Projected Iterative Soft-Thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging

Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 35; no. 9; pp. 2130 - 2140
Main Authors Liu, Yunsong, Zhan, Zhifang, Cai, Jian-Feng, Guo, Di, Chen, Zhong, Qu, Xiaobo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2016.2550080