View-Invariant Deep Architecture for Human Action Recognition Using Two-Stream Motion and Shape Temporal Dynamics

Human action Recognition for unknown views, is a challenging task. We propose a deep view-invariant human action recognition framework, which is a novel integration of two important action cues: motion and shape temporal dynamics (STD). The motion stream encapsulates the motion content of action as...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 29; pp. 3835 - 3844
Main Authors Dhiman, Chhavi, Vishwakarma, Dinesh Kumar
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human action Recognition for unknown views, is a challenging task. We propose a deep view-invariant human action recognition framework, which is a novel integration of two important action cues: motion and shape temporal dynamics (STD). The motion stream encapsulates the motion content of action as RGB Dynamic Images (RGB-DIs), which are generated by Approximate Rank Pooling (ARP) and processed by using fine-tuned InceptionV3 model. The STD stream learns long-term view-invariant shape dynamics of action using a sequence of LSTM and Bi-LSTM learning models. Human Pose Model (HPM) generates view-invariant features of structural similarity index matrix (SSIM) based key depth human pose frames. The final prediction of the action is made on the basis of three types of late fusion techniques i.e. maximum (max), average (avg) and multiply (mul), applied on individual stream scores. To validate the performance of the proposed novel framework, the experiments are performed using both cross-subject and cross-view validation schemes on three publically available benchmarks-NUCLA multi-view dataset, UWA3D-II Activity dataset and NTU RGB-D Activity dataset. Our algorithm outperforms existing state-of-the-arts significantly, which is measured in terms of recognition accuracy, receiver operating characteristic (ROC) curve and area under the curve (AUC).
AbstractList Human action Recognition for unknown views, is a challenging task. We propose a deep view-invariant human action recognition framework, which is a novel integration of two important action cues: motion and shape temporal dynamics (STD). The motion stream encapsulates the motion content of action as RGB Dynamic Images (RGB-DIs), which are generated by Approximate Rank Pooling (ARP) and processed by using finetuned InceptionV3 model. The STD stream learns long-term view-invariant shape dynamics of action using a sequence of LSTM and Bi-LSTM learning models. Human Pose Model (HPM) generates view-invariant features of structural similarity index matrix (SSIM) based key depth human pose frames. The final prediction of the action is made on the basis of three types of late fusion techniques i.e. maximum (max), average (avg) and multiply (mul), applied on individual stream scores. To validate the performance of the proposed novel framework, the experiments are performed using both cross-subject and cross-view validation schemes on three publically available benchmarks- NUCLA multi-view dataset, UWA3D-II Activity dataset and NTU RGB-D Activity dataset. Our algorithm outperforms existing state-of-the-arts significantly, which is measured in terms of recognition accuracy, receiver operating characteristic (ROC) curve and area under the curve (AUC).
Human action Recognition for unknown views, is a challenging task. We propose a deep view-invariant human action recognition framework, which is a novel integration of two important action cues: motion and shape temporal dynamics (STD). The motion stream encapsulates the motion content of action as RGB Dynamic Images (RGB-DIs), which are generated by Approximate Rank Pooling (ARP) and processed by using fine-tuned InceptionV3 model. The STD stream learns long-term view-invariant shape dynamics of action using a sequence of LSTM and Bi-LSTM learning models. Human Pose Model (HPM) generates view-invariant features of structural similarity index matrix (SSIM) based key depth human pose frames. The final prediction of the action is made on the basis of three types of late fusion techniques i.e. maximum (max), average (avg) and multiply (mul), applied on individual stream scores. To validate the performance of the proposed novel framework, the experiments are performed using both cross-subject and cross-view validation schemes on three publically available benchmarks-NUCLA multi-view dataset, UWA3D-II Activity dataset and NTU RGB-D Activity dataset. Our algorithm outperforms existing state-of-the-arts significantly, which is measured in terms of recognition accuracy, receiver operating characteristic (ROC) curve and area under the curve (AUC).
Human action Recognition for unknown views, is a challenging task. We propose a deep view-invariant human action recognition framework, which is a novel integration of two important action cues: motion and shape temporal dynamics (STD). The motion stream encapsulates the motion content of action as RGB Dynamic Images (RGB-DIs), which are generated by Approximate Rank Pooling (ARP) and processed by using finetuned InceptionV3 model. The STD stream learns long-term view-invariant shape dynamics of action using a sequence of LSTM and Bi-LSTM learning models. Human Pose Model (HPM) generates view-invariant features of structural similarity index matrix (SSIM) based key depth human pose frames. The final prediction of the action is made on the basis of three types of late fusion techniques i.e. maximum (max), average (avg) and multiply (mul), applied on individual stream scores. To validate the performance of the proposed novel framework, the experiments are performed using both cross-subject and cross-view validation schemes on three publically available benchmarks- NUCLA multi-view dataset, UWA3D-II Activity dataset and NTU RGB-D Activity dataset. Our algorithm outperforms existing state-of-the-arts significantly, which is measured in terms of recognition accuracy, receiver operating characteristic (ROC) curve and area under the curve (AUC).Human action Recognition for unknown views, is a challenging task. We propose a deep view-invariant human action recognition framework, which is a novel integration of two important action cues: motion and shape temporal dynamics (STD). The motion stream encapsulates the motion content of action as RGB Dynamic Images (RGB-DIs), which are generated by Approximate Rank Pooling (ARP) and processed by using finetuned InceptionV3 model. The STD stream learns long-term view-invariant shape dynamics of action using a sequence of LSTM and Bi-LSTM learning models. Human Pose Model (HPM) generates view-invariant features of structural similarity index matrix (SSIM) based key depth human pose frames. The final prediction of the action is made on the basis of three types of late fusion techniques i.e. maximum (max), average (avg) and multiply (mul), applied on individual stream scores. To validate the performance of the proposed novel framework, the experiments are performed using both cross-subject and cross-view validation schemes on three publically available benchmarks- NUCLA multi-view dataset, UWA3D-II Activity dataset and NTU RGB-D Activity dataset. Our algorithm outperforms existing state-of-the-arts significantly, which is measured in terms of recognition accuracy, receiver operating characteristic (ROC) curve and area under the curve (AUC).
Author Vishwakarma, Dinesh Kumar
Dhiman, Chhavi
Author_xml – sequence: 1
  givenname: Chhavi
  surname: Dhiman
  fullname: Dhiman, Chhavi
  organization: Department of Information Technology, Biometric Research Laboratory, Delhi Technological University (formerly Delhi College of Engineering), New Delhi, India
– sequence: 2
  givenname: Dinesh Kumar
  orcidid: 0000-0002-1026-0047
  surname: Vishwakarma
  fullname: Vishwakarma, Dinesh Kumar
  email: dvishwakarma@gmail.com
  organization: Department of Information Technology, Biometric Research Laboratory, Delhi Technological University (formerly Delhi College of Engineering), New Delhi, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31944975$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1P3DAQxa2KqnyUe6VKlSUuvWTr78THFbSwElWrsnCNvN4xGCV2sJMi_nu87JYDh55mNPq9mad5h2gvxAAIfaJkRinR35aL3zNGGJkxrSTT-h06oFrQihDB9kpPZF3VVOh9dJjzPSFUSKo-oH1eKKFreYAebjw8Vovw1yRvwojPAAY8T_bOj2DHKQF2MeGLqTcBz-3oY8B_wMbb4F_66-zDLV4-xupqTGB6_DO-zE1Y46s7MwBeQj_EZDp89hRM723-iN4702U43tUjdP3j-_L0orr8db44nV9WVlA-Vq54bay03IGwxKy5E7ZZ1ytuqLNlpAy3Wq04p1RLZQ1Qw51sauagsY1U_Ah93e4dUnyYII9t77OFrjMB4pRbxgVVjAmuC3ryBr2PUwrF3YbSlCkhWKG-7Khp1cO6HZLvTXpq_z2zAGQL2BRzTuBeEUraTV5tyavd5NXu8ioS9UZi_Wg2LxyT8d3_hJ-3Qg8Ar3carYikNX8GK5Kh8A
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3228825
crossref_primary_10_1109_TPAMI_2022_3183112
crossref_primary_10_1109_ACCESS_2024_3481631
crossref_primary_10_3233_JIFS_221468
crossref_primary_10_1109_JSEN_2022_3144157
crossref_primary_10_1016_j_compbiomed_2024_109399
crossref_primary_10_1007_s11042_022_13827_7
crossref_primary_10_1109_TCSVT_2021_3085959
crossref_primary_10_1016_j_asoc_2020_106859
crossref_primary_10_3389_fnbot_2024_1502071
crossref_primary_10_1177_02783649231207974
crossref_primary_10_1007_s11042_023_15443_5
crossref_primary_10_1145_3434746
crossref_primary_10_1109_JSEN_2023_3303912
crossref_primary_10_1117_1_JEI_30_3_033017
crossref_primary_10_1520_JTE20220704
crossref_primary_10_1016_j_jvcir_2022_103531
crossref_primary_10_1109_TIP_2023_3273459
crossref_primary_10_3389_fnbot_2024_1520983
crossref_primary_10_3390_diagnostics13030551
crossref_primary_10_1155_2022_2656001
crossref_primary_10_3389_fnins_2020_00409
crossref_primary_10_20965_jaciii_2024_p0552
crossref_primary_10_1016_j_imavis_2022_104403
crossref_primary_10_4218_etrij_2020_0101
crossref_primary_10_1109_ACCESS_2021_3099163
crossref_primary_10_1007_s11042_023_16001_9
crossref_primary_10_1109_TCSVT_2023_3255832
crossref_primary_10_1038_s41598_022_09293_8
crossref_primary_10_1109_JSEN_2022_3183502
crossref_primary_10_1007_s00521_023_09035_5
crossref_primary_10_3390_electronics10232901
crossref_primary_10_1007_s11042_022_14193_0
crossref_primary_10_3390_app12094165
crossref_primary_10_1007_s11760_023_02862_y
crossref_primary_10_1007_s10462_024_10721_6
crossref_primary_10_1007_s13369_022_07236_z
crossref_primary_10_1109_TCSVT_2022_3175959
crossref_primary_10_1016_j_imavis_2024_104919
crossref_primary_10_1007_s11042_023_16434_2
crossref_primary_10_1109_TCSVT_2021_3119956
crossref_primary_10_1109_TGRS_2022_3228959
crossref_primary_10_1016_j_bspc_2024_106870
crossref_primary_10_1109_JSEN_2024_3380321
crossref_primary_10_1007_s00530_024_01566_8
crossref_primary_10_1109_TCSVT_2022_3219864
crossref_primary_10_3390_s23020778
crossref_primary_10_1145_3679011
crossref_primary_10_1109_JSEN_2021_3122128
crossref_primary_10_1109_TCSVT_2022_3178430
crossref_primary_10_1016_j_ijepes_2022_108733
crossref_primary_10_1109_TCSVT_2023_3295432
crossref_primary_10_1007_s00138_024_01535_1
crossref_primary_10_1177_00368504211005480
crossref_primary_10_3233_AIC_220188
crossref_primary_10_1016_j_asoc_2025_112797
crossref_primary_10_1038_s41598_024_58190_9
crossref_primary_10_1109_TCSVT_2024_3417810
crossref_primary_10_1016_j_eswa_2022_118807
crossref_primary_10_1016_j_imavis_2023_104687
crossref_primary_10_1007_s11042_022_14214_y
crossref_primary_10_1109_TCSVT_2021_3077512
crossref_primary_10_1007_s42452_021_04528_1
crossref_primary_10_1109_TBIOM_2022_3213545
crossref_primary_10_1109_TBIOM_2022_3216857
crossref_primary_10_1109_TCSVT_2022_3222305
crossref_primary_10_1109_TCSVT_2023_3249906
crossref_primary_10_1007_s11042_023_17345_y
crossref_primary_10_1109_TCSVT_2021_3095290
crossref_primary_10_1109_TCSVT_2023_3236430
crossref_primary_10_1080_21681163_2021_2012829
crossref_primary_10_1080_21681163_2022_2111720
crossref_primary_10_1007_s00521_024_09630_0
crossref_primary_10_1007_s00371_023_03256_4
crossref_primary_10_1007_s10479_021_04164_3
crossref_primary_10_1016_j_image_2023_116940
crossref_primary_10_1016_j_bspc_2022_103772
crossref_primary_10_1109_ACCESS_2023_3298647
crossref_primary_10_1016_j_compbiomed_2021_105014
crossref_primary_10_1007_s10462_024_10934_9
crossref_primary_10_1109_TII_2023_3313640
crossref_primary_10_1109_TCSVT_2022_3194350
crossref_primary_10_1155_2023_9213689
crossref_primary_10_3233_JIFS_232842
crossref_primary_10_1016_j_neucom_2024_127882
crossref_primary_10_15622_ia_23_2_5
crossref_primary_10_1016_j_eswa_2023_122314
crossref_primary_10_1007_s00530_024_01312_0
crossref_primary_10_1007_s11042_020_09708_6
crossref_primary_10_1016_j_jvcir_2021_103161
crossref_primary_10_1038_s41467_023_39474_6
crossref_primary_10_3390_s22186841
crossref_primary_10_1007_s11042_022_12948_3
crossref_primary_10_3389_frsip_2024_1433388
Cites_doi 10.1109/CVPR.2015.7298860
10.1109/CVPR.2014.339
10.1109/ACCESS.2017.2753830
10.1109/ICCVW.2017.123
10.1109/TPAMI.2017.2691768
10.1186/s13640-017-0235-9
10.1109/CVPR.2018.00631
10.1109/TPAMI.2012.253
10.1109/CVPR.2016.331
10.1109/TCDS.2016.2577044
10.1109/CVPR.2016.167
10.1109/CVPRW.2017.207
10.1109/CVPR.2008.4587730
10.1007/s11042-017-4514-3
10.1109/TIP.2018.2818328
10.1016/j.patcog.2018.01.020
10.1109/ICCV.2013.394
10.1109/TIP.2003.819861
10.1016/j.patcog.2017.07.013
10.1109/CVPR.2013.347
10.1109/CVPR.2014.223
10.1109/34.910878
10.1109/5.726791
10.1007/s11263-019-01192-2
10.1007/s00138-010-0298-4
10.1016/j.ins.2018.12.050
10.1016/j.eswa.2018.03.047
10.1109/CVPR.2015.7299101
10.1109/CVPR.2015.7298691
10.1007/s10462-018-9651-1
10.1109/CVPR.2011.5995407
10.1023/B:STCO.0000035301.49549.88
10.1016/j.patcog.2017.06.037
10.1109/JSEN.2019.2903645
10.1016/j.cviu.2018.03.003
10.1109/TPAMI.2016.2533389
10.1109/DICTA.2017.8227505
10.1109/TIP.2017.2696786
10.1109/TPAMI.2012.59
10.1109/CVPR.2016.115
10.1109/CVPR.2015.7299176
10.1109/TCYB.2013.2265378
10.1109/CVPR.2014.333
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2020.2965299
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3844
ExternalDocumentID 31944975
10_1109_TIP_2020_2965299
8960517
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c413t-f1458c5c3fe4c0ad3f4c8d7b3a1fce4c6a3c96b3311956cae1a3f5872fe8c8563
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 15:26:17 EDT 2025
Mon Jun 30 10:25:08 EDT 2025
Wed Feb 19 02:09:36 EST 2025
Tue Jul 01 02:03:22 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Wed Aug 27 02:29:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-f1458c5c3fe4c0ad3f4c8d7b3a1fce4c6a3c96b3311956cae1a3f5872fe8c8563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1026-0047
PMID 31944975
PQID 2349126442
PQPubID 85429
PageCount 10
ParticipantIDs proquest_journals_2349126442
crossref_primary_10_1109_TIP_2020_2965299
proquest_miscellaneous_2341622439
ieee_primary_8960517
pubmed_primary_31944975
crossref_citationtrail_10_1109_TIP_2020_2965299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
krizhevsky (ref37) 2012
ref10
ref17
ref19
ref18
liu (ref45) 2018; 1711 5941v4
ref50
ref46
jetley (ref28) 2014
song (ref48) 2017
ref47
ref42
ref41
ref44
ref43
ref8
han (ref2) 2013; 43
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref30
ref33
ref32
keçeli (ref51) 2018; 104
diba (ref11) 2017
ref1
ref39
liu (ref49) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref38) 2016
ref27
ref29
lin (ref16) 2018
li (ref31) 2012
References_xml – ident: ref33
  doi: 10.1109/CVPR.2015.7298860
– ident: ref19
  doi: 10.1109/CVPR.2014.339
– ident: ref15
  doi: 10.1109/ACCESS.2017.2753830
– ident: ref36
  doi: 10.1109/ICCVW.2017.123
– ident: ref44
  doi: 10.1109/TPAMI.2017.2691768
– ident: ref9
  doi: 10.1186/s13640-017-0235-9
– ident: ref22
  doi: 10.1109/CVPR.2018.00631
– ident: ref10
  doi: 10.1109/TPAMI.2012.253
– ident: ref43
  doi: 10.1109/CVPR.2016.331
– year: 2012
  ident: ref31
  article-title: Cross-view activity recognition using Hankelets
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref12
  doi: 10.1109/TCDS.2016.2577044
– ident: ref18
  doi: 10.1109/CVPR.2016.167
– year: 2016
  ident: ref49
  article-title: Spatio-temporal LSTM with trust gates for 3D human action recognition
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref50
  doi: 10.1109/CVPRW.2017.207
– ident: ref40
  doi: 10.1109/CVPR.2008.4587730
– ident: ref14
  doi: 10.1007/s11042-017-4514-3
– year: 2018
  ident: ref16
  article-title: Action recognition with coarse-to-fine deep feature integration and asynchronous fusion
  publication-title: arXiv 1711 07430
– year: 2012
  ident: ref37
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Neural Inf Process Syst (NIPS)
– ident: ref39
  doi: 10.1109/TIP.2018.2818328
– ident: ref13
  doi: 10.1016/j.patcog.2018.01.020
– ident: ref34
  doi: 10.1109/ICCV.2013.394
– ident: ref41
  doi: 10.1109/TIP.2003.819861
– ident: ref5
  doi: 10.1016/j.patcog.2017.07.013
– ident: ref32
  doi: 10.1109/CVPR.2013.347
– ident: ref8
  doi: 10.1109/CVPR.2014.223
– start-page: 129
  year: 2014
  ident: ref28
  article-title: 3D activity recognition using motion history and binary shape templates
  publication-title: Proc Asian Conf Comput Vis (ACCV)
– year: 2016
  ident: ref38
  publication-title: Cmu motion capture database
– ident: ref24
  doi: 10.1109/34.910878
– ident: ref6
  doi: 10.1109/5.726791
– ident: ref35
  doi: 10.1007/s11263-019-01192-2
– year: 2017
  ident: ref48
  article-title: An end-to-end spatio-temporal attention model for human action recognition from skeleton data
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref29
  doi: 10.1007/s00138-010-0298-4
– ident: ref23
  doi: 10.1016/j.ins.2018.12.050
– volume: 104
  start-page: 235
  year: 2018
  ident: ref51
  article-title: Viewpoint projection based deep feature learning for single and dyadic action recognition
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.047
– ident: ref27
  doi: 10.1109/CVPR.2015.7299101
– ident: ref25
  doi: 10.1109/CVPR.2015.7298691
– ident: ref3
  doi: 10.1007/s10462-018-9651-1
– ident: ref47
  doi: 10.1109/CVPR.2011.5995407
– ident: ref42
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref7
  doi: 10.1016/j.patcog.2017.06.037
– ident: ref4
  doi: 10.1109/JSEN.2019.2903645
– ident: ref52
  doi: 10.1016/j.cviu.2018.03.003
– ident: ref20
  doi: 10.1109/TPAMI.2016.2533389
– ident: ref17
  doi: 10.1109/DICTA.2017.8227505
– ident: ref30
  doi: 10.1109/TIP.2017.2696786
– ident: ref1
  doi: 10.1109/TPAMI.2012.59
– ident: ref21
  doi: 10.1109/CVPR.2016.115
– ident: ref26
  doi: 10.1109/CVPR.2015.7299176
– volume: 43
  start-page: 1318
  year: 2013
  ident: ref2
  article-title: Enhanced computer vision with microsoft Kinect sensor: A review
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2265378
– ident: ref46
  doi: 10.1109/CVPR.2014.333
– volume: 1711 5941v4
  start-page: 1
  year: 2018
  ident: ref45
  article-title: Skepxels: Spatio-temporal image representation of human skeleton joints for action recognition
  publication-title: CoRR
– year: 2017
  ident: ref11
  article-title: Temporal 3D ConvNets: New architecture and transfer learning for video classification
  publication-title: arXiv 1711 08200
SSID ssj0014516
Score 2.6269796
Snippet Human action Recognition for unknown views, is a challenging task. We propose a deep view-invariant human action recognition framework, which is a novel...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3835
SubjectTerms Algorithms
Computer architecture
Datasets
Dynamics
Human action recognition
Human activity recognition
Human motion
human pose model
Image recognition
Invariants
late fusion
Shape
Shape recognition
spatial temporal dynamics
Streaming media
Trajectory
Videos
Title View-Invariant Deep Architecture for Human Action Recognition Using Two-Stream Motion and Shape Temporal Dynamics
URI https://ieeexplore.ieee.org/document/8960517
https://www.ncbi.nlm.nih.gov/pubmed/31944975
https://www.proquest.com/docview/2349126442
https://www.proquest.com/docview/2341622439
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9te0DjgcHGR2FDRuIFCbdJHDvxY8U2bUhFCHVob5HtXLSJLe3Wlmn76zk7H6oQIN6sxLGd_M7x73znO4D3nvVaTATHzEhO-obhVlUlz6xSqY2rMgtnqyZf1MlZ-vlcnm_Ax_4sDCIG5zMc-mKw5Zczt_JbZaOc6LaMs03YJMWtOavVWwx8wtlg2ZQZz4j2dybJSI-mp19JEUyiYaKVpN_vNjwiwUtT7Z0L11ajkF7l70wzrDjHOzDpxto4mvwYrpZ26B5-C-P4vy_zFJ601JONG1l5BhtY78JOS0NZO8kXu_B4LUbhHtx8v8Q7flr_JKWaUGCHiHM2XjM_MKK9LNgC2DgckmDfOqckKgeXBDa9m3Fv_zbXbBLSBjFTU5cXZo5s2gTHumKH97W5vnSL53B2fDT9dMLbPA3c0RK45BV9_NxJJypMXWRKUaUuLzMrTFw5uqSMcFpZIXx4OeUMxkZUMs-SCnOXSyVewFY9q_EVMEKJCJzVLnFRalKpldfQfFQzgdoYOYBRh1fh2iDmPpfGVRGUmUgXBHbhwS5asAfwoX9i3gTw-EfdPY9TX6-FaAD7nUgU7QxfFIlIdezZZDKAd_1tmpve4GJqnK1CnVgRRxLU8stGlPq2Owl8_ec-38C2H1mz2bMPW8vbFR4Q_Vnat0HufwHkB_4F
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIcF4YLANKAwwEi9IuE3ij8SPFWNqYZ0QytDeIttxxMSWFtoywV_P2flQhQDxZiWO7eTu4t_5vgBeetRrXMKoS7WgqG9oamRV0tRIyU1clWmIrZqdyskZf3cuzrfgdR8L45wLzmdu6JvBll_O7doflY0yhNsiTm_ATdz3RdxEa_U2A19yNtg2RUpTBP6dUTJSo3z6AVXBJBomSgr8Ae_ALWQ9zpV3L9zYj0KBlb9jzbDnHO_CrFtt42ryZbhemaH9-Vsix_99nXtwtwWfZNxwy33YcvUe7LZAlLRivtyDOxtZCvfh66cLd02n9XdUq5EO5Mi5BRlvGCAIAl8SrAFkHMIkyMfOLQnbwSmB5Ndz6i3g-orMQuEgomuc8rNeOJI36bEuydGPWl9d2OUBnB2_zd9MaFupgVrcBFe0wo-fWWFZ5biNdMkqbrMyNUzHlcVLUjOrpGHMJ5iTVrtYs0pkaVK5zGZCsgewXc9r9wgIUgkhnFE2sRHXXCjpdTSf14w5pbUYwKijV2HbNOa-msZlEdSZSBVI7MITu2iJPYBX_ROLJoXHP_ruezr1_VoSDeCwY4milfFlkTCuYo8nkwG86G-jdHqTi67dfB36xBJREsORHzas1I_dceDjP8_5HG5P8tlJcTI9ff8Edvwqm6OfQ9hefVu7pwiGVuZZkIFfSNsBXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=View-Invariant+Deep+Architecture+for+Human+Action+Recognition+Using+Two-Stream+Motion+and+Shape+Temporal+Dynamics&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Dhiman%2C+Chhavi&rft.au=Vishwakarma%2C+Dinesh+Kumar&rft.date=2020-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=29&rft.spage=3835&rft.epage=3844&rft_id=info:doi/10.1109%2FTIP.2020.2965299&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2020_2965299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon