Energy Efficiency Optimisation of Joint Computational Task Offloading and Resource Allocation Using Particle Swarm Optimisation Approach in Vehicular Edge Networks
With the progression of smart vehicles, i.e., connected autonomous vehicles (CAVs), and wireless technologies, there has been an increased need for substantial computational operations for tasks such as path planning, scene recognition, and vision-based object detection. Managing these intensive com...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 10; p. 3001 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
09.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the progression of smart vehicles, i.e., connected autonomous vehicles (CAVs), and wireless technologies, there has been an increased need for substantial computational operations for tasks such as path planning, scene recognition, and vision-based object detection. Managing these intensive computational applications is concerned with significant energy consumption. Hence, for this article, a low-cost and sustainable solution using computational offloading and efficient resource allocation at edge devices within the Internet of Vehicles (IoV) framework has been utilised. To address the quality of service (QoS) among vehicles, a trade-off between energy consumption and computational time has been taken into consideration while deciding on the offloading process and resource allocation. The offloading process has been assigned at a minimum wireless resource block level to adapt to the beyond 5G (B5G) network. The novel approach of joint optimisation of computational resources and task offloading decisions uses the meta-heuristic particle swarm optimisation (PSO) algorithm and decision analysis (DA) to find the near-optimal solution. Subsequently, a comparison is made with other proposed algorithms, namely CTORA, CODO, and Heuristics, in terms of computational efficiency and latency. The performance analysis reveals that the numerical results outperform existing algorithms, demonstrating an 8% and a 5% increase in energy efficiency. |
---|---|
AbstractList | With the progression of smart vehicles, i.e., connected autonomous vehicles (CAVs), and wireless technologies, there has been an increased need for substantial computational operations for tasks such as path planning, scene recognition, and vision-based object detection. Managing these intensive computational applications is concerned with significant energy consumption. Hence, for this article, a low-cost and sustainable solution using computational offloading and efficient resource allocation at edge devices within the Internet of Vehicles (IoV) framework has been utilised. To address the quality of service (QoS) among vehicles, a trade-off between energy consumption and computational time has been taken into consideration while deciding on the offloading process and resource allocation. The offloading process has been assigned at a minimum wireless resource block level to adapt to the beyond 5G (B5G) network. The novel approach of joint optimisation of computational resources and task offloading decisions uses the meta-heuristic particle swarm optimisation (PSO) algorithm and decision analysis (DA) to find the near-optimal solution. Subsequently, a comparison is made with other proposed algorithms, namely CTORA, CODO, and Heuristics, in terms of computational efficiency and latency. The performance analysis reveals that the numerical results outperform existing algorithms, demonstrating an 8% and a 5% increase in energy efficiency. |
Audience | Academic |
Author | Alam, Amjad Mapp, Glenford Ali, Kamran Shah, Purav Trestian, Ramona |
Author_xml | – sequence: 1 givenname: Amjad orcidid: 0000-0001-7975-9973 surname: Alam fullname: Alam, Amjad organization: Faculty of Science and Technology, Middlesex University London, The Burroughs, London NW4 4BT, UK – sequence: 2 givenname: Purav orcidid: 0000-0002-0113-5690 surname: Shah fullname: Shah, Purav organization: Faculty of Science and Technology, Middlesex University London, The Burroughs, London NW4 4BT, UK – sequence: 3 givenname: Ramona surname: Trestian fullname: Trestian, Ramona organization: Faculty of Science and Technology, Middlesex University London, The Burroughs, London NW4 4BT, UK – sequence: 4 givenname: Kamran orcidid: 0000-0001-5301-9125 surname: Ali fullname: Ali, Kamran organization: Faculty of Science and Technology, Middlesex University London, The Burroughs, London NW4 4BT, UK – sequence: 5 givenname: Glenford surname: Mapp fullname: Mapp, Glenford organization: Faculty of Science and Technology, Middlesex University London, The Burroughs, London NW4 4BT, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38793856$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUk1vEzEQtVARbQMH_gCyxAUOKfbau14foyhAUUUQtFxXE3-kTnft1N5Vld_TP1qnGyJAsmRr5s2beeN3jk588Aaht5RcMCbJp1RwShgh9AU6o7zg07ooyMlf71N0ntKGkIIxVr9Cp6wWktVldYYeF97E9Q4vrHXKGa92eLntXecS9C54HCz-Fpzv8Tx026F_DkKLryHd4aW1bQDt_BqD1_inSWGIyuBZ2wY1lt-kffYHxN6p1uBfDxC7fxvMttsYQN1i5_Fvc-vU0ELEC702-LvpH0K8S6_RSwttMm8O9wTdfF5cz79Or5ZfLuezq6nilPVTo0SlgQsKQJSxUlS01owqDSvgNS9LSQVnlHG50itdy4oTQ8hKF7wSYI1iE3Q58uoAm2YbXQdx1wRwzXMgxHVzENJIIa2uKK1BAbeiliXRmUFzy0AxaTPXh5Erq7sfTOqbrFiZtgVvwpAaRirCasrz5BP0_j_oJu8xb3mPKqXIX5vPBF2MqDXk_s7b0MfcXIE2nVPZD9bl-EzIknNZVSIXfBwLVAwpRWOPiihp9rZpjrbJ2HeHEYZVZ_QR-ccn7AlT3cBU |
Cites_doi | 10.1109/JIOT.2018.2872436 10.1109/TWC.2023.3291692 10.1109/ACCESS.2019.2940295 10.1109/TVT.2019.2905432 10.1109/COMST.2017.2745201 10.1109/ITSC.2018.8569286 10.1109/TWC.2016.2633522 10.1007/s12652-023-04587-9 10.1109/TNET.2015.2487344 10.1016/j.comcom.2017.12.011 10.23919/MedHocNet.2018.8407093 10.1109/JIOT.2018.2876298 10.1109/MVT.2018.2879647 10.1016/j.future.2019.01.012 10.1109/TVT.2023.3241286 10.1109/RNDM.2016.7608300 10.1109/TVT.2023.3345364 10.1109/GLOCOMW.2018.8644315 10.1109/JIOT.2024.3354348 10.1109/TITS.2022.3230430 10.1109/TVT.2019.2917890 10.3390/electronics12092021 10.1007/s12652-021-03388-2 10.1109/JIOT.2023.3293164 10.1016/j.asoc.2021.107134 10.1109/MVT.2019.2902637 10.1109/ACCESS.2023.3266822 10.1109/TITS.2023.3342271 10.1109/TCCN.2020.3002253 10.1109/TVT.2020.2965159 10.1109/TWC.2023.3329133 10.1109/ISNCC58260.2023.10323804 10.1109/ACCESS.2018.2819690 10.3390/s23020667 10.3390/fi16010019 10.3390/fi15080254 10.1145/3173162.3173191 10.1109/TIE.2015.2410258 10.1186/s13677-023-00496-6 10.1109/VTC2022-Spring54318.2022.9860706 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s24103001 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_979fd6118aca4f78950dec3d4f3ac39f A795449667 10_3390_s24103001 38793856 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c413t-ec76da471aa0cef97618d31cdaba48455917431349bdbd89640e00bd2467afec3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:04:32 EDT 2024 Sat Oct 26 05:15:21 EDT 2024 Thu Oct 10 18:05:00 EDT 2024 Tue Jun 04 11:53:16 EDT 2024 Thu Sep 26 16:16:10 EDT 2024 Sat Nov 02 12:21:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | nature-inspired algorithm computation resource allocation particle swarm optimisation task offloading meta-heuristic algorithm vehicular edge computing energy efficiency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-ec76da471aa0cef97618d31cdaba48455917431349bdbd89640e00bd2467afec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7975-9973 0000-0001-5301-9125 0000-0002-0113-5690 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24103001 |
PMID | 38793856 |
PQID | 3059710310 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_979fd6118aca4f78950dec3d4f3ac39f proquest_miscellaneous_3060381441 proquest_journals_3059710310 gale_infotracacademiconefile_A795449667 crossref_primary_10_3390_s24103001 pubmed_primary_38793856 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-09 |
PublicationDateYYYYMMDD | 2024-05-09 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Xu (ref_44) 2019; 7 ref_36 ref_35 Dai (ref_14) 2018; 6 ref_34 ref_33 ref_10 You (ref_18) 2016; 16 Jo (ref_1) 2015; 62 Saif (ref_16) 2023; 11 Pervez (ref_25) 2023; 23 Zhao (ref_13) 2019; 68 Ashok (ref_3) 2018; 120 ref_19 Hua (ref_31) 2023; 11 ref_39 ref_38 Wu (ref_17) 2020; 6 ref_37 Chen (ref_42) 2021; 102 Li (ref_30) 2023; 12 Fan (ref_32) 2023; 72 Hu (ref_6) 2015; 11 Jafari (ref_21) 2023; 14 Gu (ref_11) 2019; 14 Xu (ref_15) 2019; 96 Mao (ref_5) 2017; 19 Fan (ref_27) 2023; 24 Feng (ref_4) 2018; 14 ref_24 ref_43 Bi (ref_20) 2024; 11 ref_40 Chen (ref_45) 2016; 24 Zhang (ref_41) 2018; 6 ref_2 Lahlou (ref_22) 2023; 14 ref_29 Pu (ref_12) 2018; 6 ref_28 ref_26 Zhang (ref_7) 2020; 69 Raza (ref_8) 2019; 2019 ref_9 Zhou (ref_23) 2019; 68 |
References_xml | – ident: ref_9 – volume: 6 start-page: 84 year: 2018 ident: ref_12 article-title: Chimera: An energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2872436 contributor: fullname: Pu – volume: 23 start-page: 1728 year: 2023 ident: ref_25 article-title: Energy and latency efficient joint communication and computation optimization in a multi-UAV assisted MEC network publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2023.3291692 contributor: fullname: Pervez – volume: 7 start-page: 131068 year: 2019 ident: ref_44 article-title: A Computation Offloading Method for Edge Computing With Vehicle-to-Everything publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940295 contributor: fullname: Xu – volume: 68 start-page: 5087 year: 2019 ident: ref_23 article-title: Energy-efficient edge computing service provisioning for vehicular networks: A consensus ADMM approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2905432 contributor: fullname: Zhou – volume: 19 start-page: 2322 year: 2017 ident: ref_5 article-title: A survey on mobile edge computing: The communication perspective publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2745201 contributor: fullname: Mao – ident: ref_10 doi: 10.1109/ITSC.2018.8569286 – volume: 16 start-page: 1397 year: 2016 ident: ref_18 article-title: Energy-efficient resource allocation for mobile-edge computation offloading publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2016.2633522 contributor: fullname: You – volume: 14 start-page: 7531 year: 2023 ident: ref_22 article-title: Edge-cloud online joint placement of Virtual Network Functions and allocation of compute and network resources using meta-heuristics publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-023-04587-9 contributor: fullname: Lahlou – volume: 24 start-page: 2795 year: 2016 ident: ref_45 article-title: Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2015.2487344 contributor: fullname: Chen – volume: 120 start-page: 125 year: 2018 ident: ref_3 article-title: Vehicular cloud computing through dynamic computation offloading publication-title: Comput. Commun. doi: 10.1016/j.comcom.2017.12.011 contributor: fullname: Ashok – ident: ref_38 doi: 10.23919/MedHocNet.2018.8407093 – volume: 6 start-page: 4377 year: 2018 ident: ref_14 article-title: Joint load balancing and offloading in vehicular edge computing and networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2876298 contributor: fullname: Dai – volume: 14 start-page: 28 year: 2018 ident: ref_4 article-title: Mobile edge computing for the internet of vehicles: Offloading framework and job scheduling publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2018.2879647 contributor: fullname: Feng – volume: 96 start-page: 89 year: 2019 ident: ref_15 article-title: An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.01.012 contributor: fullname: Xu – volume: 72 start-page: 7857 year: 2023 ident: ref_32 article-title: Game-Based Task Offloading and Resource Allocation for Vehicular Edge Computing with Edge-Edge Cooperation publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3241286 contributor: fullname: Fan – ident: ref_19 doi: 10.1109/RNDM.2016.7608300 – ident: ref_26 doi: 10.1109/TVT.2023.3345364 – ident: ref_37 – ident: ref_40 doi: 10.1109/GLOCOMW.2018.8644315 – volume: 11 start-page: 16672 year: 2024 ident: ref_20 article-title: Cost-Minimized Computation Offloading and User Association in Hybrid Cloud and Edge Computing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2024.3354348 contributor: fullname: Bi – volume: 11 start-page: 1 year: 2015 ident: ref_6 article-title: Mobile edge computing—A key technology towards 5G publication-title: ETSI White Pap. contributor: fullname: Hu – volume: 24 start-page: 4277 year: 2023 ident: ref_27 article-title: Joint task offloading and resource allocation for vehicular edge computing based on V2I and V2V modes publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3230430 contributor: fullname: Fan – volume: 68 start-page: 7944 year: 2019 ident: ref_13 article-title: Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2917890 contributor: fullname: Zhao – ident: ref_36 doi: 10.3390/electronics12092021 – volume: 2019 start-page: 3159762 year: 2019 ident: ref_8 article-title: Others A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions publication-title: Wirel. Commun. Mob. Comput. contributor: fullname: Raza – volume: 14 start-page: 1675 year: 2023 ident: ref_21 article-title: Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using NSGA-II metaheuristic algorithm publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-021-03388-2 contributor: fullname: Jafari – volume: 11 start-page: 2808 year: 2023 ident: ref_31 article-title: Energy-efficient resource allocation for heterogeneous edge-cloud computing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3293164 contributor: fullname: Hua – volume: 102 start-page: 107134 year: 2021 ident: ref_42 article-title: Bee-foraging learning particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107134 contributor: fullname: Chen – volume: 14 start-page: 100 year: 2019 ident: ref_11 article-title: Task offloading in vehicular mobile edge computing: A matching-theoretic framework publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2019.2902637 contributor: fullname: Gu – volume: 11 start-page: 45393 year: 2023 ident: ref_16 article-title: Workload Allocation Towards Energy Consumption-delay Trade-off in Cloud-fog Computing using Multi-objective NPSO Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3266822 contributor: fullname: Saif – ident: ref_39 doi: 10.1109/TITS.2023.3342271 – volume: 6 start-page: 1155 year: 2020 ident: ref_17 article-title: Collaborative learning of communication routes in edge-enabled multi-access vehicular environment publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2020.3002253 contributor: fullname: Wu – ident: ref_33 – volume: 69 start-page: 3296 year: 2020 ident: ref_7 article-title: MDP-based task offloading for vehicular edge computing under certain and uncertain transition probabilities publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2965159 contributor: fullname: Zhang – ident: ref_34 doi: 10.1109/TWC.2023.3329133 – ident: ref_35 doi: 10.1109/ISNCC58260.2023.10323804 – volume: 6 start-page: 19324 year: 2018 ident: ref_41 article-title: Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2819690 contributor: fullname: Zhang – ident: ref_28 doi: 10.3390/s23020667 – ident: ref_29 doi: 10.3390/fi16010019 – ident: ref_24 doi: 10.3390/fi15080254 – ident: ref_2 doi: 10.1145/3173162.3173191 – volume: 62 start-page: 5119 year: 2015 ident: ref_1 article-title: Development of autonomous car—Part II: A case study on the implementation of an autonomous driving system based on distributed architecture publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2410258 contributor: fullname: Jo – volume: 12 start-page: 120 year: 2023 ident: ref_30 article-title: Blockchain enabled task offloading based on edge cooperation in the digital twin vehicular edge network publication-title: J. Cloud Comput. doi: 10.1186/s13677-023-00496-6 contributor: fullname: Li – ident: ref_43 doi: 10.1109/VTC2022-Spring54318.2022.9860706 |
SSID | ssj0023338 |
Score | 2.4603949 |
Snippet | With the progression of smart vehicles, i.e., connected autonomous vehicles (CAVs), and wireless technologies, there has been an increased need for substantial... |
SourceID | doaj proquest gale crossref pubmed |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3001 |
SubjectTerms | Algorithms Cloud computing Communication Data transmission Decision-making Driverless cars Edge computing Energy consumption Energy efficiency Energy management systems Energy use Mathematical optimization meta-heuristic algorithm nature-inspired algorithm particle swarm optimisation Privacy Quality of service task offloading Vehicles vehicular edge computing Workloads |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMoaEBInKI6a8eJjwvaqqpEi0SLerMcP2BFm6DdVPwg_ihjx1kVOHDhFm28u45nPDOfM_MNwBtbq4XpuCuVSyU5VUdXlSyrwJVxrPWyjvXOH07k0bk4vqgvbrT6ijlhEz3wtHAHqlHBSQqDjTUiNK2qmfOWOxG4sVyFZH2ZmsFUhlqckNfEI8QJ1B9syU-RNufOL7P3SST9f5viPwLM5GgO78HdHCHicprZfbjl-wdw5wZv4EP4uUoVe7hK_A-xeBJPaetf5dQcHAIeD-t-xKlnQz7vwzOz_YanIVwOKXEeTe9wPr7H5WV0a-nrKY0AP-a1wU8_zObq9z9YZiZyXPf42X9dp2RWXLkvHk-mvPLtIzg_XJ29Pypzt4XSkiMbS28b6Qz5KmOY9YHClKp1vLLOdEa0gpBHBC-RzbBznWuVFMwz1rkFmVoTSCSPYa8fev8U0KmFbSzzUhFcq61QhkCXZ0JY-mnVhQJez1LQ3ydSDU1gJIpK70RVwLson92AyIOdPiDt0HkF9L-0o4C3Ubo67tZxQ4Ny0QHNM_Je6WWjaiEI8jUF7M8KoPM23moyhqqJjTBYAa92t2mx41sV0_vhOo6R8W0rhZUFPJkUZzdn3pL5a2v57H88y3O4vaCIKmVbqn3YGzfX_gVFRGP3Min_L0-xDOg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k1KQQYhcYrqxI4Tn9AWpaoqsa2gRb1Zjh_tijYpm1T9QfxRxo4TXhK3KHESKzOZmc-e-Qahd7oQuWqoSYUJJTlZA0cZTzNHhTKksrzw9c6fVvzglB2eFWdxwa2PaZWTTQyG2nTar5Hvgl6K0vckIB-uv6e-a5TfXY0tNO6irRyQAlmgrb16dfx5hlwUENjIJ0QB3O_24K9Aq2MHmMkLBbL-f03yX4FmcDj7D9GDGCni5SjaR-iObR-j-7_xBz5BP-pQuYfrwAPhiyjxEZiAq5iigzuHD7t1O-Cxd0Nc98Mnqv-Gj5y77EICPVatwdMyPl5eevcWbg_pBPg4Khf-cqs2V3--YBkZyfG6xV_txTokteLanFu8GvPL-6fodL8--XiQxq4LqQaHNqRWl9wo8FlKEW0dhCtZZWimjWoUqxggEA9iPKthYxpTCc6IJaQxOZhc5aymz9Ci7Vr7AmEjcl1qYrkA2FZoJhSAL0sY0_Bo0bgEvZ2kIK9Hcg0JoMSLSs6iStCel888wPNhhxPd5lzGLyBFKZzhAJaUVsyVlSiIgakY5qjSVMCb3nvpSv_XDhsYFIsPYJ6e_0ouS1EwBtCvTNDOpAAy_s69_KV8CXozX4aP7XdXVGu7Gz-G-11XCC8T9HxUnHnOtAIzWBV8-_8Pf4nu5RAzhXxKsYMWw-bGvoKYZ2heR8X-CSMsBKg priority: 102 providerName: ProQuest |
Title | Energy Efficiency Optimisation of Joint Computational Task Offloading and Resource Allocation Using Particle Swarm Optimisation Approach in Vehicular Edge Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38793856 https://www.proquest.com/docview/3059710310 https://www.proquest.com/docview/3060381441 https://doaj.org/article/979fd6118aca4f78950dec3d4f3ac39f |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9gIHxLuGEi0IiZNhba8fe0AoRQ5VJdIKGpSbtd5HiUjt1nEF_B7-KDPrhwhw4BJF8Tpe7Yxn5tud-YaQFyoWoSwj7QvtSnKCEr4FiR_YSEjNMpPEWO_8YZ4cLfjxMl7ukKHHZr-Am39CO-wntWjWr75f_XgLL_wbRJwA2V9vwAuBrmIV117IAaBjBh8fDxPCKHINrbGmywd_yDqCoe1bt9ySY-__20b_EXk6DzS7Q273oSOddrK-S3ZMdY_c-o1Q8D75mbtSPpo7YgisqqQnYBMu-pwdWlt6XK-qlnbNHPqNQHomN1_pibXr2mXUU1lpOuzr0-ka_Z273eUX0NNe2-inb7K52H7AtKcop6uKfjZfVi7Lleb63NB5l3C-eUAWs_zs3ZHft2HwFXi41jcqTbQEJyYlU8ZC_BJkOgqUlqXkGQdIgqgGaQ5LXepMJJwZxkodgg2W1qjoIdmt6srsE6pFqFLFTCIAx8WKCwlozDDOFfy1KK1Hng9SKC47to0CUAqKqhhF5ZFDlM84AAmy3Q91c170K1CIVFidAHqSSnKbZiJmGqaiuY2kigQ86SVKt0DFahsY1FcjwDyREKuYpiLmHLBg6pGDQQGKQT0LsJIixQ4ZzCPPxsuw2HjcIitTX-OYBI9hId70yKNOccY5RxnYxSxOHv_3NJ6QmyHEUy7XUhyQ3ba5Nk8hHmrLCbmRLlP4zGbvJ2TvMJ-ffpy4vYWJew9-AVVSDx8 |
link.rule.ids | 315,783,787,867,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,74079,74369,74636 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKCHimdJKWAQEqeozsZ5-IQWtNVS2i0SW7Q3y_GjrNom7SZVfxB_lBnH2fKQuEWJk1iZycx89sw3hLzTmRipKjWxML4kJ6ngKMnjxKVCGVbaPMN656NZPj3hB4tsERbc2pBWOdhEb6hNo3GNfA_0UhTYk4B9uLyKsWsU7q6GFhp3yT3k4cIOBsXiFnClgL96NqEUoP1eC94KdDr0fxl8kKfq_9cg_xVmenez_5BshTiRjnvBPiJ3bP2YbP7GHviE_Jz4uj068SwQWEJJj8EAXIQEHdo4etAs6472nRvCqh-dq_aMHjt33vj0eapqQ4dFfDo-R-fmb_fJBPRrUC367UatLv58wTjwkdNlTb_bH0uf0kon5tTSWZ9d3j4lJ_uT-adpHHouxBrcWRdbXeRGgcdSimnrIFhJSpMm2qhK8ZID_kAIg5yGlalMKXLOLGOVGYHBVc7q9BnZqJvaPifUiJEuNLO5ANCWaS4UQC_LONfwaFG5iLwdpCAve2oNCZAERSXXoorIR5TPegCyYfsTzepUhi8gRSGcyQEqKa24K0qRMQNTMdylSqcC3vQepSvxn-1WMCiUHsA8kf1KjguRcQ7Ar4jI7qAAMvzMrbxVvYi8WV-Gj417K6q2zTWOyXHPFYLLiGz3irOec1qCESyzfOf_D39N7k_nR4fy8PPsywvyYATRk8-sFLtko1td25cQ_XTVK6_ivwAwNQYz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSAgOiGcJtGAQEqdok43jxCe0LbuUAttKtKg3y_GjrGiTsknVH8QfZcZxwkviFiVOYmUmM_PZM98Q8krnYqqqzMTC-JKctIKjlMepy4QySWl5jvXOn5Z875jtn-QnIf-pDWmVg030hto0GtfIJ6CXosCeBMnEhbSIw7eLNxffY-wghTutoZ3GdXIDvCJHDS8X70bwlQEW65mFMoD5kxY8F-h36AUz-CNP2_-vcf4r5PSuZ3GX3AkxI531Qr5Hrtn6Prn9G5PgA_Jj7mv46NwzQmA5JT0AY3AeknVo4-h-s6o72ndxCCuA9Ei13-iBc2eNT6WnqjZ0WNCnszN0dP52n1hAD4Oa0c9Xan3-5wtmgZucrmr6xX5d-fRWOjenli77TPP2ITlezI929-LQfyHW4Nq62OqCGwXeS6lEWweBS1qaLNVGVYqVDLAIwhnkN6xMZUrBWWKTpDJTML7KWZ09Iht1U9vHhBox1YVOLBcA4HLNhAIYZhPGNDxaVC4iLwcpyIueZkMCPEFRyVFUEdlB-YwDkBnbn2jWpzJ8ASkK4QwH2KS0Yq4oRZ4YmIphLlM6E_Cm1yhdif9vt4ZBoQwB5olMWHJWiJwxAIFFRLYGBZDhx27lLzWMyIvxMnxs3GdRtW0ucQzH_VcINCOy2SvOOOesBINY5vzJ_x_-nNwE7ZYf3y8_PCW3phBI-SRLsUU2uvWl3YZAqKueeQ3_CWr9CnE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Efficiency+Optimisation+of+Joint+Computational+Task+Offloading+and+Resource+Allocation+Using+Particle+Swarm+Optimisation+Approach+in+Vehicular+Edge+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alam%2C+Amjad&rft.au=Shah%2C+Purav&rft.au=Trestian%2C+Ramona&rft.au=Ali%2C+Kamran&rft.date=2024-05-09&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=10&rft_id=info:doi/10.3390%2Fs24103001&rft.externalDocID=A795449667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |