Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer
A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and...
Saved in:
Published in | Energy (Oxford) Vol. 152; pp. 877 - 887 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and temporally varying properties. The profiles are used as initial data for accurate solution of the equations for transient heat and moisture transfer in soil containing a buried horizontal ground heat exchanger. The impacts of initial conditions of soil and coupled heat and moisture transfer are assessed on the thermal performance of a horizontal ground heat exchanger for a ground source heat pump for different installation depths and soil textures. Seasonal heat transfer through a horizontal heat exchanger increases with installation depth and a heat exchanger installed at 2 m deep can transfer 19% more heat than that at 1 m deep. Heat transfer in sandy soil is 17% higher than in loamy sand soil which is 14.5% higher than in clay loam soil. The maximum differences between models with and without moisture transfer for the prediction of heat transfer through a heat exchanger are 24%, 17% and 18% in clay sand, loamy sand and sandy soils, respectively. In conclusion, it is necessary to use a coupled heat and moisture transfer model in order to predict accurately the seasonal thermal performance of a ground heat exchanger in shallow ground.
•Coupled heat and moisture transfer in soil-ground heat exchanger system•A methodology to generate soil moisture and temperature profiles•Significant impact of soil moisture on thermal performance of GSHP•Influence of installation depth and soil texture•Importance of accurate initial conditions for transient flow simulation |
---|---|
AbstractList | A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and temporally varying properties. The profiles are used as initial data for accurate solution of the equations for transient heat and moisture transfer in soil containing a buried horizontal ground heat exchanger. The impacts of initial conditions of soil and coupled heat and moisture transfer are assessed on the thermal performance of a horizontal ground heat exchanger for a ground source heat pump for different installation depths and soil textures. Seasonal heat transfer through a horizontal heat exchanger increases with installation depth and a heat exchanger installed at 2 m deep can transfer 19% more heat than that at 1 m deep. Heat transfer in sandy soil is 17% higher than in loamy sand soil which is 14.5% higher than in clay loam soil. The maximum differences between models with and without moisture transfer for the prediction of heat transfer through a heat exchanger are 24%, 17% and 18% in clay sand, loamy sand and sandy soils, respectively. In conclusion, it is necessary to use a coupled heat and moisture transfer model in order to predict accurately the seasonal thermal performance of a ground heat exchanger in shallow ground.
•Coupled heat and moisture transfer in soil-ground heat exchanger system•A methodology to generate soil moisture and temperature profiles•Significant impact of soil moisture on thermal performance of GSHP•Influence of installation depth and soil texture•Importance of accurate initial conditions for transient flow simulation A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and temporally varying properties. The profiles are used as initial data for accurate solution of the equations for transient heat and moisture transfer in soil containing a buried horizontal ground heat exchanger. The impacts of initial conditions of soil and coupled heat and moisture transfer are assessed on the thermal performance of a horizontal ground heat exchanger for a ground source heat pump for different installation depths and soil textures. Seasonal heat transfer through a horizontal heat exchanger increases with installation depth and a heat exchanger installed at 2 m deep can transfer 19% more heat than that at 1 m deep. Heat transfer in sandy soil is 17% higher than in loamy sand soil which is 14.5% higher than in clay loam soil. The maximum differences between models with and without moisture transfer for the prediction of heat transfer through a heat exchanger are 24%, 17% and 18% in clay sand, loamy sand and sandy soils, respectively. In conclusion, it is necessary to use a coupled heat and moisture transfer model in order to predict accurately the seasonal thermal performance of a ground heat exchanger in shallow ground. |
Author | Gan, Guohui |
Author_xml | – sequence: 1 givenname: Guohui orcidid: 0000-0002-4457-3586 surname: Gan fullname: Gan, Guohui email: guohui.gan@nottingham.ac.uk organization: Department of Architecture and Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD, UK |
BookMark | eNqFkc1u1DAURi1UJKYtb8DCEhs2CdfOn8MCCZUWkCp1U9aW41x3PErsYDtUw4p34A15EjwKqy5gZUv3nE_2_c7JmfMOCXnFoGTA2reHEh2Gh2PJgYkS6hJAPCM7JrqqaDvRnJEdVC0UTV3zF-Q8xgMANKLvd-Tx49Gp2Wqa9hhmNdEFg_H55jRSb-jeB_vDu5QnD8GvbqTRryHP9qgSXdZ5ifT3z1_0fo_UzovS6WRpvy4TjhuksjR7G9MakKagXDQYLslzo6aIL_-eF-TrzfX91efi9u7Tl6sPt4WuWZUKo7qh0VhVCFwLI8wwtKLhXDHV9UIbxvqRc12PDW9F26hO1T3yjg0aBwGtqS7Imy13Cf7bijHJ2UaN06Qc-jVKzjmInNh2GX39BD3kr7r8OsmhYxU0fc8y9W6jdPAxBjRS26SSzTsKyk6SgTx1Ig9y60SeOpFQy9xJlusn8hLsrMLxf9r7TcO8qe8Wg4zaYm5otAF1kqO3_w74A6xGrS4 |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2019_114638 crossref_primary_10_1016_j_enbuild_2021_110986 crossref_primary_10_3390_en12071274 crossref_primary_10_1007_s10973_022_11372_x crossref_primary_10_1016_j_applthermaleng_2021_117203 crossref_primary_10_1016_j_csite_2022_102131 crossref_primary_10_17798_bitlisfen_903869 crossref_primary_10_1016_j_renene_2019_10_169 crossref_primary_10_1016_j_renene_2024_121313 crossref_primary_10_1016_j_applthermaleng_2019_114770 crossref_primary_10_1016_j_applthermaleng_2021_117163 crossref_primary_10_1016_j_geothermics_2018_08_004 crossref_primary_10_1016_j_renene_2019_07_029 crossref_primary_10_1016_j_enbuild_2021_111090 crossref_primary_10_30521_jes_1058233 crossref_primary_10_3390_su12187345 crossref_primary_10_3389_fenrg_2023_1188506 crossref_primary_10_1016_j_applthermaleng_2019_01_100 crossref_primary_10_1016_j_enbuild_2022_112321 crossref_primary_10_1016_j_seta_2025_104283 crossref_primary_10_1016_j_ijrefrig_2019_02_021 crossref_primary_10_1002_est2_612 crossref_primary_10_1016_j_tsep_2019_04_013 crossref_primary_10_1016_j_csite_2023_102954 crossref_primary_10_1115_1_4052187 crossref_primary_10_1007_s11356_022_22228_0 crossref_primary_10_1016_j_csite_2022_101941 crossref_primary_10_1016_j_erss_2020_101764 crossref_primary_10_1016_j_apenergy_2018_09_067 crossref_primary_10_1016_j_enbuild_2022_112039 crossref_primary_10_1016_j_scs_2020_102069 crossref_primary_10_1016_j_enconman_2019_03_032 crossref_primary_10_1007_s12273_019_0526_4 crossref_primary_10_1016_j_applthermaleng_2025_125432 crossref_primary_10_1016_j_compchemeng_2023_108389 crossref_primary_10_1371_journal_pone_0250583 crossref_primary_10_1016_j_geothermics_2023_102844 crossref_primary_10_1016_j_applthermaleng_2024_123215 crossref_primary_10_1016_j_geothermics_2022_102402 crossref_primary_10_1016_j_renene_2020_06_150 crossref_primary_10_1016_j_enbuild_2022_112111 crossref_primary_10_2139_ssrn_3998880 crossref_primary_10_1016_j_geothermics_2021_102283 crossref_primary_10_3390_en15144992 crossref_primary_10_4236_epe_2019_1111024 |
Cites_doi | 10.1029/90WR02772 10.1016/j.enbuild.2013.06.018 10.1016/j.ijheatmasstransfer.2012.03.084 10.1016/j.energy.2012.12.043 10.1016/j.energy.2012.11.042 10.1016/j.energy.2014.04.022 10.1016/j.energy.2011.05.048 10.1016/j.enbuild.2015.01.052 10.1016/j.ijheatmasstransfer.2013.03.031 10.1016/j.energy.2015.07.098 10.1016/j.energy.2015.02.086 10.1063/1.1745010 10.1016/j.renene.2012.01.080 10.1016/j.applthermaleng.2008.02.027 10.1016/j.enbuild.2014.09.030 10.1029/94WR00948 10.1016/j.renene.2015.03.006 10.1016/0890-4332(88)90063-4 10.1093/ijlct/ctt012 10.1029/TR038i002p00222 10.1002/htj.10057 10.1016/j.energy.2012.09.056 10.1016/j.energy.2013.08.054 10.1016/j.energy.2017.09.060 10.1016/j.applthermaleng.2010.07.008 10.1016/j.renene.2016.11.052 10.1016/j.energy.2014.08.091 10.1175/2008JHM1011.1 10.1016/j.energy.2015.12.129 10.1016/j.energy.2014.06.108 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jun 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2018 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2018.04.008 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 887 |
ExternalDocumentID | 10_1016_j_energy_2018_04_008 S036054421830598X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c413t-fa7b5ce33e02c8f8fbb68522a1a798cf119d22c4d526865a7a49e271bceb806f3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Jul 11 09:52:27 EDT 2025 Wed Aug 13 08:35:43 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Tue Jul 01 00:53:17 EDT 2025 Fri Feb 23 02:46:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatiotemporal variation Ground-source heat pump Ground heat exchanger Heat and moisture transfer Seasonal performance Soil properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-fa7b5ce33e02c8f8fbb68522a1a798cf119d22c4d526865a7a49e271bceb806f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4457-3586 |
OpenAccessLink | https://nottingham-repository.worktribe.com/file/935317/1/acceptedManuscript.pdf |
PQID | 2071305991 |
PQPubID | 2045484 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2220885267 proquest_journals_2071305991 crossref_citationtrail_10_1016_j_energy_2018_04_008 crossref_primary_10_1016_j_energy_2018_04_008 elsevier_sciencedirect_doi_10_1016_j_energy_2018_04_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Rivera, Blum, Bayer (bib9) 2016; 98 Ozgener, Ozgener, Tester (bib28) 2013; 62 Gonzalez, Verhoef, Vidale, Main, Gan, Wu (bib32) 2012; 44 Salvucc, Entekhabi (bib30) 1994; 30 Fossa, Minchio (bib5) 2013; 51 Nam, Chae (bib20) 2014; 73 (bib35) 2017 Ma, Li, Li, Lai (bib8) 2015; 90 Kopecky (bib27) 2008 Lee, Lam (bib11) 2012; 47 Zeng, Diao, Fang (bib4) 2002; 31 Zeng, Decker (bib31) 2009; 10 Srivastava, Yeh (bib34) 1991; 27 Piecjowski (bib23) 1986 Zanchini, Lazzari (bib6) 2014; 70 Esen, Yuksel (bib15) 2013; 65 Kim, Bernier, Cauret, Roux (bib7) 2014; 77 Naylor, Kevin, Ellett, Gustin (bib22) 2015; 81 Florides, Pouloupatis, Kalogirou, Messaritisa, Panayides, Zomeni, Partasides, Lizides, Sophocleous, Koutsoumpas (bib1) 2011; 36 Gan (bib25) 2014; 85 Adamovskya, Neubergerb, Adamovsky (bib16) 2015; 92 Gan (bib19) 2013; 8 Demir, Koyun, Temir (bib12) 2009; 29 Richards (bib29) 1931; 1 Naili, Hazami, Attar, Farhat (bib13) 2013; 61 Philip, de Vries (bib33) 1957; 38 Wu, Gan, Verhoef, Vidale, Gonzalez (bib14) 2010; 30 Mei (bib18) 1986 Tarnawski, Yuet (bib24) 1988; 8 Gan (bib26) 2017; 103 Go, Lee, NN, Yoon (bib21) 2015; 83 Xi, Li, Liu, Wang (bib3) 2017; 141 Michopoulos, Zachariadis, Kyriakis (bib2) 2013; 51 Yavuzturk, Spitler, Rees (bib10) 1999; 105 Li, Nagano, Lai (bib17) 2012; 55 Srivastava (10.1016/j.energy.2018.04.008_bib34) 1991; 27 Demir (10.1016/j.energy.2018.04.008_bib12) 2009; 29 Rivera (10.1016/j.energy.2018.04.008_bib9) 2016; 98 Gan (10.1016/j.energy.2018.04.008_bib26) 2017; 103 Adamovskya (10.1016/j.energy.2018.04.008_bib16) 2015; 92 Naylor (10.1016/j.energy.2018.04.008_bib22) 2015; 81 Ma (10.1016/j.energy.2018.04.008_bib8) 2015; 90 Naili (10.1016/j.energy.2018.04.008_bib13) 2013; 61 Salvucc (10.1016/j.energy.2018.04.008_bib30) 1994; 30 Piecjowski (10.1016/j.energy.2018.04.008_bib23) 1986 Kopecky (10.1016/j.energy.2018.04.008_bib27) 2008 Tarnawski (10.1016/j.energy.2018.04.008_bib24) 1988; 8 Kim (10.1016/j.energy.2018.04.008_bib7) 2014; 77 Michopoulos (10.1016/j.energy.2018.04.008_bib2) 2013; 51 Yavuzturk (10.1016/j.energy.2018.04.008_bib10) 1999; 105 (10.1016/j.energy.2018.04.008_bib35) 2017 Zeng (10.1016/j.energy.2018.04.008_bib4) 2002; 31 Zeng (10.1016/j.energy.2018.04.008_bib31) 2009; 10 Wu (10.1016/j.energy.2018.04.008_bib14) 2010; 30 Philip (10.1016/j.energy.2018.04.008_bib33) 1957; 38 Esen (10.1016/j.energy.2018.04.008_bib15) 2013; 65 Mei (10.1016/j.energy.2018.04.008_bib18) 1986 Gan (10.1016/j.energy.2018.04.008_bib19) 2013; 8 Nam (10.1016/j.energy.2018.04.008_bib20) 2014; 73 Gan (10.1016/j.energy.2018.04.008_bib25) 2014; 85 Li (10.1016/j.energy.2018.04.008_bib17) 2012; 55 Richards (10.1016/j.energy.2018.04.008_bib29) 1931; 1 Fossa (10.1016/j.energy.2018.04.008_bib5) 2013; 51 Zanchini (10.1016/j.energy.2018.04.008_bib6) 2014; 70 Florides (10.1016/j.energy.2018.04.008_bib1) 2011; 36 Xi (10.1016/j.energy.2018.04.008_bib3) 2017; 141 Lee (10.1016/j.energy.2018.04.008_bib11) 2012; 47 Go (10.1016/j.energy.2018.04.008_bib21) 2015; 83 Ozgener (10.1016/j.energy.2018.04.008_bib28) 2013; 62 Gonzalez (10.1016/j.energy.2018.04.008_bib32) 2012; 44 |
References_xml | – volume: 1 start-page: 318 year: 1931 end-page: 333 ident: bib29 article-title: Capillary conduction of liquids through porous mediums publication-title: Physics – volume: 81 start-page: 21 year: 2015 end-page: 30 ident: bib22 article-title: Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design publication-title: Renewable Energy – volume: 30 start-page: 2574 year: 2010 end-page: 2583 ident: bib14 article-title: Experimental measurement and numerical simulation of horizontal-coupled slinky ground source heat exchangers publication-title: Applied Thermal Engineering – volume: 29 start-page: 224 year: 2009 end-page: 233 ident: bib12 article-title: Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification publication-title: Applied Thermal Engineering – volume: 83 start-page: 766 year: 2015 end-page: 777 ident: bib21 article-title: A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration publication-title: Energy – volume: 38 start-page: 222 year: 1957 end-page: 231 ident: bib33 article-title: Moisture movement in porous materials under temperature gradients publication-title: Trans Am Geophys Union – volume: 98 start-page: 50 year: 2016 end-page: 63 ident: bib9 article-title: A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers publication-title: Energy – year: 1986 ident: bib23 article-title: A ground coupled heat pump system with energy storage – volume: 8 start-page: 95 year: 2013 end-page: 105 ident: bib19 article-title: Dynamic thermal modelling of horizontal ground source heat pumps publication-title: International Journal of Low Carbon Technologies – volume: 30 start-page: 2737 year: 1994 end-page: 2749 ident: bib30 article-title: Equivalent steady soil moisture profile and the time compression approximation in water balance modeling publication-title: Water Resources Research – volume: 31 start-page: 558 year: 2002 end-page: 567 ident: bib4 article-title: A finite line-source model for boreholes in geothermal heat exchangers publication-title: Heat Transf-Asian Research – year: 2017 ident: bib35 publication-title: ANSYS Fluent – volume: 105 start-page: 465 year: 1999 end-page: 474 ident: bib10 article-title: A transient two-dimensional finite volume model for the simulation of vertical u-tube ground heat exchangers publication-title: ASHRAE Transactions – volume: 61 start-page: 319 year: 2013 end-page: 331 ident: bib13 article-title: In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia publication-title: Energy – volume: 141 start-page: 56 year: 2017 end-page: 65 ident: bib3 article-title: Study on the thermal effect of the ground heat exchanger of GSHP in the eastern China area publication-title: Energy – volume: 51 start-page: 323 year: 2013 end-page: 329 ident: bib5 article-title: The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems publication-title: Energy – volume: 90 start-page: 578 year: 2015 end-page: 587 ident: bib8 article-title: New quasi-3D model for heat transfer in U-shaped GHEs (ground heat exchangers): effective overall thermal resistance publication-title: Energy – volume: 103 start-page: 361 year: 2017 end-page: 371 ident: bib26 article-title: Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings publication-title: Renewable Energy – volume: 44 start-page: 141 year: 2012 end-page: 153 ident: bib32 article-title: Interactions between the physical soil environment and a horizontal ground coupled heat pump for a domestic site in the UK publication-title: Renewable Energy – year: 1986 ident: bib18 article-title: Horizontal ground-coil heat exchanger theoretical and experimental analysis – volume: 65 start-page: 340 year: 2013 end-page: 351 ident: bib15 article-title: Experimental evaluation of using various renewable energy sources for heating a greenhouse publication-title: Energy and Buildings – volume: 70 start-page: 444 year: 2014 end-page: 455 ident: bib6 article-title: New publication-title: Energy – volume: 62 start-page: 473 year: 2013 end-page: 480 ident: bib28 article-title: A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications publication-title: International Journal of Heat and Mass Transfer – volume: 55 start-page: 4404 year: 2012 end-page: 4414 ident: bib17 article-title: A new model and solutions for a spiral heat exchanger and its experimental validation publication-title: International Journal of Heat and Mass Transfer – volume: 92 start-page: 107 year: 2015 end-page: 115 ident: bib16 article-title: Changes in energy and temperature in the ground mass with horizontal heat exchangers - the energy source for heat pumps publication-title: Energy and Buildings – year: 2008 ident: bib27 article-title: Hygro-thermal performance of earth to air heat exchangers - numerical model, analytical and experimental validation, measurements in-situ and design – volume: 27 start-page: 753 year: 1991 end-page: 762 ident: bib34 article-title: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soil publication-title: Water Resources Research – volume: 36 start-page: 5027 year: 2011 end-page: 5036 ident: bib1 article-title: The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus publication-title: Energy – volume: 8 start-page: 271 year: 1988 end-page: 278 ident: bib24 article-title: Winter performance of residential heat pump publication-title: Heat Recovery Systems and CHP – volume: 85 start-page: 12 year: 2014 end-page: 22 ident: bib25 article-title: Dynamic interactions between the ground heat exchanger and environments in earth–air tunnel ventilation of buildings publication-title: Energy and Buildings – volume: 51 start-page: 349 year: 2013 end-page: 357 ident: bib2 article-title: Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger publication-title: Energy – volume: 77 start-page: 318 year: 2014 end-page: 326 ident: bib7 article-title: A hybrid reduced model for borehole heat exchangers over different time-scales and regions publication-title: Energy – volume: 73 start-page: 933 year: 2014 end-page: 942 ident: bib20 article-title: Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger publication-title: Energy – volume: 47 start-page: 378 year: 2012 end-page: 387 ident: bib11 article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow publication-title: Energy – volume: 10 start-page: 308 year: 2009 end-page: 319 ident: bib31 article-title: Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table publication-title: Journal of Hydrometeorology – volume: 27 start-page: 753 year: 1991 ident: 10.1016/j.energy.2018.04.008_bib34 article-title: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soil publication-title: Water Resources Research doi: 10.1029/90WR02772 – volume: 65 start-page: 340 year: 2013 ident: 10.1016/j.energy.2018.04.008_bib15 article-title: Experimental evaluation of using various renewable energy sources for heating a greenhouse publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2013.06.018 – volume: 55 start-page: 4404 year: 2012 ident: 10.1016/j.energy.2018.04.008_bib17 article-title: A new model and solutions for a spiral heat exchanger and its experimental validation publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.03.084 – volume: 51 start-page: 323 year: 2013 ident: 10.1016/j.energy.2018.04.008_bib5 article-title: The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems publication-title: Energy doi: 10.1016/j.energy.2012.12.043 – volume: 51 start-page: 349 year: 2013 ident: 10.1016/j.energy.2018.04.008_bib2 article-title: Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger publication-title: Energy doi: 10.1016/j.energy.2012.11.042 – volume: 70 start-page: 444 year: 2014 ident: 10.1016/j.energy.2018.04.008_bib6 article-title: New g-functions for the hourly simulation of double U-tube borehole heat exchanger fields publication-title: Energy doi: 10.1016/j.energy.2014.04.022 – year: 1986 ident: 10.1016/j.energy.2018.04.008_bib23 – year: 1986 ident: 10.1016/j.energy.2018.04.008_bib18 – volume: 36 start-page: 5027 year: 2011 ident: 10.1016/j.energy.2018.04.008_bib1 article-title: The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus publication-title: Energy doi: 10.1016/j.energy.2011.05.048 – volume: 92 start-page: 107 year: 2015 ident: 10.1016/j.energy.2018.04.008_bib16 article-title: Changes in energy and temperature in the ground mass with horizontal heat exchangers - the energy source for heat pumps publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2015.01.052 – volume: 62 start-page: 473 year: 2013 ident: 10.1016/j.energy.2018.04.008_bib28 article-title: A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.03.031 – volume: 90 start-page: 578 year: 2015 ident: 10.1016/j.energy.2018.04.008_bib8 article-title: New quasi-3D model for heat transfer in U-shaped GHEs (ground heat exchangers): effective overall thermal resistance publication-title: Energy doi: 10.1016/j.energy.2015.07.098 – year: 2008 ident: 10.1016/j.energy.2018.04.008_bib27 – volume: 83 start-page: 766 year: 2015 ident: 10.1016/j.energy.2018.04.008_bib21 article-title: A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration publication-title: Energy doi: 10.1016/j.energy.2015.02.086 – volume: 1 start-page: 318 year: 1931 ident: 10.1016/j.energy.2018.04.008_bib29 article-title: Capillary conduction of liquids through porous mediums publication-title: Physics doi: 10.1063/1.1745010 – volume: 44 start-page: 141 year: 2012 ident: 10.1016/j.energy.2018.04.008_bib32 article-title: Interactions between the physical soil environment and a horizontal ground coupled heat pump for a domestic site in the UK publication-title: Renewable Energy doi: 10.1016/j.renene.2012.01.080 – volume: 29 start-page: 224 year: 2009 ident: 10.1016/j.energy.2018.04.008_bib12 article-title: Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2008.02.027 – volume: 85 start-page: 12 year: 2014 ident: 10.1016/j.energy.2018.04.008_bib25 article-title: Dynamic interactions between the ground heat exchanger and environments in earth–air tunnel ventilation of buildings publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2014.09.030 – volume: 30 start-page: 2737 year: 1994 ident: 10.1016/j.energy.2018.04.008_bib30 article-title: Equivalent steady soil moisture profile and the time compression approximation in water balance modeling publication-title: Water Resources Research doi: 10.1029/94WR00948 – volume: 81 start-page: 21 year: 2015 ident: 10.1016/j.energy.2018.04.008_bib22 article-title: Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design publication-title: Renewable Energy doi: 10.1016/j.renene.2015.03.006 – volume: 8 start-page: 271 year: 1988 ident: 10.1016/j.energy.2018.04.008_bib24 article-title: Winter performance of residential heat pump publication-title: Heat Recovery Systems and CHP doi: 10.1016/0890-4332(88)90063-4 – volume: 8 start-page: 95 issue: 2 year: 2013 ident: 10.1016/j.energy.2018.04.008_bib19 article-title: Dynamic thermal modelling of horizontal ground source heat pumps publication-title: International Journal of Low Carbon Technologies doi: 10.1093/ijlct/ctt012 – volume: 38 start-page: 222 year: 1957 ident: 10.1016/j.energy.2018.04.008_bib33 article-title: Moisture movement in porous materials under temperature gradients publication-title: Trans Am Geophys Union doi: 10.1029/TR038i002p00222 – volume: 31 start-page: 558 year: 2002 ident: 10.1016/j.energy.2018.04.008_bib4 article-title: A finite line-source model for boreholes in geothermal heat exchangers publication-title: Heat Transf-Asian Research doi: 10.1002/htj.10057 – volume: 47 start-page: 378 year: 2012 ident: 10.1016/j.energy.2018.04.008_bib11 article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow publication-title: Energy doi: 10.1016/j.energy.2012.09.056 – volume: 61 start-page: 319 year: 2013 ident: 10.1016/j.energy.2018.04.008_bib13 article-title: In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia publication-title: Energy doi: 10.1016/j.energy.2013.08.054 – volume: 141 start-page: 56 year: 2017 ident: 10.1016/j.energy.2018.04.008_bib3 article-title: Study on the thermal effect of the ground heat exchanger of GSHP in the eastern China area publication-title: Energy doi: 10.1016/j.energy.2017.09.060 – volume: 30 start-page: 2574 year: 2010 ident: 10.1016/j.energy.2018.04.008_bib14 article-title: Experimental measurement and numerical simulation of horizontal-coupled slinky ground source heat exchangers publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2010.07.008 – volume: 103 start-page: 361 year: 2017 ident: 10.1016/j.energy.2018.04.008_bib26 article-title: Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings publication-title: Renewable Energy doi: 10.1016/j.renene.2016.11.052 – volume: 77 start-page: 318 year: 2014 ident: 10.1016/j.energy.2018.04.008_bib7 article-title: A hybrid reduced model for borehole heat exchangers over different time-scales and regions publication-title: Energy doi: 10.1016/j.energy.2014.08.091 – volume: 10 start-page: 308 year: 2009 ident: 10.1016/j.energy.2018.04.008_bib31 article-title: Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table publication-title: Journal of Hydrometeorology doi: 10.1175/2008JHM1011.1 – volume: 105 start-page: 465 year: 1999 ident: 10.1016/j.energy.2018.04.008_bib10 article-title: A transient two-dimensional finite volume model for the simulation of vertical u-tube ground heat exchangers publication-title: ASHRAE Transactions – volume: 98 start-page: 50 year: 2016 ident: 10.1016/j.energy.2018.04.008_bib9 article-title: A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers publication-title: Energy doi: 10.1016/j.energy.2015.12.129 – volume: 73 start-page: 933 year: 2014 ident: 10.1016/j.energy.2018.04.008_bib20 article-title: Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger publication-title: Energy doi: 10.1016/j.energy.2014.06.108 – year: 2017 ident: 10.1016/j.energy.2018.04.008_bib35 |
SSID | ssj0005899 |
Score | 2.4487453 |
Snippet | A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 877 |
SubjectTerms | Clay Clay loam clay loam soils Clay soils equations Ground heat exchanger Ground-source heat pump Heat and moisture transfer Heat exchangers Heat pumps Heat transfer Initial conditions Loam loamy sand soils Mathematical models prediction Predictions Sand Sandy soils Seasonal performance Soil conditions Soil moisture Soil properties Soil temperature Soil texture Soils Spatiotemporal variation Temperature Temperature profiles |
Title | Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer |
URI | https://dx.doi.org/10.1016/j.energy.2018.04.008 https://www.proquest.com/docview/2071305991 https://www.proquest.com/docview/2220885267 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QAXBIWKhVIZiavZxPYmzrEqrRYQvUClvVmxY4tFbRLtj5B6qHgH3pAnYcZOWkBIlThuPKOsPONvJsl8MwCvK40AYLXjLguOK1krroWacakq34hGZKEiovDHs2J-rt4vZosdOB65MFRWOWB_wvSI1sOV6bCb0365nH5C7MV8Q1GMxxxBL4jBrkry8jfXv5V56DhDkoQ5SY_0uVjj5SO_jgq8dGx4SkMm_x2e_gLqGH1OH8HDIW1kR-mfPYYd3-7B_ZFVvN6D_ZNbxhoKDkd2_QS-vU0z5xllepe41N9SBVgX2JdutbzqohIxPNqGpff5jFCa9WjtNfv5_QdDf2KJUklartv2F75JQjUqXXboL9uVZ5uYCfvVUzg_Pfl8POfDtAXuMJBteKhLO3NeSp8Jp4MO1hYas7M6r8tKu5DnVSOEUw01iClmdVmjOUWZW-etzoog92G37Vr_DJgvfVNZoVyuvXLB6sJLr6wkBrQMwU5Ajpts3NCKnCZiXJix5uyrSaYxZBqTKYOmmQC_0epTK4475MvRfuYPlzIYLe7QPBjNbYYjvcZ1fJ6nbjb5BF7dLONhpC8sdeu7LcoIgaiNG1Q-_--bv4AH9CuVox3A7ma19S8x8dnYw-jZh3Dv6N2H-dkv6dwHWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V7aFcEBQqlhYwEldrE9tJnGNVWm1puxdaaW9W7NhiUZtE-yMkTn0H3pAnYSY_XYGQKnGNZ5TIM_5mksw3A_Ax1wgAVjvuouC4koXiWqiES5X7UpQiCjkRha9m6fRGfZ4n8x04GbgwVFbZY3-H6S1a91cm_W5OmsVi8gWxF_MNRTEecwQ9fwK71J0qGcHu8fnFdLat9NDtGEmS56QwMOjaMi_fUuyoxku3PU9pzuS_I9RfWN0GoLPn8KzPHNlx93AvYMdX-7A3EItX-3BwuiWtoWB_alcv4funbuw8o2TvDpeaLVuA1YF9rZeLH3WrRCSPqmTdJ31GQM0aNPiK_br_ydClWMeqJC1Xb5pbX3ZCBSrd1egym6Vn6zYZ9stXcHN2en0y5f3ABe4wlq15KDKbOC-lj4TTQQdrU40JWhEXWa5diOO8FMKpknrEpEmRFWhRkcXWeaujNMgDGFV15V8D85kvcyuUi7VXLlideumVlUSCliHYMchhk43ru5HTUIxbM5SdfTOdaQyZxkTKoGnGwB-0mq4bxyPy2WA_84dXGQwYj2geDeY2_ale4Tq-0lNDm3gMHx6W8TzST5ai8vUGZYRA4MYNyt78983fw970-urSXJ7PLg7hKa101WlHMFovN_4t5kFr-67389_c6goL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+thermal+performance+of+horizontal+ground+source+heat+pumps+%E2%80%93+The+impact+of+coupled+heat+and+moisture+transfer&rft.jtitle=Energy+%28Oxford%29&rft.au=Gan%2C+Guohui&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=152&rft.spage=877&rft_id=info:doi/10.1016%2Fj.energy.2018.04.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |