Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10

The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities an...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 52; no. 15; pp. 8880 - 8896
Main Authors Ouyang, Yujing, Al-Amodi, Amani, Tehseen, Muhammad, Alhudhali, Lubna, Shirbini, Afnan, Takahashi, Masateru, Raducanu, Vlad-Stefan, Yi, Gang, Danazumi, Ammar Usman, De Biasio, Alfredo, Hamdan, Samir M
Format Journal Article
LanguageEnglish
Published England Oxford University Press 27.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system. Graphical Abstract Graphical Abstract
AbstractList The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system. Graphical Abstract
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system. Graphical Abstract Graphical Abstract
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.
Author Takahashi, Masateru
Alhudhali, Lubna
Shirbini, Afnan
Tehseen, Muhammad
Yi, Gang
Ouyang, Yujing
Raducanu, Vlad-Stefan
Danazumi, Ammar Usman
Al-Amodi, Amani
De Biasio, Alfredo
Hamdan, Samir M
Author_xml – sequence: 1
  givenname: Yujing
  surname: Ouyang
  fullname: Ouyang, Yujing
– sequence: 2
  givenname: Amani
  surname: Al-Amodi
  fullname: Al-Amodi, Amani
– sequence: 3
  givenname: Muhammad
  surname: Tehseen
  fullname: Tehseen, Muhammad
– sequence: 4
  givenname: Lubna
  surname: Alhudhali
  fullname: Alhudhali, Lubna
– sequence: 5
  givenname: Afnan
  surname: Shirbini
  fullname: Shirbini, Afnan
– sequence: 6
  givenname: Masateru
  surname: Takahashi
  fullname: Takahashi, Masateru
– sequence: 7
  givenname: Vlad-Stefan
  surname: Raducanu
  fullname: Raducanu, Vlad-Stefan
– sequence: 8
  givenname: Gang
  surname: Yi
  fullname: Yi, Gang
– sequence: 9
  givenname: Ammar Usman
  surname: Danazumi
  fullname: Danazumi, Ammar Usman
– sequence: 10
  givenname: Alfredo
  surname: De Biasio
  fullname: De Biasio, Alfredo
  email: alfredo.debiasio@kaust.edu.sa
– sequence: 11
  givenname: Samir M
  orcidid: 0000-0001-5192-1852
  surname: Hamdan
  fullname: Hamdan, Samir M
  email: samir.hamdan@kaust.edu.sa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38967018$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFEEQxZuQkGxiTt6lTyLIJF3T0_PhRWQxKkQU8gE5NbU9NbutPd1r90xA_3rH7CYkIp7qUL96r3jvkO364Imx5yBOQDTy1GM8XX5HUqXaYTOQZZ4VTZnvspmQQmUgivqAHab0TQgoQBX77EDWTVkJqGfs5sL6paOsD47M6IibFUY0A0X7CwcbPA8dv7guBI-0djaFnjj6lvtwS453ExliesNXY4-en32d3y0_mx7EM7bXoUt0vJ1H7Ors_eX8Y3b-5cOn-bvzzBQgh4wULNpKNmb6yFRCNdiCkYi1yY3BArqaWtmqFkUOtCiFbHPVSSNzVRJKtZBH7O1Gdz0uemoN-SGi0-toe4w_dUCrn268XelluNUAsqigbCaFV1uFGH6MlAbd22TIOfQUxqSlqEoBjQQ1oS8emz243Ac6AbABTAwpReq0scNdkJO3dRqE_lOankrT29Kmm9d_3dzL_pt-uaHDuP4v-Btp4qfh
CitedBy_id crossref_primary_10_1016_j_virol_2025_110427
crossref_primary_10_1016_j_tvr_2024_200306
Cites_doi 10.1016/j.molcel.2005.07.028
10.1073/pnas.1711291114
10.1038/35003614
10.1038/s41467-020-17443-7
10.1016/j.cell.2017.05.041
10.7554/eLife.04988
10.1016/j.molcel.2020.04.012
10.1126/science.8079175
10.1128/MCB.24.21.9568-9579.2004
10.1038/nature14866
10.1073/pnas.0609251103
10.1091/mbc.e07-10-1035
10.1093/nar/gkz249
10.3109/10409239709082001
10.1038/s41467-020-16910-5
10.1016/j.molcel.2016.11.017
10.1002/j.1460-2075.1988.tb02933.x
10.1074/jbc.M804488200
10.1038/s41467-019-09896-2
10.1038/s41467-019-08886-8
10.1038/nsmb.2851
10.1101/gad.1585607
10.1073/pnas.1303890110
10.1002/2211-5463.13099
10.1016/j.ymeth.2016.03.025
10.1126/science.1144067
10.1371/journal.pgen.1002407
10.1016/j.celrep.2019.07.104
10.1128/JVI.02677-07
10.1096/fj.201700862RR
10.1038/nsmb.1381
10.1093/nar/27.19.3799
10.1016/S0021-9258(19)57411-7
10.1093/nar/gky1321
10.1016/j.molcel.2005.06.037
10.1016/j.molcel.2019.10.005
10.1093/nar/gkv527
10.1146/annurev.biochem.78.072407.103248
10.1073/pnas.1619748114
10.1073/pnas.1819107116
10.1016/j.molcel.2007.06.020
10.1073/pnas.1018824108
10.1016/j.molcel.2008.02.022
10.1073/pnas.2017637117
10.1038/s41467-022-34751-2
10.1016/j.cell.2011.07.045
10.1093/nar/gku1034
10.1111/cas.14776
10.1073/pnas.1523653113
10.1073/pnas.1418334111
10.7554/eLife.21763
10.1038/oncsis.2012.29
10.1073/pnas.97.22.12002
10.1111/febs.14594
10.1016/j.celrep.2019.01.086
10.1038/s41467-019-10137-9
10.1038/nature11730
10.1038/s41467-020-14898-6
10.1158/0008-5472.CAN-15-2890
10.1016/j.jmb.2006.10.097
10.1073/pnas.2119580119
10.1016/j.molcel.2009.12.030
10.1038/nature04317
10.18632/oncotarget.7310
10.1038/sj.embor.7401064
10.1073/pnas.1321076111
10.1038/nature25787
10.1073/pnas.1320202110
10.1073/pnas.1203734109
10.1093/nar/gkm741
10.1016/j.molcel.2006.06.016
10.1128/JVI.02504-12
10.1146/annurev.bi.61.070192.000415
10.1128/MCB.02062-05
10.1038/s41586-022-04759-1
10.1128/MCB.02190-06
10.1002/j.1460-2075.1996.tb00583.x
10.1126/science.1084387
10.1074/jbc.M605596200
10.1098/rsob.170217
10.1093/nar/gkx096
10.15252/embj.2021108819
10.1073/pnas.0602400103
10.1073/pnas.1321349111
10.1038/nature13234
10.1101/gad.291336.116
10.7554/eLife.47405
10.1038/nsmb.3207
10.1158/0008-5472.CAN-09-0925
10.1126/science.aao3172
10.1038/emboj.2009.226
10.1073/pnas.0701062104
10.1128/JVI.01515-08
10.1093/nar/gkt1089
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkae565
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 8896
ExternalDocumentID PMC11347169
38967018
10_1093_nar_gkae565
10.1093/nar/gkae565
Genre Journal Article
GrantInformation_xml – fundername: Competitive Research Award
  grantid: URF/1/4036-01-01
– fundername: King Abdullah University of Science and Technology
– fundername: ;
– fundername: ;
  grantid: URF/1/4036-01-01; REP/1/6068-01
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c413t-e51bd739c967c7059ad1c3aa8c2cca41f8ed3d5da021eb603d25f3c3256ea35b3
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:32:11 EDT 2025
Thu Jul 10 23:35:02 EDT 2025
Thu Apr 03 06:57:10 EDT 2025
Tue Jul 01 02:59:30 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Mon Jun 30 08:34:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-e51bd739c967c7059ad1c3aa8c2cca41f8ed3d5da021eb603d25f3c3256ea35b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first three authors should be regarded as Joint First Authors.
ORCID 0000-0001-5192-1852
OpenAccessLink https://dx.doi.org/10.1093/nar/gkae565
PMID 38967018
PQID 3076019315
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11347169
proquest_miscellaneous_3076019315
pubmed_primary_38967018
crossref_citationtrail_10_1093_nar_gkae565
crossref_primary_10_1093_nar_gkae565
oup_primary_10_1093_nar_gkae565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-27
PublicationDateYYYYMMDD 2024-08-27
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Gambus (2024082703505185000_B21) 2009; 28
Somyajit (2024082703505185000_B30) 2017; 358
Baris (2024082703505185000_B17) 2022; 606
Tanner (2024082703505185000_B66) 2008; 15
Yuan (2024082703505185000_B15) 2020; 11
Cerron (2024082703505185000_B70) 2019; 47
Allera-Moreau (2024082703505185000_B89) 2012; 1
Spardy (2024082703505185000_B88) 2009; 69
Hamdan (2024082703505185000_B51) 2007; 27
Lancey (2024082703505185000_B57) 2020; 11
Das-Bradoo (2024082703505185000_B85) 2006; 26
Klaue (2024082703505185000_B36) 2012
Bosco (2024082703505185000_B69) 2014; 42
Baretić (2024082703505185000_B14) 2020; 78
Kang (2024082703505185000_B42) 2012; 109
Miles (2024082703505185000_B18) 1992; 12
Unsal-Kaçmaz (2024082703505185000_B96) 2007; 27
Beattie (2024082703505185000_B53) 2017; 6
Yoshizawa-Sugata (2024082703505185000_B95) 2007; 282
Eickhoff (2024082703505185000_B44) 2019; 28
Kath (2024082703505185000_B64) 2014; 111
Maier (2024082703505185000_B67) 2000; 97
Hedglin (2024082703505185000_B71) 2016; 113
Zlotkin (2024082703505185000_B3) 1996; 15
Zhou (2024082703505185000_B19) 2004; 24
McGarry (2024082703505185000_B92) 2016; 76
Pospiech (2024082703505185000_B4) 1999; 27
Georgescu (2024082703505185000_B8) 2014; 21
Lewis (2024082703505185000_B48) 2020; 77
Szyjka (2024082703505185000_B27) 2005; 19
Bullock (2024082703505185000_B1) 1997; 32
Wiekowski (2024082703505185000_B72) 1988; 263
Chilkova (2024082703505185000_B78) 2007; 35
Johnson (2024082703505185000_B50) 2007; 104
Mondol (2024082703505185000_B77) 2019; 47
Mayle (2024082703505185000_B33) 2019; 116
Schauer (2024082703505185000_B9) 2017; 114
Fanning (2024082703505185000_B2) 1992; 61
Ilves (2024082703505185000_B39) 2010; 37
Gotter (2024082703505185000_B32) 2007; 366
Wuite (2024082703505185000_B68) 2000; 404
Rashid (2024082703505185000_B58) 2019; 10
Tourrière (2024082703505185000_B28) 2005; 19
Berghuis (2024082703505185000_B75) 2016; 105
Mailand (2024082703505185000_B87) 2006; 23
Kose (2024082703505185000_B46) 2020; 11
Douglas (2024082703505185000_B84) 2018; 555
Yeeles (2024082703505185000_B13) 2017; 65
Bustamante (2024082703505185000_B62) 1994; 265
Lõoke (2024082703505185000_B35) 2017; 31
Hamdan (2024082703505185000_B83) 2009; 78
Lee (2024082703505185000_B65) 2006; 439
Lewis (2024082703505185000_B12) 2017; 114
Zhu (2024082703505185000_B20) 2007; 21
Takahashi (2024082703505185000_B61) 2018; 32
Graham (2024082703505185000_B74) 2017; 169
Zheng (2024082703505185000_B81) 2020; 117
Langston (2024082703505185000_B79) 2008; 283
Bianco (2024082703505185000_B93) 2019; 10
Pandey (2024082703505185000_B59) 2015; 43
Georgescu (2024082703505185000_B49) 2015; 4
Raducanu (2024082703505185000_B82) 2022; 13
Okorokov (2024082703505185000_B34) 2007; 8
Zhao (2024082703505185000_B56) 2008; 82
Hein (2024082703505185000_B54) 2009; 83
Murayama (2024082703505185000_B86) 2021; 112
Moyer (2024082703505185000_B38) 2006; 103
Langston (2024082703505185000_B43) 2014; 111
Stodola (2024082703505185000_B76) 2016; 23
Kilkenny (2024082703505185000_B24) 2017; 7
Yardimci (2024082703505185000_B41) 2012; 492
van Oijen (2024082703505185000_B63) 2003; 301
Yuan (2024082703505185000_B90) 2014; 42
Pursell (2024082703505185000_B5) 2007; 317
Gupta (2024082703505185000_B73) 2013; 110
Simon (2024082703505185000_B23) 2014; 510
Mohni (2024082703505185000_B55) 2013; 87
Dovrat (2024082703505185000_B80) 2014; 111
Kose (2024082703505185000_B45) 2019; 26
Jones (2024082703505185000_B16) 2021; 40
Yao (2024082703505185000_B47) 2022; 119
Yuan (2024082703505185000_B25) 2019; 8
Loparo (2024082703505185000_B52) 2011; 108
Elshenawy (2024082703505185000_B60) 2015; 525
McElhinny (2024082703505185000_B6) 2008; 30
Pantelidou (2024082703505185000_B91) 2016; 7
Chou (2024082703505185000_B94) 2006; 103
Fu (2024082703505185000_B40) 2011; 146
Fairman (2024082703505185000_B10) 1988; 7
Petermann (2024082703505185000_B29) 2008; 19
Miyabe (2024082703505185000_B7) 2011; 7
Szeltner (2024082703505185000_B11) 2021; 11
Fujisawa (2024082703505185000_B26) 2017; 45
Smits (2024082703505185000_B31) 2019; 286
Kang (2024082703505185000_B22) 2013; 110
Burnham (2024082703505185000_B37) 2019; 10
References_xml – volume: 19
  start-page: 699
  year: 2005
  ident: 2024082703505185000_B28
  article-title: Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.07.028
– volume: 114
  start-page: 10630
  year: 2017
  ident: 2024082703505185000_B12
  article-title: Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1711291114
– volume: 404
  start-page: 103
  year: 2000
  ident: 2024082703505185000_B68
  article-title: Single-molecule studies of the effect of template tension on T7 DNA polymerase activity
  publication-title: Nature
  doi: 10.1038/35003614
– volume: 11
  start-page: 3713
  year: 2020
  ident: 2024082703505185000_B46
  article-title: Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17443-7
– volume: 169
  start-page: 1201
  year: 2017
  ident: 2024082703505185000_B74
  article-title: Independent and stochastic action of DNA polymerases in the replisome
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.041
– volume: 4
  start-page: e04988
  year: 2015
  ident: 2024082703505185000_B49
  article-title: Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation
  publication-title: eLife
  doi: 10.7554/eLife.04988
– volume: 78
  start-page: 926
  year: 2020
  ident: 2024082703505185000_B14
  article-title: Cryo-EM structure of the fork protection complex bound to CMG at a replication fork
  publication-title: Mol.Cell
  doi: 10.1016/j.molcel.2020.04.012
– volume: 265
  start-page: 1599
  year: 1994
  ident: 2024082703505185000_B62
  article-title: Entropic elasticity of lambda-phage DNA
  publication-title: Science
  doi: 10.1126/science.8079175
– volume: 24
  start-page: 9568
  year: 2004
  ident: 2024082703505185000_B19
  article-title: A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase α facilitates DNA replication
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.21.9568-9579.2004
– volume: 525
  start-page: 394
  year: 2015
  ident: 2024082703505185000_B60
  article-title: Replisome speed determines the efficiency of the Tus-Ter replication termination barrier
  publication-title: Nature
  doi: 10.1038/nature14866
– volume: 103
  start-page: 18143
  year: 2006
  ident: 2024082703505185000_B94
  article-title: Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0609251103
– volume: 19
  start-page: 2373
  year: 2008
  ident: 2024082703505185000_B29
  article-title: Claspin promotes normal replication fork rates in human cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-10-1035
– volume: 47
  start-page: 5723
  year: 2019
  ident: 2024082703505185000_B70
  article-title: Replicative DNA polymerases promote active displacement of SSB proteins during lagging strand synthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz249
– volume: 32
  start-page: 503
  year: 1997
  ident: 2024082703505185000_B1
  article-title: The initiation of simian virus 40 DNA replication in vitro
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409239709082001
– volume: 11
  start-page: 3156
  year: 2020
  ident: 2024082703505185000_B15
  article-title: Structure of the polymerase epsilon holoenzyme and atomic model of the leading strand replisome
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16910-5
– volume: 65
  start-page: 105
  year: 2017
  ident: 2024082703505185000_B13
  article-title: How the eukaryotic replisome achieves rapid and efficient DNA replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.11.017
– volume: 7
  start-page: 1211
  year: 1988
  ident: 2024082703505185000_B10
  article-title: Cellular factors required for multiple stages of SV40 DNA replication in vitro
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02933.x
– volume: 283
  start-page: 29522
  year: 2008
  ident: 2024082703505185000_B79
  article-title: DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804488200
– volume: 10
  start-page: 2159
  year: 2019
  ident: 2024082703505185000_B37
  article-title: The mechanism of DNA unwinding by the eukaryotic replicative helicase
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09896-2
– volume: 10
  start-page: 910
  year: 2019
  ident: 2024082703505185000_B93
  article-title: Overexpression of Claspin and Timeless protects cancer cells from replication stress in a checkpoint-independent manner
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08886-8
– volume: 21
  start-page: 664
  year: 2014
  ident: 2024082703505185000_B8
  article-title: Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2851
– volume: 21
  start-page: 2288
  year: 2007
  ident: 2024082703505185000_B20
  article-title: Mcm10 and and-1/CTF4 recruit DNA polymerase α to chromatin for initiation of DNA replication
  publication-title: Genes Dev.
  doi: 10.1101/gad.1585607
– volume: 110
  start-page: 7252
  year: 2013
  ident: 2024082703505185000_B73
  article-title: Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1303890110
– volume: 11
  start-page: 1054
  year: 2021
  ident: 2024082703505185000_B11
  article-title: Evaluation and modulation of DNA lesion bypass in an SV40 large T antigen-based in vitro replication system
  publication-title: FEBS Open Bio.
  doi: 10.1002/2211-5463.13099
– volume: 105
  start-page: 90
  year: 2016
  ident: 2024082703505185000_B75
  article-title: High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.03.025
– volume: 317
  start-page: 127
  year: 2007
  ident: 2024082703505185000_B5
  article-title: Yeast DNA polymerase epsilon participates in leading-strand DNA replication
  publication-title: Science
  doi: 10.1126/science.1144067
– volume: 7
  start-page: e1002407
  year: 2011
  ident: 2024082703505185000_B7
  article-title: The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002407
– volume: 28
  start-page: 2673
  year: 2019
  ident: 2024082703505185000_B44
  article-title: Molecular basis for ATP-hydrolysis-driven DNA translocation by the CMG helicase of the eukaryotic replisome
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.07.104
– volume: 82
  start-page: 5316
  year: 2008
  ident: 2024082703505185000_B56
  article-title: Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 subunits in Simian virus 40-infected primate cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.02677-07
– volume: 32
  start-page: 3346
  year: 2018
  ident: 2024082703505185000_B61
  article-title: Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea
  publication-title: FASEB J.
  doi: 10.1096/fj.201700862RR
– volume: 15
  start-page: 170
  year: 2008
  ident: 2024082703505185000_B66
  article-title: Single-molecule studies of fork dynamics in Escherichia coli DNA replication
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1381
– volume: 27
  start-page: 3799
  year: 1999
  ident: 2024082703505185000_B4
  article-title: A neutralizing antibody against human DNA polymerase ϵ inhibits cellular but not SV40 DNA replication
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.19.3799
– volume: 263
  start-page: 436
  year: 1988
  ident: 2024082703505185000_B72
  article-title: Simian virus 40 large T antigen DNA helicase. Characterization of the ATPase-dependent DNA unwinding activity and its substrate requirements
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)57411-7
– volume: 47
  start-page: 1977
  year: 2019
  ident: 2024082703505185000_B77
  article-title: PCNA accelerates the nucleotide incorporation rate by DNA polymerase delta
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1321
– volume: 19
  start-page: 691
  year: 2005
  ident: 2024082703505185000_B27
  article-title: Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.06.037
– volume: 77
  start-page: 17
  year: 2020
  ident: 2024082703505185000_B48
  article-title: Tunability of DNA polymerase stability during eukaryotic DNA replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.10.005
– volume: 43
  start-page: 5924
  year: 2015
  ident: 2024082703505185000_B59
  article-title: Two mechanisms coordinate replication termination by the Escherichia coli Tus-Ter complex
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv527
– volume: 78
  start-page: 205
  year: 2009
  ident: 2024082703505185000_B83
  article-title: Motors, switches, and contacts in the replisome
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.78.072407.103248
– volume: 114
  start-page: 675
  year: 2017
  ident: 2024082703505185000_B9
  article-title: Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1619748114
– volume: 116
  start-page: 798
  year: 2019
  ident: 2024082703505185000_B33
  article-title: Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1819107116
– volume: 27
  start-page: 539
  year: 2007
  ident: 2024082703505185000_B51
  article-title: Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.020
– volume: 108
  start-page: 3584
  year: 2011
  ident: 2024082703505185000_B52
  article-title: Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1018824108
– volume: 30
  start-page: 137
  year: 2008
  ident: 2024082703505185000_B6
  article-title: Division of labor at the eukaryotic replication fork
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.02.022
– volume: 117
  start-page: 30344
  year: 2020
  ident: 2024082703505185000_B81
  article-title: Structure of eukaryotic DNA polymerase delta bound to the PCNA clamp while encircling DNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2017637117
– volume: 13
  start-page: 6973
  year: 2022
  ident: 2024082703505185000_B82
  article-title: Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34751-2
– volume: 146
  start-page: 931
  year: 2011
  ident: 2024082703505185000_B40
  article-title: Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.045
– volume: 42
  start-page: 13110
  year: 2014
  ident: 2024082703505185000_B90
  article-title: HERC2-USP20 axis regulates DNA damage checkpoint through Claspin
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1034
– volume: 112
  start-page: 1209
  year: 2021
  ident: 2024082703505185000_B86
  article-title: MCM10 compensates for Myc-induced DNA replication stress in breast cancer stem-like cells
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14776
– volume: 113
  start-page: E1777
  year: 2016
  ident: 2024082703505185000_B71
  article-title: Stability of the human polymerase delta holoenzyme and its implications in lagging strand DNA synthesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1523653113
– volume: 111
  start-page: 15390
  year: 2014
  ident: 2024082703505185000_B43
  article-title: CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1418334111
– volume: 6
  start-page: e21763
  year: 2017
  ident: 2024082703505185000_B53
  article-title: Frequent exchange of the DNA polymerase during bacterial chromosome replication
  publication-title: eLife
  doi: 10.7554/eLife.21763
– volume: 1
  start-page: e30
  year: 2012
  ident: 2024082703505185000_B89
  article-title: DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2012.29
– volume: 97
  start-page: 12002
  year: 2000
  ident: 2024082703505185000_B67
  article-title: Replication by a single DNA polymerase of a stretched single-stranded DNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.97.22.12002
– volume: 286
  start-page: 441
  year: 2019
  ident: 2024082703505185000_B31
  article-title: Claspin - checkpoint adaptor and DNA replication factor
  publication-title: FEBS J.
  doi: 10.1111/febs.14594
– volume: 26
  start-page: 2113
  year: 2019
  ident: 2024082703505185000_B45
  article-title: Dynamics of the eukaryotic replicative helicase at lagging-strand protein barriers support the steric exclusion model
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.01.086
– year: 2012
  ident: 2024082703505185000_B36
  article-title: DNA unwinding by helicases investigated on the single molecule level
– volume: 10
  start-page: 2104
  year: 2019
  ident: 2024082703505185000_B58
  article-title: Initial state of DNA-dye complex sets the stage for protein induced fluorescence modulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10137-9
– volume: 492
  start-page: 205
  year: 2012
  ident: 2024082703505185000_B41
  article-title: Bypass of a protein barrier by a replicative DNA helicase
  publication-title: Nature
  doi: 10.1038/nature11730
– volume: 11
  start-page: 1109
  year: 2020
  ident: 2024082703505185000_B57
  article-title: Structure of the processive human Pol delta holoenzyme
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14898-6
– volume: 76
  start-page: 2384
  year: 2016
  ident: 2024082703505185000_B92
  article-title: The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-PhaseUSP9X role in genome stability
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2890
– volume: 366
  start-page: 36
  year: 2007
  ident: 2024082703505185000_B32
  article-title: Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.10.097
– volume: 12
  start-page: 5724
  year: 1992
  ident: 2024082703505185000_B18
  article-title: Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo
  publication-title: Mol. Cell. Biol.
– volume: 119
  start-page: e2119580119
  year: 2022
  ident: 2024082703505185000_B47
  article-title: CMG helicase can use ATPgammaS to unwind DNA: implications for the rate-limiting step in the reaction mechanism
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2119580119
– volume: 37
  start-page: 247
  year: 2010
  ident: 2024082703505185000_B39
  article-title: Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.030
– volume: 439
  start-page: 621
  year: 2006
  ident: 2024082703505185000_B65
  article-title: DNA primase acts as a molecular brake in DNA replication
  publication-title: Nature
  doi: 10.1038/nature04317
– volume: 7
  start-page: 15703
  year: 2016
  ident: 2024082703505185000_B91
  article-title: The E1B19K-deleted oncolytic adenovirus mutant AdΔ19K sensitizes pancreatic cancer cells to drug-induced DNA-damage by down-regulating Claspin and Mre11
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7310
– volume: 8
  start-page: 925
  year: 2007
  ident: 2024082703505185000_B34
  article-title: Hexameric ring structure of human MCM10 DNA replication factor
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7401064
– volume: 111
  start-page: 7647
  year: 2014
  ident: 2024082703505185000_B64
  article-title: Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1321076111
– volume: 555
  start-page: 265
  year: 2018
  ident: 2024082703505185000_B84
  article-title: The mechanism of eukaryotic CMG helicase activation
  publication-title: Nature
  doi: 10.1038/nature25787
– volume: 110
  start-page: 19760
  year: 2013
  ident: 2024082703505185000_B22
  article-title: Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1320202110
– volume: 109
  start-page: 6042
  year: 2012
  ident: 2024082703505185000_B42
  article-title: Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1203734109
– volume: 35
  start-page: 6588
  year: 2007
  ident: 2024082703505185000_B78
  article-title: The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm741
– volume: 23
  start-page: 307
  year: 2006
  ident: 2024082703505185000_B87
  article-title: Destruction of Claspin by SCFβTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.016
– volume: 87
  start-page: 531
  year: 2013
  ident: 2024082703505185000_B55
  article-title: Efficient herpes simplex virus 1 replication requires cellular ATR pathway proteins
  publication-title: J. Virol.
  doi: 10.1128/JVI.02504-12
– volume: 61
  start-page: 55
  year: 1992
  ident: 2024082703505185000_B2
  article-title: Structure and function of simian virus 40 large tumor antigen
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.61.070192.000415
– volume: 26
  start-page: 4806
  year: 2006
  ident: 2024082703505185000_B85
  article-title: Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02062-05
– volume: 606
  start-page: 204
  year: 2022
  ident: 2024082703505185000_B17
  article-title: Fast and efficient DNA replication with purified human proteins
  publication-title: Nature
  doi: 10.1038/s41586-022-04759-1
– volume: 27
  start-page: 3131
  year: 2007
  ident: 2024082703505185000_B96
  article-title: The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02190-06
– volume: 15
  start-page: 2298
  year: 1996
  ident: 2024082703505185000_B3
  article-title: DNA polymerase epsilon may be dispensable for SV40-but not cellular-DNA replication
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00583.x
– volume: 301
  start-page: 1235
  year: 2003
  ident: 2024082703505185000_B63
  article-title: Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder
  publication-title: Science
  doi: 10.1126/science.1084387
– volume: 282
  start-page: 2729
  year: 2007
  ident: 2024082703505185000_B95
  article-title: Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605596200
– volume: 7
  start-page: 170217
  year: 2017
  ident: 2024082703505185000_B24
  article-title: The human CTF4-orthologue AND-1 interacts with DNA polymerase α/primase via its unique C-terminal HMG box
  publication-title: Open Biology
  doi: 10.1098/rsob.170217
– volume: 45
  start-page: 4550
  year: 2017
  ident: 2024082703505185000_B26
  article-title: Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase epsilon efficiently loads the PCNA sliding clamp
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx096
– volume: 40
  start-page: e108819
  year: 2021
  ident: 2024082703505185000_B16
  article-title: Structure of a human replisome shows the organisation and interactions of a DNA replication machine
  publication-title: EMBO J.
  doi: 10.15252/embj.2021108819
– volume: 103
  start-page: 10236
  year: 2006
  ident: 2024082703505185000_B38
  article-title: Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0602400103
– volume: 111
  start-page: 14118
  year: 2014
  ident: 2024082703505185000_B80
  article-title: Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1321349111
– volume: 510
  start-page: 293
  year: 2014
  ident: 2024082703505185000_B23
  article-title: A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome
  publication-title: Nature
  doi: 10.1038/nature13234
– volume: 31
  start-page: 291
  year: 2017
  ident: 2024082703505185000_B35
  article-title: Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase
  publication-title: Genes Dev.
  doi: 10.1101/gad.291336.116
– volume: 8
  start-page: e47405
  year: 2019
  ident: 2024082703505185000_B25
  article-title: Ctf4 organizes sister replisomes and Pol alpha into a replication factory
  publication-title: eLife
  doi: 10.7554/eLife.47405
– volume: 23
  start-page: 402
  year: 2016
  ident: 2024082703505185000_B76
  article-title: Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3207
– volume: 69
  start-page: 7022
  year: 2009
  ident: 2024082703505185000_B88
  article-title: Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-0925
– volume: 358
  start-page: 797
  year: 2017
  ident: 2024082703505185000_B30
  article-title: Redox-sensitive alteration of replisome architecture safeguards genome integrity
  publication-title: Science
  doi: 10.1126/science.aao3172
– volume: 28
  start-page: 2992
  year: 2009
  ident: 2024082703505185000_B21
  article-title: A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.226
– volume: 104
  start-page: 5312
  year: 2007
  ident: 2024082703505185000_B50
  article-title: Exchange of DNA polymerases at the replication fork of bacteriophage T7
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0701062104
– volume: 83
  start-page: 117
  year: 2009
  ident: 2024082703505185000_B54
  article-title: Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding
  publication-title: J. Virol.
  doi: 10.1128/JVI.01515-08
– volume: 42
  start-page: 2064
  year: 2014
  ident: 2024082703505185000_B69
  article-title: Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1089
SSID ssj0014154
Score 2.4692068
Snippet The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8880
SubjectTerms Antigens, Polyomavirus Transforming - genetics
Antigens, Polyomavirus Transforming - metabolism
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Polymerase III - genetics
DNA Polymerase III - metabolism
DNA Replication
DNA, Single-Stranded - metabolism
DNA, Viral - genetics
DNA, Viral - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-Directed DNA Polymerase
Genome Integrity, Repair and
Humans
Minichromosome Maintenance Proteins - genetics
Minichromosome Maintenance Proteins - metabolism
Multienzyme Complexes
Replication Protein A - metabolism
Simian virus 40 - genetics
Simian virus 40 - metabolism
Single Molecule Imaging
Virus Replication
Title Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10
URI https://www.ncbi.nlm.nih.gov/pubmed/38967018
https://www.proquest.com/docview/3076019315
https://pubmed.ncbi.nlm.nih.gov/PMC11347169
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA7qi76Id-dlRhg-CMWm6dU3GRsiTAUvzKeSJqcqbqlsU_Dfe5J2ZRPR1-aklH6l35ecnO8Q0lLcz5BIfCcRCIOxNHfinDFHeZlgIhLMBVPv3LsOLx_8q37Qrw7Ijn9J4Sf8TIvR2fObAJQe-KtF-jUW-fc3_TpZgBxUukRZU00_rsrwfsydI565YrYZTfnzaOQM13TXyGolEulFieo6WQC9QTYvNC6Qh1_0hNpjm3Y_fIMst6ct2zbJ0x0S0QCcYdnzFqis7ZjLakta5PTu0XfpCFB8joshUKEV1cUnDGjVeuec2r59tHvbtoM9OWTuFnnodu7bl07VO8GRSEsTBwKWqYgnMgkjGaGGEopJLkQsPcTMZ3kMiqtACeR4yEKXKy_IueSogEDwIOPbZEkXGnYJzd0YrwPOtbUk0jScBCbiCCcDU36DnE5fbCorY3HT32KQlgluniIKaYVCg7Tq4PfST-P3sCNE6O-I4yl6Kb5lk-YQGoqPccpNshF1KcOYnRLN-kYoz8LIZXGDxHM41wHGbXt-RL--WNdtZopuWZjs_fto-2TFQ-ljdp696IAsTUYfcIjSZZI1yWLkdpp24d-0H_E37OTvpA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-molecule+characterization+of+SV40+replisome+and+novel+factors%3A+human+FPC+and+Mcm10&rft.jtitle=Nucleic+acids+research&rft.au=Ouyang%2C+Yujing&rft.au=Al-Amodi%2C+Amani&rft.au=Tehseen%2C+Muhammad&rft.au=Alhudhali%2C+Lubna&rft.date=2024-08-27&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=52&rft.issue=15&rft.spage=8880&rft_id=info:doi/10.1093%2Fnar%2Fgkae565&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon