Graph Adaptive Attention Network with Cross-Entropy

Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 7; p. 576
Main Author Chen, Zhao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets.
AbstractList Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets.
Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets.Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets.
Audience Academic
Author Chen, Zhao
Author_xml – sequence: 1
  givenname: Zhao
  surname: Chen
  fullname: Chen, Zhao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39056938$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1URD_gwB9AkbjAIWUcJ_44rlalVKrgAmdr4oxbL7txcLyt-u_xkrJCnGY0euYdv37P2ckYR2LsLYdLIQx8okaCgk7JF-yMgzF1KwBO_ulP2fk8bwAa0XD5ip2WpU4aoc-YuE443VerAaccHqha5UxjDnGsvlJ-jOln9RjyfbVOcZ7rqzGnOD29Zi89bmd681wv2I_PV9_XX-rbb9c369Vt7Voucu075DB4TsZwzb1R6FANThoP0ujyEADh2wPQo-gbScpLjt7zrkXTNCgu2M2iO0Tc2CmFHaYnGzHYP4OY7iymHNyWrFMdOPCi59q06BojepBKD30H5DVB0fqwaE0p_trTnO0uzI62Wxwp7mcrQLdKqXK3oO__Qzdxn8bidKE0F6Yt1OVC3WG5H0YfcyoGHQ60C67k40OZrzQIJY1sVVl49yy773c0HP38zaIAHxfAHT47kT8iHOwhZ3vMWfwGySaWFg
Cites_doi 10.1007/1-84628-284-5
10.1007/978-3-642-24797-2
10.1109/CVPR.2017.576
10.1609/aaai.v32i1.12328
10.1109/CVPR.2016.90
10.1145/2623330.2623732
10.3390/e25071096
10.1109/TSP.2018.2879624
10.1007/978-3-319-60801-3_27
10.1109/MSP.2012.2235192
10.1109/5.726791
10.1016/j.acha.2010.04.005
10.1145/1390156.1390303
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.3390/e26070576
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_c750c0f3b1894ac293b0678db50ef8e0
A803769647
39056938
10_3390_e26070576
Genre Journal Article
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
PMFND
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c413t-f5a10df1e99181f97aca7dc69f0698216003f4df1eba3b26e7f61aff154a922a3
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:27:54 EDT 2025
Fri Jul 11 09:28:16 EDT 2025
Fri Jul 25 11:55:17 EDT 2025
Tue Jun 10 21:00:17 EDT 2025
Mon Jul 21 06:08:55 EDT 2025
Tue Jul 01 01:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords non-Euclidean
adaptive attention mechanism
GCN
cross-entropy
multi-head graph convolution
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-f5a10df1e99181f97aca7dc69f0698216003f4df1eba3b26e7f61aff154a922a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3084781394?pq-origsite=%requestingapplication%
PMID 39056938
PQID 3084781394
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_c750c0f3b1894ac293b0678db50ef8e0
proquest_miscellaneous_3084777922
proquest_journals_3084781394
gale_infotracacademiconefile_A803769647
pubmed_primary_39056938
crossref_primary_10_3390_e26070576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lecun (ref_3) 1998; 86
Levie (ref_11) 2018; 67
Hammond (ref_9) 2011; 30
ref_14
Shuman (ref_12) 2013; 30
ref_10
ref_31
ref_30
ref_19
ref_18
ref_17
ref_16
ref_25
ref_24
ref_23
ref_22
ref_21
Bianchi (ref_13) 2021; 44
ref_20
ref_1
ref_2
ref_29
Spielman (ref_15) 2012; 18
ref_28
ref_27
ref_26
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_30
– ident: ref_5
– ident: ref_29
  doi: 10.1007/1-84628-284-5
– volume: 18
  start-page: 18
  year: 2012
  ident: ref_15
  article-title: Spectral graph theory
  publication-title: Comb. Sci. Comput.
– ident: ref_16
– ident: ref_6
  doi: 10.1007/978-3-642-24797-2
– ident: ref_19
  doi: 10.1109/CVPR.2017.576
– ident: ref_14
– ident: ref_1
– ident: ref_18
– ident: ref_23
– ident: ref_21
– ident: ref_24
  doi: 10.1609/aaai.v32i1.12328
– ident: ref_4
  doi: 10.1109/CVPR.2016.90
– ident: ref_8
– ident: ref_25
– ident: ref_31
– ident: ref_28
  doi: 10.1145/2623330.2623732
– ident: ref_2
  doi: 10.3390/e25071096
– ident: ref_10
– volume: 67
  start-page: 97
  year: 2018
  ident: ref_11
  article-title: Cayleynets: Graph convolutional neural networks with complex rational spectral filters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2879624
– ident: ref_26
  doi: 10.1007/978-3-319-60801-3_27
– ident: ref_17
– ident: ref_22
– volume: 44
  start-page: 3496
  year: 2021
  ident: ref_13
  article-title: Graph neural networks with convolutional arma filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 30
  start-page: 83
  year: 2013
  ident: ref_12
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
– ident: ref_20
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_3
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 30
  start-page: 129
  year: 2011
  ident: ref_9
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– ident: ref_27
  doi: 10.1145/1390156.1390303
SSID ssj0023216
Score 2.3715608
Snippet Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 576
SubjectTerms adaptive attention mechanism
Artificial neural networks
Back propagation
Classification
cross-entropy
Deep learning
Efficiency
Entropy
Fourier transforms
GCN
Graphs
Methods
multi-head graph convolution
Neural networks
Nodes
non-Euclidean
Optimization techniques
Recommender systems
Signal processing
Social networks
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI7QTSwIxKtwoIKQmCqaJk3TsZyAExI3gcQWJWk8HicoA_8eu-lVPAYW1jZS48-1_bl1bMYuVChr4BXPrHAyk7IUmfYaspaX1kMALvvZgA8LNX-S98_l85dRX1QTFtsDR-CuPIY0n4NwXNfSeoxOjhxs68o8gA59to4xb51MDamWKLiKfYQEJvVXAVl7hcxEfYs-fZP-3674B8HsA83tNtsaGGLaxJ3tsI2w3GXijhpLp01rV-Sf0qbrYp1iuoh13Cl9UE1n9NTshqrPVx977On25nE2z4Z5B5lHRLoMSsvzFnhAzqY51JX1tmq9qiFXtUaJ0AJB0gKHyBYqVKC4BUAWZOuisGKfTZYvy3DIUmERaW-5BJHLgCGncDmAC47qOtFJJex8jYNZxbYWBtMBAsuMYCXsmhAaF1An6v4C6scM-jF_6Sdhl4SvIXvpXlGioewf90mdp0yjc_RxdB42YdO1CsxgSG9G5JoOw4paJuxsvI0mQP817DK8vA9rqgohSNhBVN24ZxSoVLXQR_8hyzHbLJDTxGrdKZt0r-_hBDlJ50771-8TCtXdZg
  priority: 102
  providerName: Directory of Open Access Journals
Title Graph Adaptive Attention Network with Cross-Entropy
URI https://www.ncbi.nlm.nih.gov/pubmed/39056938
https://www.proquest.com/docview/3084781394
https://www.proquest.com/docview/3084777922
https://doaj.org/article/c750c0f3b1894ac293b0678db50ef8e0
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R9sIFFfEVWlYBIXGyaseO45zQttrdCokVQlTam2U7NrfdZZse-PfMJN4gQOKSQ2Il8bNn5o09ngF4r2PdJtEI5qRXTKlaMhNMYp2oXUgxCTXUBvy81rd36tOm3uQFt_scVnnUiYOi7naB1sivJDd0KlK26uP-B6OqUbS7mktonMAZqmCDztfZ9WL95evkcslK6DGfkETn_ioie2-Qoeg_rNCQrP9flfwX0RwMzvIcnmSmWM7HoX0Kj-L2GcgVJZgu553bk54q530_xiuW6zGeu6SF1fKGvsoWFIW-__kc7paLbze3LNc9YAGR6VmqneBdEhG5mxGpbVxwTRd0m7huDfYIJTEpauAR4UrHJmnhUkI25NqqcvIFnG532_gKSukQ8eCESpKriKan8jwlHz3Fd6KyKuDdEQe7H9NbWHQLCCw7gVXANSE0NaCM1MON3eG7zRPcBqQegSfphWmVC8giPBnCztc8JhN5AR8IX0ty0x-wRzn8H_-TMlDZueGo6-hcbAGXxyGwWaDu7e_hL-Dt9BhFgfY33DbuHnKbpkEICng5Dt30z9ihWrfSvP7_yy_gcYWsZYzHvYTT_vAQ3yDr6P0MTsxyNcsTbDb47nhdbcQv2HnZDw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKuIVWiAgECerduwk9gGhbel2S9s9tVJvxnFsbrvLNlXVP9XfyExeCCpx6zV2_BjP47M9ngH4WITcRFEK5mSlmFK5ZNrryGqROx9DFKrNDXg6L2bn6vtFfrEBt8NbGHKrHHRiq6jrpacz8l3JNb2KlEZ9Xf1ilDWKbleHFBodWxyHm2vcsl1-OfqG6_spy6YHZ_sz1mcVYB77bVjMneB1FAGRkRbRlM67svaFibwwOhOIAGRUVKHC8WdFKGMhXIyINZzJMiex3QfwUElpSKL09HDc4En8u4tehIV8N-BeoUQ8VPxl89rUAHcNwD-wtjVv0y140uPSdNIx0lPYCItnIA8pnHU6qd2KtGI6aZrOOzKdd97jKR3jpvvUKzsgn_fVzXM4vxd6vIDNxXIRXkEqHa6vd0JFyVVAQ5dVPMYqVORNiqoxgQ8DHeyqC6ZhcRNCxLIjsRLYIwqNFSj-dfthuf5pe3GyHoGO51FWQhvlPGKWisxuXeU8RB14Ap-JvpaktFnjjPrHBjhOindlJ5qjZqVXuAnsDEtge_G9tH-YLYH3YzEKHt2muEVYXvV1yhJJkMDLbunGMeOE8sJI_fr_jb-DR7Oz0xN7cjQ_3obHGeKlzhN4Bzab9VV4g3inqd62TJbCj_vm6t88SBJM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IBCvQIGAQJystWMncQ4IbdtdWgqrClGpN2M7NrfdZZsK9a_x65jJCwESt14Tx7HH45lv7HkAvCpCXkVRCmalU0ypXDLtdWS1yK2PIQrV1gb8tCyOztSH8_x8B34OsTDkVjnIxFZQ12tPZ-RTyTVFRcpKTWPvFnF6uHi3-c6oghTdtA7lNDoWOQlXP9B8u3h7fIhr_TrLFvMvB0esrzDAPI6hYTG3gtdRBERJWsSqtN6WtS-qyItKZwLRgIyKGjicS1aEMhbCxoi4w1ZZZiX2ewN2S7SK-AR29-fL08-juSfx-y6XkZQVnwa0HEpER8UfGrAtFPCvOvgL5LbKbnEHbvcoNZ11bHUXdsLqHsj3lNw6ndV2QzIynTVN5yuZLjtf8pQOddMD-iubkwf85uo-nF0LRR7AZLVehUeQSour7a1QUXIVUO1ljsfogiPfUhSUCbwc6GA2XWoNgyYJEcuMxEpgnyg0NqBs2O2D9fab6TeX8Qh7PI_SCV0p6xHBOFLCtct5iDrwBN4QfQ3t2WaLM-pDD3CclP3KzDRHOUsxuQnsDUtg-s18YX6zXgIvxte4Deluxa7C-rJvU5ZIggQedks3jhknlBeV1I__3_lzuIkcbT4eL0-ewK0MwVPnFrwHk2Z7GZ4i-Gncs57LUvh63Yz9C3eZF94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Adaptive+Attention+Network+with+Cross-Entropy&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Zhao&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=26&rft.issue=7&rft.spage=576&rft_id=info:doi/10.3390%2Fe26070576&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon