Moving finite element methods for time fractional partial differential equations
With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and...
Saved in:
Published in | Science China. Mathematics Vol. 56; no. 6; pp. 1287 - 1300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science China Press
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-7283 1869-1862 |
DOI | 10.1007/s11425-013-4584-2 |
Cover
Abstract | With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method. |
---|---|
AbstractList | With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuniform meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2- alpha for time and r for space are proved when the method is used for the linear time FPDEs with alpha -th order time derivatives. Numerical examples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method. With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method. With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuniform meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 − α for time and r for space are proved when the method is used for the linear time FPDEs with α -th order time derivatives. Numerical examples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method. |
Author | JIANG YingJun MA JingTang |
AuthorAffiliation | Department of Mathematics and Scientific Computing, Changsha University of Science and Technology, Changsha 410076, China School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China |
Author_xml | – sequence: 1 givenname: YingJun surname: Jiang fullname: Jiang, YingJun email: jiangyingjun@csust.edu.cn organization: Department of Mathematics and Scientific Computing, Changsha University of Science and Technology – sequence: 2 givenname: JingTang surname: Ma fullname: Ma, JingTang organization: School of Economic Mathematics, Southwestern University of Finance and Economics |
BookMark | eNp9kDtPwzAUhS1UJErpD2ALG0sgfuQ1ooqXVAQDzJbjXLeuEru1HST-PQ5BDAz1cK-vfL57rHOOZsYaQOgSZzc4y8pbjzEjeZphmrK8Yik5QXNcFXUaC5nFe1GytCQVPUNL73dZPLTOWEnn6O3FfmqzSZQ2OkACHfRgQtJD2NrWJ8q6JOgeEuWEDNoa0SV74YKOvdVKgYvqcYDDIMZ3f4FOleg8LH_7An083L-vntL16-Pz6m6dSoZpSEEopQpG6koIAjgrBG4BZKNqAlIyWtYUcilzSZtaqQagYXmLc1o2RCrZFnSBrqe9e2cPA_jAe-0ldJ0wYAfPMWNVGQ0IjtJykkpnvXeguNTh57fBCd1xnPExRj7FyGOMfIyRk0jif-Te6V64r6MMmRgftWYDju_s4GJw_ih09Wu0tWZziNyfEyuqmmJW02_3ZJRc |
CitedBy_id | crossref_primary_10_1016_j_amc_2019_04_019 crossref_primary_10_1016_j_camwa_2019_03_035 crossref_primary_10_1007_s11831_024_10083_w crossref_primary_10_1155_2014_141467 crossref_primary_10_1007_s40995_023_01448_0 crossref_primary_10_1007_s40840_018_0652_7 crossref_primary_10_1016_j_camwa_2019_11_014 crossref_primary_10_1007_s12190_015_0944_0 crossref_primary_10_1016_j_apm_2014_07_029 crossref_primary_10_1016_j_cam_2013_06_021 crossref_primary_10_1007_s10915_017_0360_8 crossref_primary_10_1016_j_enganabound_2015_11_011 crossref_primary_10_3934_era_2024017 crossref_primary_10_1016_j_amc_2014_06_023 crossref_primary_10_11948_2016031 crossref_primary_10_1080_00207160_2019_1639677 crossref_primary_10_1016_j_cam_2019_06_040 crossref_primary_10_1080_01630563_2018_1488143 crossref_primary_10_1007_s11425_017_9179_x crossref_primary_10_1007_s11075_018_0496_0 crossref_primary_10_1016_j_chaos_2018_04_019 crossref_primary_10_1142_S1793962320300010 crossref_primary_10_1007_s11425_014_4806_2 crossref_primary_10_4208_aamm_2015_m1065 crossref_primary_10_1088_1742_6596_495_1_012032 crossref_primary_10_1016_j_camwa_2016_11_020 crossref_primary_10_1155_2016_5614950 crossref_primary_10_1007_s11786_019_00448_x crossref_primary_10_3389_feart_2023_1083562 crossref_primary_10_1016_j_camwa_2017_06_057 crossref_primary_10_1007_s00366_016_0491_9 crossref_primary_10_1002_mma_4151 crossref_primary_10_1142_S0129183123500018 crossref_primary_10_1007_s12190_014_0764_7 crossref_primary_10_1007_s10473_021_0311_1 crossref_primary_10_1007_s40314_017_0447_8 crossref_primary_10_1155_2013_792912 crossref_primary_10_1007_s10440_016_0088_8 crossref_primary_10_1186_s13104_024_06966_7 crossref_primary_10_1080_00036811_2016_1186271 crossref_primary_10_1080_00207160_2017_1343471 crossref_primary_10_1016_j_cam_2014_07_029 |
Cites_doi | 10.1007/s11075-010-9379-8 10.1137/0731038 10.1007/978-1-4419-7916-2 10.1137/080718942 10.1007/s11425-010-3128-2 10.1016/j.amc.2006.08.163 10.1016/S0021-9991(02)00040-2 10.1023/A:1016592219341 10.1007/s11425-010-4133-1 10.1137/060673114 10.1007/s11075-008-9258-8 10.1016/j.cam.2011.01.011 10.1137/0517050 10.1016/j.jcp.2007.02.001 10.1007/s11425-010-4075-7 10.1016/j.jcp.2007.05.012 10.1016/j.jmaa.2005.03.054 10.1016/S0370-1573(00)00070-3 10.1007/978-1-4757-3658-8 10.1023/B:NUMA.0000027736.85078.be 10.1016/j.cam.2008.04.005 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2013 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1007/s11425-013-4584-2 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Moving finite element methods for time fractional partial differential equations |
EISSN | 1869-1862 |
EndPage | 1300 |
ExternalDocumentID | 10_1007_s11425_013_4584_2 46893149 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 ~WA -SA -S~ 0R~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION 7TB 8FD ABRTQ FR3 KR7 |
ID | FETCH-LOGICAL-c413t-eafff64298aa2e106a1deecbf92ecc43793e5cc5c3b9ffbeeb45d1537b2cfcd63 |
IEDL.DBID | AGYKE |
ISSN | 1674-7283 |
IngestDate | Tue Aug 19 13:16:39 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Tue Jul 01 03:54:49 EDT 2025 Fri Feb 21 02:33:41 EST 2025 Wed Feb 14 10:42:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 65R20 65M06 35S10 fractional partial differential equations 65M60 moving finite element methods blow-up solutions 65M12 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-eafff64298aa2e106a1deecbf92ecc43793e5cc5c3b9ffbeeb45d1537b2cfcd63 |
Notes | fractional partial differential equations, moving finite element methods, blow-up solutions With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this paper to solve time fractional partial differential equations (FPDEs). The unconditional stability and convergence rates of 2 -a for time and r for space are proved when the method is used for the linear time FPDEs with a-th order time derivatives. Numerical exam-ples are provided to support the theoretical findings, and the blow-up solutions for the nonlinear FPDEs are simulated by the method. 11-1787/N ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1448764221 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1448764221 crossref_citationtrail_10_1007_s11425_013_4584_2 crossref_primary_10_1007_s11425_013_4584_2 springer_journals_10_1007_s11425_013_4584_2 chongqing_primary_46893149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationTitleAlternate | SCIENCE CHINA Mathematics |
PublicationYear | 2013 |
Publisher | SP Science China Press |
Publisher_xml | – name: SP Science China Press |
References | HuangW. Z.SunW. W.Variational mesh adaptation II: error estimates and monitor functionsJ Comput Phys200318461964819594071018.6514010.1016/S0021-9991(02)00040-2 McLeanW.MustaphaK.Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equationNumer Algorithm200956988253399510.1007/s11075-008-9258-8 LiuY. X.ShuC. W.Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation modelsSci China Math20101232553278274632110.1007/s11425-010-4075-7 ZhuangP.LiuF.AnhV.Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion processIMA J Numer Math20097464566725499531187.35271 ChenC.LiuF.TurnerI.A fourier method for the fractional diffusion equation describing sub-diffusionJ Comput Phys200722788689724423791165.6505310.1016/j.jcp.2007.05.012 DiethelmK.FordN. J.FreedA. D.Detailed error analysis for a fractional Adams methodNumer Algorithm200436315220635721055.6509810.1023/B:NUMA.0000027736.85078.be JiangY. J.MaJ. T.High-order finite element methods for time-fractional partial differential equationsJ Comput Appl Math20112353285329027840431216.6513010.1016/j.cam.2011.01.011 ZhuangP.LiuF.AnhV.New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equationSIAM J Numer Anal2008461079109523832241173.2600610.1137/060673114 HuangW.RenY.RussellR. D.Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principleSIAM J Numer Anal19943170973012751090806.6509210.1137/0731038 LinY. M.XuC. J.Finite difference/spectral spproximations for the time-fractional diffusion equationJ Comput Phys20072251533155223491931126.6512110.1016/j.jcp.2007.02.001 GorenfloR.MainardiF.Some recent advances in theory and simulation of fractional diffusion processesJ Comput Appl Math200922940041525278941166.4500410.1016/j.cam.2008.04.005 MetzlerR.KlafterJ.The random walk’s guide to anomalous diffusion: a fractional dynamics approachPhys Rep200033917718092680984.8203210.1016/S0370-1573(00)00070-3 DiethelmK.FordN. J.FreedA. D.A predictor-corrector approach for the numerical solution of fractional differential equationsNonlinear Dynam20022932219264661009.6504910.1023/A:1016592219341 KiraneM.LaskriY.TatarN. E.Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivativesJ Math Anal Appl200531248850121790911135.3535010.1016/j.jmaa.2005.03.054 HuangW.RussellR. D.Adaptive Moving Mesh Methods2011New YorkSpringer-Verlag1227.6509010.1007/978-1-4419-7916-2 LiC.DengW.Remarks on fractional derivativesAppl Math Comput200718777778423230831125.2600910.1016/j.amc.2006.08.163 LubichC.Discretized fractional calculusSIAM J Math Anal1986177047198382490624.6501510.1137/0517050 MustaphaK.McLeanM.Piecewise-linear, discontinous Galerkin method for a fractional diffusion equationNumer Algorithm20115615918427556681211.6512710.1007/s11075-010-9379-8 YangJ. M.ChenY. P.A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problemsSci China Math2010102679269610.1007/s11425-010-3128-2 BrennerS. C.ScottL. R.The Mathematical Theory of Finite Element Methods2002New YorkSpringer-Verlag1012.6511510.1007/978-1-4757-3658-8 MaJ. T.JiangY. J.Moving collocation methods for time fractional differential equations and simulation of blowupSci China Math20115461162227754351217.3401010.1007/s11425-010-4133-1 LiX. J.XuC. J.A space-time spectral method for the time fractional diffusion equationSIAM J Numer Anal2009472108213125195961193.3524310.1137/080718942 P. Zhuang (4584_CR22) 2009; 74 W. Z. Huang (4584_CR8) 2003; 184 W. Huang (4584_CR7) 2011 Y. M. Lin (4584_CR13) 2007; 225 J. T. Ma (4584_CR16) 2011; 54 C. Li (4584_CR11) 2007; 187 X. J. Li (4584_CR12) 2009; 47 P. Zhuang (4584_CR21) 2008; 46 W. Huang (4584_CR6) 1994; 31 K. Mustapha (4584_CR19) 2011; 56 C. Chen (4584_CR2) 2007; 227 Y. J. Jiang (4584_CR9) 2011; 235 W. McLean (4584_CR17) 2009; 5 Y. X. Liu (4584_CR14) 2010; 12 R. Gorenflo (4584_CR5) 2009; 229 K. Diethelm (4584_CR3) 2002; 29 J. M. Yang (4584_CR20) 2010; 10 S. C. Brenner (4584_CR1) 2002 C. Lubich (4584_CR15) 1986; 17 R. Metzler (4584_CR18) 2000; 339 K. Diethelm (4584_CR4) 2004; 36 M. Kirane (4584_CR10) 2005; 312 |
References_xml | – reference: DiethelmK.FordN. J.FreedA. D.A predictor-corrector approach for the numerical solution of fractional differential equationsNonlinear Dynam20022932219264661009.6504910.1023/A:1016592219341 – reference: DiethelmK.FordN. J.FreedA. D.Detailed error analysis for a fractional Adams methodNumer Algorithm200436315220635721055.6509810.1023/B:NUMA.0000027736.85078.be – reference: ZhuangP.LiuF.AnhV.Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion processIMA J Numer Math20097464566725499531187.35271 – reference: GorenfloR.MainardiF.Some recent advances in theory and simulation of fractional diffusion processesJ Comput Appl Math200922940041525278941166.4500410.1016/j.cam.2008.04.005 – reference: HuangW.RenY.RussellR. D.Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principleSIAM J Numer Anal19943170973012751090806.6509210.1137/0731038 – reference: LiC.DengW.Remarks on fractional derivativesAppl Math Comput200718777778423230831125.2600910.1016/j.amc.2006.08.163 – reference: MetzlerR.KlafterJ.The random walk’s guide to anomalous diffusion: a fractional dynamics approachPhys Rep200033917718092680984.8203210.1016/S0370-1573(00)00070-3 – reference: YangJ. M.ChenY. P.A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problemsSci China Math2010102679269610.1007/s11425-010-3128-2 – reference: LiuY. X.ShuC. W.Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation modelsSci China Math20101232553278274632110.1007/s11425-010-4075-7 – reference: LubichC.Discretized fractional calculusSIAM J Math Anal1986177047198382490624.6501510.1137/0517050 – reference: ZhuangP.LiuF.AnhV.New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equationSIAM J Numer Anal2008461079109523832241173.2600610.1137/060673114 – reference: LinY. M.XuC. J.Finite difference/spectral spproximations for the time-fractional diffusion equationJ Comput Phys20072251533155223491931126.6512110.1016/j.jcp.2007.02.001 – reference: MustaphaK.McLeanM.Piecewise-linear, discontinous Galerkin method for a fractional diffusion equationNumer Algorithm20115615918427556681211.6512710.1007/s11075-010-9379-8 – reference: BrennerS. C.ScottL. R.The Mathematical Theory of Finite Element Methods2002New YorkSpringer-Verlag1012.6511510.1007/978-1-4757-3658-8 – reference: JiangY. J.MaJ. T.High-order finite element methods for time-fractional partial differential equationsJ Comput Appl Math20112353285329027840431216.6513010.1016/j.cam.2011.01.011 – reference: LiX. J.XuC. J.A space-time spectral method for the time fractional diffusion equationSIAM J Numer Anal2009472108213125195961193.3524310.1137/080718942 – reference: McLeanW.MustaphaK.Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equationNumer Algorithm200956988253399510.1007/s11075-008-9258-8 – reference: HuangW. Z.SunW. W.Variational mesh adaptation II: error estimates and monitor functionsJ Comput Phys200318461964819594071018.6514010.1016/S0021-9991(02)00040-2 – reference: HuangW.RussellR. D.Adaptive Moving Mesh Methods2011New YorkSpringer-Verlag1227.6509010.1007/978-1-4419-7916-2 – reference: KiraneM.LaskriY.TatarN. E.Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivativesJ Math Anal Appl200531248850121790911135.3535010.1016/j.jmaa.2005.03.054 – reference: ChenC.LiuF.TurnerI.A fourier method for the fractional diffusion equation describing sub-diffusionJ Comput Phys200722788689724423791165.6505310.1016/j.jcp.2007.05.012 – reference: MaJ. T.JiangY. J.Moving collocation methods for time fractional differential equations and simulation of blowupSci China Math20115461162227754351217.3401010.1007/s11425-010-4133-1 – volume: 56 start-page: 159 year: 2011 ident: 4584_CR19 publication-title: Numer Algorithm doi: 10.1007/s11075-010-9379-8 – volume: 31 start-page: 709 year: 1994 ident: 4584_CR6 publication-title: SIAM J Numer Anal doi: 10.1137/0731038 – volume-title: Adaptive Moving Mesh Methods year: 2011 ident: 4584_CR7 doi: 10.1007/978-1-4419-7916-2 – volume: 47 start-page: 2108 year: 2009 ident: 4584_CR12 publication-title: SIAM J Numer Anal doi: 10.1137/080718942 – volume: 10 start-page: 2679 year: 2010 ident: 4584_CR20 publication-title: Sci China Math doi: 10.1007/s11425-010-3128-2 – volume: 187 start-page: 777 year: 2007 ident: 4584_CR11 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.08.163 – volume: 184 start-page: 619 year: 2003 ident: 4584_CR8 publication-title: J Comput Phys doi: 10.1016/S0021-9991(02)00040-2 – volume: 74 start-page: 645 year: 2009 ident: 4584_CR22 publication-title: IMA J Numer Math – volume: 29 start-page: 3 year: 2002 ident: 4584_CR3 publication-title: Nonlinear Dynam doi: 10.1023/A:1016592219341 – volume: 54 start-page: 611 year: 2011 ident: 4584_CR16 publication-title: Sci China Math doi: 10.1007/s11425-010-4133-1 – volume: 46 start-page: 1079 year: 2008 ident: 4584_CR21 publication-title: SIAM J Numer Anal doi: 10.1137/060673114 – volume: 5 start-page: 69 year: 2009 ident: 4584_CR17 publication-title: Numer Algorithm doi: 10.1007/s11075-008-9258-8 – volume: 235 start-page: 3285 year: 2011 ident: 4584_CR9 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2011.01.011 – volume: 17 start-page: 704 year: 1986 ident: 4584_CR15 publication-title: SIAM J Math Anal doi: 10.1137/0517050 – volume: 225 start-page: 1533 year: 2007 ident: 4584_CR13 publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.02.001 – volume: 12 start-page: 3255 year: 2010 ident: 4584_CR14 publication-title: Sci China Math doi: 10.1007/s11425-010-4075-7 – volume: 227 start-page: 886 year: 2007 ident: 4584_CR2 publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.05.012 – volume: 312 start-page: 488 year: 2005 ident: 4584_CR10 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2005.03.054 – volume: 339 start-page: 1 year: 2000 ident: 4584_CR18 publication-title: Phys Rep doi: 10.1016/S0370-1573(00)00070-3 – volume-title: The Mathematical Theory of Finite Element Methods year: 2002 ident: 4584_CR1 doi: 10.1007/978-1-4757-3658-8 – volume: 36 start-page: 31 year: 2004 ident: 4584_CR4 publication-title: Numer Algorithm doi: 10.1023/B:NUMA.0000027736.85078.be – volume: 229 start-page: 400 year: 2009 ident: 4584_CR5 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.04.005 |
SSID | ssj0000390473 |
Score | 2.1268823 |
Snippet | With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuni- form meshes both in time and in space, is proposed in this... With the aim of simulating the blow-up solutions, a moving finite element method, based on nonuniform meshes both in time and in space, is proposed in this... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1287 |
SubjectTerms | Applications of Mathematics China Computer simulation Convergence Derivatives Finite element method Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Partial differential equations 偏微分方程 分数阶 和空间 时间导数 有限元方法 爆破解 移动 线性时间 |
Title | Moving finite element methods for time fractional partial differential equations |
URI | http://lib.cqvip.com/qk/60114X/201306/46893149.html https://link.springer.com/article/10.1007/s11425-013-4584-2 https://www.proquest.com/docview/1448764221 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e9EHv8X5MSr4pGSsWdu1j0OcQ5n44ECfQnJNVJRO7fbiX--lbTYcKvhUCmna3l2S3-UuvwM4iaUybaVDGmmILDDKZzIyyFKMQwx8iWFqtwaGN9FgFFzdh_fVOe7cZbu7kGQxU88Pu_lkX8xWI7CxPUbzbj304ySuQb13-XA931ppkx8fFLFlm2LPurSCunjmT_1YVoWncfb4Tu_8vjrNIedClLRYfPrrcOc-u8w5eWlNJ6qFnwuMjv_8rw1Yq8Co1yutZxOWdLYFq8MZk2u-DbfDYsvBM88WnHq6zDb3ysLTuUeQ17Pl6T3zUZ6QoO7erDXS1dVeKW70e8kpnu_AqH9xdz5gVRUGRrrqTJiWxhjyUpJYSq7Jg5R-qjUqk3BSv6Uz7OgQMcSOSoxRWqsgTGke7SqOBtOoswu1bJzpPfASLm1eoAk4dgm4GWXRW-STXSBvS-w2YH-mCfFWsm2IICJIRX5cA9pONQIr_nJbRuNVzJmXrSQFSVJYSQregNPZI667PxofO30LGmI2biIzPZ7m5B2RV0cS4H4DzpwORTXW89973P9X6wNY4WWpDbKFQ6hNPqb6iADPRDUrA2_C8oj3vgBaOfmK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHtSD-MSurwielECbvo-LKKtuFw-7sLeQpIkK0n109_87aZsuigqeSiGdwnyT5JvMZAah64QL7QoVwkyTkgRaeIRHWpJcJqEMPC7D3BwNZMOoPw6eJuGkucdd2mx3G5KsVur1ZTcP7IuYbgQmtkdg3d0ELpCYtgVj2msPVlzw4oMqsmwS7EkM-6eNZv4kxdRUeJsWr3P449e9aU04v8VIq63nYQ_tNpwR92qQ99GGKg7QTtYWXC0P0UtWnQxg_W44JFZ1Ujiu-0OXGJgpNl3ksV7UFxlA3MwYDTxti5TqRc3r0t_lERo_3I_u-qRplkBApf6SKK61BmciTTinChw97uVKSaFTCiiZqoO-CqUMpS9SrYVSIghzWO5iQaWWeeQfo04xLdQJwinlJn1PB1TGwK-0MCQr8gA-SV0uYwd1W5WxWV0UgwURMB9wtxzkWh0y2ZQZN90uPti6QLKBgAEEzEDAqINu2k-suD8GX1lgGMwEE97ghZquSnBiwPkCDVDPQbcWMdZMyfJ3id1_jb5EW_1RNmCDx-HzKdqmdXcMMKgz1FkuVuocOMpSXFQ2-Qk_I96_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iIPogntj1quCTErZNr-3joi7rscs-uLBvIUkTFaR7tPv_nem1KCr4VArpFOabJDOZyXyEXHWENI7UAcw0pahvpEtFaBRNVCdQvitUkODRwGAY9sf-4ySYVDynWV3tXqckyzsN2KUpzduzxLRXF99csDWKzASY56OwBm_AauyioY9ZtzlkcSCi94ssMxbb0wj20jqz-ZMU7K_wNk1f5_D3r_vUyvn8li8ttqHeLtmp_Ee7WwK-R9Z0uk-2B03z1eyAjAbFKYFt3tGftHVZIG6XXNGZDV6qjYzytlmUlxpA3AwNCJ41XUrxoudlG_DskIx79y-3fVoRJ1BQr5dTLYwxEFjEHSGYhqBPuInWSpqYAWLYgdDTgVKB8mRsjNRa-kECS18kmTIqCb0jsp5OU31M7JgJLOUzPlMR-FpGosMVugClYo5QkUVajcr4rGyQwf0QvCAIvSzi1Drkqmo5jswXH3zVLBkh4AABRwg4s8h180kt7o_BlzUwHGYFpjpEqqfLDAIaCMRAA8y1yE2NGK-mZ_a7xNa_Rl-QzdFdjz8_DJ9OyBYriTLAnk7Jer5Y6jNwV3J5XpjkJx2E4vs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+finite+element+methods+for+time+fractional+partial+differential+equations&rft.jtitle=Science+China.+Mathematics&rft.au=Jiang%2C+YingJun&rft.au=Ma%2C+JingTang&rft.date=2013-06-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=56&rft.issue=6&rft.spage=1287&rft.epage=1300&rft_id=info:doi/10.1007%2Fs11425-013-4584-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11425_013_4584_2 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg |