: Wang fullname: Wang, Qiang email: wangqiang2011@dlmu.edu.cn organization: Dalian Maritime University – sequence: 2 givenname: Guohua surname: Jin fullname: Jin, Guohua organization: Dalian Maritime University – sequence: 3 givenname: Sheng surname: Bi fullname: Bi, Sheng organization: Dalian Maritime University |
BookMark | eNp9kE1Lw0AQhhepYKte_AU5eRBSd7LZbfZYih-FgiJ6Xia7s3VLbMomKPn3po30IOJpPpjnYXgnbLStt8TYFfAp8Fzfhl3MpiC44idsDDMJqVZqNjr2Up-xSdNsOJeaF3LMrucOd234pKpL3rsyBpf4iLbFKgkfuKbE1i5s1xfs1GPV0OVPPWdv93evi8d09fSwXMxXqc0h56kn4SVoQRq4KLBA0K6AgixILDlpp2w_ZFIrj8pp4TNHtvRO4YyQF5k4Z8vB62rcmF3sf4idqTGYw6KOa4OxDbYiQ8JBT2sBYHOVl0Xpykx75FSizLXrXTeDy8a6aSL5ow-42adl9mmZQ1r9Mf91bEOLbai3bcRQ_Y3AgHyFirp_5Gb5_JINzDc0H36J |
CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104725 crossref_primary_10_1049_ell2_70120 crossref_primary_10_1016_j_compeleceng_2024_109462 |
Cites_doi | 10.1109/TIP.2009.2013080 10.1155/2019/9419107 10.1007/s00371-021-02226-y 10.1007/s11334-019-00327-5 10.1117/12.160484 10.1109/ACCESS.2019.2916934 10.1109/TMM.2006.870738 10.1016/j.chaos.2007.10.031 10.1016/j.patrec.2013.04.022 10.1016/j.image.2004.02.002 10.1109/TIP.2012.2215619 10.1142/S0218348X21501255 10.1016/j.jvcir.2016.09.008 10.1155/2014/638174 10.1109/TIFS.2020.2971142 10.1109/TIP.2003.818038 10.1142/S0218348X09004557 10.1109/83.806618 10.1016/j.chaos.2007.06.048 10.1109/TIP.2003.819861 10.1109/TIP.2006.877377 10.1016/j.jvcir.2012.10.005 10.1049/iet-ipr.2019.0522 10.1109/5.241507 10.1109/TCE.2010.5606294 10.1007/s11042-020-08619-w 10.1109/OCIT56763.2022.00065 10.1142/S0218348X19501196 10.1007/s11042-022-12631-7 10.1016/j.chaos.2017.11.013 10.1109/TMM.2005.846796 10.1109/83.128028 10.1007/s11042-020-09256-z |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/ipr2.13060 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 1758 |
ExternalDocumentID | oai_doaj_org_article_e3d1dec9311c464b8bdb29fa0eba549d 10_1049_ipr2_13060 IPR213060 |
Genre | article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201806575003 |
GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI ITC JAVBF LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI ZL0 4.4 8FE 8FG AAYXX ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA K1G L6V M43 M7S P62 PHGZM PHGZT PTHSS S0W WIN |
ID | FETCH-LOGICAL-c4140-fe3f5193e91038a8a19d818ec15ab0e9d6c8ec2596fa6d93f2decbfd6a7ea0823 |
IEDL.DBID | DOA |
ISSN | 1751-9659 |
IngestDate | Wed Aug 27 01:15:29 EDT 2025 Tue Jul 01 05:16:43 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Wed Jan 22 17:20:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4140-fe3f5193e91038a8a19d818ec15ab0e9d6c8ec2596fa6d93f2decbfd6a7ea0823 |
ORCID | 0000-0003-2874-8590 |
OpenAccessLink | https://doaj.org/article/e3d1dec9311c464b8bdb29fa0eba549d |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e3d1dec9311c464b8bdb29fa0eba549d crossref_primary_10_1049_ipr2_13060 crossref_citationtrail_10_1049_ipr2_13060 wiley_primary_10_1049_ipr2_13060_IPR213060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IET image processing |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2010; 56 2019; 7 2019; 2019 2009; 40 2018; 106 2013; 22 2013; 24 1993; 81 2021; 29 2019; 15 2008; 38 2006; 15 2006; 8 2020; 15 2020; 14 1994 2020; 79 2016; 2016 2014; 2014 2004 1993 2003 1999; 8 2003; 12 2021; 38 2022; 81 2022 2004; 19 2004; 13 2019; 27 2005; 7 2016; 41 2014; 35 1992; 1 2009; 18 1988 2009; 17 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_39_1 Barnslet M. (e_1_2_12_2_1) 1988 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 Wang Q. (e_1_2_12_38_1) 2016; 2016 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 Lu J. (e_1_2_12_26_1) 2014; 2014 e_1_2_12_14_1 Fisher Y. (e_1_2_12_4_1) 1994 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – volume: 12 start-page: 1560 issue: 12 year: 2003 end-page: 1578 article-title: Fractal image denoising publication-title: IEEE Trans. Image Process. – start-page: 571 year: 2004 end-page: 574 article-title: An efficient fractal based algorithm for image magnification – volume: 38 start-page: 3867 issue: 11 year: 2021 end-page: 3880 article-title: Fractal image compression using a fast affine transform and hierarchical classification scheme publication-title: Visual Comput. – volume: 7 start-page: 62412 year: 2019 end-page: 62420 article-title: A fast fractal based compression for MRI images publication-title: IEEE Access – volume: 15 start-page: 2669 issue: 9 year: 2006 end-page: 2675 article-title: Fractal‐wavelet image denoising revisited publication-title: IEEE Trans. Image Process. – start-page: 273 year: 2003 end-page: 276 article-title: Image enlargement using fractal – volume: 27 issue: 7 year: 2019 article-title: A primal‐dual algorithm for robust fractal image coding publication-title: Fractals – start-page: 307 year: 2022 end-page: 311 article-title: Fractal image compression based on discrete wavelet transform – volume: 29 issue: 5 year: 2021 article-title: A nonlocal low‐rank regularization method for fractal image coding publication-title: Fractals – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – year: 1994 – volume: 38 start-page: 1054 issue: 4 year: 2008 end-page: 1064 article-title: An enhanced fractal image denoising algorithm publication-title: Chaos, Solitons Fractals – volume: 2016 year: 2016 article-title: Prediction of the PSNR quality of decoded images in fractal image coding publication-title: Math. Probl. Eng. – volume: 7 start-page: 597 issue: 4 year: 2005 end-page: 605 article-title: Image retrieval based on histogram of fractal parameters publication-title: IEEE Trans. Multimedia – volume: 2014 year: 2014 article-title: A robust fractal color image watermarking algorithm publication-title: Math. Probl. Eng. – volume: 1 start-page: 18 issue: 1 year: 1992 end-page: 30 article-title: Image coding based on a fractal theory of iterated contractive image transformations publication-title: IEEE Trans. Image Process. – volume: 18 start-page: 995 issue: 5 year: 2009 end-page: 1003 article-title: Study on huber fractal image compression publication-title: IEEE Trans. Image Process. – volume: 22 start-page: 134 issue: 1 year: 2013 end-page: 145 article-title: Huber fractal image coding based on a fitting plane publication-title: IEEE Trans. Image Process. – volume: 40 start-page: 2370 issue: 5 year: 2009 end-page: 2375 article-title: Image magnification based on similarity analogy publication-title: Chaos, Solitons Fractals – volume: 8 start-page: 1716 issue: 12 year: 1999 end-page: 1729 article-title: A review of the fractal image coding literature publication-title: IEEE Trans. Image Process. – volume: 79 start-page: 26345 issue: 35‐36 year: 2020 end-page: 26368 article-title: Fractal image compression with adaptive quadtree partitioning and non‐linear affine map publication-title: Multimedia Tools Appl. – volume: 56 start-page: 1537 issue: 3 year: 2010 end-page: 1541 article-title: A novel fast fractal super resolution technique publication-title: IEEE Trans. Consumer Electron. – start-page: 397 year: 1993 end-page: 408 article-title: Fast hierarchical codebook search for fractal coding of still images – volume: 41 start-page: 87 year: 2016 end-page: 95 article-title: Statistical feature extraction based technique for fast fractal image compression publication-title: J. Vis. Commun. Image Represent. – year: 1988 – volume: 81 start-page: 21135 issue: 15 year: 2022 end-page: 21154 article-title: Hybrid edge‐based fractal image encoding using K‐NN search publication-title: Multimedia Tools Appl. – volume: 81 start-page: 1451 issue: 10 year: 1993 end-page: 1465 article-title: Fractal image coding: A review publication-title: Proc. IEEE. – volume: 79 start-page: 19025 issue: 27‐28 year: 2020 end-page: 19044 article-title: Perceptual image hashing based on structural fractal features of image coding and ring partition publication-title: Multimedia Tools Appl. – volume: 17 start-page: 441 issue: 4 year: 2009 end-page: 450 article-title: A fast fractal coding in application of image retrieval publication-title: Fractals – volume: 19 start-page: 393 issue: 5 year: 2004 end-page: 404 article-title: A fast no search fractal image coding method publication-title: Signal Process.: Image Commun. – volume: 35 start-page: 120 year: 2014 end-page: 129 article-title: Watermarking in binary document images using fractal codes publication-title: Pattern Recognit. Lett. – volume: 106 start-page: 16 year: 2018 end-page: 22 article-title: Fractal image compression using upper bound on scaling parameter publication-title: Chaos, Solitons Fractals – volume: 15 start-page: 35 year: 2019 end-page: 42 article-title: An adaptive fractal‐based image coding with hierarchical classification strategy and its modififications publication-title: Innovations Syst. Softw. Eng. – volume: 15 start-page: 2587 year: 2020 end-page: 2601 article-title: Fractal coding‐based robust and alignment‐free fingerprint image hashing publication-title: IEEE Trans. Inf. Forensic Secur. – volume: 2019 year: 2019 article-title: Image super resolution using fractal coding and residual network publication-title: Complexity – volume: 8 start-page: 488 issue: 3 year: 2006 end-page: 499 article-title: A novel fractal image watermarking publication-title: IEEE Trans. Multimedia – volume: 24 start-page: 42 issue: 1 year: 2013 end-page: 47 article-title: A new method for image retrieval based on analyzing fractal coding characters publication-title: J. Vis. Commun. Image Represent. – volume: 14 start-page: 1733 issue: 9 year: 2020 end-page: 1739 article-title: Fast fractal image compression algorithm using specific update search publication-title: IET Image Process – ident: e_1_2_12_15_1 doi: 10.1109/TIP.2009.2013080 – ident: e_1_2_12_31_1 doi: 10.1155/2019/9419107 – ident: e_1_2_12_27_1 – ident: e_1_2_12_7_1 doi: 10.1007/s00371-021-02226-y – ident: e_1_2_12_10_1 doi: 10.1007/s11334-019-00327-5 – ident: e_1_2_12_37_1 doi: 10.1117/12.160484 – ident: e_1_2_12_32_1 doi: 10.1109/ACCESS.2019.2916934 – ident: e_1_2_12_24_1 doi: 10.1109/TMM.2006.870738 – ident: e_1_2_12_29_1 doi: 10.1016/j.chaos.2007.10.031 – ident: e_1_2_12_25_1 doi: 10.1016/j.patrec.2013.04.022 – ident: e_1_2_12_36_1 doi: 10.1016/j.image.2004.02.002 – ident: e_1_2_12_16_1 doi: 10.1109/TIP.2012.2215619 – ident: e_1_2_12_18_1 doi: 10.1142/S0218348X21501255 – ident: e_1_2_12_33_1 doi: 10.1016/j.jvcir.2016.09.008 – volume: 2014 year: 2014 ident: e_1_2_12_26_1 article-title: A robust fractal color image watermarking algorithm publication-title: Math. Probl. Eng. doi: 10.1155/2014/638174 – volume-title: Fractal Image Compression: Theory and Application year: 1994 ident: e_1_2_12_4_1 – ident: e_1_2_12_22_1 doi: 10.1109/TIFS.2020.2971142 – ident: e_1_2_12_12_1 doi: 10.1109/TIP.2003.818038 – ident: e_1_2_12_20_1 doi: 10.1142/S0218348X09004557 – volume: 2016 year: 2016 ident: e_1_2_12_38_1 article-title: Prediction of the PSNR quality of decoded images in fractal image coding publication-title: Math. Probl. Eng. – ident: e_1_2_12_5_1 doi: 10.1109/83.806618 – ident: e_1_2_12_14_1 doi: 10.1016/j.chaos.2007.06.048 – ident: e_1_2_12_39_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_12_13_1 doi: 10.1109/TIP.2006.877377 – volume-title: Fractal Everywhere year: 1988 ident: e_1_2_12_2_1 – ident: e_1_2_12_21_1 doi: 10.1016/j.jvcir.2012.10.005 – ident: e_1_2_12_34_1 doi: 10.1049/iet-ipr.2019.0522 – ident: e_1_2_12_6_1 doi: 10.1109/5.241507 – ident: e_1_2_12_30_1 doi: 10.1109/TCE.2010.5606294 – ident: e_1_2_12_23_1 doi: 10.1007/s11042-020-08619-w – ident: e_1_2_12_11_1 doi: 10.1109/OCIT56763.2022.00065 – ident: e_1_2_12_17_1 doi: 10.1142/S0218348X19501196 – ident: e_1_2_12_35_1 doi: 10.1007/s11042-022-12631-7 – ident: e_1_2_12_8_1 doi: 10.1016/j.chaos.2017.11.013 – ident: e_1_2_12_19_1 doi: 10.1109/TMM.2005.846796 – ident: e_1_2_12_28_1 – ident: e_1_2_12_3_1 doi: 10.1109/83.128028 – ident: e_1_2_12_9_1 doi: 10.1007/s11042-020-09256-z |
SSID | ssj0059085 |
Score | 2.3322487 |
Snippet | An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances... Abstract An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1745 |
SubjectTerms | fractals image coding image processing |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KvXjxLdYXAUVQCDbZzbYLXqpYqqAUsdBbmH1pobal1kP_vTObtFIQwVsIs2Qzm5n5JrvzDWPnWmKMk6aJyE1BLJqZirVMfQx1nirAHEMHyvynZ9npicd-1q-wm0UtTMEPsfzhRpYR_DUZOOiiCwmCWlzEwWSaUi9jiQn7GtXWUuOGVHQXfpiaeWehHJIayctMLchJhbr-GbsSjgJr_ypKDWGmvcU2SnwYtYoF3WYVN9phmyVWjEpL_NxlFy0LE3JVw3n0Pqeyq8hTwROOHXygj4jMmKLSHuu171_vOnHZ8yA2gk5aesc9gSqniLkcmpAoizHVmSQDXXfKol6dwZxFepBWcZ9aZ7S3EhoOaNdsn1VH45E7YFFDUnTCEGwaXADXkPEMEC-B5-CtczV2uXj13JSE4NSXYpiHjWmhclJTHtRUY2dL2UlBg_Gr1C1pcClB1NXhxnj6lpeWkDtuE5yz4klihBS6qa1OlYe6wxkKZWvsKuj_j-fkD92XNFwd_kf4iK2nCEmK44rHrDqbfrkThBQzfRq-nG_55MSj priority: 102 providerName: Wiley-Blackwell |
Title | Adaptively hybrid fractal image coding |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13060 https://doaj.org/article/e3d1dec9311c464b8bdb29fa0eba549d |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA06X3zxW5wfo6AICmVtk2bN4xRlCsoQK8OXcvOFg7mNOR_2781Nu6kg-uJbKQlpT9p7ziXJuYScSO44jqvMKTcBIctSEUqe2BAimghwOYb0lvl397yTs9te2vtS6gv3hJX2wCVwTUN1rI0SNI4V40xmUstEWIiMBJfbaIy-kYjmyVQZg7GQd-qPQmIReZ6KuTEpE83-eJJgDWRvSvlJRd6x_7tC9RRzvUHWKm0YtMtn2iRLZrhF1iudGFR_4ds2OW1rGGOYGsyClxkeuQosHnZyffuvLj4EaoSMtEPy66vHy05Y1TsIFcNdltZQi4LKCHQthwxioR2fGhWnICMjtMPUKJevcAtcC2oTB4y0mkPLAK6Y7ZLacDQ0eyRocWQmR7-qRRlQBxVNwWklsBSsNqZOzuavXqjKDBxrUgwKvyjNRIEwFR6mOjletB2XFhg_trpABBct0Lba33CTWVSTWfw1mXVy7vH_ZZzipvuQ-Kv9_xjxgKwmTqaUWxgPSW06eTdHTmZMZYMsJ6zbICvtp_w5b_jv6wPxrtB- |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iD_ritzg_C4qgUFyTNGsepzg23caQDfYW8qmDuY05H_bfm0u7yUAE30pJaHrt3f0uufsdQteKeR_HdOaRG5cxzVIeK4ZdLMsEc-ljDBUo81ttVu_R537aL3JzoBYm54dYbriBZgR7DQoOG9J5wEmBJHMwmWJoZsx8xL5BPTCHjD5MOwtDDN2801APCZ3kWcoX7KSU3__MXfFHgbZ_FaYGP1PbRdsFQIyq-RfdQ2t2tI92CrAYFar4eYBuqkZOwFYN59H7HOquIgcVT37u4MMbiUiPwS0dol7tqftYj4umB7GmkGrpLHGAqiwH6nKZyYQb71StTlKpypYbL1irfdDCnGSGE4eN1coZJitWwrHZEVofjUf2GEUVBu7J-2BdIVQSJVOSSg-YpCPSGWtL6Hbx6kIXjODQmGIowsk05QLEJIKYSuhqOXaS82D8OuoBJLgcAdzV4cZ4-iYKVRCWmMSvmZMk0ZRRlSmjMHeybP0KKTcldBfk_8dzRKPzisPVyX8GX6LNerfVFM1G--UUbWGPT_LcxTO0Ppt-2XOPL2bqIvxF37mlyBY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF5KC-KLt1jPgCIoBJvsZpsFX-pRWo9SxErxJeyphdqGWh_6793ZJJWCCL6FMEs2k52Zb7I73yB0IqiNcVTGFrkx7pM4Yr6gofF5DYeM2xxDOMr8xw5t9chdP-qX0GVRC5PxQ8x_uIFlOH8NBp4qk-WbBDgyB-kkhF7G1CbsFaDJs6u80njpvfYKTwztvCNXEAmt5GnECnpSwi5-Ri8EJMfbv4hTXaBprqGVHCF6jeyTrqOSHm2g1Rwterktfm6i04biKTir4cx7n0HhlWeg5MmOHXxYL-HJMcSlLdRr3j5ft_y864EvCZy1NBobgFWaAXc5j3nAlI2qWgYRFzXNlNWsljZroYZTxbAJlZbCKMrrmsO-2TYqj8YjvYO8OoX4ZIOwrGPCseARjrhFTNxgbpTWVXRWvHoic0pw6EwxTNzWNGEJqClxaqqi47lsmhFh_Cp1BRqcSwB5tbsxnrwluS0kGqvAzpnhIJCEEhELJUJmeE3bGRKmqujc6f-P5yTt7lPornb_I3yElro3zeSh3bnfQ8uhxSfZ2cV9VJ5OvvSBxRdTcZgvo295h8kF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptively+hybrid+fractal+image+coding&rft.jtitle=IET+image+processing&rft.au=Wang%2C+Qiang&rft.au=Jin%2C+Guohua&rft.au=Bi%2C+Sheng&rft.date=2024-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=7&rft.spage=1745&rft.epage=1758&rft_id=info:doi/10.1049%2Fipr2.13060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |