Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer

A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 152; pp. 877 - 887
Main Author Gan, Guohui
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and temporally varying properties. The profiles are used as initial data for accurate solution of the equations for transient heat and moisture transfer in soil containing a buried horizontal ground heat exchanger. The impacts of initial conditions of soil and coupled heat and moisture transfer are assessed on the thermal performance of a horizontal ground heat exchanger for a ground source heat pump for different installation depths and soil textures. Seasonal heat transfer through a horizontal heat exchanger increases with installation depth and a heat exchanger installed at 2 m deep can transfer 19% more heat than that at 1 m deep. Heat transfer in sandy soil is 17% higher than in loamy sand soil which is 14.5% higher than in clay loam soil. The maximum differences between models with and without moisture transfer for the prediction of heat transfer through a heat exchanger are 24%, 17% and 18% in clay sand, loamy sand and sandy soils, respectively. In conclusion, it is necessary to use a coupled heat and moisture transfer model in order to predict accurately the seasonal thermal performance of a ground heat exchanger in shallow ground. •Coupled heat and moisture transfer in soil-ground heat exchanger system•A methodology to generate soil moisture and temperature profiles•Significant impact of soil moisture on thermal performance of GSHP•Influence of installation depth and soil texture•Importance of accurate initial conditions for transient flow simulation
AbstractList A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and temporally varying properties. The profiles are used as initial data for accurate solution of the equations for transient heat and moisture transfer in soil containing a buried horizontal ground heat exchanger. The impacts of initial conditions of soil and coupled heat and moisture transfer are assessed on the thermal performance of a horizontal ground heat exchanger for a ground source heat pump for different installation depths and soil textures. Seasonal heat transfer through a horizontal heat exchanger increases with installation depth and a heat exchanger installed at 2 m deep can transfer 19% more heat than that at 1 m deep. Heat transfer in sandy soil is 17% higher than in loamy sand soil which is 14.5% higher than in clay loam soil. The maximum differences between models with and without moisture transfer for the prediction of heat transfer through a heat exchanger are 24%, 17% and 18% in clay sand, loamy sand and sandy soils, respectively. In conclusion, it is necessary to use a coupled heat and moisture transfer model in order to predict accurately the seasonal thermal performance of a ground heat exchanger in shallow ground. •Coupled heat and moisture transfer in soil-ground heat exchanger system•A methodology to generate soil moisture and temperature profiles•Significant impact of soil moisture on thermal performance of GSHP•Influence of installation depth and soil texture•Importance of accurate initial conditions for transient flow simulation
A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal ground heat exchanger in operation. A new method has been developed to generate moisture and temperature profiles in soil with spatially and temporally varying properties. The profiles are used as initial data for accurate solution of the equations for transient heat and moisture transfer in soil containing a buried horizontal ground heat exchanger. The impacts of initial conditions of soil and coupled heat and moisture transfer are assessed on the thermal performance of a horizontal ground heat exchanger for a ground source heat pump for different installation depths and soil textures. Seasonal heat transfer through a horizontal heat exchanger increases with installation depth and a heat exchanger installed at 2 m deep can transfer 19% more heat than that at 1 m deep. Heat transfer in sandy soil is 17% higher than in loamy sand soil which is 14.5% higher than in clay loam soil. The maximum differences between models with and without moisture transfer for the prediction of heat transfer through a heat exchanger are 24%, 17% and 18% in clay sand, loamy sand and sandy soils, respectively. In conclusion, it is necessary to use a coupled heat and moisture transfer model in order to predict accurately the seasonal thermal performance of a ground heat exchanger in shallow ground.
Author Gan, Guohui
Author_xml – sequence: 1
  givenname: Guohui
  orcidid: 0000-0002-4457-3586
  surname: Gan
  fullname: Gan, Guohui
  email: guohui.gan@nottingham.ac.uk
  organization: Department of Architecture and Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD, UK
BookMark eNqFkc1u1DAURi1UJKYtb8DCEhs2CdfOn8MCCZUWkCp1U9aW41x3PErsYDtUw4p34A15EjwKqy5gZUv3nE_2_c7JmfMOCXnFoGTA2reHEh2Gh2PJgYkS6hJAPCM7JrqqaDvRnJEdVC0UTV3zF-Q8xgMANKLvd-Tx49Gp2Wqa9hhmNdEFg_H55jRSb-jeB_vDu5QnD8GvbqTRryHP9qgSXdZ5ifT3z1_0fo_UzovS6WRpvy4TjhuksjR7G9MakKagXDQYLslzo6aIL_-eF-TrzfX91efi9u7Tl6sPt4WuWZUKo7qh0VhVCFwLI8wwtKLhXDHV9UIbxvqRc12PDW9F26hO1T3yjg0aBwGtqS7Imy13Cf7bijHJ2UaN06Qc-jVKzjmInNh2GX39BD3kr7r8OsmhYxU0fc8y9W6jdPAxBjRS26SSzTsKyk6SgTx1Ig9y60SeOpFQy9xJlusn8hLsrMLxf9r7TcO8qe8Wg4zaYm5otAF1kqO3_w74A6xGrS4
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2019_114638
crossref_primary_10_1016_j_enbuild_2021_110986
crossref_primary_10_3390_en12071274
crossref_primary_10_1007_s10973_022_11372_x
crossref_primary_10_1016_j_applthermaleng_2021_117203
crossref_primary_10_1016_j_csite_2022_102131
crossref_primary_10_17798_bitlisfen_903869
crossref_primary_10_1016_j_renene_2019_10_169
crossref_primary_10_1016_j_renene_2024_121313
crossref_primary_10_1016_j_applthermaleng_2019_114770
crossref_primary_10_1016_j_applthermaleng_2021_117163
crossref_primary_10_1016_j_geothermics_2018_08_004
crossref_primary_10_1016_j_renene_2019_07_029
crossref_primary_10_1016_j_enbuild_2021_111090
crossref_primary_10_30521_jes_1058233
crossref_primary_10_3390_su12187345
crossref_primary_10_3389_fenrg_2023_1188506
crossref_primary_10_1016_j_applthermaleng_2019_01_100
crossref_primary_10_1016_j_enbuild_2022_112321
crossref_primary_10_1016_j_seta_2025_104283
crossref_primary_10_1016_j_ijrefrig_2019_02_021
crossref_primary_10_1002_est2_612
crossref_primary_10_1016_j_tsep_2019_04_013
crossref_primary_10_1016_j_csite_2023_102954
crossref_primary_10_1115_1_4052187
crossref_primary_10_1007_s11356_022_22228_0
crossref_primary_10_1016_j_csite_2022_101941
crossref_primary_10_1016_j_erss_2020_101764
crossref_primary_10_1016_j_apenergy_2018_09_067
crossref_primary_10_1016_j_enbuild_2022_112039
crossref_primary_10_1016_j_scs_2020_102069
crossref_primary_10_1016_j_enconman_2019_03_032
crossref_primary_10_1007_s12273_019_0526_4
crossref_primary_10_1016_j_applthermaleng_2025_125432
crossref_primary_10_1016_j_compchemeng_2023_108389
crossref_primary_10_1371_journal_pone_0250583
crossref_primary_10_1016_j_geothermics_2023_102844
crossref_primary_10_1016_j_applthermaleng_2024_123215
crossref_primary_10_1016_j_geothermics_2022_102402
crossref_primary_10_1016_j_renene_2020_06_150
crossref_primary_10_1016_j_enbuild_2022_112111
crossref_primary_10_2139_ssrn_3998880
crossref_primary_10_1016_j_geothermics_2021_102283
crossref_primary_10_3390_en15144992
crossref_primary_10_4236_epe_2019_1111024
Cites_doi 10.1029/90WR02772
10.1016/j.enbuild.2013.06.018
10.1016/j.ijheatmasstransfer.2012.03.084
10.1016/j.energy.2012.12.043
10.1016/j.energy.2012.11.042
10.1016/j.energy.2014.04.022
10.1016/j.energy.2011.05.048
10.1016/j.enbuild.2015.01.052
10.1016/j.ijheatmasstransfer.2013.03.031
10.1016/j.energy.2015.07.098
10.1016/j.energy.2015.02.086
10.1063/1.1745010
10.1016/j.renene.2012.01.080
10.1016/j.applthermaleng.2008.02.027
10.1016/j.enbuild.2014.09.030
10.1029/94WR00948
10.1016/j.renene.2015.03.006
10.1016/0890-4332(88)90063-4
10.1093/ijlct/ctt012
10.1029/TR038i002p00222
10.1002/htj.10057
10.1016/j.energy.2012.09.056
10.1016/j.energy.2013.08.054
10.1016/j.energy.2017.09.060
10.1016/j.applthermaleng.2010.07.008
10.1016/j.renene.2016.11.052
10.1016/j.energy.2014.08.091
10.1175/2008JHM1011.1
10.1016/j.energy.2015.12.129
10.1016/j.energy.2014.06.108
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2018.04.008
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 887
ExternalDocumentID 10_1016_j_energy_2018_04_008
S036054421830598X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c413t-fa7b5ce33e02c8f8fbb68522a1a798cf119d22c4d526865a7a49e271bceb806f3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Jul 11 09:52:27 EDT 2025
Wed Aug 13 08:35:43 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Tue Jul 01 00:53:17 EDT 2025
Fri Feb 23 02:46:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spatiotemporal variation
Ground-source heat pump
Ground heat exchanger
Heat and moisture transfer
Seasonal performance
Soil properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-fa7b5ce33e02c8f8fbb68522a1a798cf119d22c4d526865a7a49e271bceb806f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4457-3586
OpenAccessLink https://nottingham-repository.worktribe.com/file/935317/1/acceptedManuscript.pdf
PQID 2071305991
PQPubID 2045484
PageCount 11
ParticipantIDs proquest_miscellaneous_2220885267
proquest_journals_2071305991
crossref_citationtrail_10_1016_j_energy_2018_04_008
crossref_primary_10_1016_j_energy_2018_04_008
elsevier_sciencedirect_doi_10_1016_j_energy_2018_04_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Rivera, Blum, Bayer (bib9) 2016; 98
Ozgener, Ozgener, Tester (bib28) 2013; 62
Gonzalez, Verhoef, Vidale, Main, Gan, Wu (bib32) 2012; 44
Salvucc, Entekhabi (bib30) 1994; 30
Fossa, Minchio (bib5) 2013; 51
Nam, Chae (bib20) 2014; 73
(bib35) 2017
Ma, Li, Li, Lai (bib8) 2015; 90
Kopecky (bib27) 2008
Lee, Lam (bib11) 2012; 47
Zeng, Diao, Fang (bib4) 2002; 31
Zeng, Decker (bib31) 2009; 10
Srivastava, Yeh (bib34) 1991; 27
Piecjowski (bib23) 1986
Zanchini, Lazzari (bib6) 2014; 70
Esen, Yuksel (bib15) 2013; 65
Kim, Bernier, Cauret, Roux (bib7) 2014; 77
Naylor, Kevin, Ellett, Gustin (bib22) 2015; 81
Florides, Pouloupatis, Kalogirou, Messaritisa, Panayides, Zomeni, Partasides, Lizides, Sophocleous, Koutsoumpas (bib1) 2011; 36
Gan (bib25) 2014; 85
Adamovskya, Neubergerb, Adamovsky (bib16) 2015; 92
Gan (bib19) 2013; 8
Demir, Koyun, Temir (bib12) 2009; 29
Richards (bib29) 1931; 1
Naili, Hazami, Attar, Farhat (bib13) 2013; 61
Philip, de Vries (bib33) 1957; 38
Wu, Gan, Verhoef, Vidale, Gonzalez (bib14) 2010; 30
Mei (bib18) 1986
Tarnawski, Yuet (bib24) 1988; 8
Gan (bib26) 2017; 103
Go, Lee, NN, Yoon (bib21) 2015; 83
Xi, Li, Liu, Wang (bib3) 2017; 141
Michopoulos, Zachariadis, Kyriakis (bib2) 2013; 51
Yavuzturk, Spitler, Rees (bib10) 1999; 105
Li, Nagano, Lai (bib17) 2012; 55
Srivastava (10.1016/j.energy.2018.04.008_bib34) 1991; 27
Demir (10.1016/j.energy.2018.04.008_bib12) 2009; 29
Rivera (10.1016/j.energy.2018.04.008_bib9) 2016; 98
Gan (10.1016/j.energy.2018.04.008_bib26) 2017; 103
Adamovskya (10.1016/j.energy.2018.04.008_bib16) 2015; 92
Naylor (10.1016/j.energy.2018.04.008_bib22) 2015; 81
Ma (10.1016/j.energy.2018.04.008_bib8) 2015; 90
Naili (10.1016/j.energy.2018.04.008_bib13) 2013; 61
Salvucc (10.1016/j.energy.2018.04.008_bib30) 1994; 30
Piecjowski (10.1016/j.energy.2018.04.008_bib23) 1986
Kopecky (10.1016/j.energy.2018.04.008_bib27) 2008
Tarnawski (10.1016/j.energy.2018.04.008_bib24) 1988; 8
Kim (10.1016/j.energy.2018.04.008_bib7) 2014; 77
Michopoulos (10.1016/j.energy.2018.04.008_bib2) 2013; 51
Yavuzturk (10.1016/j.energy.2018.04.008_bib10) 1999; 105
(10.1016/j.energy.2018.04.008_bib35) 2017
Zeng (10.1016/j.energy.2018.04.008_bib4) 2002; 31
Zeng (10.1016/j.energy.2018.04.008_bib31) 2009; 10
Wu (10.1016/j.energy.2018.04.008_bib14) 2010; 30
Philip (10.1016/j.energy.2018.04.008_bib33) 1957; 38
Esen (10.1016/j.energy.2018.04.008_bib15) 2013; 65
Mei (10.1016/j.energy.2018.04.008_bib18) 1986
Gan (10.1016/j.energy.2018.04.008_bib19) 2013; 8
Nam (10.1016/j.energy.2018.04.008_bib20) 2014; 73
Gan (10.1016/j.energy.2018.04.008_bib25) 2014; 85
Li (10.1016/j.energy.2018.04.008_bib17) 2012; 55
Richards (10.1016/j.energy.2018.04.008_bib29) 1931; 1
Fossa (10.1016/j.energy.2018.04.008_bib5) 2013; 51
Zanchini (10.1016/j.energy.2018.04.008_bib6) 2014; 70
Florides (10.1016/j.energy.2018.04.008_bib1) 2011; 36
Xi (10.1016/j.energy.2018.04.008_bib3) 2017; 141
Lee (10.1016/j.energy.2018.04.008_bib11) 2012; 47
Go (10.1016/j.energy.2018.04.008_bib21) 2015; 83
Ozgener (10.1016/j.energy.2018.04.008_bib28) 2013; 62
Gonzalez (10.1016/j.energy.2018.04.008_bib32) 2012; 44
References_xml – volume: 1
  start-page: 318
  year: 1931
  end-page: 333
  ident: bib29
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: Physics
– volume: 81
  start-page: 21
  year: 2015
  end-page: 30
  ident: bib22
  article-title: Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design
  publication-title: Renewable Energy
– volume: 30
  start-page: 2574
  year: 2010
  end-page: 2583
  ident: bib14
  article-title: Experimental measurement and numerical simulation of horizontal-coupled slinky ground source heat exchangers
  publication-title: Applied Thermal Engineering
– volume: 29
  start-page: 224
  year: 2009
  end-page: 233
  ident: bib12
  article-title: Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification
  publication-title: Applied Thermal Engineering
– volume: 83
  start-page: 766
  year: 2015
  end-page: 777
  ident: bib21
  article-title: A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration
  publication-title: Energy
– volume: 38
  start-page: 222
  year: 1957
  end-page: 231
  ident: bib33
  article-title: Moisture movement in porous materials under temperature gradients
  publication-title: Trans Am Geophys Union
– volume: 98
  start-page: 50
  year: 2016
  end-page: 63
  ident: bib9
  article-title: A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers
  publication-title: Energy
– year: 1986
  ident: bib23
  article-title: A ground coupled heat pump system with energy storage
– volume: 8
  start-page: 95
  year: 2013
  end-page: 105
  ident: bib19
  article-title: Dynamic thermal modelling of horizontal ground source heat pumps
  publication-title: International Journal of Low Carbon Technologies
– volume: 30
  start-page: 2737
  year: 1994
  end-page: 2749
  ident: bib30
  article-title: Equivalent steady soil moisture profile and the time compression approximation in water balance modeling
  publication-title: Water Resources Research
– volume: 31
  start-page: 558
  year: 2002
  end-page: 567
  ident: bib4
  article-title: A finite line-source model for boreholes in geothermal heat exchangers
  publication-title: Heat Transf-Asian Research
– year: 2017
  ident: bib35
  publication-title: ANSYS Fluent
– volume: 105
  start-page: 465
  year: 1999
  end-page: 474
  ident: bib10
  article-title: A transient two-dimensional finite volume model for the simulation of vertical u-tube ground heat exchangers
  publication-title: ASHRAE Transactions
– volume: 61
  start-page: 319
  year: 2013
  end-page: 331
  ident: bib13
  article-title: In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia
  publication-title: Energy
– volume: 141
  start-page: 56
  year: 2017
  end-page: 65
  ident: bib3
  article-title: Study on the thermal effect of the ground heat exchanger of GSHP in the eastern China area
  publication-title: Energy
– volume: 51
  start-page: 323
  year: 2013
  end-page: 329
  ident: bib5
  article-title: The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems
  publication-title: Energy
– volume: 90
  start-page: 578
  year: 2015
  end-page: 587
  ident: bib8
  article-title: New quasi-3D model for heat transfer in U-shaped GHEs (ground heat exchangers): effective overall thermal resistance
  publication-title: Energy
– volume: 103
  start-page: 361
  year: 2017
  end-page: 371
  ident: bib26
  article-title: Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings
  publication-title: Renewable Energy
– volume: 44
  start-page: 141
  year: 2012
  end-page: 153
  ident: bib32
  article-title: Interactions between the physical soil environment and a horizontal ground coupled heat pump for a domestic site in the UK
  publication-title: Renewable Energy
– year: 1986
  ident: bib18
  article-title: Horizontal ground-coil heat exchanger theoretical and experimental analysis
– volume: 65
  start-page: 340
  year: 2013
  end-page: 351
  ident: bib15
  article-title: Experimental evaluation of using various renewable energy sources for heating a greenhouse
  publication-title: Energy and Buildings
– volume: 70
  start-page: 444
  year: 2014
  end-page: 455
  ident: bib6
  article-title: New
  publication-title: Energy
– volume: 62
  start-page: 473
  year: 2013
  end-page: 480
  ident: bib28
  article-title: A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications
  publication-title: International Journal of Heat and Mass Transfer
– volume: 55
  start-page: 4404
  year: 2012
  end-page: 4414
  ident: bib17
  article-title: A new model and solutions for a spiral heat exchanger and its experimental validation
  publication-title: International Journal of Heat and Mass Transfer
– volume: 92
  start-page: 107
  year: 2015
  end-page: 115
  ident: bib16
  article-title: Changes in energy and temperature in the ground mass with horizontal heat exchangers - the energy source for heat pumps
  publication-title: Energy and Buildings
– year: 2008
  ident: bib27
  article-title: Hygro-thermal performance of earth to air heat exchangers - numerical model, analytical and experimental validation, measurements in-situ and design
– volume: 27
  start-page: 753
  year: 1991
  end-page: 762
  ident: bib34
  article-title: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soil
  publication-title: Water Resources Research
– volume: 36
  start-page: 5027
  year: 2011
  end-page: 5036
  ident: bib1
  article-title: The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus
  publication-title: Energy
– volume: 8
  start-page: 271
  year: 1988
  end-page: 278
  ident: bib24
  article-title: Winter performance of residential heat pump
  publication-title: Heat Recovery Systems and CHP
– volume: 85
  start-page: 12
  year: 2014
  end-page: 22
  ident: bib25
  article-title: Dynamic interactions between the ground heat exchanger and environments in earth–air tunnel ventilation of buildings
  publication-title: Energy and Buildings
– volume: 51
  start-page: 349
  year: 2013
  end-page: 357
  ident: bib2
  article-title: Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger
  publication-title: Energy
– volume: 77
  start-page: 318
  year: 2014
  end-page: 326
  ident: bib7
  article-title: A hybrid reduced model for borehole heat exchangers over different time-scales and regions
  publication-title: Energy
– volume: 73
  start-page: 933
  year: 2014
  end-page: 942
  ident: bib20
  article-title: Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger
  publication-title: Energy
– volume: 47
  start-page: 378
  year: 2012
  end-page: 387
  ident: bib11
  article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow
  publication-title: Energy
– volume: 10
  start-page: 308
  year: 2009
  end-page: 319
  ident: bib31
  article-title: Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table
  publication-title: Journal of Hydrometeorology
– volume: 27
  start-page: 753
  year: 1991
  ident: 10.1016/j.energy.2018.04.008_bib34
  article-title: Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soil
  publication-title: Water Resources Research
  doi: 10.1029/90WR02772
– volume: 65
  start-page: 340
  year: 2013
  ident: 10.1016/j.energy.2018.04.008_bib15
  article-title: Experimental evaluation of using various renewable energy sources for heating a greenhouse
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2013.06.018
– volume: 55
  start-page: 4404
  year: 2012
  ident: 10.1016/j.energy.2018.04.008_bib17
  article-title: A new model and solutions for a spiral heat exchanger and its experimental validation
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.03.084
– volume: 51
  start-page: 323
  year: 2013
  ident: 10.1016/j.energy.2018.04.008_bib5
  article-title: The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems
  publication-title: Energy
  doi: 10.1016/j.energy.2012.12.043
– volume: 51
  start-page: 349
  year: 2013
  ident: 10.1016/j.energy.2018.04.008_bib2
  article-title: Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.042
– volume: 70
  start-page: 444
  year: 2014
  ident: 10.1016/j.energy.2018.04.008_bib6
  article-title: New g-functions for the hourly simulation of double U-tube borehole heat exchanger fields
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.022
– year: 1986
  ident: 10.1016/j.energy.2018.04.008_bib23
– year: 1986
  ident: 10.1016/j.energy.2018.04.008_bib18
– volume: 36
  start-page: 5027
  year: 2011
  ident: 10.1016/j.energy.2018.04.008_bib1
  article-title: The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus
  publication-title: Energy
  doi: 10.1016/j.energy.2011.05.048
– volume: 92
  start-page: 107
  year: 2015
  ident: 10.1016/j.energy.2018.04.008_bib16
  article-title: Changes in energy and temperature in the ground mass with horizontal heat exchangers - the energy source for heat pumps
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2015.01.052
– volume: 62
  start-page: 473
  year: 2013
  ident: 10.1016/j.energy.2018.04.008_bib28
  article-title: A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.03.031
– volume: 90
  start-page: 578
  year: 2015
  ident: 10.1016/j.energy.2018.04.008_bib8
  article-title: New quasi-3D model for heat transfer in U-shaped GHEs (ground heat exchangers): effective overall thermal resistance
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.098
– year: 2008
  ident: 10.1016/j.energy.2018.04.008_bib27
– volume: 83
  start-page: 766
  year: 2015
  ident: 10.1016/j.energy.2018.04.008_bib21
  article-title: A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.086
– volume: 1
  start-page: 318
  year: 1931
  ident: 10.1016/j.energy.2018.04.008_bib29
  article-title: Capillary conduction of liquids through porous mediums
  publication-title: Physics
  doi: 10.1063/1.1745010
– volume: 44
  start-page: 141
  year: 2012
  ident: 10.1016/j.energy.2018.04.008_bib32
  article-title: Interactions between the physical soil environment and a horizontal ground coupled heat pump for a domestic site in the UK
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2012.01.080
– volume: 29
  start-page: 224
  year: 2009
  ident: 10.1016/j.energy.2018.04.008_bib12
  article-title: Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2008.02.027
– volume: 85
  start-page: 12
  year: 2014
  ident: 10.1016/j.energy.2018.04.008_bib25
  article-title: Dynamic interactions between the ground heat exchanger and environments in earth–air tunnel ventilation of buildings
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2014.09.030
– volume: 30
  start-page: 2737
  year: 1994
  ident: 10.1016/j.energy.2018.04.008_bib30
  article-title: Equivalent steady soil moisture profile and the time compression approximation in water balance modeling
  publication-title: Water Resources Research
  doi: 10.1029/94WR00948
– volume: 81
  start-page: 21
  year: 2015
  ident: 10.1016/j.energy.2018.04.008_bib22
  article-title: Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2015.03.006
– volume: 8
  start-page: 271
  year: 1988
  ident: 10.1016/j.energy.2018.04.008_bib24
  article-title: Winter performance of residential heat pump
  publication-title: Heat Recovery Systems and CHP
  doi: 10.1016/0890-4332(88)90063-4
– volume: 8
  start-page: 95
  issue: 2
  year: 2013
  ident: 10.1016/j.energy.2018.04.008_bib19
  article-title: Dynamic thermal modelling of horizontal ground source heat pumps
  publication-title: International Journal of Low Carbon Technologies
  doi: 10.1093/ijlct/ctt012
– volume: 38
  start-page: 222
  year: 1957
  ident: 10.1016/j.energy.2018.04.008_bib33
  article-title: Moisture movement in porous materials under temperature gradients
  publication-title: Trans Am Geophys Union
  doi: 10.1029/TR038i002p00222
– volume: 31
  start-page: 558
  year: 2002
  ident: 10.1016/j.energy.2018.04.008_bib4
  article-title: A finite line-source model for boreholes in geothermal heat exchangers
  publication-title: Heat Transf-Asian Research
  doi: 10.1002/htj.10057
– volume: 47
  start-page: 378
  year: 2012
  ident: 10.1016/j.energy.2018.04.008_bib11
  article-title: A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.056
– volume: 61
  start-page: 319
  year: 2013
  ident: 10.1016/j.energy.2018.04.008_bib13
  article-title: In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.054
– volume: 141
  start-page: 56
  year: 2017
  ident: 10.1016/j.energy.2018.04.008_bib3
  article-title: Study on the thermal effect of the ground heat exchanger of GSHP in the eastern China area
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.060
– volume: 30
  start-page: 2574
  year: 2010
  ident: 10.1016/j.energy.2018.04.008_bib14
  article-title: Experimental measurement and numerical simulation of horizontal-coupled slinky ground source heat exchangers
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2010.07.008
– volume: 103
  start-page: 361
  year: 2017
  ident: 10.1016/j.energy.2018.04.008_bib26
  article-title: Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.11.052
– volume: 77
  start-page: 318
  year: 2014
  ident: 10.1016/j.energy.2018.04.008_bib7
  article-title: A hybrid reduced model for borehole heat exchangers over different time-scales and regions
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.091
– volume: 10
  start-page: 308
  year: 2009
  ident: 10.1016/j.energy.2018.04.008_bib31
  article-title: Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table
  publication-title: Journal of Hydrometeorology
  doi: 10.1175/2008JHM1011.1
– volume: 105
  start-page: 465
  year: 1999
  ident: 10.1016/j.energy.2018.04.008_bib10
  article-title: A transient two-dimensional finite volume model for the simulation of vertical u-tube ground heat exchangers
  publication-title: ASHRAE Transactions
– volume: 98
  start-page: 50
  year: 2016
  ident: 10.1016/j.energy.2018.04.008_bib9
  article-title: A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.129
– volume: 73
  start-page: 933
  year: 2014
  ident: 10.1016/j.energy.2018.04.008_bib20
  article-title: Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.108
– year: 2017
  ident: 10.1016/j.energy.2018.04.008_bib35
SSID ssj0005899
Score 2.4487453
Snippet A ground heat exchanger is a key component of a ground source heat pump system, and heat and moisture transfer occurs simultaneously in soil with a horizontal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 877
SubjectTerms Clay
Clay loam
clay loam soils
Clay soils
equations
Ground heat exchanger
Ground-source heat pump
Heat and moisture transfer
Heat exchangers
Heat pumps
Heat transfer
Initial conditions
Loam
loamy sand soils
Mathematical models
prediction
Predictions
Sand
Sandy soils
Seasonal performance
Soil conditions
Soil moisture
Soil properties
Soil temperature
Soil texture
Soils
Spatiotemporal variation
Temperature
Temperature profiles
Title Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer
URI https://dx.doi.org/10.1016/j.energy.2018.04.008
https://www.proquest.com/docview/2071305991
https://www.proquest.com/docview/2220885267
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QAXBIWKhVIZiavZxPYmzrEqrRYQvUClvVmxY4tFbRLtj5B6qHgH3pAnYcZOWkBIlThuPKOsPONvJsl8MwCvK40AYLXjLguOK1krroWacakq34hGZKEiovDHs2J-rt4vZosdOB65MFRWOWB_wvSI1sOV6bCb0365nH5C7MV8Q1GMxxxBL4jBrkry8jfXv5V56DhDkoQ5SY_0uVjj5SO_jgq8dGx4SkMm_x2e_gLqGH1OH8HDIW1kR-mfPYYd3-7B_ZFVvN6D_ZNbxhoKDkd2_QS-vU0z5xllepe41N9SBVgX2JdutbzqohIxPNqGpff5jFCa9WjtNfv5_QdDf2KJUklartv2F75JQjUqXXboL9uVZ5uYCfvVUzg_Pfl8POfDtAXuMJBteKhLO3NeSp8Jp4MO1hYas7M6r8tKu5DnVSOEUw01iClmdVmjOUWZW-etzoog92G37Vr_DJgvfVNZoVyuvXLB6sJLr6wkBrQMwU5Ajpts3NCKnCZiXJix5uyrSaYxZBqTKYOmmQC_0epTK4475MvRfuYPlzIYLe7QPBjNbYYjvcZ1fJ6nbjb5BF7dLONhpC8sdeu7LcoIgaiNG1Q-_--bv4AH9CuVox3A7ma19S8x8dnYw-jZh3Dv6N2H-dkv6dwHWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V7aFcEBQqlhYwEldrE9tJnGNVWm1puxdaaW9W7NhiUZtE-yMkTn0H3pAnYSY_XYGQKnGNZ5TIM_5mksw3A_Ax1wgAVjvuouC4koXiWqiES5X7UpQiCjkRha9m6fRGfZ4n8x04GbgwVFbZY3-H6S1a91cm_W5OmsVi8gWxF_MNRTEecwQ9fwK71J0qGcHu8fnFdLat9NDtGEmS56QwMOjaMi_fUuyoxku3PU9pzuS_I9RfWN0GoLPn8KzPHNlx93AvYMdX-7A3EItX-3BwuiWtoWB_alcv4funbuw8o2TvDpeaLVuA1YF9rZeLH3WrRCSPqmTdJ31GQM0aNPiK_br_ydClWMeqJC1Xb5pbX3ZCBSrd1egym6Vn6zYZ9stXcHN2en0y5f3ABe4wlq15KDKbOC-lj4TTQQdrU40JWhEXWa5diOO8FMKpknrEpEmRFWhRkcXWeaujNMgDGFV15V8D85kvcyuUi7VXLlideumVlUSCliHYMchhk43ru5HTUIxbM5SdfTOdaQyZxkTKoGnGwB-0mq4bxyPy2WA_84dXGQwYj2geDeY2_ale4Tq-0lNDm3gMHx6W8TzST5ai8vUGZYRA4MYNyt78983fw970-urSXJ7PLg7hKa101WlHMFovN_4t5kFr-67389_c6goL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+thermal+performance+of+horizontal+ground+source+heat+pumps+%E2%80%93+The+impact+of+coupled+heat+and+moisture+transfer&rft.jtitle=Energy+%28Oxford%29&rft.au=Gan%2C+Guohui&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=152&rft.spage=877&rft_id=info:doi/10.1016%2Fj.energy.2018.04.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon