Single-cell individual full-length mtDNA sequencing by iMiGseq uncovers unexpected heteroplasmy shifts in mtDNA editing
Abstract The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation...
Saved in:
Published in | Nucleic acids research Vol. 51; no. 8; p. e48 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
08.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies. |
---|---|
AbstractList | The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies. Abstract The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies. The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed i ndividual Mi tochondrial G enome seq uencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies. The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies. |
Author | Zhang, Pu-Yao Alsolami, Samhan Shao, Yanjiao Reddy, Pradeep Huang, Yanyi Zhang, Yingzi Wang, Jincheng Fan, Yong Zhou, Xuan Yu, Yang Yuan, Baolei Ramos-Mandujano, Gerardo Bi, Chongwei Wang, Lin Izpisua Belmonte, Juan Carlos Li, Mo |
Author_xml | – sequence: 1 givenname: Chongwei surname: Bi fullname: Bi, Chongwei – sequence: 2 givenname: Lin surname: Wang fullname: Wang, Lin – sequence: 3 givenname: Yong orcidid: 0000-0002-7107-773X surname: Fan fullname: Fan, Yong – sequence: 4 givenname: Baolei surname: Yuan fullname: Yuan, Baolei – sequence: 5 givenname: Gerardo surname: Ramos-Mandujano fullname: Ramos-Mandujano, Gerardo – sequence: 6 givenname: Yingzi surname: Zhang fullname: Zhang, Yingzi – sequence: 7 givenname: Samhan surname: Alsolami fullname: Alsolami, Samhan – sequence: 8 givenname: Xuan surname: Zhou fullname: Zhou, Xuan – sequence: 9 givenname: Jincheng surname: Wang fullname: Wang, Jincheng – sequence: 10 givenname: Yanjiao surname: Shao fullname: Shao, Yanjiao – sequence: 11 givenname: Pradeep surname: Reddy fullname: Reddy, Pradeep – sequence: 12 givenname: Pu-Yao surname: Zhang fullname: Zhang, Pu-Yao – sequence: 13 givenname: Yanyi orcidid: 0000-0002-7297-1266 surname: Huang fullname: Huang, Yanyi – sequence: 14 givenname: Yang surname: Yu fullname: Yu, Yang email: yuyang5012@hotmail.com – sequence: 15 givenname: Juan Carlos orcidid: 0000-0003-0557-8875 surname: Izpisua Belmonte fullname: Izpisua Belmonte, Juan Carlos email: jcbelmonte@altoslabs.com – sequence: 16 givenname: Mo orcidid: 0000-0003-0827-8907 surname: Li fullname: Li, Mo email: mo.li@kaust.edu.sa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36999592$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAUxC1URLcLJ-7IJ1QJhfojycYnVBXaIhU40LvlOM-7BscOtrOw_z1e7VIBEpyeZc_7jTVzhk588IDQc0peUyL4hVfxYv1VDYx0j9CC8pZVtWjZCVoQTpqKkro7RWcpfSGE1rSpn6BT3gohGsEW6Ptn69cOKg3OYesHu7XDrBw2s3OVA7_OGzzmtx8vcYJvM3hd5LjfYfvB3pQbPHsdthBTOcCPCXSGAW8gQwyTU2nc4bSxJqeCPmJgsLkwnqLHRrkEz45zie6v391f3VZ3n27eX13eVbqmPFdm6Doj-jKUEk1jGmiJgJ62tWhaYoTouBErRkAbbgwoXnec9Y0mTA_ABF-iNwfsNPcjDBp8jsrJKdpRxZ0Myso_X7zdyHXYSkqKR7EohPMjIYYSQMpytGmflvIQ5iTZSnAh2KoYL9GL380eXH6lXQSvDgIdQ0oRzIOEErnvUpYu5bHLoqZ_qbXNKtuw_6l1_9h5edgJ8_Rf-E-cbLR9 |
CitedBy_id | crossref_primary_10_3389_fimmu_2024_1448558 crossref_primary_10_1038_s42003_025_07539_5 crossref_primary_10_1002_ange_202401544 crossref_primary_10_1038_s41598_024_71822_4 crossref_primary_10_3390_brainsci14090899 crossref_primary_10_1002_cpz1_888 crossref_primary_10_1038_s42003_023_05500_y crossref_primary_10_1016_j_cellsig_2024_111123 crossref_primary_10_3390_cells12202494 crossref_primary_10_1002_anie_202401544 crossref_primary_10_1016_j_medj_2024_07_003 crossref_primary_10_1093_lifemedi_lnad028 crossref_primary_10_3390_diseases12090226 |
Cites_doi | 10.1038/nature11396 10.1186/s13059-020-02143-8 10.1038/ng1769 10.1038/s41586-020-2477-4 10.1002/0471250953.bi0123s44 10.1371/journal.pgen.1004620 10.1016/j.tig.2018.05.009 10.1016/j.mito.2018.08.003 10.1093/nar/gkf602 10.1038/s41598-019-39762-6 10.1038/ng1778 10.1038/s41436-020-0793-6 10.1007/978-1-4939-2257-4_6 10.1038/s41586-022-04836-5 10.1073/pnas.1419651112 10.1038/s41576-021-00432-x 10.1038/s41576-020-0236-x 10.1038/s41587-022-01256-8 10.1038/srep12049 10.1038/s41467-021-25853-4 10.1016/j.celrep.2017.11.031 10.3390/molecules23020323 10.1038/s41467-018-04797-2 10.1016/j.cell.2015.12.050 10.1371/journal.pone.0176795 10.1101/cshperspect.a021220 10.1038/ncomms5767 10.1038/nrg3966 10.1093/nar/gks1443 10.7554/eLife.02935 10.1002/ana.24362 10.1093/bioinformatics/bty191 10.1016/j.cell.2017.02.005 10.1371/journal.pgen.1003794 10.1016/j.tig.2019.01.001 10.3109/19401736.2015.1115499 10.1016/j.ajhg.2008.07.004 10.1038/s41588-019-0557-x 10.1038/s41592-018-0001-7 10.1093/lifemedi/lnac014 10.4161/fly.19695 10.1038/s41421-021-00316-8 10.1101/gr.215087.116 10.1016/j.cell.2015.03.051 10.1007/s13238-017-0499-y 10.1093/bioinformatics/btp352 10.1371/journal.pbio.3000745 10.1016/j.cell.2019.01.022 10.1073/pnas.1906331116 10.1016/j.tig.2020.06.009 10.3390/cells8060608 10.1371/journal.pone.0014359 10.1038/gim.2014.177 10.1073/pnas.1109263108 10.1038/nrg3275 10.1073/pnas.1409328111 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkad208 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | e48 |
ExternalDocumentID | PMC10164560 36999592 10_1093_nar_gkad208 10.1093/nar/gkad208 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: BAS/1/1080-01 – fundername: ; grantid: 82071723 – fundername: ; grantid: 2021B1515020069 – fundername: ; grantid: URF/1/3412-01-01 – fundername: ; grantid: 82225019; 82192873, and 81971381 – fundername: ; grantid: 2019YFA0110804; 2021YFC2700904 – fundername: ; grantid: 2021YFC2700303 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX ABEJV ABGNP AMNDL CITATION OVT CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c413t-fd88f9bfd8aa955f5e609eb1649560f9983f9720ecf3ffea34832b5c02cde293 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:37:18 EDT 2025 Fri Jul 11 04:39:27 EDT 2025 Mon Jul 21 06:05:50 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 Tue Jul 01 02:59:21 EDT 2025 Wed Aug 28 03:17:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-fd88f9bfd8aa955f5e609eb1649560f9983f9720ecf3ffea34832b5c02cde293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors. |
ORCID | 0000-0003-0557-8875 0000-0002-7297-1266 0000-0003-0827-8907 0000-0002-7107-773X |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkad208 |
PMID | 36999592 |
PQID | 2793992748 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10164560 proquest_miscellaneous_2793992748 pubmed_primary_36999592 crossref_primary_10_1093_nar_gkad208 crossref_citationtrail_10_1093_nar_gkad208 oup_primary_10_1093_nar_gkad208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-08 |
PublicationDateYYYYMMDD | 2023-05-08 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Schon (2023050800221191700_B39) 2020; 36 Greaves (2023050800221191700_B44) 2014; 10 Mok (2023050800221191700_B48) 2022; 40 Yuan (2023050800221191700_B10) 2020; 52 Ni (2023050800221191700_B32) 2015; 5 Kraytsberg (2023050800221191700_B56) 2006; 38 Silva-Pinheiro (2023050800221191700_B47) 2022; 23 Stewart (2023050800221191700_B6) 2015; 16 Bi (2023050800221191700_B21) 2020; 21 Reiner (2023050800221191700_B22) 2010; 5 Santibanez-Koref (2023050800221191700_B53) 2019; 46 Cingolani (2023050800221191700_B28) 2012; 6 Moretton (2023050800221191700_B51) 2017; 12 Logsdon (2023050800221191700_B45) 2020; 21 Bender (2023050800221191700_B55) 2006; 38 Kong (2023050800221191700_B16) 2022; 1 Filges (2023050800221191700_B24) 2019; 9 Lei (2023050800221191700_B52) 2022; 606 Yang (2023050800221191700_B23) 2017; 169 Sozen (2023050800221191700_B43) 2021; 12 Haradhvala (2023050800221191700_B37) 2016; 164 Elliott (2023050800221191700_B8) 2008; 83 Gorman (2023050800221191700_B38) 2015; 77 Duan (2023050800221191700_B13) 2018; 23 Rebolledo-Jaramillo (2023050800221191700_B3) 2014; 111 Arbeithuber (2023050800221191700_B12) 2020; 18 Nissanka (2023050800221191700_B54) 2019; 35 Li (2023050800221191700_B27) 2009; 25 Li (2023050800221191700_B14) 2015; 112 Parikh (2023050800221191700_B40) 2015; 17 Yang (2023050800221191700_B25) 2018; 9 Kukat (2023050800221191700_B1) 2011; 108 Zaidi (2023050800221191700_B2) 2019; 116 Burgstaller (2023050800221191700_B18) 2018; 9 Li (2023050800221191700_B29) 2018; 34 Wallace (2023050800221191700_B4) 2013; 5 Bi (2023050800221191700_B50) 2020; 21 Ludwig (2023050800221191700_B17) 2019; 176 Ju (2023050800221191700_B36) 2014; 3 Li (2023050800221191700_B19) 2019; 8 Schon (2023050800221191700_B7) 2012; 13 Diaz (2023050800221191700_B57) 2002; 30 Reddy (2023050800221191700_B49) 2015; 161 Kong (2023050800221191700_B5) 2012; 488 Lin (2023050800221191700_B34) 2014; 5 Payne (2023050800221191700_B9) 2015; 1264 Mok (2023050800221191700_B26) 2020; 583 Morris (2023050800221191700_B11) 2017; 21 Lott (2023050800221191700_B33) 2013; 44 Barshad (2023050800221191700_B46) 2018; 34 Ancora (2023050800221191700_B20) 2017; 28 Koren (2023050800221191700_B31) 2017; 27 Costello (2023050800221191700_B35) 2013; 41 Sedlazeck (2023050800221191700_B30) 2018; 15 Kennedy (2023050800221191700_B15) 2013; 9 Fan (2023050800221191700_B42) 2021; 7 Riley (2023050800221191700_B41) 2020; 22 |
References_xml | – volume: 488 start-page: 471 year: 2012 ident: 2023050800221191700_B5 article-title: Rate of de novo mutations and the importance of father's age to disease risk publication-title: Nature doi: 10.1038/nature11396 – volume: 21 start-page: 213 year: 2020 ident: 2023050800221191700_B50 article-title: Long-read individual-molecule sequencing reveals CRISPR-induced genetic heterogeneity in Human escs publication-title: Genome Biol. doi: 10.1186/s13059-020-02143-8 – volume: 38 start-page: 515 year: 2006 ident: 2023050800221191700_B55 article-title: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease publication-title: Nat. Genet. doi: 10.1038/ng1769 – volume: 583 start-page: 631 year: 2020 ident: 2023050800221191700_B26 article-title: A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing publication-title: Nature doi: 10.1038/s41586-020-2477-4 – volume: 44 start-page: 1.23 year: 2013 ident: 2023050800221191700_B33 article-title: mtDNA variation and analysis using Mitomap and Mitomaster publication-title: Curr. Protoc. Bioinformatics doi: 10.1002/0471250953.bi0123s44 – volume: 10 start-page: e1004620 year: 2014 ident: 2023050800221191700_B44 article-title: Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing publication-title: PLos Genet. doi: 10.1371/journal.pgen.1004620 – volume: 34 start-page: 682 year: 2018 ident: 2023050800221191700_B46 article-title: Mitochondrial DNA transcription and its regulation: an evolutionary perspective publication-title: Trends Genet. doi: 10.1016/j.tig.2018.05.009 – volume: 46 start-page: 302 year: 2019 ident: 2023050800221191700_B53 article-title: Assessing mitochondrial heteroplasmy using next generation sequencing: a note of caution publication-title: Mitochondrion doi: 10.1016/j.mito.2018.08.003 – volume: 30 start-page: 4626 year: 2002 ident: 2023050800221191700_B57 article-title: Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf602 – volume: 9 start-page: 3503 year: 2019 ident: 2023050800221191700_B24 article-title: Impact of polymerase fidelity on background error rates in next- generation sequencing with unique molecular identifiers/barcodes publication-title: Sci Rep. doi: 10.1038/s41598-019-39762-6 – volume: 38 start-page: 518 year: 2006 ident: 2023050800221191700_B56 article-title: Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons publication-title: Nat. Genet. doi: 10.1038/ng1778 – volume: 22 start-page: 1254 year: 2020 ident: 2023050800221191700_B41 article-title: The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease publication-title: Genet. Med. doi: 10.1038/s41436-020-0793-6 – volume: 1264 start-page: 59 year: 2015 ident: 2023050800221191700_B9 article-title: Deep resequencing of mitochondrial DNA publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2257-4_6 – volume: 21 start-page: 213 year: 2020 ident: 2023050800221191700_B21 article-title: Long-read individual-molecule sequencing reveals CRISPR-induced genetic heterogeneity in human escs publication-title: Genome Biol. doi: 10.1186/s13059-020-02143-8 – volume: 606 start-page: 804 year: 2022 ident: 2023050800221191700_B52 article-title: Mitochondrial base editor induces substantial nuclear off-target mutations publication-title: Nature doi: 10.1038/s41586-022-04836-5 – volume: 112 start-page: 2491 year: 2015 ident: 2023050800221191700_B14 article-title: Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1419651112 – volume: 23 start-page: 199 year: 2022 ident: 2023050800221191700_B47 article-title: The potential of mitochondrial genome engineering publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00432-x – volume: 21 start-page: 597 year: 2020 ident: 2023050800221191700_B45 article-title: Long-read human genome sequencing and its applications publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0236-x – volume: 40 start-page: 1378 year: 2022 ident: 2023050800221191700_B48 article-title: CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01256-8 – volume: 5 start-page: 12049 year: 2015 ident: 2023050800221191700_B32 article-title: MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice publication-title: Sci. Rep. doi: 10.1038/srep12049 – volume: 12 start-page: 5550 year: 2021 ident: 2023050800221191700_B43 article-title: Reconstructing aspects of human embryogenesis with pluripotent stem cells publication-title: Nat. Commun. doi: 10.1038/s41467-021-25853-4 – volume: 21 start-page: 2706 year: 2017 ident: 2023050800221191700_B11 article-title: Pervasive within-mitochondrion single-nucleotide variant heteroplasmy as revealed by single-mitochondrion sequencing publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.031 – volume: 23 start-page: 323 year: 2018 ident: 2023050800221191700_B13 article-title: Recent advances in detecting mitochondrial DNA heteroplasmic variations publication-title: Molecules doi: 10.3390/molecules23020323 – volume: 9 start-page: 2488 year: 2018 ident: 2023050800221191700_B18 article-title: Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations publication-title: Nat. Commun. doi: 10.1038/s41467-018-04797-2 – volume: 164 start-page: 538 year: 2016 ident: 2023050800221191700_B37 article-title: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair publication-title: Cell doi: 10.1016/j.cell.2015.12.050 – volume: 12 start-page: e0176795 year: 2017 ident: 2023050800221191700_B51 article-title: Selective mitochondrial DNA degradation following double-strand breaks publication-title: PLoS One doi: 10.1371/journal.pone.0176795 – volume: 5 start-page: a021220 year: 2013 ident: 2023050800221191700_B4 article-title: Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a021220 – volume: 5 start-page: 4767 year: 2014 ident: 2023050800221191700_B34 article-title: Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations publication-title: Nat. Commun. doi: 10.1038/ncomms5767 – volume: 16 start-page: 530 year: 2015 ident: 2023050800221191700_B6 article-title: The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3966 – volume: 41 start-page: e67 year: 2013 ident: 2023050800221191700_B35 article-title: Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1443 – volume: 3 start-page: e02935 year: 2014 ident: 2023050800221191700_B36 article-title: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer publication-title: Elife doi: 10.7554/eLife.02935 – volume: 77 start-page: 753 year: 2015 ident: 2023050800221191700_B38 article-title: Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease publication-title: Ann. Neurol. doi: 10.1002/ana.24362 – volume: 34 start-page: 3094 year: 2018 ident: 2023050800221191700_B29 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 169 start-page: 243 year: 2017 ident: 2023050800221191700_B23 article-title: Derivation of pluripotent stem cells with In vivo embryonic and extraembryonic potency publication-title: Cell doi: 10.1016/j.cell.2017.02.005 – volume: 9 start-page: e1003794 year: 2013 ident: 2023050800221191700_B15 article-title: Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003794 – volume: 35 start-page: 235 year: 2019 ident: 2023050800221191700_B54 article-title: Mechanisms of mitochondrial DNA deletion formation publication-title: Trends Genet. doi: 10.1016/j.tig.2019.01.001 – volume: 28 start-page: 180 year: 2017 ident: 2023050800221191700_B20 article-title: Complete sequence of human mitochondrial DNA obtained by combining multiple displacement amplification and next-generation sequencing on a single oocyte publication-title: Mitochondrial DNA doi: 10.3109/19401736.2015.1115499 – volume: 83 start-page: 254 year: 2008 ident: 2023050800221191700_B8 article-title: Pathogenic mitochondrial DNA mutations are common in the general population publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2008.07.004 – volume: 52 start-page: 342 year: 2020 ident: 2023050800221191700_B10 article-title: Comprehensive molecular characterization of mitochondrial genomes in human cancers publication-title: Nat. Genet. doi: 10.1038/s41588-019-0557-x – volume: 15 start-page: 461 year: 2018 ident: 2023050800221191700_B30 article-title: Accurate detection of complex structural variations using single-molecule sequencing publication-title: Nat. Methods doi: 10.1038/s41592-018-0001-7 – volume: 1 start-page: 149 year: 2022 ident: 2023050800221191700_B16 article-title: Aging-associated accumulation of mitochondrial DNA mutations in tumor origin publication-title: Life Med. doi: 10.1093/lifemedi/lnac014 – volume: 6 start-page: 80 year: 2012 ident: 2023050800221191700_B28 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3 publication-title: Fly doi: 10.4161/fly.19695 – volume: 7 start-page: 81 year: 2021 ident: 2023050800221191700_B42 article-title: Generation of human blastocyst-like structures from pluripotent stem cells publication-title: Cell Discov. doi: 10.1038/s41421-021-00316-8 – volume: 27 start-page: 722 year: 2017 ident: 2023050800221191700_B31 article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation publication-title: Genome Res. doi: 10.1101/gr.215087.116 – volume: 161 start-page: 459 year: 2015 ident: 2023050800221191700_B49 article-title: Selective elimination of mitochondrial mutations in the germline by genome editing publication-title: Cell doi: 10.1016/j.cell.2015.03.051 – volume: 9 start-page: 283 year: 2018 ident: 2023050800221191700_B25 article-title: Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs publication-title: Protein Cell doi: 10.1007/s13238-017-0499-y – volume: 25 start-page: 2078 year: 2009 ident: 2023050800221191700_B27 article-title: The sequence alignment/map format and samtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 18 start-page: e3000745 year: 2020 ident: 2023050800221191700_B12 article-title: Age-related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000745 – volume: 176 start-page: 1325 year: 2019 ident: 2023050800221191700_B17 article-title: Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics publication-title: Cell doi: 10.1016/j.cell.2019.01.022 – volume: 116 start-page: 25172 year: 2019 ident: 2023050800221191700_B2 article-title: Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1906331116 – volume: 36 start-page: 702 year: 2020 ident: 2023050800221191700_B39 article-title: Mitochondrial diseases: a diagnostic revolution publication-title: Trends Genet. doi: 10.1016/j.tig.2020.06.009 – volume: 8 start-page: 608 year: 2019 ident: 2023050800221191700_B19 article-title: Mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations publication-title: Cells doi: 10.3390/cells8060608 – volume: 5 start-page: e14359 year: 2010 ident: 2023050800221191700_B22 article-title: Detection of heteroplasmic mitochondrial DNA in single mitochondria publication-title: PLoS One doi: 10.1371/journal.pone.0014359 – volume: 17 start-page: 689 year: 2015 ident: 2023050800221191700_B40 article-title: Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society publication-title: Genet. Med. doi: 10.1038/gim.2014.177 – volume: 108 start-page: 13534 year: 2011 ident: 2023050800221191700_B1 article-title: Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1109263108 – volume: 13 start-page: 878 year: 2012 ident: 2023050800221191700_B7 article-title: Human mitochondrial DNA: roles of inherited and somatic mutations publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3275 – volume: 111 start-page: 15474 year: 2014 ident: 2023050800221191700_B3 article-title: Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1409328111 |
SSID | ssj0014154 |
Score | 2.4935927 |
Snippet | Abstract
The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual... The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial... The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed i ndividual Mi tochondrial... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e48 |
SubjectTerms | DNA, Mitochondrial - genetics Genome, Mitochondrial - genetics Heteroplasmy - genetics Methods Online Mitochondria - genetics Mutation |
Title | Single-cell individual full-length mtDNA sequencing by iMiGseq uncovers unexpected heteroplasmy shifts in mtDNA editing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36999592 https://www.proquest.com/docview/2793992748 https://pubmed.ncbi.nlm.nih.gov/PMC10164560 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA-6F30RdX7MjxlBfBCK_UrXPI75MYTNByfsrSRp4oqzk7VD9t97SbuyiuhTS3tNSy7p_e5y-R1CV0yKwCdMF3fxlOVTGVuh02GW3YG5BA608AyB6WAY9F_9pzEZlwmy2S9L-NS7Tdn89u2dxa7Z0wvmV1Pkj57H1WIB2KCCJcqQavphuQ3vx7M1w1PbzLaGKX-mRq7ZmoddtFOCRNwttLqHNmS6j5rdFBzkjyW-xiZt08TD99FWb1WyrYm-XsAQTaWlo_E4qbZaYR1jt3TJlHyCP_K7YReXGdQgjvkSJ4PkEa5gsHE6ozODE838LwCN4onOl5l9AsiGV2eTROUZNF02A5ZPp00foNHD_ajXt8rKCpYAo5VbKg5DRTkcGKOEKCIDm8JfOzDukgIXzFO049pSKE8pyTwfJj4nwnZFLAEgHKJGOkvlMcKAem0uHCIJcX3FCQ2dgPsBIAcVc8fnLXSz6vVIlKzjuvjFNCpWv70IVBSVKmqhq0r4syDb-F3sAtT3t8TlSrURqED3OkvlbJFFLvyPKAVXHGSOClVXDXkB1exrbguFtUFQCWgq7vqdNJkYSm4dAwEoap_8-2mnaFtXrDc5k-EZauTzhTwHXJPzNtrs2PdtExVomxH-DYqU_FA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+individual+full-length+mtDNA+sequencing+by+iMiGseq+uncovers+unexpected+heteroplasmy+shifts+in+mtDNA+editing&rft.jtitle=Nucleic+acids+research&rft.au=Bi%2C+Chongwei&rft.au=Wang%2C+Lin&rft.au=Fan%2C+Yong&rft.au=Yuan%2C+Baolei&rft.date=2023-05-08&rft.eissn=1362-4962&rft.volume=51&rft.issue=8&rft.spage=e48&rft_id=info:doi/10.1093%2Fnar%2Fgkad208&rft_id=info%3Apmid%2F36999592&rft.externalDocID=36999592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |