Projected Iterative Soft-Thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging
Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (p...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 35; no. 9; pp. 2130 - 2140 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size. |
---|---|
AbstractList | Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size. Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size.Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image from very few samples in a short time. In this paper, we propose a fast algorithm, called projected iterative soft-thresholding algorithm (pISTA), and its acceleration pFISTA for CS-MRI image reconstruction. The proposed algorithms exploit sparsity of the magnetic resonance (MR) images under the redundant representation of tight frames. We prove that pISTA and pFISTA converge to a minimizer of a convex function with a balanced tight frame sparsity formulation. The pFISTA introduces only one adjustable parameter, the step size, and we provide an explicit rule to set this parameter. Numerical experiment results demonstrate that pFISTA leads to faster convergence speeds than the state-of-art counterpart does, while achieving comparable reconstruction errors. Moreover, reconstruction errors incurred by pFISTA appear insensitive to the step size. |
Author | Zhong Chen Yunsong Liu Zhifang Zhan Jian-Feng Cai Di Guo Xiaobo Qu |
Author_xml | – sequence: 1 givenname: Yunsong surname: Liu fullname: Liu, Yunsong – sequence: 2 givenname: Zhifang surname: Zhan fullname: Zhan, Zhifang – sequence: 3 givenname: Jian-Feng surname: Cai fullname: Cai, Jian-Feng – sequence: 4 givenname: Di surname: Guo fullname: Guo, Di – sequence: 5 givenname: Zhong surname: Chen fullname: Chen, Zhong – sequence: 6 givenname: Xiaobo orcidid: 0000-0002-8675-5820 surname: Qu fullname: Qu, Xiaobo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27071164$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9r2zAYhsXoWNNs98FgGHbZxdknWb98LGHdAi0bawa7Gdn-7CjYUiopg_33s0m6Qw-jJx30PC_S971X5MJ5h4S8pbCiFMpP27vNigGVKyYEgIYXZEGF0DkT_NcFWQBTOgeQ7JJcxbgHoFxA-YpcMgWKUskX5OF78HtsErbZJmEwyf7G7N53Kd_uAsadH1rr-ux66H2waTdmnQ_Z1va7lN0EM2LMrMvWfjxMcJxC7tHFWbgzvcNkm-wHRu-MazDbjKafrl6Tl50ZIr45n0vy8-bzdv01v_32ZbO-vs0bTouUo26MLBlVDRetkhKN4LQTsiyp4bIVkpUgWmZorRmlTYdFXUtEWitUxTSbYkk-nnIPwT8cMaZqtLHBYTAO_TFWVAtRaFCKPwMtVMFBKv0MlEmpJJ-yl-TDE3Tvj8FNf54DQZca-PzM92fqWI_YVodgRxP-VI8rmgB5AprgYwzYVY1N0568S8HYoaJQzV2opi5UcxeqcxcmEZ6Ij9n_Ud6dFIuI_3DFueZQFH8BXuS8yQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_media_2020_101687 crossref_primary_10_3390_s18124260 crossref_primary_10_3389_feart_2023_1103522 crossref_primary_10_1016_j_dsp_2025_105012 crossref_primary_10_1016_j_neucom_2022_10_061 crossref_primary_10_1109_ACCESS_2022_3140429 crossref_primary_10_1007_s00186_023_00811_6 crossref_primary_10_1016_j_mri_2019_03_011 crossref_primary_10_1109_TMI_2022_3203312 crossref_primary_10_1109_TCI_2020_3019111 crossref_primary_10_1109_ACCESS_2018_2794478 crossref_primary_10_1016_j_bspc_2021_102922 crossref_primary_10_1186_s12880_018_0251_y crossref_primary_10_1016_j_sigpro_2017_09_003 crossref_primary_10_1109_MGRS_2022_3218801 crossref_primary_10_1080_01621459_2020_1778481 crossref_primary_10_1109_ACCESS_2020_2970158 crossref_primary_10_1007_s10278_023_00816_x crossref_primary_10_1016_j_image_2016_12_010 crossref_primary_10_1016_j_jfranklin_2024_107127 crossref_primary_10_1109_TIM_2023_3277972 crossref_primary_10_1007_s11760_023_02542_x crossref_primary_10_1109_ACCESS_2021_3062837 crossref_primary_10_1109_TCC_2024_3476418 crossref_primary_10_1109_TCI_2017_2697206 crossref_primary_10_1007_s11277_024_11281_2 crossref_primary_10_1016_j_patcog_2020_107252 crossref_primary_10_1186_s12880_016_0176_2 crossref_primary_10_1016_j_mri_2021_11_013 crossref_primary_10_1109_ACCESS_2018_2873484 crossref_primary_10_3390_app10082891 crossref_primary_10_1002_mmce_23391 crossref_primary_10_1007_s00723_018_0988_z crossref_primary_10_1007_s10766_017_0551_9 crossref_primary_10_1109_ACCESS_2019_2923171 crossref_primary_10_1109_TRPMS_2023_3283786 crossref_primary_10_1016_j_mrl_2024_200138 crossref_primary_10_1016_j_jfranklin_2023_01_041 crossref_primary_10_1155_2022_7251674 crossref_primary_10_1109_MSP_2019_2951469 crossref_primary_10_1109_TSP_2017_2695566 crossref_primary_10_1002_acm2_14402 crossref_primary_10_1515_jiip_2017_0034 crossref_primary_10_1109_ACCESS_2022_3231330 crossref_primary_10_1016_j_jmr_2023_107553 crossref_primary_10_1109_TMI_2017_2743819 crossref_primary_10_3390_s20113185 crossref_primary_10_1109_JBHI_2024_3360128 crossref_primary_10_1016_j_mri_2020_03_008 crossref_primary_10_1016_j_sigpro_2019_107292 crossref_primary_10_1002_mp_16164 crossref_primary_10_1109_ACCESS_2017_2675478 crossref_primary_10_1007_s40314_024_02959_1 crossref_primary_10_1109_TNNLS_2024_3353795 crossref_primary_10_1007_s11600_023_01217_y crossref_primary_10_1190_geo2018_0111_1 crossref_primary_10_1002_nbm_4540 crossref_primary_10_1109_TNNLS_2022_3144580 crossref_primary_10_1016_j_mri_2019_07_014 crossref_primary_10_1016_j_asoc_2023_110861 crossref_primary_10_1007_s10766_017_0552_8 crossref_primary_10_1002_mrm_29445 crossref_primary_10_1109_TGRS_2021_3093307 crossref_primary_10_1016_j_compbiomed_2023_106780 crossref_primary_10_1016_j_neunet_2019_12_010 crossref_primary_10_1016_j_mri_2020_12_019 crossref_primary_10_1007_s11517_016_1556_z crossref_primary_10_1109_ACCESS_2021_3124239 crossref_primary_10_3390_app14219764 crossref_primary_10_1109_ACCESS_2020_3022706 crossref_primary_10_1002_mrm_30067 crossref_primary_10_1016_j_neucom_2018_02_002 crossref_primary_10_1007_s11600_023_01225_y crossref_primary_10_1109_ACCESS_2021_3072150 crossref_primary_10_1016_j_jmr_2020_106790 crossref_primary_10_1137_23M1625846 crossref_primary_10_3390_a12010007 crossref_primary_10_3934_mbe_2023661 crossref_primary_10_1016_j_ins_2022_01_034 crossref_primary_10_1088_1361_6560_ad524b crossref_primary_10_3390_math11163573 crossref_primary_10_1016_j_knosys_2019_104969 crossref_primary_10_13104_imri_2021_25_4_229 crossref_primary_10_1016_j_asoc_2023_110122 crossref_primary_10_1016_j_sigpro_2019_107444 crossref_primary_10_1016_j_jmr_2023_107425 crossref_primary_10_1109_JPROC_2019_2936204 crossref_primary_10_1109_MSP_2019_2949470 crossref_primary_10_1007_s10898_022_01143_1 crossref_primary_10_3390_rs16132294 crossref_primary_10_1109_JAS_2023_123543 crossref_primary_10_1109_TMI_2019_2932961 crossref_primary_10_12677_CSA_2019_92043 crossref_primary_10_1109_TBME_2021_3091881 crossref_primary_10_1016_j_mri_2017_07_009 crossref_primary_10_1016_j_sigpro_2024_109817 crossref_primary_10_1142_S0218126620501169 crossref_primary_10_1016_j_media_2021_101987 crossref_primary_10_3390_app10051771 crossref_primary_10_1049_iet_ipr_2018_5614 crossref_primary_10_1016_j_displa_2023_102396 crossref_primary_10_1016_j_compbiomed_2023_107707 crossref_primary_10_1109_ACCESS_2022_3233831 crossref_primary_10_3390_ijerph18041789 crossref_primary_10_1002_mp_13931 crossref_primary_10_1109_TMI_2022_3164472 crossref_primary_10_1038_s41598_024_74074_4 crossref_primary_10_1016_j_neucom_2025_129771 crossref_primary_10_1016_j_neucom_2019_09_057 crossref_primary_10_1016_j_mri_2019_06_014 crossref_primary_10_1109_TMI_2024_3404602 crossref_primary_10_1109_TGRS_2023_3254556 crossref_primary_10_1016_j_sigpro_2022_108755 crossref_primary_10_1137_17M1133919 crossref_primary_10_1016_j_jmr_2022_107354 crossref_primary_10_1016_j_knosys_2021_107475 crossref_primary_10_1016_j_optlaseng_2018_06_011 crossref_primary_10_1016_j_cmpb_2022_107150 crossref_primary_10_1109_LSP_2017_2736159 crossref_primary_10_1186_s12880_021_00727_9 crossref_primary_10_1049_sil2_12062 crossref_primary_10_1007_s10915_023_02315_1 crossref_primary_10_1088_1361_6420_ad9d73 crossref_primary_10_1109_TCI_2017_2787911 |
Cites_doi | 10.1088/0266-5611/23/3/007 10.1137/080716542 10.1109/TMI.2013.2285046 10.1109/TIT.2005.862083 10.1016/j.media.2013.09.007 10.1002/mrm.21391 10.1016/j.acha.2012.03.006 10.1137/090779437 10.1109/TMI.2010.2088133 10.1137/090753504 10.1109/JSTSP.2007.910281 10.1016/j.mri.2014.08.004 10.1109/TMI.2010.2090538 10.1090/S0894-0347-2012-00740-1 10.1137/050626090 10.1017/CBO9781139839099 10.1016/j.image.2012.08.002 10.1109/TMI.2015.2398466 10.1002/mrm.1910340618 10.1109/ISBI.2011.5872579 10.1109/ISBI.2011.5872709 10.1109/TIT.2006.871582 10.1088/0266-5611/29/12/125006 10.1109/TSP.2014.2304932 10.1007/978-1-4612-2544-7_9 10.1002/mrm.21691 10.1561/2200000016 10.1109/JSTSP.2010.2042333 10.1002/cpa.20042 10.1109/TIP.2010.2047910 10.1109/TMI.2010.2085084 10.1016/j.acha.2007.10.002 10.1109/TIP.2005.859376 10.1016/j.acha.2010.10.002 10.1118/1.595679 10.1080/17415977.2010.492509 10.1109/TMI.2013.2256464 10.1118/1.4816303 10.1016/j.media.2015.05.012 10.1117/12.826663 10.1109/TIT.2008.920190 10.1016/j.mri.2012.02.019 10.1109/TMI.2011.2140121 10.1016/j.acha.2013.10.001 10.1371/journal.pone.0119584 10.1109/TAC.2014.2354892 10.1118/1.4762288 10.1007/978-1-4419-9569-8_10 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2016.2550080 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Engineering Research Database MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2140 |
ExternalDocumentID | 4223388721 27071164 10_1109_TMI_2016_2550080 7448403 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c413t-e8ca69217c45d766ea541f56991a46d562905d2a1b8211cfe3bb6ee1b7e731093 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Jul 10 22:43:07 EDT 2025 Fri Jul 11 08:32:33 EDT 2025 Fri Jul 11 08:02:17 EDT 2025 Sun Jun 29 15:25:10 EDT 2025 Mon Jul 21 06:04:53 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 03:15:57 EDT 2025 Tue Aug 26 16:42:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-e8ca69217c45d766ea541f56991a46d562905d2a1b8211cfe3bb6ee1b7e731093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8675-5820 |
PMID | 27071164 |
PQID | 1830898049 |
PQPubID | 85460 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1855380774 proquest_miscellaneous_1837340678 crossref_citationtrail_10_1109_TMI_2016_2550080 ieee_primary_7448403 proquest_miscellaneous_1826676455 crossref_primary_10_1109_TMI_2016_2550080 proquest_journals_1830898049 pubmed_primary_27071164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. 2016-9-00 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 coifman (ref15) 1995; 103 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref51 vetterli (ref18) 2014 ref50 ref45 qu (ref14) 2010 ref47 do (ref48) 2005; 14 baraniuk (ref46) 2009 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 zhan (ref7) 2015 nesterov (ref38) 1983; 27 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 parikh (ref23) 2013; 1 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ye (ref42) 2011; 30 |
References_xml | – ident: ref27 doi: 10.1088/0266-5611/23/3/007 – ident: ref26 doi: 10.1137/080716542 – ident: ref41 doi: 10.1109/TMI.2013.2285046 – ident: ref2 doi: 10.1109/TIT.2005.862083 – ident: ref12 doi: 10.1016/j.media.2013.09.007 – ident: ref1 doi: 10.1002/mrm.21391 – ident: ref28 doi: 10.1016/j.acha.2012.03.006 – ident: ref43 doi: 10.1137/090779437 – volume: 30 start-page: 575 year: 2011 ident: ref42 article-title: Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2010.2088133 – ident: ref30 doi: 10.1137/090753504 – ident: ref24 doi: 10.1109/JSTSP.2007.910281 – ident: ref47 doi: 10.1016/j.mri.2014.08.004 – ident: ref6 doi: 10.1109/TMI.2010.2090538 – ident: ref32 doi: 10.1090/S0894-0347-2012-00740-1 – ident: ref22 doi: 10.1137/050626090 – year: 2015 ident: ref7 article-title: Fast multi-class dictionaries learning with geometrical directions in MRI publication-title: IEEE Trans Biomed Eng – year: 2014 ident: ref18 publication-title: Foundations of Signal Processing doi: 10.1017/CBO9781139839099 – ident: ref31 doi: 10.1016/j.image.2012.08.002 – ident: ref25 doi: 10.1109/TMI.2015.2398466 – ident: ref51 doi: 10.1002/mrm.1910340618 – ident: ref11 doi: 10.1109/ISBI.2011.5872579 – ident: ref9 doi: 10.1109/ISBI.2011.5872709 – year: 2009 ident: ref46 publication-title: Rice Wavelet Toolbox – ident: ref3 doi: 10.1109/TIT.2006.871582 – ident: ref50 doi: 10.1088/0266-5611/29/12/125006 – ident: ref40 doi: 10.1109/TSP.2014.2304932 – volume: 103 start-page: 125 year: 1995 ident: ref15 publication-title: Wavelets and Statistics doi: 10.1007/978-1-4612-2544-7_9 – volume: 1 start-page: 123 year: 2013 ident: ref23 article-title: Proximal algorithms publication-title: Found Trends Optim – ident: ref44 doi: 10.1002/mrm.21691 – ident: ref33 doi: 10.1561/2200000016 – ident: ref36 doi: 10.1109/JSTSP.2010.2042333 – ident: ref21 doi: 10.1002/cpa.20042 – ident: ref34 doi: 10.1109/TIP.2010.2047910 – ident: ref45 doi: 10.1109/TMI.2010.2085084 – ident: ref35 doi: 10.1016/j.acha.2007.10.002 – volume: 14 start-page: 2091 year: 2005 ident: ref48 article-title: The contourlet transform: an efficient directional multiresolution image representation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2005.859376 – ident: ref20 doi: 10.1016/j.acha.2010.10.002 – ident: ref52 doi: 10.1118/1.595679 – ident: ref4 doi: 10.1080/17415977.2010.492509 – start-page: 626 year: 2010 ident: ref14 article-title: Compressed sensing MRI with combined sparsifying transforms and smoothed L0 norm minimization publication-title: Proc IEEE Int Conf Acoust Speech Signal Process – ident: ref53 doi: 10.1109/TMI.2013.2256464 – ident: ref49 doi: 10.1118/1.4816303 – ident: ref13 doi: 10.1016/j.media.2015.05.012 – volume: 27 start-page: 372 year: 1983 ident: ref38 article-title: A method of solving a convex programming problem with convergence rate O (1/k2) publication-title: Soviet Math Doklady – ident: ref29 doi: 10.1117/12.826663 – ident: ref19 doi: 10.1109/TIT.2008.920190 – ident: ref5 doi: 10.1016/j.mri.2012.02.019 – ident: ref8 doi: 10.1109/TMI.2011.2140121 – ident: ref16 doi: 10.1016/j.acha.2013.10.001 – ident: ref10 doi: 10.1371/journal.pone.0119584 – ident: ref37 doi: 10.1109/TAC.2014.2354892 – ident: ref17 doi: 10.1118/1.4762288 – ident: ref39 doi: 10.1007/978-1-4419-9569-8_10 |
SSID | ssj0014509 |
Score | 2.5762832 |
Snippet | Compressed sensing (CS) has exhibited great potential for accelerating magnetic resonance imaging (MRI). In CS-MRI, we want to reconstruct a high-quality image... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2130 |
SubjectTerms | Algorithm design and analysis Algorithms Analytical models Brain Compressed sensing Data Compression Dictionaries Frames Image Processing, Computer-Assisted Image reconstruction Iterative methods iterative thresholding Magnetic Resonance Imaging Mathematical model Mathematical models MRI NMR Nuclear magnetic resonance Parameters Pista Reconstruction sparse models Sparsity tight frames |
Title | Projected Iterative Soft-Thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging |
URI | https://ieeexplore.ieee.org/document/7448403 https://www.ncbi.nlm.nih.gov/pubmed/27071164 https://www.proquest.com/docview/1830898049 https://www.proquest.com/docview/1826676455 https://www.proquest.com/docview/1837340678 https://www.proquest.com/docview/1855380774 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEC5iDqIHH4mP0SgteBGc3Xn0Y-YYxCUrrAjZQG5DP2qTYDKr2dmLv96qeaGii7eBqR56qOrqr7qqvwJ4q3yehqBt7IzDWOpVEhfa6tjaMlc2l151bJ-f9cmZ_HSuzvfg_XgXBhHb4jOc8GObyw9rv-WjsqmhWEIytecdCty6u1pjxkCqrpwjY8bYRGdDSjIpp8vFnGu49ITgMyMkJgA2tLWmWv62G7XtVf6NNNsdZ_YQFsNcu0KTr5Nt4yb-xx80jv_7M4_gQQ89xXFnK49hD-sDuP8LIeEB3F30qfZD-P6lO6PBIOYt8zK5RXFKTjtekvo3fdZKHF9frG-vmssbQehXLDnUFzMu-NqIq1qwt2nZyYM45Up5GrCwFzVfnBScOGC2DxTzm7ZV0hM4m31cfjiJ-_4Msaetr4mx8FaXFNN4qYLRGq2S6UppgpxW6kDIqkxUyGzqCgoz_Qpz5zRi6gwaJiTNn8J-va7xOQgCOcGVpTMJJnKVJ9bbUCqVSTQpfdZFMB30VPmevJx7aFxXbRCTlBUpuWIlV72SI3g3jvjWEXfskD1k_YxyvWoiOBpMoepX9qYiF5gUZUGBVQRvxte0JjnRYmtcb1km49JhqdQumdzkkrHCLhmluCGAkRE860xxnONgwS_-PveXcI__sKuGO4L95naLrwg-Ne51u25-AoGhE5M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9RADLaqInE8cLQUAgUGiRcksptjjuSxQqx2oamQmkp9i-baUtFmoZt94ddj5xIgWPEWKZ5oInvGn8eezwBvhE1j56QOjTI-5HIZhZnUMtQ6T4VOuRUd2-eJnJ_xj-fifAfejXdhvPdt8Zmf0GOby3cru6GjsqnCWIITtect9Psi7m5rjTkDLrqCjoQ4YyOZDEnJKJ-WxYKquOQEATRhJKIAVuhcY8l_80dtg5V_Y83W58weQDHMtis1-TrZNGZif_xB5Pi_v_MQ7vfgkx111vIIdny9B_d-oSTcg9tFn2zfh--fu1Ma79ii5V7GjZGd4rYdlmgA6z5vxY6uLlY3l82Xa4b4l5UU7LMZlXyt2WXNaL9p-ckdO6VaeRxQ6Iuark4ySh0Q34dni-u2WdJjOJt9KN_Pw75DQ2jR-TWhz6yWOUY1lgunpPRa8HgpJIJOzaVDbJVHwiU6NhkGmnbpU2Ok97FRXhElaXoAu_Wq9k-BIcxxJs-NinzEl2mkrXa5EAn3KsbPmgCmg54q29OXUxeNq6oNY6K8QiVXpOSqV3IAb8cR3zrqji2y-6SfUa5XTQCHgylU_dpeV7gJRlmeYWgVwOvxNa5KSrXo2q82JJNQ8TBa6TaZVKWc0MI2GSGoJYDiATzpTHGc42DBz_4-91dwZ14Wx9Xx4uTTc7hLf9vVxh3CbnOz8S8QTDXmZbuGfgL_2Rbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+Iterative+Soft-Thresholding+Algorithm+for+Tight+Frames+in+Compressed+Sensing+Magnetic+Resonance+Imaging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Yunsong+Liu&rft.au=Zhifang+Zhan&rft.au=Jian-Feng+Cai&rft.au=Di+Guo&rft.date=2016-09-01&rft.eissn=1558-254X&rft.volume=35&rft.issue=9&rft.spage=2130&rft_id=info:doi/10.1109%2FTMI.2016.2550080&rft_id=info%3Apmid%2F27071164&rft.externalDocID=27071164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |