Moving finite element methods for time fractional partial differential equations

With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 56; no. 6; pp. 1287 - 1300
Main Authors Jiang, YingJun, Ma, JingTang
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science China Press 01.06.2013
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-013-4584-2

Cover

Abstract With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.
AbstractList With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuniform meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2- alpha for time and r for space are proved when the method is used for the linear time FPDEs with alpha -th order time derivatives. Numerical examples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.
With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.
With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuniform meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 − α for time and r for space are proved when the method is used for the linear time FPDEs with α -th order time derivatives. Numerical examples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.
Author JIANG YingJun MA JingTang
AuthorAffiliation Department of Mathematics and Scientific Computing, Changsha University of Science and Technology, Changsha 410076, China School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China
Author_xml – sequence: 1
  givenname: YingJun
  surname: Jiang
  fullname: Jiang, YingJun
  email: jiangyingjun@csust.edu.cn
  organization: Department of Mathematics and Scientific Computing, Changsha University of Science and Technology
– sequence: 2
  givenname: JingTang
  surname: Ma
  fullname: Ma, JingTang
  organization: School of Economic Mathematics, Southwestern University of Finance and Economics
BookMark eNp9kDtPwzAUhS1UJErpD2ALG0sgfuQ1ooqXVAQDzJbjXLeuEru1HST-PQ5BDAz1cK-vfL57rHOOZsYaQOgSZzc4y8pbjzEjeZphmrK8Yik5QXNcFXUaC5nFe1GytCQVPUNL73dZPLTOWEnn6O3FfmqzSZQ2OkACHfRgQtJD2NrWJ8q6JOgeEuWEDNoa0SV74YKOvdVKgYvqcYDDIMZ3f4FOleg8LH_7An083L-vntL16-Pz6m6dSoZpSEEopQpG6koIAjgrBG4BZKNqAlIyWtYUcilzSZtaqQagYXmLc1o2RCrZFnSBrqe9e2cPA_jAe-0ldJ0wYAfPMWNVGQ0IjtJykkpnvXeguNTh57fBCd1xnPExRj7FyGOMfIyRk0jif-Te6V64r6MMmRgftWYDju_s4GJw_ih09Wu0tWZziNyfEyuqmmJW02_3ZJRc
CitedBy_id crossref_primary_10_1016_j_amc_2019_04_019
crossref_primary_10_1016_j_camwa_2019_03_035
crossref_primary_10_1007_s11831_024_10083_w
crossref_primary_10_1155_2014_141467
crossref_primary_10_1007_s40995_023_01448_0
crossref_primary_10_1007_s40840_018_0652_7
crossref_primary_10_1016_j_camwa_2019_11_014
crossref_primary_10_1007_s12190_015_0944_0
crossref_primary_10_1016_j_apm_2014_07_029
crossref_primary_10_1016_j_cam_2013_06_021
crossref_primary_10_1007_s10915_017_0360_8
crossref_primary_10_1016_j_enganabound_2015_11_011
crossref_primary_10_3934_era_2024017
crossref_primary_10_1016_j_amc_2014_06_023
crossref_primary_10_11948_2016031
crossref_primary_10_1080_00207160_2019_1639677
crossref_primary_10_1016_j_cam_2019_06_040
crossref_primary_10_1080_01630563_2018_1488143
crossref_primary_10_1007_s11425_017_9179_x
crossref_primary_10_1007_s11075_018_0496_0
crossref_primary_10_1016_j_chaos_2018_04_019
crossref_primary_10_1142_S1793962320300010
crossref_primary_10_1007_s11425_014_4806_2
crossref_primary_10_4208_aamm_2015_m1065
crossref_primary_10_1088_1742_6596_495_1_012032
crossref_primary_10_1016_j_camwa_2016_11_020
crossref_primary_10_1155_2016_5614950
crossref_primary_10_1007_s11786_019_00448_x
crossref_primary_10_3389_feart_2023_1083562
crossref_primary_10_1016_j_camwa_2017_06_057
crossref_primary_10_1007_s00366_016_0491_9
crossref_primary_10_1002_mma_4151
crossref_primary_10_1142_S0129183123500018
crossref_primary_10_1007_s12190_014_0764_7
crossref_primary_10_1007_s10473_021_0311_1
crossref_primary_10_1007_s40314_017_0447_8
crossref_primary_10_1155_2013_792912
crossref_primary_10_1007_s10440_016_0088_8
crossref_primary_10_1186_s13104_024_06966_7
crossref_primary_10_1080_00036811_2016_1186271
crossref_primary_10_1080_00207160_2017_1343471
crossref_primary_10_1016_j_cam_2014_07_029
Cites_doi 10.1007/s11075-010-9379-8
10.1137/0731038
10.1007/978-1-4419-7916-2
10.1137/080718942
10.1007/s11425-010-3128-2
10.1016/j.amc.2006.08.163
10.1016/S0021-9991(02)00040-2
10.1023/A:1016592219341
10.1007/s11425-010-4133-1
10.1137/060673114
10.1007/s11075-008-9258-8
10.1016/j.cam.2011.01.011
10.1137/0517050
10.1016/j.jcp.2007.02.001
10.1007/s11425-010-4075-7
10.1016/j.jcp.2007.05.012
10.1016/j.jmaa.2005.03.054
10.1016/S0370-1573(00)00070-3
10.1007/978-1-4757-3658-8
10.1023/B:NUMA.0000027736.85078.be
10.1016/j.cam.2008.04.005
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2013
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11425-013-4584-2
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Moving finite element methods for time fractional partial differential equations
EISSN 1869-1862
EndPage 1300
ExternalDocumentID 10_1007_s11425_013_4584_2
46893149
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~WA
-SA
-S~
0R~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
CJPJV
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
7TB
8FD
ABRTQ
FR3
KR7
ID FETCH-LOGICAL-c413t-eafff64298aa2e106a1deecbf92ecc43793e5cc5c3b9ffbeeb45d1537b2cfcd63
IEDL.DBID AGYKE
ISSN 1674-7283
IngestDate Tue Aug 19 13:16:39 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Tue Jul 01 03:54:49 EDT 2025
Fri Feb 21 02:33:41 EST 2025
Wed Feb 14 10:42:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 65R20
65M06
35S10
fractional partial differential equations
65M60
moving finite element methods
blow-up solutions
65M12
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-eafff64298aa2e106a1deecbf92ecc43793e5cc5c3b9ffbeeb45d1537b2cfcd63
Notes fractional partial differential equations, moving finite element methods, blow-up solutions
With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method.
11-1787/N
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1448764221
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1448764221
crossref_citationtrail_10_1007_s11425_013_4584_2
crossref_primary_10_1007_s11425_013_4584_2
springer_journals_10_1007_s11425_013_4584_2
chongqing_primary_46893149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationTitleAlternate SCIENCE CHINA Mathematics
PublicationYear 2013
Publisher SP Science China Press
Publisher_xml – name: SP Science China Press
References HuangW. Z.SunW. W.Variational mesh adaptation II: error estimates and monitor functionsJ Comput Phys200318461964819594071018.6514010.1016/S0021-9991(02)00040-2
McLeanW.MustaphaK.Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equationNumer Algorithm200956988253399510.1007/s11075-008-9258-8
LiuY. X.ShuC. W.Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation modelsSci China Math20101232553278274632110.1007/s11425-010-4075-7
ZhuangP.LiuF.AnhV.Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion processIMA J Numer Math20097464566725499531187.35271
ChenC.LiuF.TurnerI.A fourier method for the fractional diffusion equation describing sub-diffusionJ Comput Phys200722788689724423791165.6505310.1016/j.jcp.2007.05.012
DiethelmK.FordN. J.FreedA. D.Detailed error analysis for a fractional Adams methodNumer Algorithm200436315220635721055.6509810.1023/B:NUMA.0000027736.85078.be
JiangY. J.MaJ. T.High-order finite element methods for time-fractional partial differential equationsJ Comput Appl Math20112353285329027840431216.6513010.1016/j.cam.2011.01.011
ZhuangP.LiuF.AnhV.New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equationSIAM J Numer Anal2008461079109523832241173.2600610.1137/060673114
HuangW.RenY.RussellR. D.Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principleSIAM J Numer Anal19943170973012751090806.6509210.1137/0731038
LinY. M.XuC. J.Finite difference/spectral spproximations for the time-fractional diffusion equationJ Comput Phys20072251533155223491931126.6512110.1016/j.jcp.2007.02.001
GorenfloR.MainardiF.Some recent advances in theory and simulation of fractional diffusion processesJ Comput Appl Math200922940041525278941166.4500410.1016/j.cam.2008.04.005
MetzlerR.KlafterJ.The random walk’s guide to anomalous diffusion: a fractional dynamics approachPhys Rep200033917718092680984.8203210.1016/S0370-1573(00)00070-3
DiethelmK.FordN. J.FreedA. D.A predictor-corrector approach for the numerical solution of fractional differential equationsNonlinear Dynam20022932219264661009.6504910.1023/A:1016592219341
KiraneM.LaskriY.TatarN. E.Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivativesJ Math Anal Appl200531248850121790911135.3535010.1016/j.jmaa.2005.03.054
HuangW.RussellR. D.Adaptive Moving Mesh Methods2011New YorkSpringer-Verlag1227.6509010.1007/978-1-4419-7916-2
LiC.DengW.Remarks on fractional derivativesAppl Math Comput200718777778423230831125.2600910.1016/j.amc.2006.08.163
LubichC.Discretized fractional calculusSIAM J Math Anal1986177047198382490624.6501510.1137/0517050
MustaphaK.McLeanM.Piecewise-linear, discontinous Galerkin method for a fractional diffusion equationNumer Algorithm20115615918427556681211.6512710.1007/s11075-010-9379-8
YangJ. M.ChenY. P.A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problemsSci China Math2010102679269610.1007/s11425-010-3128-2
BrennerS. C.ScottL. R.The Mathematical Theory of Finite Element Methods2002New YorkSpringer-Verlag1012.6511510.1007/978-1-4757-3658-8
MaJ. T.JiangY. J.Moving collocation methods for time fractional differential equations and simulation of blowupSci China Math20115461162227754351217.3401010.1007/s11425-010-4133-1
LiX. J.XuC. J.A space-time spectral method for the time fractional diffusion equationSIAM J Numer Anal2009472108213125195961193.3524310.1137/080718942
P. Zhuang (4584_CR22) 2009; 74
W. Z. Huang (4584_CR8) 2003; 184
W. Huang (4584_CR7) 2011
Y. M. Lin (4584_CR13) 2007; 225
J. T. Ma (4584_CR16) 2011; 54
C. Li (4584_CR11) 2007; 187
X. J. Li (4584_CR12) 2009; 47
P. Zhuang (4584_CR21) 2008; 46
W. Huang (4584_CR6) 1994; 31
K. Mustapha (4584_CR19) 2011; 56
C. Chen (4584_CR2) 2007; 227
Y. J. Jiang (4584_CR9) 2011; 235
W. McLean (4584_CR17) 2009; 5
Y. X. Liu (4584_CR14) 2010; 12
R. Gorenflo (4584_CR5) 2009; 229
K. Diethelm (4584_CR3) 2002; 29
J. M. Yang (4584_CR20) 2010; 10
S. C. Brenner (4584_CR1) 2002
C. Lubich (4584_CR15) 1986; 17
R. Metzler (4584_CR18) 2000; 339
K. Diethelm (4584_CR4) 2004; 36
M. Kirane (4584_CR10) 2005; 312
References_xml – reference: DiethelmK.FordN. J.FreedA. D.A predictor-corrector approach for the numerical solution of fractional differential equationsNonlinear Dynam20022932219264661009.6504910.1023/A:1016592219341
– reference: DiethelmK.FordN. J.FreedA. D.Detailed error analysis for a fractional Adams methodNumer Algorithm200436315220635721055.6509810.1023/B:NUMA.0000027736.85078.be
– reference: ZhuangP.LiuF.AnhV.Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion processIMA J Numer Math20097464566725499531187.35271
– reference: GorenfloR.MainardiF.Some recent advances in theory and simulation of fractional diffusion processesJ Comput Appl Math200922940041525278941166.4500410.1016/j.cam.2008.04.005
– reference: HuangW.RenY.RussellR. D.Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principleSIAM J Numer Anal19943170973012751090806.6509210.1137/0731038
– reference: LiC.DengW.Remarks on fractional derivativesAppl Math Comput200718777778423230831125.2600910.1016/j.amc.2006.08.163
– reference: MetzlerR.KlafterJ.The random walk’s guide to anomalous diffusion: a fractional dynamics approachPhys Rep200033917718092680984.8203210.1016/S0370-1573(00)00070-3
– reference: YangJ. M.ChenY. P.A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problemsSci China Math2010102679269610.1007/s11425-010-3128-2
– reference: LiuY. X.ShuC. W.Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation modelsSci China Math20101232553278274632110.1007/s11425-010-4075-7
– reference: LubichC.Discretized fractional calculusSIAM J Math Anal1986177047198382490624.6501510.1137/0517050
– reference: ZhuangP.LiuF.AnhV.New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equationSIAM J Numer Anal2008461079109523832241173.2600610.1137/060673114
– reference: LinY. M.XuC. J.Finite difference/spectral spproximations for the time-fractional diffusion equationJ Comput Phys20072251533155223491931126.6512110.1016/j.jcp.2007.02.001
– reference: MustaphaK.McLeanM.Piecewise-linear, discontinous Galerkin method for a fractional diffusion equationNumer Algorithm20115615918427556681211.6512710.1007/s11075-010-9379-8
– reference: BrennerS. C.ScottL. R.The Mathematical Theory of Finite Element Methods2002New YorkSpringer-Verlag1012.6511510.1007/978-1-4757-3658-8
– reference: JiangY. J.MaJ. T.High-order finite element methods for time-fractional partial differential equationsJ Comput Appl Math20112353285329027840431216.6513010.1016/j.cam.2011.01.011
– reference: LiX. J.XuC. J.A space-time spectral method for the time fractional diffusion equationSIAM J Numer Anal2009472108213125195961193.3524310.1137/080718942
– reference: McLeanW.MustaphaK.Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equationNumer Algorithm200956988253399510.1007/s11075-008-9258-8
– reference: HuangW. Z.SunW. W.Variational mesh adaptation II: error estimates and monitor functionsJ Comput Phys200318461964819594071018.6514010.1016/S0021-9991(02)00040-2
– reference: HuangW.RussellR. D.Adaptive Moving Mesh Methods2011New YorkSpringer-Verlag1227.6509010.1007/978-1-4419-7916-2
– reference: KiraneM.LaskriY.TatarN. E.Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivativesJ Math Anal Appl200531248850121790911135.3535010.1016/j.jmaa.2005.03.054
– reference: ChenC.LiuF.TurnerI.A fourier method for the fractional diffusion equation describing sub-diffusionJ Comput Phys200722788689724423791165.6505310.1016/j.jcp.2007.05.012
– reference: MaJ. T.JiangY. J.Moving collocation methods for time fractional differential equations and simulation of blowupSci China Math20115461162227754351217.3401010.1007/s11425-010-4133-1
– volume: 56
  start-page: 159
  year: 2011
  ident: 4584_CR19
  publication-title: Numer Algorithm
  doi: 10.1007/s11075-010-9379-8
– volume: 31
  start-page: 709
  year: 1994
  ident: 4584_CR6
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0731038
– volume-title: Adaptive Moving Mesh Methods
  year: 2011
  ident: 4584_CR7
  doi: 10.1007/978-1-4419-7916-2
– volume: 47
  start-page: 2108
  year: 2009
  ident: 4584_CR12
  publication-title: SIAM J Numer Anal
  doi: 10.1137/080718942
– volume: 10
  start-page: 2679
  year: 2010
  ident: 4584_CR20
  publication-title: Sci China Math
  doi: 10.1007/s11425-010-3128-2
– volume: 187
  start-page: 777
  year: 2007
  ident: 4584_CR11
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.08.163
– volume: 184
  start-page: 619
  year: 2003
  ident: 4584_CR8
  publication-title: J Comput Phys
  doi: 10.1016/S0021-9991(02)00040-2
– volume: 74
  start-page: 645
  year: 2009
  ident: 4584_CR22
  publication-title: IMA J Numer Math
– volume: 29
  start-page: 3
  year: 2002
  ident: 4584_CR3
  publication-title: Nonlinear Dynam
  doi: 10.1023/A:1016592219341
– volume: 54
  start-page: 611
  year: 2011
  ident: 4584_CR16
  publication-title: Sci China Math
  doi: 10.1007/s11425-010-4133-1
– volume: 46
  start-page: 1079
  year: 2008
  ident: 4584_CR21
  publication-title: SIAM J Numer Anal
  doi: 10.1137/060673114
– volume: 5
  start-page: 69
  year: 2009
  ident: 4584_CR17
  publication-title: Numer Algorithm
  doi: 10.1007/s11075-008-9258-8
– volume: 235
  start-page: 3285
  year: 2011
  ident: 4584_CR9
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2011.01.011
– volume: 17
  start-page: 704
  year: 1986
  ident: 4584_CR15
  publication-title: SIAM J Math Anal
  doi: 10.1137/0517050
– volume: 225
  start-page: 1533
  year: 2007
  ident: 4584_CR13
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.02.001
– volume: 12
  start-page: 3255
  year: 2010
  ident: 4584_CR14
  publication-title: Sci China Math
  doi: 10.1007/s11425-010-4075-7
– volume: 227
  start-page: 886
  year: 2007
  ident: 4584_CR2
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.05.012
– volume: 312
  start-page: 488
  year: 2005
  ident: 4584_CR10
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2005.03.054
– volume: 339
  start-page: 1
  year: 2000
  ident: 4584_CR18
  publication-title: Phys Rep
  doi: 10.1016/S0370-1573(00)00070-3
– volume-title: The Mathematical Theory of Finite Element Methods
  year: 2002
  ident: 4584_CR1
  doi: 10.1007/978-1-4757-3658-8
– volume: 36
  start-page: 31
  year: 2004
  ident: 4584_CR4
  publication-title: Numer Algorithm
  doi: 10.1023/B:NUMA.0000027736.85078.be
– volume: 229
  start-page: 400
  year: 2009
  ident: 4584_CR5
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.04.005
SSID ssj0000390473
Score 2.1268823
Snippet With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this...
With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuniform meshes both in time and in space, is proposed in this...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1287
SubjectTerms Applications of Mathematics
China
Computer simulation
Convergence
Derivatives
Finite element method
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Partial differential equations
偏微分方程
分数阶
和空间
时间导数
有限元方法
爆破解
移动
线性时间
Title Moving finite element methods for time fractional partial differential equations
URI http://lib.cqvip.com/qk/60114X/201306/46893149.html
https://link.springer.com/article/10.1007/s11425-013-4584-2
https://www.proquest.com/docview/1448764221
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e9EHv8X5MSr4pGSsWdu1j0OcQ5n44ECfQnJNVJRO7fbiX--lbTYcKvhUCmna3l2S3-UuvwM4iaUybaVDGmmILDDKZzIyyFKMQwx8iWFqtwaGN9FgFFzdh_fVOe7cZbu7kGQxU88Pu_lkX8xWI7CxPUbzbj304ySuQb13-XA931ppkx8fFLFlm2LPurSCunjmT_1YVoWncfb4Tu_8vjrNIedClLRYfPrrcOc-u8w5eWlNJ6qFnwuMjv_8rw1Yq8Co1yutZxOWdLYFq8MZk2u-DbfDYsvBM88WnHq6zDb3ysLTuUeQ17Pl6T3zUZ6QoO7erDXS1dVeKW70e8kpnu_AqH9xdz5gVRUGRrrqTJiWxhjyUpJYSq7Jg5R-qjUqk3BSv6Uz7OgQMcSOSoxRWqsgTGke7SqOBtOoswu1bJzpPfASLm1eoAk4dgm4GWXRW-STXSBvS-w2YH-mCfFWsm2IICJIRX5cA9pONQIr_nJbRuNVzJmXrSQFSVJYSQregNPZI667PxofO30LGmI2biIzPZ7m5B2RV0cS4H4DzpwORTXW89973P9X6wNY4WWpDbKFQ6hNPqb6iADPRDUrA2_C8oj3vgBaOfmK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHtSD-MSurwielECbvo-LKKtuFw-7sLeQpIkK0n109_87aZsuigqeSiGdwnyT5JvMZAah64QL7QoVwkyTkgRaeIRHWpJcJqEMPC7D3BwNZMOoPw6eJuGkucdd2mx3G5KsVur1ZTcP7IuYbgQmtkdg3d0ELpCYtgVj2msPVlzw4oMqsmwS7EkM-6eNZv4kxdRUeJsWr3P449e9aU04v8VIq63nYQ_tNpwR92qQ99GGKg7QTtYWXC0P0UtWnQxg_W44JFZ1Ujiu-0OXGJgpNl3ksV7UFxlA3MwYDTxti5TqRc3r0t_lERo_3I_u-qRplkBApf6SKK61BmciTTinChw97uVKSaFTCiiZqoO-CqUMpS9SrYVSIghzWO5iQaWWeeQfo04xLdQJwinlJn1PB1TGwK-0MCQr8gA-SV0uYwd1W5WxWV0UgwURMB9wtxzkWh0y2ZQZN90uPti6QLKBgAEEzEDAqINu2k-suD8GX1lgGMwEE97ghZquSnBiwPkCDVDPQbcWMdZMyfJ3id1_jb5EW_1RNmCDx-HzKdqmdXcMMKgz1FkuVuocOMpSXFQ2-Qk_I96_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iIPogntj1quCTErZNr-3joi7rscs-uLBvIUkTFaR7tPv_nem1KCr4VArpFOabJDOZyXyEXHWENI7UAcw0pahvpEtFaBRNVCdQvitUkODRwGAY9sf-4ySYVDynWV3tXqckyzsN2KUpzduzxLRXF99csDWKzASY56OwBm_AauyioY9ZtzlkcSCi94ssMxbb0wj20jqz-ZMU7K_wNk1f5_D3r_vUyvn8li8ttqHeLtmp_Ee7WwK-R9Z0uk-2B03z1eyAjAbFKYFt3tGftHVZIG6XXNGZDV6qjYzytlmUlxpA3AwNCJ41XUrxoudlG_DskIx79y-3fVoRJ1BQr5dTLYwxEFjEHSGYhqBPuInWSpqYAWLYgdDTgVKB8mRsjNRa-kECS18kmTIqCb0jsp5OU31M7JgJLOUzPlMR-FpGosMVugClYo5QkUVajcr4rGyQwf0QvCAIvSzi1Drkqmo5jswXH3zVLBkh4AABRwg4s8h180kt7o_BlzUwHGYFpjpEqqfLDAIaCMRAA8y1yE2NGK-mZ_a7xNa_Rl-QzdFdjz8_DJ9OyBYriTLAnk7Jer5Y6jNwV3J5XpjkJx2E4vs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+finite+element+methods+for+time+fractional+partial+differential+equations&rft.jtitle=Science+China.+Mathematics&rft.au=Jiang%2C+YingJun&rft.au=Ma%2C+JingTang&rft.date=2013-06-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=56&rft.issue=6&rft.spage=1287&rft.epage=1300&rft_id=info:doi/10.1007%2Fs11425-013-4584-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11425_013_4584_2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg