Crowd intelligence in AI 2.0 era

The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of information technology & electronic engineering Vol. 18; no. 1; pp. 15 - 43
Main Authors Li, Wei, Wu, Wen-jun, Wang, Huai-min, Cheng, Xue-qi, Chen, Hua-jun, Zhou, Zhi-hua, Ding, Rong
Format Journal Article
LanguageEnglish
Published Hangzhou Zhejiang University Press 2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-tooffline(O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.
AbstractList The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-tooffline(O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.
The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence (AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-to-offline (O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.
Author Wei LI Wen-jun WU Huai-min WANG Xue-qi CHENG Hua-jun CHEN Zhi-hua ZHOU Rong DING
AuthorAffiliation State Key Laboratory of Software Development, Beihang University, Beijing 100191, China National Laboratory for Parallel and Distributed Processing, College of Computer, National University of Defense Technology, Changsha 410073, China Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Author_xml – sequence: 1
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: State Key Laboratory of Software Development, Beihang University
– sequence: 2
  givenname: Wen-jun
  surname: Wu
  fullname: Wu, Wen-jun
  email: wwj@nlsde.buaa.edu.cn
  organization: State Key Laboratory of Software Development, Beihang University
– sequence: 3
  givenname: Huai-min
  surname: Wang
  fullname: Wang, Huai-min
  organization: National Laboratory for Parallel and Distributed Processing, College of Computer, National University of Defense Technology
– sequence: 4
  givenname: Xue-qi
  surname: Cheng
  fullname: Cheng, Xue-qi
  organization: Institute of Computing Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Hua-jun
  surname: Chen
  fullname: Chen, Hua-jun
  organization: College of Computer Science and Technology, Zhejiang University
– sequence: 6
  givenname: Zhi-hua
  surname: Zhou
  fullname: Zhou, Zhi-hua
  organization: National Key Laboratory for Novel Software Technology, Nanjing University
– sequence: 7
  givenname: Rong
  surname: Ding
  fullname: Ding, Rong
  organization: National Key Laboratory for Novel Software Technology, Nanjing University
BookMark eNp1kEtLAzEUhYNUsNYu3Q-6njG5eUyyLKXVQsFNXYdpJqlTxkybTBH_vdFWBaGr--A791zONRr4zluEbgkuiKDkYb5YzWapxURydYGGgBXPFVA8-OmJZFdoHOMWY0wEUaWSQ5RNQ_deZ43vbds2G-uNTUM2WWRQ4MyG6gZduqqNdnyqI_Qyn62mT_ny-XExnSxzwwjtc1uvnTRAqSIWEyipKvm6xgqwqzGzHJzjjotSulKmFVdAzFowIVVtwLKKjtD98e4udPuDjb3edofgk6WG9HoJDIRIFD1SJnQxBuu0afqqbzrfh6ppNcH6Kw39nYY-pZFU-T_VLjRvVfg4yxdHPibOb2z4--Wc4O5k8Nr5zT5pfh1ESUAxAEI_Ab71eNI
CitedBy_id crossref_primary_10_3390_resources9090113
crossref_primary_10_1080_17452007_2025_2478021
crossref_primary_10_1177_1687814019833882
crossref_primary_10_3390_su142114148
crossref_primary_10_15388_Im_2020_88_36
crossref_primary_10_1016_j_knosys_2019_105201
crossref_primary_10_12677_ass_2024_137573
crossref_primary_10_1109_TSC_2023_3292498
crossref_primary_10_1631_FITEE_1710000
crossref_primary_10_1631_FITEE_2300459
crossref_primary_10_1016_j_eng_2020_07_017
crossref_primary_10_1016_j_jbusres_2021_11_027
crossref_primary_10_1109_TCSS_2021_3109143
crossref_primary_10_1007_s00170_018_2856_2
crossref_primary_10_1360_SST_2021_0370
crossref_primary_10_1109_TMC_2022_3157603
crossref_primary_10_1007_s42486_023_00126_9
crossref_primary_10_1109_ACCESS_2021_3060457
crossref_primary_10_1109_TCYB_2022_3224169
crossref_primary_10_1007_s42452_019_1722_7
crossref_primary_10_1016_j_engappai_2023_106376
crossref_primary_10_1109_ACCESS_2024_3365550
crossref_primary_10_1145_3630258
crossref_primary_10_1109_ACCESS_2018_2879331
crossref_primary_10_1088_1742_6596_1969_1_012019
crossref_primary_10_1007_s10845_021_01883_z
crossref_primary_10_1016_j_engappai_2019_103372
crossref_primary_10_1145_3626569
crossref_primary_10_1016_j_technovation_2023_102768
crossref_primary_10_1002_widm_1288
crossref_primary_10_1108_IJCS_01_2019_0003
crossref_primary_10_1016_j_jag_2023_103509
crossref_primary_10_1108_IJCS_01_2019_0006
crossref_primary_10_1108_IJCS_09_2020_0015
crossref_primary_10_1049_cje_2021_07_005
crossref_primary_10_1016_j_vrih_2022_06_004
crossref_primary_10_1016_j_jmsy_2024_02_010
crossref_primary_10_1631_FITEE_1700810
crossref_primary_10_1108_IJCS_07_2020_0014
crossref_primary_10_1038_s42256_020_0183_4
crossref_primary_10_1108_IJCS_03_2021_0011
crossref_primary_10_1109_JPROC_2020_3034808
crossref_primary_10_1109_JSYST_2020_2966646
crossref_primary_10_1007_s12204_019_2142_y
crossref_primary_10_1080_13504622_2018_1553234
crossref_primary_10_3390_agronomy13030947
crossref_primary_10_3390_earth2040057
crossref_primary_10_1109_JSTSP_2022_3160268
crossref_primary_10_1016_j_eng_2020_01_005
crossref_primary_10_1360_SSI_2022_0157
crossref_primary_10_1145_3583758
crossref_primary_10_3389_fpubh_2021_724779
crossref_primary_10_1007_s00170_018_3106_3
crossref_primary_10_1016_j_eng_2021_08_016
crossref_primary_10_1109_JIOT_2022_3194726
crossref_primary_10_3390_pr9061080
crossref_primary_10_1007_s00779_020_01463_7
crossref_primary_10_1016_j_eng_2019_07_015
crossref_primary_10_3934_jimo_2021045
crossref_primary_10_1360_SSI_2023_0064
crossref_primary_10_24310_innoeduca_2017_v3i2_3057
crossref_primary_10_1145_3393880
crossref_primary_10_1007_s00170_019_03593_6
crossref_primary_10_3390_su162410848
crossref_primary_10_1016_j_asoc_2020_106270
crossref_primary_10_1108_JEIM_06_2018_0132
crossref_primary_10_1007_s10479_020_03906_z
crossref_primary_10_58859_rael_v23i1_668
Cites_doi 10.14778/2350229.2350264
10.1111/j.1540-6261.1961.tb02789.x
10.1037/0022-3514.40.1.121
10.1109/TKDE.2016.2565468
10.1145/1368088.1368114
10.1016/j.jocs.2010.12.007
10.1109/TPDS.2013.190
10.1145/567793.567795
10.1109/INFOCOM.2015.7218673
10.1109/CHASE.2009.5071408
10.1109/TKDE.2016.2535242
10.1145/2594458
10.1016/j.infsof.2016.01.004
10.1145/1595696.1595715
10.1145/1924421.1924441
10.1109/TC.2015.2419658
10.1145/2047196.2047202
10.1016/S0048-7333(03)00047-7
10.1007/s11390-015-1555-9
10.1007/s12130-999-1026-0
10.14778/2350229.2350277
10.1007/s11280-015-0341-5
10.1016/J.ENG.2016.04.018
10.1007/s11432-016-5595-8
10.1111/j.1365-2966.2008.13689.x
10.14778/2994509.2994523
10.14778/2733085.2733105
10.1080/17445760.2012.686170
10.1007/s11280-015-0377-6
10.1016/j.biocon.2009.05.006
10.1007/s11704-013-2320-2
10.2200/S00371ED1V01Y201107AIM013
10.1111/j.2517-6161.1977.tb01600.x
10.1609/aaai.v26i1.8120
10.1073/pnas.1401992111
10.1109/TSE.2003.1191795
10.14778/2535568.2448943
10.1126/science.1160379
10.1109/32.544352
10.14778/2535568.2448938
10.1126/science.1248506
10.2307/2346806
ContentType Journal Article
Copyright Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.
Copyright_xml – notice: Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017
– notice: Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1631/FITEE.1601859
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
DocumentTitleAlternate Crowd intelligence in AI 2.0 era
EISSN 2095-9230
EndPage 43
ExternalDocumentID 10_1631_FITEE_1601859
671294221
GroupedDBID -EM
2KG
2RA
4.4
406
5VR
92L
96X
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ANMIH
AOCGG
ARAPS
AXYYD
BENPR
BGLVJ
BGNMA
CCEZO
CHBEP
CQIGP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
HCIFZ
IKXTQ
IWAJR
J-C
JUIAU
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
PT4
PTHSS
R-I
RLLFE
RSV
S..
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TCJ
TGT
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W92
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~WA
-SI
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEI
CCPQU
Q--
ROL
SJYHP
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c413t-edbf8c23391e01273975bd0920fd04e52ff5f5678f780fd5921cb64689dc2e4a3
IEDL.DBID BENPR
ISSN 2095-9184
IngestDate Wed Aug 13 09:57:30 EDT 2025
Tue Jul 01 03:03:17 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Fri Feb 21 02:35:18 EST 2025
Wed Feb 14 10:04:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crowdsourcing
Artificial intelligence 2.0
Human computation
TP18
Crowd intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-edbf8c23391e01273975bd0920fd04e52ff5f5678f780fd5921cb64689dc2e4a3
Notes The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-tooffline(O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.
Crowd intelligence Artificial intelligence 2.0 Crowdsourcing Human computation
33-1389/TP
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1631%2FFITEE.1601859.pdf
PQID 2918724266
PQPubID 2044401
PageCount 29
ParticipantIDs proquest_journals_2918724266
crossref_citationtrail_10_1631_FITEE_1601859
crossref_primary_10_1631_FITEE_1601859
springer_journals_10_1631_FITEE_1601859
chongqing_primary_671294221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
20170100
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Hangzhou
PublicationPlace_xml – name: Hangzhou
– name: Heidelberg
PublicationTitle Frontiers of information technology & electronic engineering
PublicationTitleAbbrev Frontiers Inf Technol Electronic Eng
PublicationTitleAlternate Frontiers of Information Technology & Electronic Engineering
PublicationYear 2017
Publisher Zhejiang University Press
Springer Nature B.V
Publisher_xml – name: Zhejiang University Press
– name: Springer Nature B.V
References ShenHWBarabásiALCollective credit allocation in sciencePNAS2014111341232512330
SubramanyamRKrishnanMSEmpirical analysis of CK metrics for object-oriented design complexity: implications for software defectsACM Trans. Softw. Eng. Meth.2003294297310
TongYXChenLChengYRMining frequent itemsets over uncertain databasesProc. VLDB Endow.201251116501661
ZhaoDLiXYMaHDHow to crowdsource tasks truthfully without sacrificing utility: online incentive mechanisms with budget constraint201412131221
KhetanAOhSAchieving budget-optimality with adaptive schemes in crowdsourcing. Advances in Neural Information Processing Systems201648444852
YanYFungGMRosalesRActive learning from crowds201111611168
TeodoroROzturkPNaamanMThe motivations and experiences of the on-demand mobile workforce2014236247
LawEAhnLHuman computationSynth. Lect. Artif. Intell. Mach. Learn.2011531121
HoffmanMLIs altruism part of human nature?J. Personal. Soc. Psychol.1981401121137
LiuQPengJIhlerATVariational inference for crowdsourcing. Advances in Neural Information Processing Systems2012692700
ZhuYZhangQZhuHTowards truthful mechanisms for mobile crowdsourcing with dynamic smartphones20141120
von AhnLMaurerBMcMillenCreCAPTCHA: human-based character recognition via web security measuresScience200832158951465146824521481226.68125
BasiliVRBriandLCMeloWLA validation of object-oriented design metrics as quality indicatorsIEEE Trans. Softw. Eng.19962210751761
Gao, L., Hou, F., Huang, J.W., 2015. Providing long-term participation incentive in participatory sensing. IEEE Conf. on Computer Communications, p.2803–2811. http://dx.doi.org/10.1109/INFOCOM.2015.7218673
MaslowAHFragerRFadimanJMotivation and Personality1970New York, USAHarper & Row
SheJYTongYXChenL. Utility-aware social event-participant planning201516291643
HertelGNiednerSHerrmannSMotivation of software developers in open source projects: an Internet-based survey of contributors to the Linux kernelRes. Polic200332711591177
GousiosGZaidmanAStoreyMAWork practices and challenges in pull-based development: the integrator’s perspective2015358368
WangHMYinGLiXLiWHuhnsMNTsaiWTTRUSTIE: a software development platform for crowdsourcingCrowd-sourcing2015Berlin, GermanySpringer Berlin Heidelberg165190
NagappanNBallTUse of relative code churn measures to predict system defect density2005284292
JaimesLGVergara-LaurensILabradorMAA location-based incentive mechanism for participatory sensing systems with budget constraints2012103108
DifallahDEDemartiniGCudré-MaurouxGPPick-a-crowd: tell me what you like, and I’ll tell you what to do2013367374
ZhangYChenXZhouDSpectral methods meet EM: a provably optimal algorithm for crowdsourcingAdvances in Neural Information Processing Systems201412601268
Ho, C.J., Vaughan, J.W., 2012. Online task assignment in crowdsourcing markets. Proc. 26th AAAI Conf. on Artificial Intelligence, p.45–51.
RahmanFDevanbuPTHow, and why, process metrics are better2013432441
GousiosGPinzgerMDeursenAAn exploratory study of the pull-based software development model2014345355
RahmanFDevanbuPTOwnership, experience and defects: a fine-grained study of authorship2011491500
WuWJTsaiWTLiWAn evaluation framework for software crowdsourcingFront. Comput. Sci.2013756947093118339
ZhangCJChenLTongYCleaning uncertain data with a noisy crowd2015617
Jain, S., Gujar, S., Bhat, S., et al., 2014. An incentive compatible multi-armed-bandit crowdsourcing mechanism with quality assurance. ePrint Archive, arXiv:1406.7157.
Kittur, A., Smus, B., Khamkar, S., et al., 2011. Crowdforge: crowdsourcing complex work. Proc. 24th Annual ACM Symp. on User Interface Software and Technology, p.43–52. http://dx.doi.org/10.1145/2047196.2047202
WelinderPBransonSPeronaPThe multidimensional wisdom of crowdsAdvances in Neural Information Processing Systems201024242432
RogersEMDiffusion of Innovations2010New York, USASimon and Schuster
TsayJDabbishLHerbslebJDLet’s talk about it: evaluating contributions through discussion in GitHub2014144154
WangWZhouZHCrowdsourcing label quality: a theoretical studySci. China Inform. Sci.20155811112
Borne, K.D., Zooniverse Team, 2011. The Zooniverse: a framework for knowledge discovery from citizen science data. American Geophysical Union Fall Meeting.
Ok, J., Oh, S., Shin, J., et al., 2016. Optimality of belief propagation for crowd-sourced classification. ePrint Archive, arXiv:1602.03619.
Thebault-SpiekerJTerveenLGHechtBAvoiding the south side and the suburbs: the geography of mobile crowdsourcing markets2015265275
WangLZhouZHCost-saving effect of crowd-sourcing learning201621112117
TamrawiANguyenTTAl-KofahiJMFuzzy set and cache-based approach for bug triaging2011365375
TongYXCaoCCZhangCJCrowd-Cleaner: data cleaning for multi-version data on the web via crowdsourcing201411821185
Gao, C., Zhou, D.Y., 2013. Minimax optimal convergence rates for estimating ground truth from crowdsourced labels. ePrint Archive, arXiv:1310.5764.
VickreyWCounterspeculation, auctions, and competitive sealed tenders.J. Finan.19611618373363406
SheJYTongYXChenLConflict-aware event-participant arrangement2015735746
VasilescuBYuYWangHQuality and productivity outcomes relating to continuous integration in GitHub2015805816
YangDJXueGLFangXCrowd-sourcing to smartphones: incentive mechanism design for mobile phone sensing2012173184
RigbyPCGermanDMCowenLPeer review on open-source software projects: parameters, statistical models, and theoryACM Trans. Softw. Eng. Meth.201423435
CaoCCSheJYTongYXWhom to ask? Jury selection for decision making tasks on micro-blog servicesProc. VLDB Endow.201251114951506
LazerDKennedyRKingGThe parable of Google flu: traps in big data analysisScience2014343616712031205
AbrahamIAlonsoOKandylasVAdaptive crowdsourcing algorithms for the bandit survey problem2013882910
WauthierFLJordanMIBayesian bias mitigation for crowdsourcingAdvances in Neural Information Processing Systems201118001808
ChenXLinQHZhouDYStatistical decision making for optimal budget al location in crowd labelingJ. Mach. Learn. Res.201516146331722706472978
LintottCJSchawinskiKSlosarAGalaxy Zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky surveyMonth. Not. R. Astronom. Soc2008389311791189
CastanedaOFHierarchy in Meritocracy: Community Building and Code Production in the Apache Software Foundation2010Delft, NetherlandsMS Thesis, Delft University of Technology
HoCJJabbariSVaughanJWAdaptive task assignment for crowdsourced classification2013534542
LuoTTanHPXiaLRProfit-maximizing incentive for participatory sensing2014127135
WangDAminMTALiSUsing humans as sensors: an estimation-theoretic perspective20143546
ZhongJHTangKZhouZHActive learning from crowds with unsure option201510611067
BurkeJAEstrinDHansenMParticipatory sensing2006117134
RaykarVCYuSZhaoLHLearning from crowdsJ. Mach. Learn. Res.201011(Apr)129713222645453
TongYXChenLSheJYMining frequent itemsets in correlated uncertain databasesJ. Comput. Sci. Technol.20153046967123409622
FengZNZhuYMZhangQTrac: truthful auction for location-aware collaborative sensing in mobile crowdsourcing201412311239
ChenXLinQHZhouDYOptimistic knowledge gradient policy for optimal budget al location in crowdsourcing20136472
NakakojiKYamamotoYNishinakaYEvolution patterns of open-source software systems and communities20027685
SheJYTongYXChenLConflict-aware event-participant arrangement and its variant for online settingIEEE Trans. Knowl. Data Eng.201628922812295
BirdCPattisonDde SouzaRLatent social structure in open source projects20082435
WhitehillJWuTBergsmaJWhose vote should count more: optimal integration of labels from labelers of unknown expertiseAdvances in Neural Information Processing Systems200920352043
TongYXSheJYDingBLOnline mobile micro-task allocation in spatial crowdsourcing20164960
HarsAOuSWorking for free? Motivations of participating in open source projects200119
TongYXChenLDingBLDiscovering threshold-based frequent closed itemsets over probabilistic data2012270281
Dekel, O., Shamir, O., 2009. Vox Populi: collecting highquality labels from a crowd. Proc. 22nd Conf. on Learning Theory.
BallesterosJCarbunarBRahmanMTowards safe cities: a mobile and social networking approachIEEE Trans. Parall. Distr. Syst201425924512462
DongXLSahaBSrivastavaDLess is more: selecting sources wisely for integrationProc. VLDB Endow.2012623748
MavridisPGross-AmblardDMiklósZUsing hierarchical skills for optimized task assignment in knowledge-intensive crowdsourcing2016843853
TsayJDabbishLHerbslebJDInfluence of social and technical factors for evaluating contribution in GitHub2014356366
ZhouDBasuSMaoYLearning from the wisdom of crowds by minimax entropyAdvances in Neural Information Processing Systems201221952203
BirdCNagappanNMurphyBDon’t touch my code!: examining the effects of ownership on software quality2011414
ShahNBZhouDDouble or nothing: multiplicative incentive mechanisms for crowdsourcingAdvances in Neural Information Processing Systems201519
ZhangCJChenLTongYXMaC: a probabilistic framework for query answering with machinecrowd collaboration20141120
TongYXCaoCCChenLTCS: efficient topic discovery over crowd-oriented service data2014861870
Fowler, G., Schectman, J., 2013. Citizen surveillance helps officials put pieces together. The Wall Street Journal, April 17. http://www.wsj.com/articles/SB10001424127887324763404578429220091342796
LeeJSHohBSell your experiences: a market mechanism based incentive for participatory sensing20106068
ShahNBZhouDNo oops, you won’t do it again: mechanisms for self-correction in crowdsourcing2016110
BonabeauEDecisions 2.0: the power of collective intelligenceMIT Sloan Manag. Rev.20095024552
MaloneTWLaubacherRDellarocasCHarnessing Crowds: Mapping the Genome of Collective Intelligence2009MA, USAMassachusetts Institute of Technology
DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ. R. Stat. Soc. Ser. B19773911385015370364.62022
KrontirisIAlbersAMonetary incentives in participatory sensing using multi-attributive auctionsInt. J. Parall. Emerg. Distr. Syst.2012274317336
Erenkrantz, J.R., Taylor, R.N, 2003. Supporting D
B Vasilescu (494_CR115) 2015
Y Zhang (494_CR138) 2014
A Hars (494_CR36) 2001
494_CR43
YW Ye (494_CR131) 2003
494_CR44
DR Karger (494_CR45) 2011
D Lazer (494_CR51) 2014; 343
J Tsay (494_CR113) 2014
Y Zhu (494_CR143) 2014
I Krontiris (494_CR49) 2012; 27
I Abraham (494_CR1) 2013
F Rahman (494_CR74) 2011
L Tran-Thanh (494_CR112) 2012
494_CR39
WJ Wu (494_CR127) 2013; 7
CC Cao (494_CR13) 2013
X Chen (494_CR15) 2013
FL Wauthier (494_CR124) 2011
EM Rogers (494_CR82) 2010
A Mockus (494_CR64) 2002; 11
YX Tong (494_CR108) 2016
T Sakaki (494_CR83) 2010
P Welinder (494_CR125) 2010
K Farkas (494_CR26) 2014
C Bird (494_CR7) 2011
X Chen (494_CR16) 2015; 16
AE Hassan (494_CR37) 2009
NB Shah (494_CR85) 2016
494_CR54
YX Tong (494_CR109) 2016; 9
JY She (494_CR87) 2015
JH Zhong (494_CR140) 2015
C Bird (494_CR5) 2006
N Nagappan (494_CR66) 2005
YX Tong (494_CR105) 2015; 30
CJ Lintott (494_CR56) 2008; 389
494_CR47
J Ballesteros (494_CR2) 2014; 25
D Wang (494_CR118) 2013
YX Tong (494_CR111) 2017; 28
VC Raykar (494_CR77) 2012; 13
Q Liu (494_CR57) 2012
CAL Dantec (494_CR17) 2015
494_CR65
R Teodoro (494_CR97) 2014
AP Dawid (494_CR18) 1979; 28
P Mavridis (494_CR62) 2016
ZN Feng (494_CR27) 2014
AH Maslow (494_CR61) 1970
DJ Yang (494_CR130) 2012
J Tsay (494_CR114) 2014
J Bollen (494_CR8) 2011; 2
R Subramanyam (494_CR93) 2003; 29
YX Tong (494_CR107) 2016; 19
D Zhou (494_CR141) 2012
W Wang (494_CR123) 2015; 58
P Thongtanunam (494_CR99) 2015
CC Cao (494_CR12) 2012; 5
PC Rigby (494_CR81) 2014; 23
JA Burke (494_CR11) 2006
X Li (494_CR55) 2012; 6
J Whitehill (494_CR126) 2009
CJ Zhang (494_CR136) 2014; 7
YH Pan (494_CR70) 2016; 2
494_CR73
YX Tong (494_CR102) 2012; 5
C Bird (494_CR6) 2008
LG Jaimes (494_CR42) 2012
494_CR68
RK Rana (494_CR76) 2010
HM Wang (494_CR120) 2015
NB Shah (494_CR84) 2015
YX Tong (494_CR106) 2015
CJ Ho (494_CR40) 2013
Y Yan (494_CR128) 2011
Y Yu (494_CR133) 2016; 59
K Nakakoji (494_CR67) 2002
DE Difallah (494_CR22) 2013
A Khetan (494_CR46) 2016
494_CR86
OF Castaneda (494_CR14) 2010
YX Tong (494_CR104) 2014
CJ Zhang (494_CR135) 2014
W Vickrey (494_CR116) 1961; 16
P Bhattacharya (494_CR4) 2010
JS Lee (494_CR52) 2010
G Hertel (494_CR38) 2003; 32
E Raymond (494_CR80) 1999; 12
D Zhao (494_CR139) 2014
DW Gao (494_CR30) 2016; 9658
494_CR91
DJ Yang (494_CR129) 2013
E Bonabeau (494_CR9) 2009; 50
Y Yu (494_CR134) 2016; 74
YX Tong (494_CR101) 2012
494_CR10
L Mamykina (494_CR60) 2011
T Luo (494_CR58) 2014
L Wang (494_CR122) 2016
HW Shen (494_CR90) 2014; 111
494_CR92
AJ Quinn (494_CR72) 2011
R Meng (494_CR63) 2015
F Rahman (494_CR75) 2013
BL Sullivan (494_CR94) 2009; 142
A Tamrawi (494_CR95) 2011
J Thebault-Spieker (494_CR98) 2015
JY She (494_CR88) 2015
WR Ouyang (494_CR69) 2015
494_CR20
YX Tong (494_CR110) 2016; 19
JY She (494_CR89) 2016; 28
Y Yu (494_CR132) 2014
RA Ghosh (494_CR32) 2005
G Gousios (494_CR33) 2014
494_CR19
K Han (494_CR35) 2016; 65
L Pierre (494_CR71) 1997
ML Hoffman (494_CR41) 1981; 40
JN Wang (494_CR121) 2013
CJ Zhang (494_CR137) 2015
AP Dempster (494_CR21) 1977; 39
GL Li (494_CR53) 2016; 28
VR Basili (494_CR3) 1996; 22
JC Tang (494_CR96) 2011; 54
VC Raykar (494_CR79) 2010; 11
G Gousios (494_CR34) 2015
YX Tong (494_CR103) 2014
T Tian (494_CR100) 2015
494_CR31
VC Raykar (494_CR78) 2009
D Wang (494_CR119) 2014
Y Zhou (494_CR142) 2014
494_CR29
TW Malone (494_CR59) 2009
494_CR28
494_CR25
L Ahn von (494_CR117) 2008; 321
E Law (494_CR50) 2011; 5
DE Difallah (494_CR23) 2016
V Krishna (494_CR48) 2009
XL Dong (494_CR24) 2012; 6
References_xml – reference: TongYXCaoCCZhangCJCrowd-Cleaner: data cleaning for multi-version data on the web via crowdsourcing201411821185
– reference: BirdCPattisonDde SouzaRLatent social structure in open source projects20082435
– reference: WangWZhouZHCrowdsourcing label quality: a theoretical studySci. China Inform. Sci.20155811112
– reference: YuYWangHMYinGReviewer recommendation for pull-requests in GitHub: what can we learn from code review and bug assignment?Imform. Softw. Technol.201674204218
– reference: Gao, L., Hou, F., Huang, J.W., 2015. Providing long-term participation incentive in participatory sensing. IEEE Conf. on Computer Communications, p.2803–2811. http://dx.doi.org/10.1109/INFOCOM.2015.7218673
– reference: Gao, C., Zhou, D.Y., 2013. Minimax optimal convergence rates for estimating ground truth from crowdsourced labels. ePrint Archive, arXiv:1310.5764.
– reference: GousiosGPinzgerMDeursenAAn exploratory study of the pull-based software development model2014345355
– reference: LuoTTanHPXiaLRProfit-maximizing incentive for participatory sensing2014127135
– reference: Raban, D.R., Harper, F.M., 2008. Motivations for Answering Questions Online. http://www.researchgate.net/publication/241053908
– reference: Shah, N.B., Zhou, D., Peres, Y., 2015. Approval voting and incentives in crowdsourcing. ePrint Archive, arXiv:1502.05696.
– reference: FarkasKNagyAZTomñsTParticipatory sensing based real-time public transport information service2014141144
– reference: TianTZhuJMax-margin majority voting for learning from crowdsAdvances in Neural Information Processing Systems201516211629
– reference: MavridisPGross-AmblardDMiklósZUsing hierarchical skills for optimized task assignment in knowledge-intensive crowdsourcing2016843853
– reference: OuyangWRKaplanLMMartinPDebiasing crowdsourced quantitative characteristics in local businesses and services2015190201
– reference: PanYHHeading toward artificial intelligence 2.0Engineering201624409413
– reference: ZhangCJTongYXChenLWhere to: crowdaided path selectionProc. VLDB Endow.201471120052016
– reference: RogersEMDiffusion of Innovations2010New York, USASimon and Schuster
– reference: Moser, R., Pedrycz, W., Succi, G., 2008. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction. Proc. 30th Int. Conf. on Software Engineering, p.181–190. http://dx.doi.org/10.1145/1368088.1368114
– reference: TongYXCaoCCChenLTCS: efficient topic discovery over crowd-oriented service data2014861870
– reference: KrontirisIAlbersAMonetary incentives in participatory sensing using multi-attributive auctionsInt. J. Parall. Emerg. Distr. Syst.2012274317336
– reference: Ok, J., Oh, S., Shin, J., et al., 2016. Optimality of belief propagation for crowd-sourced classification. ePrint Archive, arXiv:1602.03619.
– reference: WuWJTsaiWTLiWAn evaluation framework for software crowdsourcingFront. Comput. Sci.2013756947093118339
– reference: ZhongJHTangKZhouZHActive learning from crowds with unsure option201510611067
– reference: RaykarVCYuSEliminating spammers and ranking annotators for crowdsourced labeling tasksJ. Mach. Learn. Res.201213(Feb)49151829137071283.68300
– reference: YangDJFangXXueGLTruthful incentive mechanisms for k-anonymity location privacy201329943002
– reference: Borne, K.D., Zooniverse Team, 2011. The Zooniverse: a framework for knowledge discovery from citizen science data. American Geophysical Union Fall Meeting.
– reference: CaoCCSheJYTongYXWhom to ask? Jury selection for decision making tasks on micro-blog servicesProc. VLDB Endow.201251114951506
– reference: SubramanyamRKrishnanMSEmpirical analysis of CK metrics for object-oriented design complexity: implications for software defectsACM Trans. Softw. Eng. Meth.2003294297310
– reference: RaykarVCYuSZhaoLHLearning from crowdsJ. Mach. Learn. Res.201011(Apr)129713222645453
– reference: Li, H.W., Yu, B., 2014. Error rate bounds and iterative weighted majority voting for crowdsourcing. ePrint Archive, arXiv:1411.4086.
– reference: CaoCCTongYXChenLWisemarket: a new paradigm for managing wisdom of online social users2013455463
– reference: LawEAhnLHuman computationSynth. Lect. Artif. Intell. Mach. Learn.2011531121
– reference: NagappanNBallTUse of relative code churn measures to predict system defect density2005284292
– reference: DifallahDEDemartiniGCudré-MaurouxGPScheduling human intelligence tasks in multi-tenant crowd-powered systems2016855865
– reference: FengZNZhuYMZhangQTrac: truthful auction for location-aware collaborative sensing in mobile crowdsourcing201412311239
– reference: MaslowAHFragerRFadimanJMotivation and Personality1970New York, USAHarper & Row
– reference: Erenkrantz, J.R., Taylor, R.N, 2003. Supporting Distributed and Decentralized Projects: Drawing Lessons From the Open Source Community. ISR Technical Report No. UCI-ISR-03–4, Institute for Software Research, University of California, Irvine, USA.
– reference: JaimesLGVergara-LaurensILabradorMAA location-based incentive mechanism for participatory sensing systems with budget constraints2012103108
– reference: von AhnLMaurerBMcMillenCreCAPTCHA: human-based character recognition via web security measuresScience200832158951465146824521481226.68125
– reference: TongYXZhangXFChenLTracking frequent items over distributed probabilistic dataWorld Wide Web2016194579604
– reference: BurkeJAEstrinDHansenMParticipatory sensing2006117134
– reference: TongYXChenLDingBLDiscovering threshold-based frequent closed itemsets over probabilistic data2012270281
– reference: LiGLWangJNZhengYDCrowd-sourced data management: a surveyIEEE Trans. Knowl. Data Eng201628922962319
– reference: HanKZhangCLuoJTruthful scheduling mechanisms for powering mobile crowdsensingIEEE Trans. Comput.201665129430734464681360.68271
– reference: Dekel, O., Shamir, O., 2009. Vox Populi: collecting highquality labels from a crowd. Proc. 22nd Conf. on Learning Theory.
– reference: WauthierFLJordanMIBayesian bias mitigation for crowdsourcingAdvances in Neural Information Processing Systems201118001808
– reference: Subramanian, A., Kanth, G.S., Vaze, R., 2013. Offline and online incentive mechanism design for smart-phone crowd-sourcing. ePrint Archive, arXiv:1310.1746.
– reference: WelinderPBransonSPeronaPThe multidimensional wisdom of crowdsAdvances in Neural Information Processing Systems201024242432
– reference: GousiosGZaidmanAStoreyMAWork practices and challenges in pull-based development: the integrator’s perspective2015358368
– reference: RaymondEThe cathedral and the bazaarKnowl. Technol. Polic.19991232349
– reference: ZhaoDLiXYMaHDHow to crowdsource tasks truthfully without sacrificing utility: online incentive mechanisms with budget constraint201412131221
– reference: RaykarVCYuSZhaoLHSupervised learning from multiple experts: whom to trust when everyone lies a bit2009889896
– reference: ShahNBZhouDDouble or nothing: multiplicative incentive mechanisms for crowdsourcingAdvances in Neural Information Processing Systems201519
– reference: SheJYTongYXChenLConflict-aware event-participant arrangement2015735746
– reference: ZhuYZhangQZhuHTowards truthful mechanisms for mobile crowdsourcing with dynamic smartphones20141120
– reference: TongYXSheJYMengRBottleneck-aware arrangement over event-based social networks: the maxmin approachWorld Wide Web201619611511177
– reference: ZhangCJChenLTongYXMaC: a probabilistic framework for query answering with machinecrowd collaboration20141120
– reference: TamrawiANguyenTTAl-KofahiJMFuzzy set and cache-based approach for bug triaging2011365375
– reference: RahmanFDevanbuPTHow, and why, process metrics are better2013432441
– reference: SheJYTongYXChenLConflict-aware event-participant arrangement and its variant for online settingIEEE Trans. Knowl. Data Eng.201628922812295
– reference: RigbyPCGermanDMCowenLPeer review on open-source software projects: parameters, statistical models, and theoryACM Trans. Softw. Eng. Meth.201423435
– reference: TongYXChenLSheJYMining frequent itemsets in correlated uncertain databasesJ. Comput. Sci. Technol.20153046967123409622
– reference: HassanAEPredicting faults using the complexity of code changes20097888
– reference: TangJCCebrianMGiacobeNAReflecting on the DARPA red balloon challengeCommun. ACM20115447885
– reference: TsayJDabbishLHerbslebJDInfluence of social and technical factors for evaluating contribution in GitHub2014356366
– reference: ThongtanunamPTantithamthavornCKulaRGWho should review my code? A file locationbased code-reviewer recommendation approach for modern code review2015141150
– reference: BollenJMaoHNZengXJTwitter mood predicts the stock marketJ. Comput. Sci.20112118
– reference: KargerDROhSShahDIterative learning for reliable crowdsourcing systems. Advances in Neural Information Processing Systems201119531961
– reference: LintottCJSchawinskiKSlosarAGalaxy Zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky surveyMonth. Not. R. Astronom. Soc2008389311791189
– reference: HertelGNiednerSHerrmannSMotivation of software developers in open source projects: an Internet-based survey of contributors to the Linux kernelRes. Polic200332711591177
– reference: LiXDongXLLyonsKTruth finding on the deep Web: is the problem solved?Proc. VLDB Endow20126297108
– reference: CastanedaOFHierarchy in Meritocracy: Community Building and Code Production in the Apache Software Foundation2010Delft, NetherlandsMS Thesis, Delft University of Technology
– reference: GaoDWTongYXSheJYTop-k team recommendation in spatial crowdsourcingLNCS20169658191204
– reference: WangLZhouZHCost-saving effect of crowd-sourcing learning201621112117
– reference: SullivanBLWoodCLIliffMJeBird: a citizen-based bird observation network in the biological sciencesBiol. Consev20091421022822292
– reference: MengRTongYXChenLCrowd TC: crowdsourced taxonomy construction2015913918
– reference: RanaRKChouCTKanhereSSEarphone: an end-to-end participatory urban noise mapping system2010105116
– reference: MaloneTWLaubacherRDellarocasCHarnessing Crowds: Mapping the Genome of Collective Intelligence2009MA, USAMassachusetts Institute of Technology
– reference: Jain, S., Gujar, S., Bhat, S., et al., 2014. An incentive compatible multi-armed-bandit crowdsourcing mechanism with quality assurance. ePrint Archive, arXiv:1406.7157.
– reference: ZhangYChenXZhouDSpectral methods meet EM: a provably optimal algorithm for crowdsourcingAdvances in Neural Information Processing Systems201412601268
– reference: TongYXYuanYChengYRA survey of spatiotemporal crowdsourced data management techniquesJ. Softw.20172813558(in Chinese)
– reference: WangHMYinGLiXLiWHuhnsMNTsaiWTTRUSTIE: a software development platform for crowdsourcingCrowd-sourcing2015Berlin, GermanySpringer Berlin Heidelberg165190
– reference: VasilescuBYuYWangHQuality and productivity outcomes relating to continuous integration in GitHub2015805816
– reference: BhattacharyaPNeamtiuIFine-grained incremental learning and multi-feature tossing graphs to improve bug triaging2010110
– reference: DawidAPSkeneAMMaximum likelihood estimation of observer error-rates using the EM algorithmAppl. Statist.19792812028
– reference: MamykinaLManoimBMittalMDesign lessons from the fastest Q&A site in the west201128572866
– reference: MockusAFieldingRTHerbslebJDTwo case studies of open source software development: Apache and MozillaACM Trans. Softw. Eng. Meth2002113309346
– reference: TsayJDabbishLHerbslebJDLet’s talk about it: evaluating contributions through discussion in GitHub2014144154
– reference: SakakiTOkazakiMMatsuoYEarthquake shakes Twitter users: real-time event detection by social sensors2010851860
– reference: QuinnAJBedersonBBHuman computation: a survey and taxonomy of a growing field201114031412
– reference: TongYXMengRSheJYOn bottleneck-aware arrangement for event-based social networks2015216223
– reference: BonabeauEDecisions 2.0: the power of collective intelligenceMIT Sloan Manag. Rev.20095024552
– reference: Jeong, G., Kim, S., Zimmermann, T., 2009. Improving bug triage with bug tossing graphs. Proc. 7th Joint Meeting of the European Software Engineering Conf. and the ACM SIGSOFT Symp. on the Foundations of Software Engineering, p.111–120. http://dx.doi.org/10.1145/1595696.1595715
– reference: HarsAOuSWorking for free? Motivations of participating in open source projects200119
– reference: ChenXLinQHZhouDYStatistical decision making for optimal budget al location in crowd labelingJ. Mach. Learn. Res.201516146331722706472978
– reference: LeeJSHohBSell your experiences: a market mechanism based incentive for participatory sensing20106068
– reference: TongYXSheJYDingBLOnline minimum matching in real-time spatial data: experiments and analysisProc. VLDB Endow.201691210531064
– reference: HoCJJabbariSVaughanJWAdaptive task assignment for crowdsourced classification2013534542
– reference: TongYXChenLChengYRMining frequent itemsets over uncertain databasesProc. VLDB Endow.201251116501661
– reference: Tran-ThanhLSteinSRogersAEfficient crowdsourcing of unknown experts using multi-armed bandits20127687731327.90096
– reference: BirdCGourleyADevanbuPMining email social networks2006137143
– reference: Ho, C.J., Vaughan, J.W., 2012. Online task assignment in crowdsourcing markets. Proc. 26th AAAI Conf. on Artificial Intelligence, p.45–51.
– reference: YangDJXueGLFangXCrowd-sourcing to smartphones: incentive mechanism design for mobile phone sensing2012173184
– reference: BasiliVRBriandLCMeloWLA validation of object-oriented design metrics as quality indicatorsIEEE Trans. Softw. Eng.19962210751761
– reference: HoffmanMLIs altruism part of human nature?J. Personal. Soc. Psychol.1981401121137
– reference: Thebault-SpiekerJTerveenLGHechtBAvoiding the south side and the suburbs: the geography of mobile crowdsourcing markets2015265275
– reference: ChenXLinQHZhouDYOptimistic knowledge gradient policy for optimal budget al location in crowdsourcing20136472
– reference: DantecCALAsadMMisraAPlanning with crowdsourced data: rhetoric and representation in transportation planning201517171727
– reference: YanYFungGMRosalesRActive learning from crowds201111611168
– reference: TeodoroROzturkPNaamanMThe motivations and experiences of the on-demand mobile workforce2014236247
– reference: TongYXSheJYDingBLOnline mobile micro-task allocation in spatial crowdsourcing20164960
– reference: GhoshRAUnderstanding Free Software Developers: Findings from the Floss Study2005Cambrige, USAMIT Press
– reference: RahmanFDevanbuPTOwnership, experience and defects: a fine-grained study of authorship2011491500
– reference: PierreLCollective intelligence: mankind’s emerging world in cyberspace1997Cambridge, USAPerseus Books
– reference: ZhouDBasuSMaoYLearning from the wisdom of crowds by minimax entropyAdvances in Neural Information Processing Systems201221952203
– reference: ShahNBZhouDNo oops, you won’t do it again: mechanisms for self-correction in crowdsourcing2016110
– reference: ZhouYChenXLiJOptimal PAC multiple arm identification with applications to crowdsourcing2014217225
– reference: NakakojiKYamamotoYNishinakaYEvolution patterns of open-source software systems and communities20027685
– reference: YuYYinGWangTDeterminants of pull-based development in the context of continuous integrationSci. China Inform. Sci.2016598080104
– reference: WangDAminMTALiSUsing humans as sensors: an estimation-theoretic perspective20143546
– reference: ZhangCJChenLTongYCleaning uncertain data with a noisy crowd2015617
– reference: DifallahDEDemartiniGCudré-MaurouxGPPick-a-crowd: tell me what you like, and I’ll tell you what to do2013367374
– reference: WangDAbdelzaherTFKaplanLMRecursive fact-finding: a streaming approach to truth estimation in crowdsourcing applications2013530539
– reference: ShenHWBarabásiALCollective credit allocation in sciencePNAS2014111341232512330
– reference: Smith, J.B., 1994. Collective Intelligence in Computer-Based Collaboration. CRC Press, Boca Raton, USA.
– reference: KrishnaVAuction Theory2009New York, USAAcademic Press
– reference: YuYYinGWangHExploring the patterns of social behavior in GitHub20143136
– reference: SheJYTongYXChenL. Utility-aware social event-participant planning201516291643
– reference: LazerDKennedyRKingGThe parable of Google flu: traps in big data analysisScience2014343616712031205
– reference: DongXLSahaBSrivastavaDLess is more: selecting sources wisely for integrationProc. VLDB Endow.2012623748
– reference: AbrahamIAlonsoOKandylasVAdaptive crowdsourcing algorithms for the bandit survey problem2013882910
– reference: LiuQPengJIhlerATVariational inference for crowdsourcing. Advances in Neural Information Processing Systems2012692700
– reference: BallesterosJCarbunarBRahmanMTowards safe cities: a mobile and social networking approachIEEE Trans. Parall. Distr. Syst201425924512462
– reference: YeYWKishidaKToward an understanding of the motivation of open source software developers2003419429
– reference: de Alwis, B., Sillito, J., 2009. Why are software projects moving from centralized to decentralized version control systems? Proc. ICSE Workshop on Cooperative and Human Aspects on Software Engineering, p.36–39. http://dx.doi.org/10.1109/CHASE.2009.5071408
– reference: WhitehillJWuTBergsmaJWhose vote should count more: optimal integration of labels from labelers of unknown expertiseAdvances in Neural Information Processing Systems200920352043
– reference: Fowler, G., Schectman, J., 2013. Citizen surveillance helps officials put pieces together. The Wall Street Journal, April 17. http://www.wsj.com/articles/SB10001424127887324763404578429220091342796
– reference: Kittur, A., Smus, B., Khamkar, S., et al., 2011. Crowdforge: crowdsourcing complex work. Proc. 24th Annual ACM Symp. on User Interface Software and Technology, p.43–52. http://dx.doi.org/10.1145/2047196.2047202
– reference: VickreyWCounterspeculation, auctions, and competitive sealed tenders.J. Finan.19611618373363406
– reference: WangJNLiGLKraskaTLeveraging transitive relations for crowdsourced joins2013229240
– reference: KhetanAOhSAchieving budget-optimality with adaptive schemes in crowdsourcing. Advances in Neural Information Processing Systems201648444852
– reference: BirdCNagappanNMurphyBDon’t touch my code!: examining the effects of ownership on software quality2011414
– reference: DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ. R. Stat. Soc. Ser. B19773911385015370364.62022
– start-page: 117
  volume-title: Participatory sensing
  year: 2006
  ident: 494_CR11
– volume: 9658
  start-page: 191
  year: 2016
  ident: 494_CR30
  publication-title: LNCS
– start-page: 127
  volume-title: Profit-maximizing incentive for participatory sensing
  year: 2014
  ident: 494_CR58
– start-page: 365
  volume-title: Fuzzy set and cache-based approach for bug triaging
  year: 2011
  ident: 494_CR95
– start-page: 843
  volume-title: Using hierarchical skills for optimized task assignment in knowledge-intensive crowdsourcing
  year: 2016
  ident: 494_CR62
– start-page: 2424
  volume-title: Advances in Neural Information Processing Systems
  year: 2010
  ident: 494_CR125
– volume: 5
  start-page: 1495
  issue: 11
  year: 2012
  ident: 494_CR12
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2350229.2350264
– volume: 16
  start-page: 8
  issue: 1
  year: 1961
  ident: 494_CR116
  publication-title: J. Finan.
  doi: 10.1111/j.1540-6261.1961.tb02789.x
– start-page: 1800
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: 494_CR124
– start-page: 1953
  volume-title: Iterative learning for reliable crowdsourcing systems. Advances in Neural Information Processing Systems
  year: 2011
  ident: 494_CR45
– ident: 494_CR92
– start-page: 4
  volume-title: Don’t touch my code!: examining the effects of ownership on software quality
  year: 2011
  ident: 494_CR7
– start-page: 1621
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: 494_CR100
– start-page: 889
  volume-title: Supervised learning from multiple experts: whom to trust when everyone lies a bit
  year: 2009
  ident: 494_CR78
– volume-title: Collective intelligence: mankind’s emerging world in cyberspace
  year: 1997
  ident: 494_CR71
– volume: 40
  start-page: 121
  issue: 1
  year: 1981
  ident: 494_CR41
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/0022-3514.40.1.121
– ident: 494_CR25
– ident: 494_CR86
– start-page: 49
  volume-title: Online mobile micro-task allocation in spatial crowdsourcing
  year: 2016
  ident: 494_CR108
– volume: 28
  start-page: 2281
  issue: 9
  year: 2016
  ident: 494_CR89
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2565468
– volume: 58
  start-page: 1
  issue: 11
  year: 2015
  ident: 494_CR123
  publication-title: Sci. China Inform. Sci.
– start-page: 60
  volume-title: Sell your experiences: a market mechanism based incentive for participatory sensing
  year: 2010
  ident: 494_CR52
– ident: 494_CR20
– start-page: 236
  volume-title: The motivations and experiences of the on-demand mobile workforce
  year: 2014
  ident: 494_CR97
– start-page: 861
  volume-title: TCS: efficient topic discovery over crowd-oriented service data
  year: 2014
  ident: 494_CR104
– start-page: 1213
  volume-title: How to crowdsource tasks truthfully without sacrificing utility: online incentive mechanisms with budget constraint
  year: 2014
  ident: 494_CR139
– start-page: 768
  volume-title: Efficient crowdsourcing of unknown experts using multi-armed bandits
  year: 2012
  ident: 494_CR112
– ident: 494_CR65
  doi: 10.1145/1368088.1368114
– volume: 28
  start-page: 35
  issue: 1
  year: 2017
  ident: 494_CR111
  publication-title: J. Softw.
– volume-title: Hierarchy in Meritocracy: Community Building and Code Production in the Apache Software Foundation
  year: 2010
  ident: 494_CR14
– start-page: 2195
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 494_CR141
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 494_CR8
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2010.12.007
– ident: 494_CR28
– start-page: 217
  volume-title: Optimal PAC multiple arm identification with applications to crowdsourcing
  year: 2014
  ident: 494_CR142
– volume-title: Diffusion of Innovations
  year: 2010
  ident: 494_CR82
– start-page: 530
  volume-title: Recursive fact-finding: a streaming approach to truth estimation in crowdsourcing applications
  year: 2013
  ident: 494_CR118
– start-page: 64
  volume-title: Optimistic knowledge gradient policy for optimal budget al location in crowdsourcing
  year: 2013
  ident: 494_CR15
– volume: 25
  start-page: 2451
  issue: 9
  year: 2014
  ident: 494_CR2
  publication-title: IEEE Trans. Parall. Distr. Syst
  doi: 10.1109/TPDS.2013.190
– volume: 11
  start-page: 309
  issue: 3
  year: 2002
  ident: 494_CR64
  publication-title: ACM Trans. Softw. Eng. Meth
  doi: 10.1145/567793.567795
– start-page: 103
  volume-title: A location-based incentive mechanism for participatory sensing systems with budget constraints
  year: 2012
  ident: 494_CR42
– ident: 494_CR31
  doi: 10.1109/INFOCOM.2015.7218673
– start-page: 367
  volume-title: Pick-a-crowd: tell me what you like, and I’ll tell you what to do
  year: 2013
  ident: 494_CR22
– ident: 494_CR19
  doi: 10.1109/CHASE.2009.5071408
– volume: 28
  start-page: 2296
  issue: 9
  year: 2016
  ident: 494_CR53
  publication-title: IEEE Trans. Knowl. Data Eng
  doi: 10.1109/TKDE.2016.2535242
– start-page: 141
  volume-title: Who should review my code? A file locationbased code-reviewer recommendation approach for modern code review
  year: 2015
  ident: 494_CR99
– volume: 13
  start-page: 491
  issue: (Feb)
  year: 2012
  ident: 494_CR77
  publication-title: J. Mach. Learn. Res.
– start-page: 1182
  volume-title: Crowd-Cleaner: data cleaning for multi-version data on the web via crowdsourcing
  year: 2014
  ident: 494_CR103
– volume: 23
  start-page: 35
  issue: 4
  year: 2014
  ident: 494_CR81
  publication-title: ACM Trans. Softw. Eng. Meth.
  doi: 10.1145/2594458
– volume: 16
  start-page: 1
  year: 2015
  ident: 494_CR16
  publication-title: J. Mach. Learn. Res.
– start-page: 534
  volume-title: Adaptive task assignment for crowdsourced classification
  year: 2013
  ident: 494_CR40
– start-page: 144
  volume-title: Let’s talk about it: evaluating contributions through discussion in GitHub
  year: 2014
  ident: 494_CR114
– volume: 74
  start-page: 204
  year: 2016
  ident: 494_CR134
  publication-title: Imform. Softw. Technol.
  doi: 10.1016/j.infsof.2016.01.004
– start-page: 1260
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 494_CR138
– ident: 494_CR44
  doi: 10.1145/1595696.1595715
– start-page: 1403
  volume-title: Human computation: a survey and taxonomy of a growing field
  year: 2011
  ident: 494_CR72
– ident: 494_CR54
– ident: 494_CR91
– volume: 54
  start-page: 78
  issue: 4
  year: 2011
  ident: 494_CR96
  publication-title: Commun. ACM
  doi: 10.1145/1924421.1924441
– start-page: 1231
  volume-title: Trac: truthful auction for location-aware collaborative sensing in mobile crowdsourcing
  year: 2014
  ident: 494_CR27
– start-page: 358
  volume-title: Work practices and challenges in pull-based development: the integrator’s perspective
  year: 2015
  ident: 494_CR34
– volume: 65
  start-page: 294
  issue: 1
  year: 2016
  ident: 494_CR35
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2015.2419658
– start-page: 284
  volume-title: Use of relative code churn measures to predict system defect density
  year: 2005
  ident: 494_CR66
– ident: 494_CR47
  doi: 10.1145/2047196.2047202
– start-page: 31
  volume-title: Exploring the patterns of social behavior in GitHub
  year: 2014
  ident: 494_CR132
– volume: 32
  start-page: 1159
  issue: 7
  year: 2003
  ident: 494_CR38
  publication-title: Res. Polic
  doi: 10.1016/S0048-7333(03)00047-7
– volume: 30
  start-page: 696
  issue: 4
  year: 2015
  ident: 494_CR105
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-015-1555-9
– start-page: 913
  volume-title: Crowd TC: crowdsourced taxonomy construction
  year: 2015
  ident: 494_CR63
– volume-title: Harnessing Crowds: Mapping the Genome of Collective Intelligence
  year: 2009
  ident: 494_CR59
– volume: 12
  start-page: 23
  issue: 3
  year: 1999
  ident: 494_CR80
  publication-title: Knowl. Technol. Polic.
  doi: 10.1007/s12130-999-1026-0
– start-page: 455
  volume-title: Wisemarket: a new paradigm for managing wisdom of online social users
  year: 2013
  ident: 494_CR13
– volume-title: Understanding Free Software Developers: Findings from the Floss Study
  year: 2005
  ident: 494_CR32
– start-page: 76
  volume-title: Evolution patterns of open-source software systems and communities
  year: 2002
  ident: 494_CR67
– start-page: 1061
  volume-title: Active learning from crowds with unsure option
  year: 2015
  ident: 494_CR140
– ident: 494_CR43
– ident: 494_CR68
– volume: 5
  start-page: 1650
  issue: 11
  year: 2012
  ident: 494_CR102
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2350229.2350277
– volume: 50
  start-page: 45
  issue: 2
  year: 2009
  ident: 494_CR9
  publication-title: MIT Sloan Manag. Rev.
– start-page: 173
  volume-title: Crowd-sourcing to smartphones: incentive mechanism design for mobile phone sensing
  year: 2012
  ident: 494_CR130
– start-page: 216
  volume-title: On bottleneck-aware arrangement for event-based social networks
  year: 2015
  ident: 494_CR106
– volume: 19
  start-page: 579
  issue: 4
  year: 2016
  ident: 494_CR110
  publication-title: World Wide Web
  doi: 10.1007/s11280-015-0341-5
– start-page: 141
  volume-title: Participatory sensing based real-time public transport information service
  year: 2014
  ident: 494_CR26
– volume: 2
  start-page: 409
  issue: 4
  year: 2016
  ident: 494_CR70
  publication-title: Engineering
  doi: 10.1016/J.ENG.2016.04.018
– start-page: 855
  volume-title: Scheduling human intelligence tasks in multi-tenant crowd-powered systems
  year: 2016
  ident: 494_CR23
– volume-title: Auction Theory
  year: 2009
  ident: 494_CR48
– start-page: 491
  volume-title: Ownership, experience and defects: a fine-grained study of authorship
  year: 2011
  ident: 494_CR74
– ident: 494_CR73
– volume: 59
  start-page: 080104
  issue: 8
  year: 2016
  ident: 494_CR133
  publication-title: Sci. China Inform. Sci.
  doi: 10.1007/s11432-016-5595-8
– start-page: 165
  volume-title: Crowd-sourcing
  year: 2015
  ident: 494_CR120
– volume: 389
  start-page: 1179
  issue: 3
  year: 2008
  ident: 494_CR56
  publication-title: Month. Not. R. Astronom. Soc
  doi: 10.1111/j.1365-2966.2008.13689.x
– volume: 9
  start-page: 1053
  issue: 12
  year: 2016
  ident: 494_CR109
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2994509.2994523
– start-page: 137
  volume-title: Mining email social networks
  year: 2006
  ident: 494_CR5
– ident: 494_CR29
– start-page: 4844
  volume-title: Achieving budget-optimality with adaptive schemes in crowdsourcing. Advances in Neural Information Processing Systems
  year: 2016
  ident: 494_CR46
– start-page: 882
  volume-title: Adaptive crowdsourcing algorithms for the bandit survey problem
  year: 2013
  ident: 494_CR1
– volume: 7
  start-page: 2005
  issue: 11
  year: 2014
  ident: 494_CR136
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2733085.2733105
– start-page: 851
  volume-title: Earthquake shakes Twitter users: real-time event detection by social sensors
  year: 2010
  ident: 494_CR83
– volume: 27
  start-page: 317
  issue: 4
  year: 2012
  ident: 494_CR49
  publication-title: Int. J. Parall. Emerg. Distr. Syst.
  doi: 10.1080/17445760.2012.686170
– ident: 494_CR10
– start-page: 1
  volume-title: Working for free? Motivations of participating in open source projects
  year: 2001
  ident: 494_CR36
– start-page: 735
  volume-title: Conflict-aware event-participant arrangement
  year: 2015
  ident: 494_CR88
– volume: 19
  start-page: 1151
  issue: 6
  year: 2016
  ident: 494_CR107
  publication-title: World Wide Web
  doi: 10.1007/s11280-015-0377-6
– start-page: 11
  volume-title: Towards truthful mechanisms for mobile crowdsourcing with dynamic smartphones
  year: 2014
  ident: 494_CR143
– start-page: 229
  volume-title: Leveraging transitive relations for crowdsourced joins
  year: 2013
  ident: 494_CR121
– start-page: 105
  volume-title: Earphone: an end-to-end participatory urban noise mapping system
  year: 2010
  ident: 494_CR76
– volume: 142
  start-page: 2282
  issue: 10
  year: 2009
  ident: 494_CR94
  publication-title: Biol. Consev
  doi: 10.1016/j.biocon.2009.05.006
– start-page: 356
  volume-title: Influence of social and technical factors for evaluating contribution in GitHub
  year: 2014
  ident: 494_CR113
– start-page: 805
  volume-title: Quality and productivity outcomes relating to continuous integration in GitHub
  year: 2015
  ident: 494_CR115
– start-page: 432
  volume-title: How, and why, process metrics are better
  year: 2013
  ident: 494_CR75
– start-page: 1
  volume-title: No oops, you won’t do it again: mechanisms for self-correction in crowdsourcing
  year: 2016
  ident: 494_CR85
– volume: 7
  start-page: 694
  issue: 5
  year: 2013
  ident: 494_CR127
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-013-2320-2
– start-page: 2111
  volume-title: Cost-saving effect of crowd-sourcing learning
  year: 2016
  ident: 494_CR122
– volume: 5
  start-page: 1
  issue: 3
  year: 2011
  ident: 494_CR50
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
  doi: 10.2200/S00371ED1V01Y201107AIM013
– start-page: 2994
  volume-title: Truthful incentive mechanisms for k-anonymity location privacy
  year: 2013
  ident: 494_CR129
– start-page: 1
  volume-title: Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging
  year: 2010
  ident: 494_CR4
– start-page: 6
  volume-title: Cleaning uncertain data with a noisy crowd
  year: 2015
  ident: 494_CR137
– start-page: 265
  volume-title: Avoiding the south side and the suburbs: the geography of mobile crowdsourcing markets
  year: 2015
  ident: 494_CR98
– start-page: 24
  volume-title: Latent social structure in open source projects
  year: 2008
  ident: 494_CR6
– start-page: 78
  volume-title: Predicting faults using the complexity of code changes
  year: 2009
  ident: 494_CR37
– start-page: 35
  volume-title: Using humans as sensors: an estimation-theoretic perspective
  year: 2014
  ident: 494_CR119
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 494_CR21
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 1
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: 494_CR84
– ident: 494_CR39
  doi: 10.1609/aaai.v26i1.8120
– volume: 111
  start-page: 12325
  issue: 34
  year: 2014
  ident: 494_CR90
  publication-title: PNAS
  doi: 10.1073/pnas.1401992111
– start-page: 692
  volume-title: Variational inference for crowdsourcing. Advances in Neural Information Processing Systems
  year: 2012
  ident: 494_CR57
– start-page: 419
  volume-title: Toward an understanding of the motivation of open source software developers
  year: 2003
  ident: 494_CR131
– volume: 11
  start-page: 1297
  issue: (Apr)
  year: 2010
  ident: 494_CR79
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 297
  issue: 4
  year: 2003
  ident: 494_CR93
  publication-title: ACM Trans. Softw. Eng. Meth.
  doi: 10.1109/TSE.2003.1191795
– start-page: 2035
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: 494_CR126
– volume: 6
  start-page: 97
  issue: 2
  year: 2012
  ident: 494_CR55
  publication-title: Proc. VLDB Endow
  doi: 10.14778/2535568.2448943
– start-page: 1717
  volume-title: Planning with crowdsourced data: rhetoric and representation in transportation planning
  year: 2015
  ident: 494_CR17
– start-page: 190
  volume-title: Debiasing crowdsourced quantitative characteristics in local businesses and services
  year: 2015
  ident: 494_CR69
– volume: 321
  start-page: 1465
  issue: 5895
  year: 2008
  ident: 494_CR117
  publication-title: Science
  doi: 10.1126/science.1160379
– start-page: 11
  volume-title: MaC: a probabilistic framework for query answering with machinecrowd collaboration
  year: 2014
  ident: 494_CR135
– volume-title: Motivation and Personality
  year: 1970
  ident: 494_CR61
– volume: 22
  start-page: 751
  issue: 10
  year: 1996
  ident: 494_CR3
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.544352
– volume: 6
  start-page: 37
  issue: 2
  year: 2012
  ident: 494_CR24
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2535568.2448938
– start-page: 345
  volume-title: An exploratory study of the pull-based software development model
  year: 2014
  ident: 494_CR33
– start-page: 2857
  volume-title: Design lessons from the fastest Q&A site in the west
  year: 2011
  ident: 494_CR60
– start-page: 1629
  volume-title: . Utility-aware social event-participant planning
  year: 2015
  ident: 494_CR87
– volume: 343
  start-page: 1203
  issue: 6167
  year: 2014
  ident: 494_CR51
  publication-title: Science
  doi: 10.1126/science.1248506
– start-page: 1161
  volume-title: Active learning from crowds
  year: 2011
  ident: 494_CR128
– start-page: 270
  volume-title: Discovering threshold-based frequent closed itemsets over probabilistic data
  year: 2012
  ident: 494_CR101
– volume: 28
  start-page: 20
  issue: 1
  year: 1979
  ident: 494_CR18
  publication-title: Appl. Statist.
  doi: 10.2307/2346806
SSID ssj0001619798
Score 2.4256465
SecondaryResourceType review_article
Snippet The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence(AI), bringing a new...
The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence (AI), bringing a new...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Algorithms
Artificial intelligence
Collaboration
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Computers
Crowdsourcing
Decision making
Economic development
Electrical Engineering
Electronics and Microelectronics
Instrumentation
Internet access
Logistics management
Management science
Networks
Open source software
Review
Sharing economy
Social psychology
Software development
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BvOhBFDVO0Oxg9OJg69r9OBICoibGgyR4Wta1U6MZiuPiX-9r2QBREz2ua7r1tW_f99ruewAnNOAOiRmzlNqbRYUgVuxKxwqFQ4SvYhKuT_neeIMhvRqxUQXa5b8w-rR7uSWpv9TKrT3XaffRlXtqMQQRJlyDdaQeNqvCeufi_nppWQUDAl9nwCW2zkIY0EJZ81sbSk3hcZw9vOGzvqLSgmqu7I5q0OnX4LZ83dlZk-fWNOet5GNFyfEf_dmGrYKAmp3ZjNmBiszqUCuTO5iFr9dhc0mpcBfMLobrwnxaEvDEC7NzaZKWbcpJvAfDfu-uO7CK5ApWgriVW1LwNEiI64aOVNvPyEsYF3ZI7FTYVDKSpixlCGWpH2ARC4mTcI96QSgSImns7kM1G2fyAMwk5TxMEAkRDykPaEh9HvgCi_xYeiw1oDE3dPQ6E9GIPB-ZBiXEMeC8NH2UFLrkKj3GS6TiE7RUpC0VFZYy4HRevWzrl4rNchyjwi_fI4ITwtesxICzclgWt39s6PDPNRuwQRTq6xWaJlTzyVQeIWfJ-XExTz8BPVbfgg
  priority: 102
  providerName: Springer Nature
Title Crowd intelligence in AI 2.0 era
URI http://lib.cqvip.com/qk/89589A/201701/671294221.html
https://link.springer.com/article/10.1631/FITEE.1601859
https://www.proquest.com/docview/2918724266
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5RuOjB30YEyQ5GL062rt3akwHDQE2IMZrgaVnXTk0MqOD_7-voAI16WtY2Pby273vvtfk-gGPKpU9SxlzD9uZSpYibBtp3hfKJikxOIotXvoOw_0Cvh2xoC24T-6yy9ImFo1bjzNTIW0T4PCrw5OLt3TWqUeZ21UporEIVXTDnFah2uoPbu0WVBfODqBDEJV4hSsipJdoMA78Vo3fomvoKgpYw5ArP49HTO0LGd5BaRJ4_LksLDIq3YMMGj057ttrbsKJHO7BZCjM49pzuwPoSy-AuOJeYaivnZYl8E3-c9pVDzj1Hf6R78BB37y_7rhVGcDPEnKmrlcx5RoJA-NpcHWNMwaTyBPFy5VHNSJ6znCEM5RHHJiaIn8mQhlyojGiaBvtQGY1H-gCcLJdSZIhiiGVUcipoJHmksClKdcjyGtTnVkneZgQYSRhhlEAJ8WtwVtopySynuJG2eE1MboEmTgoTJ9bENTiZDy_n-mNgozR6Ys_UJFnsgBqclgux6P51osP_J6rDGjEwXZRUGlCZfnzqIwwyprIJqzzuNaHajjudgfn2Hm-6Tbu_vgC2lM2p
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhOFxwNgcSxE7tACAHLLlcFEp2JYweQ0C7HIsRP8Y2MvQkLCOgo41hTjCfz5nDmAawwoSOacR64aW8BM4YGWWyjQJqImtTlJNrf8j1LGhfs6JJf9sFb9S-Mu1ZZ-UTvqE07dzXyLSojkXo82bl_CBxrlOuuVhQaXbM4tq8vmLI9bTf38XxXKa0fnO81gpJVIMjRYXcCa3QhchrHMrKu74qAzLUJJQ0LEzLLaVHwgqMPL1KBS1zSKNcJS4Q0ObUsi1FuPwwyFOCSPVE_7NV0MBtJPf0uDT0FomDlWM8kjrbq6IsOXDUHIVK6UQ437db1AwLUV0jsxbnfWrMe8erjMFqGqmS3a1sT0GdbkzBW0UCQ0itMwsinmYZTQPYwsTfk9tOoT3wgu01CN0NiH7NpuPgXhc3AQKvdsrNA8kJrmSNmInIyLZhkqRapwaU0swkvajD_oRV13x23oZIUYxJGaVSDjUpPKi8nmDsijTvlMhlUsfIqVqWKa7D2sb2S9cvGhUrpqvyCn1TP3mqwXh1E7_WPgub-FrQMQ43z0xN10jw7nodh6gIEX8xZgIHO47NdxPCmo5e8TRG4-m8jfgeaJATK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VrYTogUKh6tICPvBzIdvEsWPnwGHVdumyqOJApXIycWwDAmXLNlUFr8Sr8FCMvU67FJC49MAxjmUlnr_P9vgbgEdM6oxWnCee7S1hxtCkym2WlCajRvg1iQ5ZvgfF_iF7ecSPluB7dxcmZLt3R5LzOw2epalpt4-NCyZe5Nn2CM16z2-MYLQpY0blxH49w_XayfPxLgr3MaWjvTc7-0ksKZDU6K3bxBrtZE3zvMysP3TFaMy1SUuaOpMyy6lz3HF04E5IbOIlzWpdsEKWpqaWVTmOew2WWSqF7MHy8MXbycKWDi5GRKi-S9NQAVGyyOr52zd7JocP0-b9F_zPXyPiBcy9dDIbAt5oFX50UzXPc_k0OG31oP52iUXyP5nLW3AzAm8ynFvKbViyzRqsdkUtSPRxa7CywNB4B8jObHpmyMcF4lJ8IMMxoYOU2Fl1Fw6v5KvXoddMG7sBpHZalzUiAMQBTEtWMqGlMNgkKltw14fNcyGr4zl5iCoEIixGadaHZ53YVR352H1ZkM_Kr8tQMipIRkXJ9OHJefdurL903Op0SEV_dKIoKqMIaKwPTzuVuHj9x4Hu_XPPh3D99e5IvRofTDbhBvXAJ2xSbUGvnZ3a-wjbWv0gmguBd1etVT8BVXRE6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowd+intelligence+in+AI+2.0+era&rft.jtitle=%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E5%89%8D%E6%B2%BF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Wei+LI+Wen-jun+WU+Huai-min+WANG+Xue-qi+CHENG+Hua-jun+CHEN+Zhi-hua+ZHOU+Rong+DING&rft.date=2017&rft.issn=2095-9184&rft.eissn=2095-9230&rft.volume=18&rft.issue=1&rft.spage=15&rft.epage=43&rft_id=info:doi/10.1631%2FFITEE.1601859&rft.externalDocID=671294221
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F89589A%2F89589A.jpg