Single-cell individual full-length mtDNA sequencing by iMiGseq uncovers unexpected heteroplasmy shifts in mtDNA editing

Abstract The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 51; no. 8; p. e48
Main Authors Bi, Chongwei, Wang, Lin, Fan, Yong, Yuan, Baolei, Ramos-Mandujano, Gerardo, Zhang, Yingzi, Alsolami, Samhan, Zhou, Xuan, Wang, Jincheng, Shao, Yanjiao, Reddy, Pradeep, Zhang, Pu-Yao, Huang, Yanyi, Yu, Yang, Izpisua Belmonte, Juan Carlos, Li, Mo
Format Journal Article
LanguageEnglish
Published England Oxford University Press 08.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.
AbstractList The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.
Abstract The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.
The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed i ndividual Mi tochondrial G enome seq uencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.
The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.
Author Zhang, Pu-Yao
Alsolami, Samhan
Shao, Yanjiao
Reddy, Pradeep
Huang, Yanyi
Zhang, Yingzi
Wang, Jincheng
Fan, Yong
Zhou, Xuan
Yu, Yang
Yuan, Baolei
Ramos-Mandujano, Gerardo
Bi, Chongwei
Wang, Lin
Izpisua Belmonte, Juan Carlos
Li, Mo
Author_xml – sequence: 1
  givenname: Chongwei
  surname: Bi
  fullname: Bi, Chongwei
– sequence: 2
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
– sequence: 3
  givenname: Yong
  orcidid: 0000-0002-7107-773X
  surname: Fan
  fullname: Fan, Yong
– sequence: 4
  givenname: Baolei
  surname: Yuan
  fullname: Yuan, Baolei
– sequence: 5
  givenname: Gerardo
  surname: Ramos-Mandujano
  fullname: Ramos-Mandujano, Gerardo
– sequence: 6
  givenname: Yingzi
  surname: Zhang
  fullname: Zhang, Yingzi
– sequence: 7
  givenname: Samhan
  surname: Alsolami
  fullname: Alsolami, Samhan
– sequence: 8
  givenname: Xuan
  surname: Zhou
  fullname: Zhou, Xuan
– sequence: 9
  givenname: Jincheng
  surname: Wang
  fullname: Wang, Jincheng
– sequence: 10
  givenname: Yanjiao
  surname: Shao
  fullname: Shao, Yanjiao
– sequence: 11
  givenname: Pradeep
  surname: Reddy
  fullname: Reddy, Pradeep
– sequence: 12
  givenname: Pu-Yao
  surname: Zhang
  fullname: Zhang, Pu-Yao
– sequence: 13
  givenname: Yanyi
  orcidid: 0000-0002-7297-1266
  surname: Huang
  fullname: Huang, Yanyi
– sequence: 14
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
  email: yuyang5012@hotmail.com
– sequence: 15
  givenname: Juan Carlos
  orcidid: 0000-0003-0557-8875
  surname: Izpisua Belmonte
  fullname: Izpisua Belmonte, Juan Carlos
  email: jcbelmonte@altoslabs.com
– sequence: 16
  givenname: Mo
  orcidid: 0000-0003-0827-8907
  surname: Li
  fullname: Li, Mo
  email: mo.li@kaust.edu.sa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36999592$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAUxC1URLcLJ-7IJ1QJhfojycYnVBXaIhU40LvlOM-7BscOtrOw_z1e7VIBEpyeZc_7jTVzhk588IDQc0peUyL4hVfxYv1VDYx0j9CC8pZVtWjZCVoQTpqKkro7RWcpfSGE1rSpn6BT3gohGsEW6Ptn69cOKg3OYesHu7XDrBw2s3OVA7_OGzzmtx8vcYJvM3hd5LjfYfvB3pQbPHsdthBTOcCPCXSGAW8gQwyTU2nc4bSxJqeCPmJgsLkwnqLHRrkEz45zie6v391f3VZ3n27eX13eVbqmPFdm6Doj-jKUEk1jGmiJgJ62tWhaYoTouBErRkAbbgwoXnec9Y0mTA_ABF-iNwfsNPcjDBp8jsrJKdpRxZ0Myso_X7zdyHXYSkqKR7EohPMjIYYSQMpytGmflvIQ5iTZSnAh2KoYL9GL380eXH6lXQSvDgIdQ0oRzIOEErnvUpYu5bHLoqZ_qbXNKtuw_6l1_9h5edgJ8_Rf-E-cbLR9
CitedBy_id crossref_primary_10_3389_fimmu_2024_1448558
crossref_primary_10_1038_s42003_025_07539_5
crossref_primary_10_1002_ange_202401544
crossref_primary_10_1038_s41598_024_71822_4
crossref_primary_10_3390_brainsci14090899
crossref_primary_10_1002_cpz1_888
crossref_primary_10_1038_s42003_023_05500_y
crossref_primary_10_1016_j_cellsig_2024_111123
crossref_primary_10_3390_cells12202494
crossref_primary_10_1002_anie_202401544
crossref_primary_10_1016_j_medj_2024_07_003
crossref_primary_10_1093_lifemedi_lnad028
crossref_primary_10_3390_diseases12090226
Cites_doi 10.1038/nature11396
10.1186/s13059-020-02143-8
10.1038/ng1769
10.1038/s41586-020-2477-4
10.1002/0471250953.bi0123s44
10.1371/journal.pgen.1004620
10.1016/j.tig.2018.05.009
10.1016/j.mito.2018.08.003
10.1093/nar/gkf602
10.1038/s41598-019-39762-6
10.1038/ng1778
10.1038/s41436-020-0793-6
10.1007/978-1-4939-2257-4_6
10.1038/s41586-022-04836-5
10.1073/pnas.1419651112
10.1038/s41576-021-00432-x
10.1038/s41576-020-0236-x
10.1038/s41587-022-01256-8
10.1038/srep12049
10.1038/s41467-021-25853-4
10.1016/j.celrep.2017.11.031
10.3390/molecules23020323
10.1038/s41467-018-04797-2
10.1016/j.cell.2015.12.050
10.1371/journal.pone.0176795
10.1101/cshperspect.a021220
10.1038/ncomms5767
10.1038/nrg3966
10.1093/nar/gks1443
10.7554/eLife.02935
10.1002/ana.24362
10.1093/bioinformatics/bty191
10.1016/j.cell.2017.02.005
10.1371/journal.pgen.1003794
10.1016/j.tig.2019.01.001
10.3109/19401736.2015.1115499
10.1016/j.ajhg.2008.07.004
10.1038/s41588-019-0557-x
10.1038/s41592-018-0001-7
10.1093/lifemedi/lnac014
10.4161/fly.19695
10.1038/s41421-021-00316-8
10.1101/gr.215087.116
10.1016/j.cell.2015.03.051
10.1007/s13238-017-0499-y
10.1093/bioinformatics/btp352
10.1371/journal.pbio.3000745
10.1016/j.cell.2019.01.022
10.1073/pnas.1906331116
10.1016/j.tig.2020.06.009
10.3390/cells8060608
10.1371/journal.pone.0014359
10.1038/gim.2014.177
10.1073/pnas.1109263108
10.1038/nrg3275
10.1073/pnas.1409328111
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkad208
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e48
ExternalDocumentID PMC10164560
36999592
10_1093_nar_gkad208
10.1093/nar/gkad208
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: BAS/1/1080-01
– fundername: ;
  grantid: 82071723
– fundername: ;
  grantid: 2021B1515020069
– fundername: ;
  grantid: URF/1/3412-01-01
– fundername: ;
  grantid: 82225019; 82192873, and 81971381
– fundername: ;
  grantid: 2019YFA0110804; 2021YFC2700904
– fundername: ;
  grantid: 2021YFC2700303
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
AMNDL
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c413t-fd88f9bfd8aa955f5e609eb1649560f9983f9720ecf3ffea34832b5c02cde293
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:37:18 EDT 2025
Fri Jul 11 04:39:27 EDT 2025
Mon Jul 21 06:05:50 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Tue Jul 01 02:59:21 EDT 2025
Wed Aug 28 03:17:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-fd88f9bfd8aa955f5e609eb1649560f9983f9720ecf3ffea34832b5c02cde293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.
ORCID 0000-0003-0557-8875
0000-0002-7297-1266
0000-0003-0827-8907
0000-0002-7107-773X
OpenAccessLink https://dx.doi.org/10.1093/nar/gkad208
PMID 36999592
PQID 2793992748
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10164560
proquest_miscellaneous_2793992748
pubmed_primary_36999592
crossref_primary_10_1093_nar_gkad208
crossref_citationtrail_10_1093_nar_gkad208
oup_primary_10_1093_nar_gkad208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-08
PublicationDateYYYYMMDD 2023-05-08
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-08
  day: 08
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Schon (2023050800221191700_B39) 2020; 36
Greaves (2023050800221191700_B44) 2014; 10
Mok (2023050800221191700_B48) 2022; 40
Yuan (2023050800221191700_B10) 2020; 52
Ni (2023050800221191700_B32) 2015; 5
Kraytsberg (2023050800221191700_B56) 2006; 38
Silva-Pinheiro (2023050800221191700_B47) 2022; 23
Stewart (2023050800221191700_B6) 2015; 16
Bi (2023050800221191700_B21) 2020; 21
Reiner (2023050800221191700_B22) 2010; 5
Santibanez-Koref (2023050800221191700_B53) 2019; 46
Cingolani (2023050800221191700_B28) 2012; 6
Moretton (2023050800221191700_B51) 2017; 12
Logsdon (2023050800221191700_B45) 2020; 21
Bender (2023050800221191700_B55) 2006; 38
Kong (2023050800221191700_B16) 2022; 1
Filges (2023050800221191700_B24) 2019; 9
Lei (2023050800221191700_B52) 2022; 606
Yang (2023050800221191700_B23) 2017; 169
Sozen (2023050800221191700_B43) 2021; 12
Haradhvala (2023050800221191700_B37) 2016; 164
Elliott (2023050800221191700_B8) 2008; 83
Gorman (2023050800221191700_B38) 2015; 77
Duan (2023050800221191700_B13) 2018; 23
Rebolledo-Jaramillo (2023050800221191700_B3) 2014; 111
Arbeithuber (2023050800221191700_B12) 2020; 18
Nissanka (2023050800221191700_B54) 2019; 35
Li (2023050800221191700_B27) 2009; 25
Li (2023050800221191700_B14) 2015; 112
Parikh (2023050800221191700_B40) 2015; 17
Yang (2023050800221191700_B25) 2018; 9
Kukat (2023050800221191700_B1) 2011; 108
Zaidi (2023050800221191700_B2) 2019; 116
Burgstaller (2023050800221191700_B18) 2018; 9
Li (2023050800221191700_B29) 2018; 34
Wallace (2023050800221191700_B4) 2013; 5
Bi (2023050800221191700_B50) 2020; 21
Ludwig (2023050800221191700_B17) 2019; 176
Ju (2023050800221191700_B36) 2014; 3
Li (2023050800221191700_B19) 2019; 8
Schon (2023050800221191700_B7) 2012; 13
Diaz (2023050800221191700_B57) 2002; 30
Reddy (2023050800221191700_B49) 2015; 161
Kong (2023050800221191700_B5) 2012; 488
Lin (2023050800221191700_B34) 2014; 5
Payne (2023050800221191700_B9) 2015; 1264
Mok (2023050800221191700_B26) 2020; 583
Morris (2023050800221191700_B11) 2017; 21
Lott (2023050800221191700_B33) 2013; 44
Barshad (2023050800221191700_B46) 2018; 34
Ancora (2023050800221191700_B20) 2017; 28
Koren (2023050800221191700_B31) 2017; 27
Costello (2023050800221191700_B35) 2013; 41
Sedlazeck (2023050800221191700_B30) 2018; 15
Kennedy (2023050800221191700_B15) 2013; 9
Fan (2023050800221191700_B42) 2021; 7
Riley (2023050800221191700_B41) 2020; 22
References_xml – volume: 488
  start-page: 471
  year: 2012
  ident: 2023050800221191700_B5
  article-title: Rate of de novo mutations and the importance of father's age to disease risk
  publication-title: Nature
  doi: 10.1038/nature11396
– volume: 21
  start-page: 213
  year: 2020
  ident: 2023050800221191700_B50
  article-title: Long-read individual-molecule sequencing reveals CRISPR-induced genetic heterogeneity in Human escs
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02143-8
– volume: 38
  start-page: 515
  year: 2006
  ident: 2023050800221191700_B55
  article-title: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng1769
– volume: 583
  start-page: 631
  year: 2020
  ident: 2023050800221191700_B26
  article-title: A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing
  publication-title: Nature
  doi: 10.1038/s41586-020-2477-4
– volume: 44
  start-page: 1.23
  year: 2013
  ident: 2023050800221191700_B33
  article-title: mtDNA variation and analysis using Mitomap and Mitomaster
  publication-title: Curr. Protoc. Bioinformatics
  doi: 10.1002/0471250953.bi0123s44
– volume: 10
  start-page: e1004620
  year: 2014
  ident: 2023050800221191700_B44
  article-title: Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing
  publication-title: PLos Genet.
  doi: 10.1371/journal.pgen.1004620
– volume: 34
  start-page: 682
  year: 2018
  ident: 2023050800221191700_B46
  article-title: Mitochondrial DNA transcription and its regulation: an evolutionary perspective
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.05.009
– volume: 46
  start-page: 302
  year: 2019
  ident: 2023050800221191700_B53
  article-title: Assessing mitochondrial heteroplasmy using next generation sequencing: a note of caution
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2018.08.003
– volume: 30
  start-page: 4626
  year: 2002
  ident: 2023050800221191700_B57
  article-title: Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf602
– volume: 9
  start-page: 3503
  year: 2019
  ident: 2023050800221191700_B24
  article-title: Impact of polymerase fidelity on background error rates in next- generation sequencing with unique molecular identifiers/barcodes
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-39762-6
– volume: 38
  start-page: 518
  year: 2006
  ident: 2023050800221191700_B56
  article-title: Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons
  publication-title: Nat. Genet.
  doi: 10.1038/ng1778
– volume: 22
  start-page: 1254
  year: 2020
  ident: 2023050800221191700_B41
  article-title: The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease
  publication-title: Genet. Med.
  doi: 10.1038/s41436-020-0793-6
– volume: 1264
  start-page: 59
  year: 2015
  ident: 2023050800221191700_B9
  article-title: Deep resequencing of mitochondrial DNA
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2257-4_6
– volume: 21
  start-page: 213
  year: 2020
  ident: 2023050800221191700_B21
  article-title: Long-read individual-molecule sequencing reveals CRISPR-induced genetic heterogeneity in human escs
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02143-8
– volume: 606
  start-page: 804
  year: 2022
  ident: 2023050800221191700_B52
  article-title: Mitochondrial base editor induces substantial nuclear off-target mutations
  publication-title: Nature
  doi: 10.1038/s41586-022-04836-5
– volume: 112
  start-page: 2491
  year: 2015
  ident: 2023050800221191700_B14
  article-title: Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1419651112
– volume: 23
  start-page: 199
  year: 2022
  ident: 2023050800221191700_B47
  article-title: The potential of mitochondrial genome engineering
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00432-x
– volume: 21
  start-page: 597
  year: 2020
  ident: 2023050800221191700_B45
  article-title: Long-read human genome sequencing and its applications
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0236-x
– volume: 40
  start-page: 1378
  year: 2022
  ident: 2023050800221191700_B48
  article-title: CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01256-8
– volume: 5
  start-page: 12049
  year: 2015
  ident: 2023050800221191700_B32
  article-title: MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep12049
– volume: 12
  start-page: 5550
  year: 2021
  ident: 2023050800221191700_B43
  article-title: Reconstructing aspects of human embryogenesis with pluripotent stem cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25853-4
– volume: 21
  start-page: 2706
  year: 2017
  ident: 2023050800221191700_B11
  article-title: Pervasive within-mitochondrion single-nucleotide variant heteroplasmy as revealed by single-mitochondrion sequencing
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.11.031
– volume: 23
  start-page: 323
  year: 2018
  ident: 2023050800221191700_B13
  article-title: Recent advances in detecting mitochondrial DNA heteroplasmic variations
  publication-title: Molecules
  doi: 10.3390/molecules23020323
– volume: 9
  start-page: 2488
  year: 2018
  ident: 2023050800221191700_B18
  article-title: Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04797-2
– volume: 164
  start-page: 538
  year: 2016
  ident: 2023050800221191700_B37
  article-title: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.050
– volume: 12
  start-page: e0176795
  year: 2017
  ident: 2023050800221191700_B51
  article-title: Selective mitochondrial DNA degradation following double-strand breaks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0176795
– volume: 5
  start-page: a021220
  year: 2013
  ident: 2023050800221191700_B4
  article-title: Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a021220
– volume: 5
  start-page: 4767
  year: 2014
  ident: 2023050800221191700_B34
  article-title: Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5767
– volume: 16
  start-page: 530
  year: 2015
  ident: 2023050800221191700_B6
  article-title: The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3966
– volume: 41
  start-page: e67
  year: 2013
  ident: 2023050800221191700_B35
  article-title: Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1443
– volume: 3
  start-page: e02935
  year: 2014
  ident: 2023050800221191700_B36
  article-title: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
  publication-title: Elife
  doi: 10.7554/eLife.02935
– volume: 77
  start-page: 753
  year: 2015
  ident: 2023050800221191700_B38
  article-title: Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24362
– volume: 34
  start-page: 3094
  year: 2018
  ident: 2023050800221191700_B29
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 169
  start-page: 243
  year: 2017
  ident: 2023050800221191700_B23
  article-title: Derivation of pluripotent stem cells with In vivo embryonic and extraembryonic potency
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.005
– volume: 9
  start-page: e1003794
  year: 2013
  ident: 2023050800221191700_B15
  article-title: Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003794
– volume: 35
  start-page: 235
  year: 2019
  ident: 2023050800221191700_B54
  article-title: Mechanisms of mitochondrial DNA deletion formation
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.01.001
– volume: 28
  start-page: 180
  year: 2017
  ident: 2023050800221191700_B20
  article-title: Complete sequence of human mitochondrial DNA obtained by combining multiple displacement amplification and next-generation sequencing on a single oocyte
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2015.1115499
– volume: 83
  start-page: 254
  year: 2008
  ident: 2023050800221191700_B8
  article-title: Pathogenic mitochondrial DNA mutations are common in the general population
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2008.07.004
– volume: 52
  start-page: 342
  year: 2020
  ident: 2023050800221191700_B10
  article-title: Comprehensive molecular characterization of mitochondrial genomes in human cancers
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0557-x
– volume: 15
  start-page: 461
  year: 2018
  ident: 2023050800221191700_B30
  article-title: Accurate detection of complex structural variations using single-molecule sequencing
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0001-7
– volume: 1
  start-page: 149
  year: 2022
  ident: 2023050800221191700_B16
  article-title: Aging-associated accumulation of mitochondrial DNA mutations in tumor origin
  publication-title: Life Med.
  doi: 10.1093/lifemedi/lnac014
– volume: 6
  start-page: 80
  year: 2012
  ident: 2023050800221191700_B28
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3
  publication-title: Fly
  doi: 10.4161/fly.19695
– volume: 7
  start-page: 81
  year: 2021
  ident: 2023050800221191700_B42
  article-title: Generation of human blastocyst-like structures from pluripotent stem cells
  publication-title: Cell Discov.
  doi: 10.1038/s41421-021-00316-8
– volume: 27
  start-page: 722
  year: 2017
  ident: 2023050800221191700_B31
  article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
  publication-title: Genome Res.
  doi: 10.1101/gr.215087.116
– volume: 161
  start-page: 459
  year: 2015
  ident: 2023050800221191700_B49
  article-title: Selective elimination of mitochondrial mutations in the germline by genome editing
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.051
– volume: 9
  start-page: 283
  year: 2018
  ident: 2023050800221191700_B25
  article-title: Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0499-y
– volume: 25
  start-page: 2078
  year: 2009
  ident: 2023050800221191700_B27
  article-title: The sequence alignment/map format and samtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 18
  start-page: e3000745
  year: 2020
  ident: 2023050800221191700_B12
  article-title: Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000745
– volume: 176
  start-page: 1325
  year: 2019
  ident: 2023050800221191700_B17
  article-title: Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.022
– volume: 116
  start-page: 25172
  year: 2019
  ident: 2023050800221191700_B2
  article-title: Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1906331116
– volume: 36
  start-page: 702
  year: 2020
  ident: 2023050800221191700_B39
  article-title: Mitochondrial diseases: a diagnostic revolution
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2020.06.009
– volume: 8
  start-page: 608
  year: 2019
  ident: 2023050800221191700_B19
  article-title: Mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations
  publication-title: Cells
  doi: 10.3390/cells8060608
– volume: 5
  start-page: e14359
  year: 2010
  ident: 2023050800221191700_B22
  article-title: Detection of heteroplasmic mitochondrial DNA in single mitochondria
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014359
– volume: 17
  start-page: 689
  year: 2015
  ident: 2023050800221191700_B40
  article-title: Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society
  publication-title: Genet. Med.
  doi: 10.1038/gim.2014.177
– volume: 108
  start-page: 13534
  year: 2011
  ident: 2023050800221191700_B1
  article-title: Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1109263108
– volume: 13
  start-page: 878
  year: 2012
  ident: 2023050800221191700_B7
  article-title: Human mitochondrial DNA: roles of inherited and somatic mutations
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3275
– volume: 111
  start-page: 15474
  year: 2014
  ident: 2023050800221191700_B3
  article-title: Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1409328111
SSID ssj0014154
Score 2.4935927
Snippet Abstract The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual...
The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial...
The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed i ndividual Mi tochondrial...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e48
SubjectTerms DNA, Mitochondrial - genetics
Genome, Mitochondrial - genetics
Heteroplasmy - genetics
Methods Online
Mitochondria - genetics
Mutation
Title Single-cell individual full-length mtDNA sequencing by iMiGseq uncovers unexpected heteroplasmy shifts in mtDNA editing
URI https://www.ncbi.nlm.nih.gov/pubmed/36999592
https://www.proquest.com/docview/2793992748
https://pubmed.ncbi.nlm.nih.gov/PMC10164560
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA-6F30RdX7MjxlBfBCK_UrXPI75MYTNByfsrSRp4oqzk7VD9t97SbuyiuhTS3tNSy7p_e5y-R1CV0yKwCdMF3fxlOVTGVuh02GW3YG5BA608AyB6WAY9F_9pzEZlwmy2S9L-NS7Tdn89u2dxa7Z0wvmV1Pkj57H1WIB2KCCJcqQavphuQ3vx7M1w1PbzLaGKX-mRq7ZmoddtFOCRNwttLqHNmS6j5rdFBzkjyW-xiZt08TD99FWb1WyrYm-XsAQTaWlo_E4qbZaYR1jt3TJlHyCP_K7YReXGdQgjvkSJ4PkEa5gsHE6ozODE838LwCN4onOl5l9AsiGV2eTROUZNF02A5ZPp00foNHD_ajXt8rKCpYAo5VbKg5DRTkcGKOEKCIDm8JfOzDukgIXzFO049pSKE8pyTwfJj4nwnZFLAEgHKJGOkvlMcKAem0uHCIJcX3FCQ2dgPsBIAcVc8fnLXSz6vVIlKzjuvjFNCpWv70IVBSVKmqhq0r4syDb-F3sAtT3t8TlSrURqED3OkvlbJFFLvyPKAVXHGSOClVXDXkB1exrbguFtUFQCWgq7vqdNJkYSm4dAwEoap_8-2mnaFtXrDc5k-EZauTzhTwHXJPzNtrs2PdtExVomxH-DYqU_FA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+individual+full-length+mtDNA+sequencing+by+iMiGseq+uncovers+unexpected+heteroplasmy+shifts+in+mtDNA+editing&rft.jtitle=Nucleic+acids+research&rft.au=Bi%2C+Chongwei&rft.au=Wang%2C+Lin&rft.au=Fan%2C+Yong&rft.au=Yuan%2C+Baolei&rft.date=2023-05-08&rft.eissn=1362-4962&rft.volume=51&rft.issue=8&rft.spage=e48&rft_id=info:doi/10.1093%2Fnar%2Fgkad208&rft_id=info%3Apmid%2F36999592&rft.externalDocID=36999592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon