Adaptively hybrid fractal image coding

An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignor...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 18; no. 7; pp. 1745 - 1758
Main Authors Wang, Qiang, Jin, Guohua, Bi, Sheng
Format Journal Article
LanguageEnglish
Published Wiley 01.05.2024
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/ipr2.13060

Cover

Abstract An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image. To improve the performance of the existing fractal coding methods, an adaptive method is proposed to divide the range blocks into two categories and adopted different encoding strategies for different types of range blocks. It can achieve better‐decoded image quality with faster encoding speed, fewer bits per pixel, and comparable decoding speed.
AbstractList An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image.
Abstract An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image.
An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances (RBLVs) play a crucial role in degrading decoded images, and the effect of the remaining range blocks with small variances (RBSVs) can be ignored. Then, an adaptive method was proposed to divide the range blocks into the above two categories: RBLVs and RBSVs. Second, RBLVs were designed to be encoded in an extended domain block pool (EDBP). Then, better block‐matching effect can be obtained, which will result in better decoded image quality. Further, the no‐search fractal encoding method is adopted for RBSVs to achieve faster encoding speed and fewer bits per pixel (bpp). Finally, four fractal coding methods were adopted to assess the performance of the proposed method. Experimental results show that compared with the previous methods, the PSNR quality of decoded images in the proposed method can be improved by about 0.15–0.4 dB, about 20%–35% of the total computations in encoding process can be saved, and about 0.2 bpp can be saved. Moreover, under the same decoding time, the proposed method can achieve comparable or smaller deviations regarding the decoded image. To improve the performance of the existing fractal coding methods, an adaptive method is proposed to divide the range blocks into two categories and adopted different encoding strategies for different types of range blocks. It can achieve better‐decoded image quality with faster encoding speed, fewer bits per pixel, and comparable decoding speed.
Author Jin, Guohua
Bi, Sheng
Wang, Qiang
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0003-2874-8590
  surname: Wang
  fullname: Wang, Qiang
  email: wangqiang2011@dlmu.edu.cn
  organization: Dalian Maritime University
– sequence: 2
  givenname: Guohua
  surname: Jin
  fullname: Jin, Guohua
  organization: Dalian Maritime University
– sequence: 3
  givenname: Sheng
  surname: Bi
  fullname: Bi, Sheng
  organization: Dalian Maritime University
BookMark eNp9kE1Lw0AQhhepYKte_AU5eRBSd7LZbfZYih-FgiJ6Xia7s3VLbMomKPn3po30IOJpPpjnYXgnbLStt8TYFfAp8Fzfhl3MpiC44idsDDMJqVZqNjr2Up-xSdNsOJeaF3LMrucOd234pKpL3rsyBpf4iLbFKgkfuKbE1i5s1xfs1GPV0OVPPWdv93evi8d09fSwXMxXqc0h56kn4SVoQRq4KLBA0K6AgixILDlpp2w_ZFIrj8pp4TNHtvRO4YyQF5k4Z8vB62rcmF3sf4idqTGYw6KOa4OxDbYiQ8JBT2sBYHOVl0Xpykx75FSizLXrXTeDy8a6aSL5ow-42adl9mmZQ1r9Mf91bEOLbai3bcRQ_Y3AgHyFirp_5Gb5_JINzDc0H36J
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104725
crossref_primary_10_1049_ell2_70120
crossref_primary_10_1016_j_compeleceng_2024_109462
Cites_doi 10.1109/TIP.2009.2013080
10.1155/2019/9419107
10.1007/s00371-021-02226-y
10.1007/s11334-019-00327-5
10.1117/12.160484
10.1109/ACCESS.2019.2916934
10.1109/TMM.2006.870738
10.1016/j.chaos.2007.10.031
10.1016/j.patrec.2013.04.022
10.1016/j.image.2004.02.002
10.1109/TIP.2012.2215619
10.1142/S0218348X21501255
10.1016/j.jvcir.2016.09.008
10.1155/2014/638174
10.1109/TIFS.2020.2971142
10.1109/TIP.2003.818038
10.1142/S0218348X09004557
10.1109/83.806618
10.1016/j.chaos.2007.06.048
10.1109/TIP.2003.819861
10.1109/TIP.2006.877377
10.1016/j.jvcir.2012.10.005
10.1049/iet-ipr.2019.0522
10.1109/5.241507
10.1109/TCE.2010.5606294
10.1007/s11042-020-08619-w
10.1109/OCIT56763.2022.00065
10.1142/S0218348X19501196
10.1007/s11042-022-12631-7
10.1016/j.chaos.2017.11.013
10.1109/TMM.2005.846796
10.1109/83.128028
10.1007/s11042-020-09256-z
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.13060
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1758
ExternalDocumentID oai_doaj_org_article_e3d1dec9311c464b8bdb29fa0eba549d
10_1049_ipr2_13060
IPR213060
Genre article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201806575003
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
ESX
GROUPED_DOAJ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
LAI
MCNEO
MS~
O9-
OCL
OK1
P2P
QWB
RIE
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c4140-fe3f5193e91038a8a19d818ec15ab0e9d6c8ec2596fa6d93f2decbfd6a7ea0823
IEDL.DBID DOA
ISSN 1751-9659
IngestDate Wed Aug 27 01:15:29 EDT 2025
Tue Jul 01 05:16:43 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Wed Jan 22 17:20:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4140-fe3f5193e91038a8a19d818ec15ab0e9d6c8ec2596fa6d93f2decbfd6a7ea0823
ORCID 0000-0003-2874-8590
OpenAccessLink https://doaj.org/article/e3d1dec9311c464b8bdb29fa0eba549d
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e3d1dec9311c464b8bdb29fa0eba549d
crossref_primary_10_1049_ipr2_13060
crossref_citationtrail_10_1049_ipr2_13060
wiley_primary_10_1049_ipr2_13060_IPR213060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2010; 56
2019; 7
2019; 2019
2009; 40
2018; 106
2013; 22
2013; 24
1993; 81
2021; 29
2019; 15
2008; 38
2006; 15
2006; 8
2020; 15
2020; 14
1994
2020; 79
2016; 2016
2014; 2014
2004
1993
2003
1999; 8
2003; 12
2021; 38
2022; 81
2022
2004; 19
2004; 13
2019; 27
2005; 7
2016; 41
2014; 35
1992; 1
2009; 18
1988
2009; 17
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_39_1
Barnslet M. (e_1_2_12_2_1) 1988
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
Wang Q. (e_1_2_12_38_1) 2016; 2016
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
Lu J. (e_1_2_12_26_1) 2014; 2014
e_1_2_12_14_1
Fisher Y. (e_1_2_12_4_1) 1994
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 12
  start-page: 1560
  issue: 12
  year: 2003
  end-page: 1578
  article-title: Fractal image denoising
  publication-title: IEEE Trans. Image Process.
– start-page: 571
  year: 2004
  end-page: 574
  article-title: An efficient fractal based algorithm for image magnification
– volume: 38
  start-page: 3867
  issue: 11
  year: 2021
  end-page: 3880
  article-title: Fractal image compression using a fast affine transform and hierarchical classification scheme
  publication-title: Visual Comput.
– volume: 7
  start-page: 62412
  year: 2019
  end-page: 62420
  article-title: A fast fractal based compression for MRI images
  publication-title: IEEE Access
– volume: 15
  start-page: 2669
  issue: 9
  year: 2006
  end-page: 2675
  article-title: Fractal‐wavelet image denoising revisited
  publication-title: IEEE Trans. Image Process.
– start-page: 273
  year: 2003
  end-page: 276
  article-title: Image enlargement using fractal
– volume: 27
  issue: 7
  year: 2019
  article-title: A primal‐dual algorithm for robust fractal image coding
  publication-title: Fractals
– start-page: 307
  year: 2022
  end-page: 311
  article-title: Fractal image compression based on discrete wavelet transform
– volume: 29
  issue: 5
  year: 2021
  article-title: A nonlocal low‐rank regularization method for fractal image coding
  publication-title: Fractals
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– year: 1994
– volume: 38
  start-page: 1054
  issue: 4
  year: 2008
  end-page: 1064
  article-title: An enhanced fractal image denoising algorithm
  publication-title: Chaos, Solitons Fractals
– volume: 2016
  year: 2016
  article-title: Prediction of the PSNR quality of decoded images in fractal image coding
  publication-title: Math. Probl. Eng.
– volume: 7
  start-page: 597
  issue: 4
  year: 2005
  end-page: 605
  article-title: Image retrieval based on histogram of fractal parameters
  publication-title: IEEE Trans. Multimedia
– volume: 2014
  year: 2014
  article-title: A robust fractal color image watermarking algorithm
  publication-title: Math. Probl. Eng.
– volume: 1
  start-page: 18
  issue: 1
  year: 1992
  end-page: 30
  article-title: Image coding based on a fractal theory of iterated contractive image transformations
  publication-title: IEEE Trans. Image Process.
– volume: 18
  start-page: 995
  issue: 5
  year: 2009
  end-page: 1003
  article-title: Study on huber fractal image compression
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 134
  issue: 1
  year: 2013
  end-page: 145
  article-title: Huber fractal image coding based on a fitting plane
  publication-title: IEEE Trans. Image Process.
– volume: 40
  start-page: 2370
  issue: 5
  year: 2009
  end-page: 2375
  article-title: Image magnification based on similarity analogy
  publication-title: Chaos, Solitons Fractals
– volume: 8
  start-page: 1716
  issue: 12
  year: 1999
  end-page: 1729
  article-title: A review of the fractal image coding literature
  publication-title: IEEE Trans. Image Process.
– volume: 79
  start-page: 26345
  issue: 35‐36
  year: 2020
  end-page: 26368
  article-title: Fractal image compression with adaptive quadtree partitioning and non‐linear affine map
  publication-title: Multimedia Tools Appl.
– volume: 56
  start-page: 1537
  issue: 3
  year: 2010
  end-page: 1541
  article-title: A novel fast fractal super resolution technique
  publication-title: IEEE Trans. Consumer Electron.
– start-page: 397
  year: 1993
  end-page: 408
  article-title: Fast hierarchical codebook search for fractal coding of still images
– volume: 41
  start-page: 87
  year: 2016
  end-page: 95
  article-title: Statistical feature extraction based technique for fast fractal image compression
  publication-title: J. Vis. Commun. Image Represent.
– year: 1988
– volume: 81
  start-page: 21135
  issue: 15
  year: 2022
  end-page: 21154
  article-title: Hybrid edge‐based fractal image encoding using K‐NN search
  publication-title: Multimedia Tools Appl.
– volume: 81
  start-page: 1451
  issue: 10
  year: 1993
  end-page: 1465
  article-title: Fractal image coding: A review
  publication-title: Proc. IEEE.
– volume: 79
  start-page: 19025
  issue: 27‐28
  year: 2020
  end-page: 19044
  article-title: Perceptual image hashing based on structural fractal features of image coding and ring partition
  publication-title: Multimedia Tools Appl.
– volume: 17
  start-page: 441
  issue: 4
  year: 2009
  end-page: 450
  article-title: A fast fractal coding in application of image retrieval
  publication-title: Fractals
– volume: 19
  start-page: 393
  issue: 5
  year: 2004
  end-page: 404
  article-title: A fast no search fractal image coding method
  publication-title: Signal Process.: Image Commun.
– volume: 35
  start-page: 120
  year: 2014
  end-page: 129
  article-title: Watermarking in binary document images using fractal codes
  publication-title: Pattern Recognit. Lett.
– volume: 106
  start-page: 16
  year: 2018
  end-page: 22
  article-title: Fractal image compression using upper bound on scaling parameter
  publication-title: Chaos, Solitons Fractals
– volume: 15
  start-page: 35
  year: 2019
  end-page: 42
  article-title: An adaptive fractal‐based image coding with hierarchical classification strategy and its modififications
  publication-title: Innovations Syst. Softw. Eng.
– volume: 15
  start-page: 2587
  year: 2020
  end-page: 2601
  article-title: Fractal coding‐based robust and alignment‐free fingerprint image hashing
  publication-title: IEEE Trans. Inf. Forensic Secur.
– volume: 2019
  year: 2019
  article-title: Image super resolution using fractal coding and residual network
  publication-title: Complexity
– volume: 8
  start-page: 488
  issue: 3
  year: 2006
  end-page: 499
  article-title: A novel fractal image watermarking
  publication-title: IEEE Trans. Multimedia
– volume: 24
  start-page: 42
  issue: 1
  year: 2013
  end-page: 47
  article-title: A new method for image retrieval based on analyzing fractal coding characters
  publication-title: J. Vis. Commun. Image Represent.
– volume: 14
  start-page: 1733
  issue: 9
  year: 2020
  end-page: 1739
  article-title: Fast fractal image compression algorithm using specific update search
  publication-title: IET Image Process
– ident: e_1_2_12_15_1
  doi: 10.1109/TIP.2009.2013080
– ident: e_1_2_12_31_1
  doi: 10.1155/2019/9419107
– ident: e_1_2_12_27_1
– ident: e_1_2_12_7_1
  doi: 10.1007/s00371-021-02226-y
– ident: e_1_2_12_10_1
  doi: 10.1007/s11334-019-00327-5
– ident: e_1_2_12_37_1
  doi: 10.1117/12.160484
– ident: e_1_2_12_32_1
  doi: 10.1109/ACCESS.2019.2916934
– ident: e_1_2_12_24_1
  doi: 10.1109/TMM.2006.870738
– ident: e_1_2_12_29_1
  doi: 10.1016/j.chaos.2007.10.031
– ident: e_1_2_12_25_1
  doi: 10.1016/j.patrec.2013.04.022
– ident: e_1_2_12_36_1
  doi: 10.1016/j.image.2004.02.002
– ident: e_1_2_12_16_1
  doi: 10.1109/TIP.2012.2215619
– ident: e_1_2_12_18_1
  doi: 10.1142/S0218348X21501255
– ident: e_1_2_12_33_1
  doi: 10.1016/j.jvcir.2016.09.008
– volume: 2014
  year: 2014
  ident: e_1_2_12_26_1
  article-title: A robust fractal color image watermarking algorithm
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/638174
– volume-title: Fractal Image Compression: Theory and Application
  year: 1994
  ident: e_1_2_12_4_1
– ident: e_1_2_12_22_1
  doi: 10.1109/TIFS.2020.2971142
– ident: e_1_2_12_12_1
  doi: 10.1109/TIP.2003.818038
– ident: e_1_2_12_20_1
  doi: 10.1142/S0218348X09004557
– volume: 2016
  year: 2016
  ident: e_1_2_12_38_1
  article-title: Prediction of the PSNR quality of decoded images in fractal image coding
  publication-title: Math. Probl. Eng.
– ident: e_1_2_12_5_1
  doi: 10.1109/83.806618
– ident: e_1_2_12_14_1
  doi: 10.1016/j.chaos.2007.06.048
– ident: e_1_2_12_39_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_12_13_1
  doi: 10.1109/TIP.2006.877377
– volume-title: Fractal Everywhere
  year: 1988
  ident: e_1_2_12_2_1
– ident: e_1_2_12_21_1
  doi: 10.1016/j.jvcir.2012.10.005
– ident: e_1_2_12_34_1
  doi: 10.1049/iet-ipr.2019.0522
– ident: e_1_2_12_6_1
  doi: 10.1109/5.241507
– ident: e_1_2_12_30_1
  doi: 10.1109/TCE.2010.5606294
– ident: e_1_2_12_23_1
  doi: 10.1007/s11042-020-08619-w
– ident: e_1_2_12_11_1
  doi: 10.1109/OCIT56763.2022.00065
– ident: e_1_2_12_17_1
  doi: 10.1142/S0218348X19501196
– ident: e_1_2_12_35_1
  doi: 10.1007/s11042-022-12631-7
– ident: e_1_2_12_8_1
  doi: 10.1016/j.chaos.2017.11.013
– ident: e_1_2_12_19_1
  doi: 10.1109/TMM.2005.846796
– ident: e_1_2_12_28_1
– ident: e_1_2_12_3_1
  doi: 10.1109/83.128028
– ident: e_1_2_12_9_1
  doi: 10.1007/s11042-020-09256-z
SSID ssj0059085
Score 2.3322487
Snippet An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large variances...
Abstract An adaptively hybrid method was proposed to improve the performance of fractal coding methods. First, it is found that the range blocks with large...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1745
SubjectTerms fractals
image coding
image processing
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KvXjxLdYXAUVQCDbZzbYLXqpYqqAUsdBbmH1pobal1kP_vTObtFIQwVsIs2Qzm5n5JrvzDWPnWmKMk6aJyE1BLJqZirVMfQx1nirAHEMHyvynZ9npicd-1q-wm0UtTMEPsfzhRpYR_DUZOOiiCwmCWlzEwWSaUi9jiQn7GtXWUuOGVHQXfpiaeWehHJIayctMLchJhbr-GbsSjgJr_ypKDWGmvcU2SnwYtYoF3WYVN9phmyVWjEpL_NxlFy0LE3JVw3n0Pqeyq8hTwROOHXygj4jMmKLSHuu171_vOnHZ8yA2gk5aesc9gSqniLkcmpAoizHVmSQDXXfKol6dwZxFepBWcZ9aZ7S3EhoOaNdsn1VH45E7YFFDUnTCEGwaXADXkPEMEC-B5-CtczV2uXj13JSE4NSXYpiHjWmhclJTHtRUY2dL2UlBg_Gr1C1pcClB1NXhxnj6lpeWkDtuE5yz4klihBS6qa1OlYe6wxkKZWvsKuj_j-fkD92XNFwd_kf4iK2nCEmK44rHrDqbfrkThBQzfRq-nG_55MSj
  priority: 102
  providerName: Wiley-Blackwell
Title Adaptively hybrid fractal image coding
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13060
https://doaj.org/article/e3d1dec9311c464b8bdb29fa0eba549d
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA06X3zxW5wfo6AICmVtk2bN4xRlCsoQK8OXcvOFg7mNOR_2781Nu6kg-uJbKQlpT9p7ziXJuYScSO44jqvMKTcBIctSEUqe2BAimghwOYb0lvl397yTs9te2vtS6gv3hJX2wCVwTUN1rI0SNI4V40xmUstEWIiMBJfbaIy-kYjmyVQZg7GQd-qPQmIReZ6KuTEpE83-eJJgDWRvSvlJRd6x_7tC9RRzvUHWKm0YtMtn2iRLZrhF1iudGFR_4ds2OW1rGGOYGsyClxkeuQosHnZyffuvLj4EaoSMtEPy66vHy05Y1TsIFcNdltZQi4LKCHQthwxioR2fGhWnICMjtMPUKJevcAtcC2oTB4y0mkPLAK6Y7ZLacDQ0eyRocWQmR7-qRRlQBxVNwWklsBSsNqZOzuavXqjKDBxrUgwKvyjNRIEwFR6mOjletB2XFhg_trpABBct0Lba33CTWVSTWfw1mXVy7vH_ZZzipvuQ-Kv9_xjxgKwmTqaUWxgPSW06eTdHTmZMZYMsJ6zbICvtp_w5b_jv6wPxrtB-
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iD_ritzg_C4qgUFyTNGsepzg23caQDfYW8qmDuY05H_bfm0u7yUAE30pJaHrt3f0uufsdQteKeR_HdOaRG5cxzVIeK4ZdLMsEc-ljDBUo81ttVu_R537aL3JzoBYm54dYbriBZgR7DQoOG9J5wEmBJHMwmWJoZsx8xL5BPTCHjD5MOwtDDN2801APCZ3kWcoX7KSU3__MXfFHgbZ_FaYGP1PbRdsFQIyq-RfdQ2t2tI92CrAYFar4eYBuqkZOwFYN59H7HOquIgcVT37u4MMbiUiPwS0dol7tqftYj4umB7GmkGrpLHGAqiwH6nKZyYQb71StTlKpypYbL1irfdDCnGSGE4eN1coZJitWwrHZEVofjUf2GEUVBu7J-2BdIVQSJVOSSg-YpCPSGWtL6Hbx6kIXjODQmGIowsk05QLEJIKYSuhqOXaS82D8OuoBJLgcAdzV4cZ4-iYKVRCWmMSvmZMk0ZRRlSmjMHeybP0KKTcldBfk_8dzRKPzisPVyX8GX6LNerfVFM1G--UUbWGPT_LcxTO0Ppt-2XOPL2bqIvxF37mlyBY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF5KC-KLt1jPgCIoBJvsZpsFX-pRWo9SxErxJeyphdqGWh_6793ZJJWCCL6FMEs2k52Zb7I73yB0IqiNcVTGFrkx7pM4Yr6gofF5DYeM2xxDOMr8xw5t9chdP-qX0GVRC5PxQ8x_uIFlOH8NBp4qk-WbBDgyB-kkhF7G1CbsFaDJs6u80njpvfYKTwztvCNXEAmt5GnECnpSwi5-Ri8EJMfbv4hTXaBprqGVHCF6jeyTrqOSHm2g1Rwterktfm6i04biKTir4cx7n0HhlWeg5MmOHXxYL-HJMcSlLdRr3j5ft_y864EvCZy1NBobgFWaAXc5j3nAlI2qWgYRFzXNlNWsljZroYZTxbAJlZbCKMrrmsO-2TYqj8YjvYO8OoX4ZIOwrGPCseARjrhFTNxgbpTWVXRWvHoic0pw6EwxTNzWNGEJqClxaqqi47lsmhFh_Cp1BRqcSwB5tbsxnrwluS0kGqvAzpnhIJCEEhELJUJmeE3bGRKmqujc6f-P5yTt7lPornb_I3yElro3zeSh3bnfQ8uhxSfZ2cV9VJ5OvvSBxRdTcZgvo295h8kF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptively+hybrid+fractal+image+coding&rft.jtitle=IET+image+processing&rft.au=Wang%2C+Qiang&rft.au=Jin%2C+Guohua&rft.au=Bi%2C+Sheng&rft.date=2024-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=7&rft.spage=1745&rft.epage=1758&rft_id=info:doi/10.1049%2Fipr2.13060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon