Supervised and unsupervised learning in processing myographic patterns

Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs). Formation of SOMs is based on the unsupervised Hebbian learning rule, according to which the weight of a synaptic connection depends on the co-act...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1117; no. 1; pp. 12008 - 12016
Main Authors Shamsin, M, Krilova, N, Bazhanova, M, Kazantsev, V, Makarov, V A, Lobov, S
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs). Formation of SOMs is based on the unsupervised Hebbian learning rule, according to which the weight of a synaptic connection depends on the co-activation of pre- and postsynaptic neurons. On the other hand, a variety of human-machine interfaces employ supervised learning based on the correction of synaptic weights in proportion to the network error. But this learning rule has not been verified as biologically relevant. In our work, we study artificial neural networks (ANN) that classify hand gestures through electromyographic recordings (EMG). We use eight-channel electromyographic (EMG) signals acquired by a Thalmic labs Myo device as an input to a multilayer perceptron (MLP) and Kohonen's SOM. We compare supervised (MLP) and unsupervised (SOM) learning in the task of EMG-classification. The median value of recognition fidelity (F-measure) for SOM-based recognition is F = 0.87 and for MLP classification F = 0.96. Also we reveal strong correlation between F-measures for classification EMG patterns of 37 subjects by MLP and SOM. For estimation of clustering quality of SOM we introduce two indexes: the intra-cluster index describing the cluster "compactness" and the inter-cluster index measuring the degree of cluster overlapping. There are strong correlations between F-measures for SOM classification and introduced indexes. Differences in the significance level of the correlations suggest that the classification with SOM is more negatively affected by overlapping clusters than their large size.
AbstractList Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs). Formation of SOMs is based on the unsupervised Hebbian learning rule, according to which the weight of a synaptic connection depends on the co-activation of pre- and postsynaptic neurons. On the other hand, a variety of human-machine interfaces employ supervised learning based on the correction of synaptic weights in proportion to the network error. But this learning rule has not been verified as biologically relevant. In our work, we study artificial neural networks (ANN) that classify hand gestures through electromyographic recordings (EMG). We use eight-channel electromyographic (EMG) signals acquired by a Thalmic labs Myo device as an input to a multilayer perceptron (MLP) and Kohonen's SOM. We compare supervised (MLP) and unsupervised (SOM) learning in the task of EMG-classification. The median value of recognition fidelity (F-measure) for SOM-based recognition is F = 0.87 and for MLP classification F = 0.96. Also we reveal strong correlation between F-measures for classification EMG patterns of 37 subjects by MLP and SOM. For estimation of clustering quality of SOM we introduce two indexes: the intra-cluster index describing the cluster "compactness" and the inter-cluster index measuring the degree of cluster overlapping. There are strong correlations between F-measures for SOM classification and introduced indexes. Differences in the significance level of the correlations suggest that the classification with SOM is more negatively affected by overlapping clusters than their large size.
Author Kazantsev, V
Lobov, S
Makarov, V A
Krilova, N
Shamsin, M
Bazhanova, M
Author_xml – sequence: 1
  givenname: M
  surname: Shamsin
  fullname: Shamsin, M
  email: nlhr@yandex.ru
  organization: Lobachevsky State University of Nizhny Novgorod , Russia
– sequence: 2
  givenname: N
  surname: Krilova
  fullname: Krilova, N
  organization: Lobachevsky State University of Nizhny Novgorod , Russia
– sequence: 3
  givenname: M
  surname: Bazhanova
  fullname: Bazhanova, M
  organization: Lobachevsky State University of Nizhny Novgorod , Russia
– sequence: 4
  givenname: V
  surname: Kazantsev
  fullname: Kazantsev, V
  organization: Lobachevsky State University of Nizhny Novgorod , Russia
– sequence: 5
  givenname: V A
  surname: Makarov
  fullname: Makarov, V A
  organization: Instituto de Matemática Interdisciplinar, Applied Mathematics Dept., Universidad Complutense de Madrid , Spain
– sequence: 6
  givenname: S
  surname: Lobov
  fullname: Lobov, S
  organization: Lobachevsky State University of Nizhny Novgorod , Russia
BookMark eNqNkF1LwzAUhoNMcJv-BgveCbUnTdpkF17IcH4wUJhehyxNZsaW1qQV9u9tqWwoguYmycn75ByeERq40mmEzjFcYeA8wYymcZ5N8gRjzBKcAE4B-BEa7l8G-zPnJ2gUwhqAtIsN0WzRVNp_2KCLSLoialw4FDZaemfdKrIuqnypdAjdbbsrV15Wb1ZFlaxr7V04RcdGboI--9rH6HV2-zK9j-dPdw_Tm3msKCZ1rBU1ipBcMzIpACTVsDQ5UCZBLimWNKeTQqeMLDmA4phypbTRyqQ5QJYbMkYX_b_tOO-NDrVYl413bUuRZnlGGc_StE2xPqV8GYLXRlTebqXfCQyikyY6HaJTIzppAoteWkte_yCVrWVtS1d7aTf_4EnP27I6jPY3dfkL9fg8XXwPiqow5BPnV5F2
CitedBy_id crossref_primary_10_3390_s20020500
Cites_doi 10.17691/stm2015.7.4.04
10.1016/j.neures.2004.07.004
10.1111/j.1467-9280.1996.tb00347.x
10.1017/S026357470999049X
10.1007/978-3-319-62870-7_7
10.1007/BF00337288
10.1109/TNSRE.2014.2305520
10.1682/JRRD.2010.08.0161
10.1016/S0208-5216(13)70054-8
10.1007/BF00318206
10.3390/s18041122
10.1007/s40137-013-0044-8
10.3390/s151127894
10.1146/annurev.neuro.24.1.139
10.1109/10.740879
10.1109/TSMCB.2012.2185843
10.1007/978-0-387-30164-8
10.15373/22778179/July2014/184
10.1038/nrn3766
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1117/1/012008
DatabaseName IOP Open access
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection (via ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Supervised and unsupervised learning in processing myographic patterns
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1117_1_012008
JPCS_1117_1_012008
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
AALHV
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EJD
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
02O
1WK
AAYXX
ACARI
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
CITATION
FEDTE
H13
HVGLF
JCGBZ
M48
OVT
PHGZM
PHGZT
Q02
S3P
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c413t-ec4fc336e739d00a4e0bf6047a0ab41a4649de273b800c8148ccefecf260056f3
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Fri Jul 25 03:28:39 EDT 2025
Tue Jul 01 03:54:00 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Wed Aug 21 03:40:19 EDT 2024
Thu Jan 07 13:48:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
http://iopscience.iop.org/info/page/text-and-data-mining
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-ec4fc336e739d00a4e0bf6047a0ab41a4649de273b800c8148ccefecf260056f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/1117/1/012008
PQID 2565478522
PQPubID 4998668
PageCount 9
ParticipantIDs crossref_primary_10_1088_1742_6596_1117_1_012008
iop_journals_10_1088_1742_6596_1117_1_012008
crossref_citationtrail_10_1088_1742_6596_1117_1_012008
proquest_journals_2565478522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181101
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
12
23
13
14
15
16
17
19
Huang H P (18) 2003; 1
1
2
3
Lobov S (21) 2016; 1
4
5
6
Rumelhart D E (8) 1985; 1
7
Hebb D O (11) 1949
9
20
10
References_xml – ident: 20
  doi: 10.17691/stm2015.7.4.04
– ident: 12
  doi: 10.1016/j.neures.2004.07.004
– year: 1949
  ident: 11
  publication-title: The Organization of Behavior: A neuropsychological theory
– ident: 15
  doi: 10.1111/j.1467-9280.1996.tb00347.x
– ident: 17
  doi: 10.1017/S026357470999049X
– ident: 5
  doi: 10.1007/978-3-319-62870-7_7
– ident: 16
  doi: 10.1007/BF00337288
– ident: 2
  doi: 10.1109/TNSRE.2014.2305520
– ident: 6
  doi: 10.1682/JRRD.2010.08.0161
– ident: 9
  doi: 10.1016/S0208-5216(13)70054-8
– ident: 14
  doi: 10.1007/BF00318206
– volume: 1
  start-page: 57
  year: 2016
  ident: 21
  publication-title: NEUROTECHNIX 2016 – Proceedings of the 4th International Congress on Neurotechnology, Electronics and Informatics
– volume: 1
  start-page: 318
  year: 1985
  ident: 8
  publication-title: Parallel Distributed Processing: explorations in the microstructure of cognition
– ident: 22
  doi: 10.3390/s18041122
– ident: 1
  doi: 10.1007/s40137-013-0044-8
– ident: 7
  doi: 10.3390/s151127894
– ident: 10
  doi: 10.1146/annurev.neuro.24.1.139
– ident: 19
  doi: 10.1109/10.740879
– ident: 3
  doi: 10.1109/TSMCB.2012.2185843
– ident: 23
  doi: 10.1007/978-0-387-30164-8
– ident: 4
  doi: 10.15373/22778179/July2014/184
– ident: 13
  doi: 10.1038/nrn3766
– volume: 1
  start-page: 1497
  issn: 1049-3492
  year: 2003
  ident: 18
  publication-title: IEEE International Conference on Robotics and Automation
SSID ssj0033337
Score 2.1744225
Snippet Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs)....
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12008
SubjectTerms Artificial neural networks
Cerebral cortex
Classification
Clustering
Electromyography
Error correction
Learning theory
Man-machine interfaces
Multilayer perceptrons
Recognition
Self organizing maps
Supervised learning
Unsupervised learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5si-BFfGK1SkCPLkmaZLM5iZaWUrAUa6G3sE8paBpNe_DfO5tsrEXQ3LKZzWFmd-bbx3yD0I2Ku1SBobHgQmMYIT5ONPWwiFTXZ5wRUjIxPY7JcBaO5tHcbrgV9lpl7RNLRy2XwuyRuxCaDfUUwIW7_B2bqlHmdNWW0GigFrhgSpuo9dAfT55qXxzAE1cpkV0MsZbWN7xg2WfbEuLCdI9d3zVppKbK5I_41Fgs819Ouow8gwO0byGjc1_Z-BDtqOwI7ZZXN0VxjAbTdW4mfKGkwzLprLNi02CLQrw4i8zJq5wA8_b2WTFVL4STlwSbWXGCZoP-c2-IbXUELCDwrLASoRZBQFQcJNLzWKg8rokXxsxjPPRZSMJEKkAnHDChoLDsEUJpJbShpI-IDk5RM1tm6gw5kSQqSrRIOMARzXTCuvAvX1MeeFLEso1IrZNUWOpwU8HiNS2PsClNjTJTo0yzoohTP62U2Ubed8e8Ys_4v8stKD21M6n4X_x6S3w06U23JdJc6jbq1DbciG5G1Pnfny_QHsAkWmUgdlBz9bFWlwBFVvzKjrcvV3nV5w
  priority: 102
  providerName: ProQuest
Title Supervised and unsupervised learning in processing myographic patterns
URI https://iopscience.iop.org/article/10.1088/1742-6596/1117/1/012008
https://www.proquest.com/docview/2565478522
Volume 1117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x0EpceO0iCqWKxB5JmzSJ4xyhoiAkoOKh5RbZE3tVLYSItAf49YzjBOgihBA5REk0dpyxPfNZmfkM8FvFfa6oo12UqF0aIb6baO65GKm-L6RgrGJiOj1jx9fhyU108zYX5r6oTX-XLi1RsFVhHRDHe4Sh-y6LEtajeRr3_J7J_zT5vosBJ_9pkvjOR401DuiIbVKkKcR5E-P1cUUzHmqeWvHOTFe-Z7gC2LTahpz8604nsotP_xE6fu-zVmG5hqbOvi2xBnMqX4cfVYgolj9heDktjGEpVeaIPHOmefn6oN584q8zzp3C5h6Yu7tHy4g9RqeoiDzz8hdcDw-vBsduvQuDi-TgJq7CUGMQMBUHSeZ5IlSe1MwLY-EJGfoiZGGSKUJBkrAnclpeISqtUBvq-4jpYAMW8vtcbYITZUxFicZEEuzRQieiT3X5msvAyzDOWsAazadYU5SbnTJu0-pXOeepUVJqlGRWLnHqp1ZJLfBeChaWpePzInvUE2k9Y8vPxXdnxE9Gg8tZibTIdAvazUh5FSVQaUjTCOhufe2d27BE8IzbzMc2LEwepmqHINBEdmCeD486sHhweDa66FQjns7nwZ9nEfj4Jw
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58IHoRn7i6akG9GbbPtD2IyOq6PhFU8BbTPGRBu9XuIv4pf6OTPlxF0JO9tZ3kMJnON9NkvgHYVqEbKVxoIhKhCVqIQ2Id2UQEynV4wiktmJguLmn31j-9C-7G4L2uhTHHKmufWDhq2RfmH3kLodlQT2G4sJ89E9M1yuyu1i00SrM4U2-vmLLleyeHuL47rts5uml3SdVVgAh02AOihK-F51EVerG0be4rO9HU9kNu88R3uE_9WCpE9QRjKRFhuiCE0kpoQ-UeUO3hvOMw6XuI5KYyvXNce34Pr7AswHQJIntUnyfDJLN6FtMWOpew5bRM0arpafkFDcd7_ewHJBQ415mD2SpAtQ5Ki5qHMZUuwFRxUFTki9C5HmbGveRKWjyV1jDNRw-qFhQPVi-1srICwdw9vZW82D1hZQWdZ5ovwe2_aG0ZJtJ-qlbACiRVQaxFnGDwo7mOuYtzOTpKPFuKUDaA1jphoiIqN_0yHlmxYR5FzCiTGWWa_CVkDiuV2QD7c2BWcnX8PWQXlc6q7zb_W3zrm_jpVfv6uwTLpG5As17DkejIfld_f70J092bi3N2fnJ5tgYzGKBFZe1jEyYGL0O1jkHQINkoLM-C-_829Q8eaxHK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mRPFF_MTp1II-WpuubZo-yrTo_AQVfQtpmshAu2K3B_97L02nDBGxT225S8PlLvcLzf0CcKjiHlM40K7MpHbRQ3w30Yy4MlI9X2SC0pqJ6fqGnj-Gg-fouQXpVy3MqGym_mO8tUTB1oTNhjjmIYbuuTRKqIdxGnu-Z-o_CfPKXM_BfBRgxkG_vg2epjNygFdsCyONImPTfV6_NzaTpeawJz-m6jr_pCuw3ABH58R2cxVaqliDhXoDp6zWIb2flCbsK5U7osidSVF9v2iOhnhxhoVT2soA8_T2Yfmqh9Ipa5rNotqAx_TsoX_uNmckuBLTz9hVMtQyCKiKgyQnRISKZJqSMBZEZKEvQhomuUKMkiEylAwXP1IqraQ2xPQR1cEmtItRobbAiXKqokTLJENQooVORA_b8jXLApLLOO8AndqEy4ZA3Jxj8crrH9mMcWNMboxp1hUx97k1ZgfIl2JpOTT-VjlCo_Mmnqq_xQ9mxAd3_ftZCY7e0YHudAy_RRHyGUozhKHb__vmPizenab86uLmcgeWEEcxW6LYhfb4faJ2EauMs73aET8BSMTYnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+and+unsupervised+learning+in+processing+myographic+patterns&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Shamsin%2C+M&rft.au=Krilova%2C+N&rft.au=Bazhanova%2C+M&rft.au=Kazantsev%2C+V&rft.date=2018-11-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1117&rft.spage=12008&rft_id=info:doi/10.1088%2F1742-6596%2F1117%2F1%2F012008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1117_1_012008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon