Graph Adaptive Attention Network with Cross-Entropy
Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 26; no. 7; p. 576 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets. |
---|---|
AbstractList | Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets. Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets.Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets. |
Audience | Academic |
Author | Chen, Zhao |
Author_xml | – sequence: 1 givenname: Zhao surname: Chen fullname: Chen, Zhao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39056938$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1URD_gwB9AkbjAIWUcJ_44rlalVKrgAmdr4oxbL7txcLyt-u_xkrJCnGY0euYdv37P2ckYR2LsLYdLIQx8okaCgk7JF-yMgzF1KwBO_ulP2fk8bwAa0XD5ip2WpU4aoc-YuE443VerAaccHqha5UxjDnGsvlJ-jOln9RjyfbVOcZ7rqzGnOD29Zi89bmd681wv2I_PV9_XX-rbb9c369Vt7Voucu075DB4TsZwzb1R6FANThoP0ujyEADh2wPQo-gbScpLjt7zrkXTNCgu2M2iO0Tc2CmFHaYnGzHYP4OY7iymHNyWrFMdOPCi59q06BojepBKD30H5DVB0fqwaE0p_trTnO0uzI62Wxwp7mcrQLdKqXK3oO__Qzdxn8bidKE0F6Yt1OVC3WG5H0YfcyoGHQ60C67k40OZrzQIJY1sVVl49yy773c0HP38zaIAHxfAHT47kT8iHOwhZ3vMWfwGySaWFg |
Cites_doi | 10.1007/1-84628-284-5 10.1007/978-3-642-24797-2 10.1109/CVPR.2017.576 10.1609/aaai.v32i1.12328 10.1109/CVPR.2016.90 10.1145/2623330.2623732 10.3390/e25071096 10.1109/TSP.2018.2879624 10.1007/978-3-319-60801-3_27 10.1109/MSP.2012.2235192 10.1109/5.726791 10.1016/j.acha.2010.04.005 10.1145/1390156.1390303 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.3390/e26070576 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_c750c0f3b1894ac293b0678db50ef8e0 A803769647 39056938 10_3390_e26070576 |
Genre | Journal Article |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PQGLB PMFND 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c413t-f5a10df1e99181f97aca7dc69f0698216003f4df1eba3b26e7f61aff154a922a3 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:27:54 EDT 2025 Fri Jul 11 09:28:16 EDT 2025 Fri Jul 25 11:55:17 EDT 2025 Tue Jun 10 21:00:17 EDT 2025 Mon Jul 21 06:08:55 EDT 2025 Tue Jul 01 01:58:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | non-Euclidean adaptive attention mechanism GCN cross-entropy multi-head graph convolution |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-f5a10df1e99181f97aca7dc69f0698216003f4df1eba3b26e7f61aff154a922a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3084781394?pq-origsite=%requestingapplication% |
PMID | 39056938 |
PQID | 3084781394 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c750c0f3b1894ac293b0678db50ef8e0 proquest_miscellaneous_3084777922 proquest_journals_3084781394 gale_infotracacademiconefile_A803769647 pubmed_primary_39056938 crossref_primary_10_3390_e26070576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lecun (ref_3) 1998; 86 Levie (ref_11) 2018; 67 Hammond (ref_9) 2011; 30 ref_14 Shuman (ref_12) 2013; 30 ref_10 ref_31 ref_30 ref_19 ref_18 ref_17 ref_16 ref_25 ref_24 ref_23 ref_22 ref_21 Bianchi (ref_13) 2021; 44 ref_20 ref_1 ref_2 ref_29 Spielman (ref_15) 2012; 18 ref_28 ref_27 ref_26 ref_8 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_30 – ident: ref_5 – ident: ref_29 doi: 10.1007/1-84628-284-5 – volume: 18 start-page: 18 year: 2012 ident: ref_15 article-title: Spectral graph theory publication-title: Comb. Sci. Comput. – ident: ref_16 – ident: ref_6 doi: 10.1007/978-3-642-24797-2 – ident: ref_19 doi: 10.1109/CVPR.2017.576 – ident: ref_14 – ident: ref_1 – ident: ref_18 – ident: ref_23 – ident: ref_21 – ident: ref_24 doi: 10.1609/aaai.v32i1.12328 – ident: ref_4 doi: 10.1109/CVPR.2016.90 – ident: ref_8 – ident: ref_25 – ident: ref_31 – ident: ref_28 doi: 10.1145/2623330.2623732 – ident: ref_2 doi: 10.3390/e25071096 – ident: ref_10 – volume: 67 start-page: 97 year: 2018 ident: ref_11 article-title: Cayleynets: Graph convolutional neural networks with complex rational spectral filters publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2879624 – ident: ref_26 doi: 10.1007/978-3-319-60801-3_27 – ident: ref_17 – ident: ref_22 – volume: 44 start-page: 3496 year: 2021 ident: ref_13 article-title: Graph neural networks with convolutional arma filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 30 start-page: 83 year: 2013 ident: ref_12 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235192 – ident: ref_20 – volume: 86 start-page: 2278 year: 1998 ident: ref_3 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 30 start-page: 129 year: 2011 ident: ref_9 article-title: Wavelets on graphs via spectral graph theory publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.04.005 – ident: ref_27 doi: 10.1145/1390156.1390303 |
SSID | ssj0023216 |
Score | 2.3715608 |
Snippet | Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 576 |
SubjectTerms | adaptive attention mechanism Artificial neural networks Back propagation Classification cross-entropy Deep learning Efficiency Entropy Fourier transforms GCN Graphs Methods multi-head graph convolution Neural networks Nodes non-Euclidean Optimization techniques Recommender systems Signal processing Social networks Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI7QTSwIxKtwoIKQmCqaJk3TsZyAExI3gcQWJWk8HicoA_8eu-lVPAYW1jZS48-1_bl1bMYuVChr4BXPrHAyk7IUmfYaspaX1kMALvvZgA8LNX-S98_l85dRX1QTFtsDR-CuPIY0n4NwXNfSeoxOjhxs68o8gA59to4xb51MDamWKLiKfYQEJvVXAVl7hcxEfYs-fZP-3674B8HsA83tNtsaGGLaxJ3tsI2w3GXijhpLp01rV-Sf0qbrYp1iuoh13Cl9UE1n9NTshqrPVx977On25nE2z4Z5B5lHRLoMSsvzFnhAzqY51JX1tmq9qiFXtUaJ0AJB0gKHyBYqVKC4BUAWZOuisGKfTZYvy3DIUmERaW-5BJHLgCGncDmAC47qOtFJJex8jYNZxbYWBtMBAsuMYCXsmhAaF1An6v4C6scM-jF_6Sdhl4SvIXvpXlGioewf90mdp0yjc_RxdB42YdO1CsxgSG9G5JoOw4paJuxsvI0mQP817DK8vA9rqgohSNhBVN24ZxSoVLXQR_8hyzHbLJDTxGrdKZt0r-_hBDlJ50771-8TCtXdZg priority: 102 providerName: Directory of Open Access Journals |
Title | Graph Adaptive Attention Network with Cross-Entropy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39056938 https://www.proquest.com/docview/3084781394 https://www.proquest.com/docview/3084777922 https://doaj.org/article/c750c0f3b1894ac293b0678db50ef8e0 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R9sIFFfEVWlYBIXGyaseO45zQttrdCokVQlTam2U7NrfdZZse-PfMJN4gQOKSQ2Il8bNn5o09ngF4r2PdJtEI5qRXTKlaMhNMYp2oXUgxCTXUBvy81rd36tOm3uQFt_scVnnUiYOi7naB1sivJDd0KlK26uP-B6OqUbS7mktonMAZqmCDztfZ9WL95evkcslK6DGfkETn_ioie2-Qoeg_rNCQrP9flfwX0RwMzvIcnmSmWM7HoX0Kj-L2GcgVJZgu553bk54q530_xiuW6zGeu6SF1fKGvsoWFIW-__kc7paLbze3LNc9YAGR6VmqneBdEhG5mxGpbVxwTRd0m7huDfYIJTEpauAR4UrHJmnhUkI25NqqcvIFnG532_gKSukQ8eCESpKriKan8jwlHz3Fd6KyKuDdEQe7H9NbWHQLCCw7gVXANSE0NaCM1MON3eG7zRPcBqQegSfphWmVC8giPBnCztc8JhN5AR8IX0ty0x-wRzn8H_-TMlDZueGo6-hcbAGXxyGwWaDu7e_hL-Dt9BhFgfY33DbuHnKbpkEICng5Dt30z9ihWrfSvP7_yy_gcYWsZYzHvYTT_vAQ3yDr6P0MTsxyNcsTbDb47nhdbcQv2HnZDw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKuIVWiAgECerduwk9gGhbel2S9s9tVJvxnFsbrvLNlXVP9XfyExeCCpx6zV2_BjP47M9ngH4WITcRFEK5mSlmFK5ZNrryGqROx9DFKrNDXg6L2bn6vtFfrEBt8NbGHKrHHRiq6jrpacz8l3JNb2KlEZ9Xf1ilDWKbleHFBodWxyHm2vcsl1-OfqG6_spy6YHZ_sz1mcVYB77bVjMneB1FAGRkRbRlM67svaFibwwOhOIAGRUVKHC8WdFKGMhXIyINZzJMiex3QfwUElpSKL09HDc4En8u4tehIV8N-BeoUQ8VPxl89rUAHcNwD-wtjVv0y140uPSdNIx0lPYCItnIA8pnHU6qd2KtGI6aZrOOzKdd97jKR3jpvvUKzsgn_fVzXM4vxd6vIDNxXIRXkEqHa6vd0JFyVVAQ5dVPMYqVORNiqoxgQ8DHeyqC6ZhcRNCxLIjsRLYIwqNFSj-dfthuf5pe3GyHoGO51FWQhvlPGKWisxuXeU8RB14Ap-JvpaktFnjjPrHBjhOindlJ5qjZqVXuAnsDEtge_G9tH-YLYH3YzEKHt2muEVYXvV1yhJJkMDLbunGMeOE8sJI_fr_jb-DR7Oz0xN7cjQ_3obHGeKlzhN4Bzab9VV4g3inqd62TJbCj_vm6t88SBJM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IBCvQIGAQJystWMncQ4IbdtdWgqrClGpN2M7NrfdZZsK9a_x65jJCwESt14Tx7HH45lv7HkAvCpCXkVRCmalU0ypXDLtdWS1yK2PIQrV1gb8tCyOztSH8_x8B34OsTDkVjnIxFZQ12tPZ-RTyTVFRcpKTWPvFnF6uHi3-c6oghTdtA7lNDoWOQlXP9B8u3h7fIhr_TrLFvMvB0esrzDAPI6hYTG3gtdRBERJWsSqtN6WtS-qyItKZwLRgIyKGjicS1aEMhbCxoi4w1ZZZiX2ewN2S7SK-AR29-fL08-juSfx-y6XkZQVnwa0HEpER8UfGrAtFPCvOvgL5LbKbnEHbvcoNZ11bHUXdsLqHsj3lNw6ndV2QzIynTVN5yuZLjtf8pQOddMD-iubkwf85uo-nF0LRR7AZLVehUeQSour7a1QUXIVUO1ljsfogiPfUhSUCbwc6GA2XWoNgyYJEcuMxEpgnyg0NqBs2O2D9fab6TeX8Qh7PI_SCV0p6xHBOFLCtct5iDrwBN4QfQ3t2WaLM-pDD3CclP3KzDRHOUsxuQnsDUtg-s18YX6zXgIvxte4Deluxa7C-rJvU5ZIggQedks3jhknlBeV1I__3_lzuIkcbT4eL0-ewK0MwVPnFrwHk2Z7GZ4i-Gncs57LUvh63Yz9C3eZF94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Adaptive+Attention+Network+with+Cross-Entropy&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Zhao&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=26&rft.issue=7&rft.spage=576&rft_id=info:doi/10.3390%2Fe26070576&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |