Supervised and unsupervised learning in processing myographic patterns
Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs). Formation of SOMs is based on the unsupervised Hebbian learning rule, according to which the weight of a synaptic connection depends on the co-act...
Saved in:
Published in | Journal of physics. Conference series Vol. 1117; no. 1; pp. 12008 - 12016 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs). Formation of SOMs is based on the unsupervised Hebbian learning rule, according to which the weight of a synaptic connection depends on the co-activation of pre- and postsynaptic neurons. On the other hand, a variety of human-machine interfaces employ supervised learning based on the correction of synaptic weights in proportion to the network error. But this learning rule has not been verified as biologically relevant. In our work, we study artificial neural networks (ANN) that classify hand gestures through electromyographic recordings (EMG). We use eight-channel electromyographic (EMG) signals acquired by a Thalmic labs Myo device as an input to a multilayer perceptron (MLP) and Kohonen's SOM. We compare supervised (MLP) and unsupervised (SOM) learning in the task of EMG-classification. The median value of recognition fidelity (F-measure) for SOM-based recognition is F = 0.87 and for MLP classification F = 0.96. Also we reveal strong correlation between F-measures for classification EMG patterns of 37 subjects by MLP and SOM. For estimation of clustering quality of SOM we introduce two indexes: the intra-cluster index describing the cluster "compactness" and the inter-cluster index measuring the degree of cluster overlapping. There are strong correlations between F-measures for SOM classification and introduced indexes. Differences in the significance level of the correlations suggest that the classification with SOM is more negatively affected by overlapping clusters than their large size. |
---|---|
AbstractList | Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs). Formation of SOMs is based on the unsupervised Hebbian learning rule, according to which the weight of a synaptic connection depends on the co-activation of pre- and postsynaptic neurons. On the other hand, a variety of human-machine interfaces employ supervised learning based on the correction of synaptic weights in proportion to the network error. But this learning rule has not been verified as biologically relevant. In our work, we study artificial neural networks (ANN) that classify hand gestures through electromyographic recordings (EMG). We use eight-channel electromyographic (EMG) signals acquired by a Thalmic labs Myo device as an input to a multilayer perceptron (MLP) and Kohonen's SOM. We compare supervised (MLP) and unsupervised (SOM) learning in the task of EMG-classification. The median value of recognition fidelity (F-measure) for SOM-based recognition is F = 0.87 and for MLP classification F = 0.96. Also we reveal strong correlation between F-measures for classification EMG patterns of 37 subjects by MLP and SOM. For estimation of clustering quality of SOM we introduce two indexes: the intra-cluster index describing the cluster "compactness" and the inter-cluster index measuring the degree of cluster overlapping. There are strong correlations between F-measures for SOM classification and introduced indexes. Differences in the significance level of the correlations suggest that the classification with SOM is more negatively affected by overlapping clusters than their large size. |
Author | Kazantsev, V Lobov, S Makarov, V A Krilova, N Shamsin, M Bazhanova, M |
Author_xml | – sequence: 1 givenname: M surname: Shamsin fullname: Shamsin, M email: nlhr@yandex.ru organization: Lobachevsky State University of Nizhny Novgorod , Russia – sequence: 2 givenname: N surname: Krilova fullname: Krilova, N organization: Lobachevsky State University of Nizhny Novgorod , Russia – sequence: 3 givenname: M surname: Bazhanova fullname: Bazhanova, M organization: Lobachevsky State University of Nizhny Novgorod , Russia – sequence: 4 givenname: V surname: Kazantsev fullname: Kazantsev, V organization: Lobachevsky State University of Nizhny Novgorod , Russia – sequence: 5 givenname: V A surname: Makarov fullname: Makarov, V A organization: Instituto de Matemática Interdisciplinar, Applied Mathematics Dept., Universidad Complutense de Madrid , Spain – sequence: 6 givenname: S surname: Lobov fullname: Lobov, S organization: Lobachevsky State University of Nizhny Novgorod , Russia |
BookMark | eNqNkF1LwzAUhoNMcJv-BgveCbUnTdpkF17IcH4wUJhehyxNZsaW1qQV9u9tqWwoguYmycn75ByeERq40mmEzjFcYeA8wYymcZ5N8gRjzBKcAE4B-BEa7l8G-zPnJ2gUwhqAtIsN0WzRVNp_2KCLSLoialw4FDZaemfdKrIuqnypdAjdbbsrV15Wb1ZFlaxr7V04RcdGboI--9rH6HV2-zK9j-dPdw_Tm3msKCZ1rBU1ipBcMzIpACTVsDQ5UCZBLimWNKeTQqeMLDmA4phypbTRyqQ5QJYbMkYX_b_tOO-NDrVYl413bUuRZnlGGc_StE2xPqV8GYLXRlTebqXfCQyikyY6HaJTIzppAoteWkte_yCVrWVtS1d7aTf_4EnP27I6jPY3dfkL9fg8XXwPiqow5BPnV5F2 |
CitedBy_id | crossref_primary_10_3390_s20020500 |
Cites_doi | 10.17691/stm2015.7.4.04 10.1016/j.neures.2004.07.004 10.1111/j.1467-9280.1996.tb00347.x 10.1017/S026357470999049X 10.1007/978-3-319-62870-7_7 10.1007/BF00337288 10.1109/TNSRE.2014.2305520 10.1682/JRRD.2010.08.0161 10.1016/S0208-5216(13)70054-8 10.1007/BF00318206 10.3390/s18041122 10.1007/s40137-013-0044-8 10.3390/s151127894 10.1146/annurev.neuro.24.1.139 10.1109/10.740879 10.1109/TSMCB.2012.2185843 10.1007/978-0-387-30164-8 10.15373/22778179/July2014/184 10.1038/nrn3766 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/1117/1/012008 |
DatabaseName | IOP Open access IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection (via ProQuest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Supervised and unsupervised learning in processing myographic patterns |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_1117_1_012008 JPCS_1117_1_012008 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP AALHV ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EJD EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 02O 1WK AAYXX ACARI AERVB AGQPQ AHSEE ARNYC BBWZM C1A CITATION FEDTE H13 HVGLF JCGBZ M48 OVT PHGZM PHGZT Q02 S3P 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c413t-ec4fc336e739d00a4e0bf6047a0ab41a4649de273b800c8148ccefecf260056f3 |
IEDL.DBID | IOP |
ISSN | 1742-6588 |
IngestDate | Fri Jul 25 03:28:39 EDT 2025 Tue Jul 01 03:54:00 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Wed Aug 21 03:40:19 EDT 2024 Thu Jan 07 13:48:50 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-ec4fc336e739d00a4e0bf6047a0ab41a4649de273b800c8148ccefecf260056f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/1117/1/012008 |
PQID | 2565478522 |
PQPubID | 4998668 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1088_1742_6596_1117_1_012008 iop_journals_10_1088_1742_6596_1117_1_012008 crossref_citationtrail_10_1088_1742_6596_1117_1_012008 proquest_journals_2565478522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 12 23 13 14 15 16 17 19 Huang H P (18) 2003; 1 1 2 3 Lobov S (21) 2016; 1 4 5 6 Rumelhart D E (8) 1985; 1 7 Hebb D O (11) 1949 9 20 10 |
References_xml | – ident: 20 doi: 10.17691/stm2015.7.4.04 – ident: 12 doi: 10.1016/j.neures.2004.07.004 – year: 1949 ident: 11 publication-title: The Organization of Behavior: A neuropsychological theory – ident: 15 doi: 10.1111/j.1467-9280.1996.tb00347.x – ident: 17 doi: 10.1017/S026357470999049X – ident: 5 doi: 10.1007/978-3-319-62870-7_7 – ident: 16 doi: 10.1007/BF00337288 – ident: 2 doi: 10.1109/TNSRE.2014.2305520 – ident: 6 doi: 10.1682/JRRD.2010.08.0161 – ident: 9 doi: 10.1016/S0208-5216(13)70054-8 – ident: 14 doi: 10.1007/BF00318206 – volume: 1 start-page: 57 year: 2016 ident: 21 publication-title: NEUROTECHNIX 2016 – Proceedings of the 4th International Congress on Neurotechnology, Electronics and Informatics – volume: 1 start-page: 318 year: 1985 ident: 8 publication-title: Parallel Distributed Processing: explorations in the microstructure of cognition – ident: 22 doi: 10.3390/s18041122 – ident: 1 doi: 10.1007/s40137-013-0044-8 – ident: 7 doi: 10.3390/s151127894 – ident: 10 doi: 10.1146/annurev.neuro.24.1.139 – ident: 19 doi: 10.1109/10.740879 – ident: 3 doi: 10.1109/TSMCB.2012.2185843 – ident: 23 doi: 10.1007/978-0-387-30164-8 – ident: 4 doi: 10.15373/22778179/July2014/184 – ident: 13 doi: 10.1038/nrn3766 – volume: 1 start-page: 1497 issn: 1049-3492 year: 2003 ident: 18 publication-title: IEEE International Conference on Robotics and Automation |
SSID | ssj0033337 |
Score | 2.1744225 |
Snippet | Synaptic connections in neocortex are assumed to be formed by a self-organizing process leading to emergence of the so-called self-organized maps (SOMs).... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12008 |
SubjectTerms | Artificial neural networks Cerebral cortex Classification Clustering Electromyography Error correction Learning theory Man-machine interfaces Multilayer perceptrons Recognition Self organizing maps Supervised learning Unsupervised learning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5si-BFfGK1SkCPLkmaZLM5iZaWUrAUa6G3sE8paBpNe_DfO5tsrEXQ3LKZzWFmd-bbx3yD0I2Ku1SBobHgQmMYIT5ONPWwiFTXZ5wRUjIxPY7JcBaO5tHcbrgV9lpl7RNLRy2XwuyRuxCaDfUUwIW7_B2bqlHmdNWW0GigFrhgSpuo9dAfT55qXxzAE1cpkV0MsZbWN7xg2WfbEuLCdI9d3zVppKbK5I_41Fgs819Ouow8gwO0byGjc1_Z-BDtqOwI7ZZXN0VxjAbTdW4mfKGkwzLprLNi02CLQrw4i8zJq5wA8_b2WTFVL4STlwSbWXGCZoP-c2-IbXUELCDwrLASoRZBQFQcJNLzWKg8rokXxsxjPPRZSMJEKkAnHDChoLDsEUJpJbShpI-IDk5RM1tm6gw5kSQqSrRIOMARzXTCuvAvX1MeeFLEso1IrZNUWOpwU8HiNS2PsClNjTJTo0yzoohTP62U2Ubed8e8Ys_4v8stKD21M6n4X_x6S3w06U23JdJc6jbq1DbciG5G1Pnfny_QHsAkWmUgdlBz9bFWlwBFVvzKjrcvV3nV5w priority: 102 providerName: ProQuest |
Title | Supervised and unsupervised learning in processing myographic patterns |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/1117/1/012008 https://www.proquest.com/docview/2565478522 |
Volume | 1117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x0EpceO0iCqWKxB5JmzSJ4xyhoiAkoOKh5RbZE3tVLYSItAf49YzjBOgihBA5REk0dpyxPfNZmfkM8FvFfa6oo12UqF0aIb6baO65GKm-L6RgrGJiOj1jx9fhyU108zYX5r6oTX-XLi1RsFVhHRDHe4Sh-y6LEtajeRr3_J7J_zT5vosBJ_9pkvjOR401DuiIbVKkKcR5E-P1cUUzHmqeWvHOTFe-Z7gC2LTahpz8604nsotP_xE6fu-zVmG5hqbOvi2xBnMqX4cfVYgolj9heDktjGEpVeaIPHOmefn6oN584q8zzp3C5h6Yu7tHy4g9RqeoiDzz8hdcDw-vBsduvQuDi-TgJq7CUGMQMBUHSeZ5IlSe1MwLY-EJGfoiZGGSKUJBkrAnclpeISqtUBvq-4jpYAMW8vtcbYITZUxFicZEEuzRQieiT3X5msvAyzDOWsAazadYU5SbnTJu0-pXOeepUVJqlGRWLnHqp1ZJLfBeChaWpePzInvUE2k9Y8vPxXdnxE9Gg8tZibTIdAvazUh5FSVQaUjTCOhufe2d27BE8IzbzMc2LEwepmqHINBEdmCeD486sHhweDa66FQjns7nwZ9nEfj4Jw |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58IHoRn7i6akG9GbbPtD2IyOq6PhFU8BbTPGRBu9XuIv4pf6OTPlxF0JO9tZ3kMJnON9NkvgHYVqEbKVxoIhKhCVqIQ2Id2UQEynV4wiktmJguLmn31j-9C-7G4L2uhTHHKmufWDhq2RfmH3kLodlQT2G4sJ89E9M1yuyu1i00SrM4U2-vmLLleyeHuL47rts5uml3SdVVgAh02AOihK-F51EVerG0be4rO9HU9kNu88R3uE_9WCpE9QRjKRFhuiCE0kpoQ-UeUO3hvOMw6XuI5KYyvXNce34Pr7AswHQJIntUnyfDJLN6FtMWOpew5bRM0arpafkFDcd7_ewHJBQ415mD2SpAtQ5Ki5qHMZUuwFRxUFTki9C5HmbGveRKWjyV1jDNRw-qFhQPVi-1srICwdw9vZW82D1hZQWdZ5ovwe2_aG0ZJtJ-qlbACiRVQaxFnGDwo7mOuYtzOTpKPFuKUDaA1jphoiIqN_0yHlmxYR5FzCiTGWWa_CVkDiuV2QD7c2BWcnX8PWQXlc6q7zb_W3zrm_jpVfv6uwTLpG5As17DkejIfld_f70J092bi3N2fnJ5tgYzGKBFZe1jEyYGL0O1jkHQINkoLM-C-_829Q8eaxHK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mRPFF_MTp1II-WpuubZo-yrTo_AQVfQtpmshAu2K3B_97L02nDBGxT225S8PlLvcLzf0CcKjiHlM40K7MpHbRQ3w30Yy4MlI9X2SC0pqJ6fqGnj-Gg-fouQXpVy3MqGym_mO8tUTB1oTNhjjmIYbuuTRKqIdxGnu-Z-o_CfPKXM_BfBRgxkG_vg2epjNygFdsCyONImPTfV6_NzaTpeawJz-m6jr_pCuw3ABH58R2cxVaqliDhXoDp6zWIb2flCbsK5U7osidSVF9v2iOhnhxhoVT2soA8_T2Yfmqh9Ipa5rNotqAx_TsoX_uNmckuBLTz9hVMtQyCKiKgyQnRISKZJqSMBZEZKEvQhomuUKMkiEylAwXP1IqraQ2xPQR1cEmtItRobbAiXKqokTLJENQooVORA_b8jXLApLLOO8AndqEy4ZA3Jxj8crrH9mMcWNMboxp1hUx97k1ZgfIl2JpOTT-VjlCo_Mmnqq_xQ9mxAd3_ftZCY7e0YHudAy_RRHyGUozhKHb__vmPizenab86uLmcgeWEEcxW6LYhfb4faJ2EauMs73aET8BSMTYnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+and+unsupervised+learning+in+processing+myographic+patterns&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Shamsin%2C+M&rft.au=Krilova%2C+N&rft.au=Bazhanova%2C+M&rft.au=Kazantsev%2C+V&rft.date=2018-11-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1117&rft.spage=12008&rft_id=info:doi/10.1088%2F1742-6596%2F1117%2F1%2F012008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1117_1_012008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |