Projected Iterative Soft-Thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging

Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 35; no. 9; pp. 2130 - 2140
Main Authors Liu, Yunsong, Zhan, Zhifang, Cai, Jian-Feng, Guo, Di, Chen, Zhong, Qu, Xiaobo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size.
AbstractList Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size.
Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size.Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size.
Author Zhong Chen
Yunsong Liu
Zhifang Zhan
Jian-Feng Cai
Di Guo
Xiaobo Qu
Author_xml – sequence: 1
  givenname: Yunsong
  surname: Liu
  fullname: Liu, Yunsong
– sequence: 2
  givenname: Zhifang
  surname: Zhan
  fullname: Zhan, Zhifang
– sequence: 3
  givenname: Jian-Feng
  surname: Cai
  fullname: Cai, Jian-Feng
– sequence: 4
  givenname: Di
  surname: Guo
  fullname: Guo, Di
– sequence: 5
  givenname: Zhong
  surname: Chen
  fullname: Chen, Zhong
– sequence: 6
  givenname: Xiaobo
  orcidid: 0000-0002-8675-5820
  surname: Qu
  fullname: Qu, Xiaobo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27071164$$D View this record in MEDLINE/PubMed
BookMark eNqNks9r2zAYhsXoWNNs98FgGHbZxdknWb98LGHdAi0bawa7Gdn-7CjYUiopg_33s0m6Qw-jJx30PC_S971X5MJ5h4S8pbCiFMpP27vNigGVKyYEgIYXZEGF0DkT_NcFWQBTOgeQ7JJcxbgHoFxA-YpcMgWKUskX5OF78HtsErbZJmEwyf7G7N53Kd_uAsadH1rr-ux66H2waTdmnQ_Z1va7lN0EM2LMrMvWfjxMcJxC7tHFWbgzvcNkm-wHRu-MazDbjKafrl6Tl50ZIr45n0vy8-bzdv01v_32ZbO-vs0bTouUo26MLBlVDRetkhKN4LQTsiyp4bIVkpUgWmZorRmlTYdFXUtEWitUxTSbYkk-nnIPwT8cMaZqtLHBYTAO_TFWVAtRaFCKPwMtVMFBKv0MlEmpJJ-yl-TDE3Tvj8FNf54DQZca-PzM92fqWI_YVodgRxP-VI8rmgB5AprgYwzYVY1N0568S8HYoaJQzV2opi5UcxeqcxcmEZ6Ij9n_Ud6dFIuI_3DFueZQFH8BXuS8yQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_media_2020_101687
crossref_primary_10_3390_s18124260
crossref_primary_10_3389_feart_2023_1103522
crossref_primary_10_1016_j_dsp_2025_105012
crossref_primary_10_1016_j_neucom_2022_10_061
crossref_primary_10_1109_ACCESS_2022_3140429
crossref_primary_10_1007_s00186_023_00811_6
crossref_primary_10_1016_j_mri_2019_03_011
crossref_primary_10_1109_TMI_2022_3203312
crossref_primary_10_1109_TCI_2020_3019111
crossref_primary_10_1109_ACCESS_2018_2794478
crossref_primary_10_1016_j_bspc_2021_102922
crossref_primary_10_1186_s12880_018_0251_y
crossref_primary_10_1016_j_sigpro_2017_09_003
crossref_primary_10_1109_MGRS_2022_3218801
crossref_primary_10_1080_01621459_2020_1778481
crossref_primary_10_1109_ACCESS_2020_2970158
crossref_primary_10_1007_s10278_023_00816_x
crossref_primary_10_1016_j_image_2016_12_010
crossref_primary_10_1016_j_jfranklin_2024_107127
crossref_primary_10_1109_TIM_2023_3277972
crossref_primary_10_1007_s11760_023_02542_x
crossref_primary_10_1109_ACCESS_2021_3062837
crossref_primary_10_1109_TCC_2024_3476418
crossref_primary_10_1109_TCI_2017_2697206
crossref_primary_10_1007_s11277_024_11281_2
crossref_primary_10_1016_j_patcog_2020_107252
crossref_primary_10_1186_s12880_016_0176_2
crossref_primary_10_1016_j_mri_2021_11_013
crossref_primary_10_1109_ACCESS_2018_2873484
crossref_primary_10_3390_app10082891
crossref_primary_10_1002_mmce_23391
crossref_primary_10_1007_s00723_018_0988_z
crossref_primary_10_1007_s10766_017_0551_9
crossref_primary_10_1109_ACCESS_2019_2923171
crossref_primary_10_1109_TRPMS_2023_3283786
crossref_primary_10_1016_j_mrl_2024_200138
crossref_primary_10_1016_j_jfranklin_2023_01_041
crossref_primary_10_1155_2022_7251674
crossref_primary_10_1109_MSP_2019_2951469
crossref_primary_10_1109_TSP_2017_2695566
crossref_primary_10_1002_acm2_14402
crossref_primary_10_1515_jiip_2017_0034
crossref_primary_10_1109_ACCESS_2022_3231330
crossref_primary_10_1016_j_jmr_2023_107553
crossref_primary_10_1109_TMI_2017_2743819
crossref_primary_10_3390_s20113185
crossref_primary_10_1109_JBHI_2024_3360128
crossref_primary_10_1016_j_mri_2020_03_008
crossref_primary_10_1016_j_sigpro_2019_107292
crossref_primary_10_1002_mp_16164
crossref_primary_10_1109_ACCESS_2017_2675478
crossref_primary_10_1007_s40314_024_02959_1
crossref_primary_10_1109_TNNLS_2024_3353795
crossref_primary_10_1007_s11600_023_01217_y
crossref_primary_10_1190_geo2018_0111_1
crossref_primary_10_1002_nbm_4540
crossref_primary_10_1109_TNNLS_2022_3144580
crossref_primary_10_1016_j_mri_2019_07_014
crossref_primary_10_1016_j_asoc_2023_110861
crossref_primary_10_1007_s10766_017_0552_8
crossref_primary_10_1002_mrm_29445
crossref_primary_10_1109_TGRS_2021_3093307
crossref_primary_10_1016_j_compbiomed_2023_106780
crossref_primary_10_1016_j_neunet_2019_12_010
crossref_primary_10_1016_j_mri_2020_12_019
crossref_primary_10_1007_s11517_016_1556_z
crossref_primary_10_1109_ACCESS_2021_3124239
crossref_primary_10_3390_app14219764
crossref_primary_10_1109_ACCESS_2020_3022706
crossref_primary_10_1002_mrm_30067
crossref_primary_10_1016_j_neucom_2018_02_002
crossref_primary_10_1007_s11600_023_01225_y
crossref_primary_10_1109_ACCESS_2021_3072150
crossref_primary_10_1016_j_jmr_2020_106790
crossref_primary_10_1137_23M1625846
crossref_primary_10_3390_a12010007
crossref_primary_10_3934_mbe_2023661
crossref_primary_10_1016_j_ins_2022_01_034
crossref_primary_10_1088_1361_6560_ad524b
crossref_primary_10_3390_math11163573
crossref_primary_10_1016_j_knosys_2019_104969
crossref_primary_10_13104_imri_2021_25_4_229
crossref_primary_10_1016_j_asoc_2023_110122
crossref_primary_10_1016_j_sigpro_2019_107444
crossref_primary_10_1016_j_jmr_2023_107425
crossref_primary_10_1109_JPROC_2019_2936204
crossref_primary_10_1109_MSP_2019_2949470
crossref_primary_10_1007_s10898_022_01143_1
crossref_primary_10_3390_rs16132294
crossref_primary_10_1109_JAS_2023_123543
crossref_primary_10_1109_TMI_2019_2932961
crossref_primary_10_12677_CSA_2019_92043
crossref_primary_10_1109_TBME_2021_3091881
crossref_primary_10_1016_j_mri_2017_07_009
crossref_primary_10_1016_j_sigpro_2024_109817
crossref_primary_10_1142_S0218126620501169
crossref_primary_10_1016_j_media_2021_101987
crossref_primary_10_3390_app10051771
crossref_primary_10_1049_iet_ipr_2018_5614
crossref_primary_10_1016_j_displa_2023_102396
crossref_primary_10_1016_j_compbiomed_2023_107707
crossref_primary_10_1109_ACCESS_2022_3233831
crossref_primary_10_3390_ijerph18041789
crossref_primary_10_1002_mp_13931
crossref_primary_10_1109_TMI_2022_3164472
crossref_primary_10_1038_s41598_024_74074_4
crossref_primary_10_1016_j_neucom_2025_129771
crossref_primary_10_1016_j_neucom_2019_09_057
crossref_primary_10_1016_j_mri_2019_06_014
crossref_primary_10_1109_TMI_2024_3404602
crossref_primary_10_1109_TGRS_2023_3254556
crossref_primary_10_1016_j_sigpro_2022_108755
crossref_primary_10_1137_17M1133919
crossref_primary_10_1016_j_jmr_2022_107354
crossref_primary_10_1016_j_knosys_2021_107475
crossref_primary_10_1016_j_optlaseng_2018_06_011
crossref_primary_10_1016_j_cmpb_2022_107150
crossref_primary_10_1109_LSP_2017_2736159
crossref_primary_10_1186_s12880_021_00727_9
crossref_primary_10_1049_sil2_12062
crossref_primary_10_1007_s10915_023_02315_1
crossref_primary_10_1088_1361_6420_ad9d73
crossref_primary_10_1109_TCI_2017_2787911
Cites_doi 10.1088/0266-5611/23/3/007
10.1137/080716542
10.1109/TMI.2013.2285046
10.1109/TIT.2005.862083
10.1016/j.media.2013.09.007
10.1002/mrm.21391
10.1016/j.acha.2012.03.006
10.1137/090779437
10.1109/TMI.2010.2088133
10.1137/090753504
10.1109/JSTSP.2007.910281
10.1016/j.mri.2014.08.004
10.1109/TMI.2010.2090538
10.1090/S0894-0347-2012-00740-1
10.1137/050626090
10.1017/CBO9781139839099
10.1016/j.image.2012.08.002
10.1109/TMI.2015.2398466
10.1002/mrm.1910340618
10.1109/ISBI.2011.5872579
10.1109/ISBI.2011.5872709
10.1109/TIT.2006.871582
10.1088/0266-5611/29/12/125006
10.1109/TSP.2014.2304932
10.1007/978-1-4612-2544-7_9
10.1002/mrm.21691
10.1561/2200000016
10.1109/JSTSP.2010.2042333
10.1002/cpa.20042
10.1109/TIP.2010.2047910
10.1109/TMI.2010.2085084
10.1016/j.acha.2007.10.002
10.1109/TIP.2005.859376
10.1016/j.acha.2010.10.002
10.1118/1.595679
10.1080/17415977.2010.492509
10.1109/TMI.2013.2256464
10.1118/1.4816303
10.1016/j.media.2015.05.012
10.1117/12.826663
10.1109/TIT.2008.920190
10.1016/j.mri.2012.02.019
10.1109/TMI.2011.2140121
10.1016/j.acha.2013.10.001
10.1371/journal.pone.0119584
10.1109/TAC.2014.2354892
10.1118/1.4762288
10.1007/978-1-4419-9569-8_10
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2016.2550080
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
Engineering Research Database
MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2140
ExternalDocumentID 4223388721
27071164
10_1109_TMI_2016_2550080
7448403
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c413t-e8ca69217c45d766ea541f56991a46d562905d2a1b8211cfe3bb6ee1b7e731093
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Jul 10 22:43:07 EDT 2025
Fri Jul 11 08:32:33 EDT 2025
Fri Jul 11 08:02:17 EDT 2025
Sun Jun 29 15:25:10 EDT 2025
Mon Jul 21 06:04:53 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 03:15:57 EDT 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-e8ca69217c45d766ea541f56991a46d562905d2a1b8211cfe3bb6ee1b7e731093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8675-5820
PMID 27071164
PQID 1830898049
PQPubID 85460
PageCount 11
ParticipantIDs proquest_miscellaneous_1855380774
proquest_miscellaneous_1837340678
crossref_citationtrail_10_1109_TMI_2016_2550080
ieee_primary_7448403
proquest_miscellaneous_1826676455
crossref_primary_10_1109_TMI_2016_2550080
proquest_journals_1830898049
pubmed_primary_27071164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Sept.
2016-9-00
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
coifman (ref15) 1995; 103
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref51
vetterli (ref18) 2014
ref50
ref45
qu (ref14) 2010
ref47
do (ref48) 2005; 14
baraniuk (ref46) 2009
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
zhan (ref7) 2015
nesterov (ref38) 1983; 27
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
parikh (ref23) 2013; 1
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ye (ref42) 2011; 30
References_xml – ident: ref27
  doi: 10.1088/0266-5611/23/3/007
– ident: ref26
  doi: 10.1137/080716542
– ident: ref41
  doi: 10.1109/TMI.2013.2285046
– ident: ref2
  doi: 10.1109/TIT.2005.862083
– ident: ref12
  doi: 10.1016/j.media.2013.09.007
– ident: ref1
  doi: 10.1002/mrm.21391
– ident: ref28
  doi: 10.1016/j.acha.2012.03.006
– ident: ref43
  doi: 10.1137/090779437
– volume: 30
  start-page: 575
  year: 2011
  ident: ref42
  article-title: Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2010.2088133
– ident: ref30
  doi: 10.1137/090753504
– ident: ref24
  doi: 10.1109/JSTSP.2007.910281
– ident: ref47
  doi: 10.1016/j.mri.2014.08.004
– ident: ref6
  doi: 10.1109/TMI.2010.2090538
– ident: ref32
  doi: 10.1090/S0894-0347-2012-00740-1
– ident: ref22
  doi: 10.1137/050626090
– year: 2015
  ident: ref7
  article-title: Fast multi-class dictionaries learning with geometrical directions in MRI
  publication-title: IEEE Trans Biomed Eng
– year: 2014
  ident: ref18
  publication-title: Foundations of Signal Processing
  doi: 10.1017/CBO9781139839099
– ident: ref31
  doi: 10.1016/j.image.2012.08.002
– ident: ref25
  doi: 10.1109/TMI.2015.2398466
– ident: ref51
  doi: 10.1002/mrm.1910340618
– ident: ref11
  doi: 10.1109/ISBI.2011.5872579
– ident: ref9
  doi: 10.1109/ISBI.2011.5872709
– year: 2009
  ident: ref46
  publication-title: Rice Wavelet Toolbox
– ident: ref3
  doi: 10.1109/TIT.2006.871582
– ident: ref50
  doi: 10.1088/0266-5611/29/12/125006
– ident: ref40
  doi: 10.1109/TSP.2014.2304932
– volume: 103
  start-page: 125
  year: 1995
  ident: ref15
  publication-title: Wavelets and Statistics
  doi: 10.1007/978-1-4612-2544-7_9
– volume: 1
  start-page: 123
  year: 2013
  ident: ref23
  article-title: Proximal algorithms
  publication-title: Found Trends Optim
– ident: ref44
  doi: 10.1002/mrm.21691
– ident: ref33
  doi: 10.1561/2200000016
– ident: ref36
  doi: 10.1109/JSTSP.2010.2042333
– ident: ref21
  doi: 10.1002/cpa.20042
– ident: ref34
  doi: 10.1109/TIP.2010.2047910
– ident: ref45
  doi: 10.1109/TMI.2010.2085084
– ident: ref35
  doi: 10.1016/j.acha.2007.10.002
– volume: 14
  start-page: 2091
  year: 2005
  ident: ref48
  article-title: The contourlet transform: an efficient directional multiresolution image representation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2005.859376
– ident: ref20
  doi: 10.1016/j.acha.2010.10.002
– ident: ref52
  doi: 10.1118/1.595679
– ident: ref4
  doi: 10.1080/17415977.2010.492509
– start-page: 626
  year: 2010
  ident: ref14
  article-title: Compressed sensing MRI with combined sparsifying transforms and smoothed L0 norm minimization
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– ident: ref53
  doi: 10.1109/TMI.2013.2256464
– ident: ref49
  doi: 10.1118/1.4816303
– ident: ref13
  doi: 10.1016/j.media.2015.05.012
– volume: 27
  start-page: 372
  year: 1983
  ident: ref38
  article-title: A method of solving a convex programming problem with convergence rate O (1/k2)
  publication-title: Soviet Math Doklady
– ident: ref29
  doi: 10.1117/12.826663
– ident: ref19
  doi: 10.1109/TIT.2008.920190
– ident: ref5
  doi: 10.1016/j.mri.2012.02.019
– ident: ref8
  doi: 10.1109/TMI.2011.2140121
– ident: ref16
  doi: 10.1016/j.acha.2013.10.001
– ident: ref10
  doi: 10.1371/journal.pone.0119584
– ident: ref37
  doi: 10.1109/TAC.2014.2354892
– ident: ref17
  doi: 10.1118/1.4762288
– ident: ref39
  doi: 10.1007/978-1-4419-9569-8_10
SSID ssj0014509
Score 2.5762832
Snippet Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2130
SubjectTerms Algorithm design and analysis
Algorithms
Analytical models
Brain
Compressed sensing
Data Compression
Dictionaries
Frames
Image Processing, Computer-Assisted
Image reconstruction
Iterative methods
iterative thresholding
Magnetic Resonance Imaging
Mathematical model
Mathematical models
MRI
NMR
Nuclear magnetic resonance
Parameters
Pista
Reconstruction
sparse models
Sparsity
tight frames
Title Projected Iterative Soft-Thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging
URI https://ieeexplore.ieee.org/document/7448403
https://www.ncbi.nlm.nih.gov/pubmed/27071164
https://www.proquest.com/docview/1830898049
https://www.proquest.com/docview/1826676455
https://www.proquest.com/docview/1837340678
https://www.proquest.com/docview/1855380774
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEC5iDqIHH4mP0SgteBGc3Xn0Y-YYxCUrrAjZQG5DP2qTYDKr2dmLv96qeaGii7eBqR56qOrqr7qqvwJ4q3yehqBt7IzDWOpVEhfa6tjaMlc2l151bJ-f9cmZ_HSuzvfg_XgXBhHb4jOc8GObyw9rv-WjsqmhWEIytecdCty6u1pjxkCqrpwjY8bYRGdDSjIpp8vFnGu49ITgMyMkJgA2tLWmWv62G7XtVf6NNNsdZ_YQFsNcu0KTr5Nt4yb-xx80jv_7M4_gQQ89xXFnK49hD-sDuP8LIeEB3F30qfZD-P6lO6PBIOYt8zK5RXFKTjtekvo3fdZKHF9frG-vmssbQehXLDnUFzMu-NqIq1qwt2nZyYM45Up5GrCwFzVfnBScOGC2DxTzm7ZV0hM4m31cfjiJ-_4Msaetr4mx8FaXFNN4qYLRGq2S6UppgpxW6kDIqkxUyGzqCgoz_Qpz5zRi6gwaJiTNn8J-va7xOQgCOcGVpTMJJnKVJ9bbUCqVSTQpfdZFMB30VPmevJx7aFxXbRCTlBUpuWIlV72SI3g3jvjWEXfskD1k_YxyvWoiOBpMoepX9qYiF5gUZUGBVQRvxte0JjnRYmtcb1km49JhqdQumdzkkrHCLhmluCGAkRE860xxnONgwS_-PveXcI__sKuGO4L95naLrwg-Ne51u25-AoGhE5M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9RADLaqInE8cLQUAgUGiRcksptjjuSxQqx2oamQmkp9i-baUtFmoZt94ddj5xIgWPEWKZ5oInvGn8eezwBvhE1j56QOjTI-5HIZhZnUMtQ6T4VOuRUd2-eJnJ_xj-fifAfejXdhvPdt8Zmf0GOby3cru6GjsqnCWIITtect9Psi7m5rjTkDLrqCjoQ4YyOZDEnJKJ-WxYKquOQEATRhJKIAVuhcY8l_80dtg5V_Y83W58weQDHMtis1-TrZNGZif_xB5Pi_v_MQ7vfgkx111vIIdny9B_d-oSTcg9tFn2zfh--fu1Ma79ii5V7GjZGd4rYdlmgA6z5vxY6uLlY3l82Xa4b4l5UU7LMZlXyt2WXNaL9p-ckdO6VaeRxQ6Iuark4ySh0Q34dni-u2WdJjOJt9KN_Pw75DQ2jR-TWhz6yWOUY1lgunpPRa8HgpJIJOzaVDbJVHwiU6NhkGmnbpU2Ok97FRXhElaXoAu_Wq9k-BIcxxJs-NinzEl2mkrXa5EAn3KsbPmgCmg54q29OXUxeNq6oNY6K8QiVXpOSqV3IAb8cR3zrqji2y-6SfUa5XTQCHgylU_dpeV7gJRlmeYWgVwOvxNa5KSrXo2q82JJNQ8TBa6TaZVKWc0MI2GSGoJYDiATzpTHGc42DBz_4-91dwZ14Wx9Xx4uTTc7hLf9vVxh3CbnOz8S8QTDXmZbuGfgL_2Rbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+Iterative+Soft-Thresholding+Algorithm+for+Tight+Frames+in+Compressed+Sensing+Magnetic+Resonance+Imaging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Yunsong+Liu&rft.au=Zhifang+Zhan&rft.au=Jian-Feng+Cai&rft.au=Di+Guo&rft.date=2016-09-01&rft.eissn=1558-254X&rft.volume=35&rft.issue=9&rft.spage=2130&rft_id=info:doi/10.1109%2FTMI.2016.2550080&rft_id=info%3Apmid%2F27071164&rft.externalDocID=27071164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon