Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities an...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 15; pp. 8880 - 8896 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
27.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system. The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system. Graphical Abstract The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45–MCM–GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system. Graphical Abstract Graphical Abstract The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system. |
Author | Takahashi, Masateru Alhudhali, Lubna Shirbini, Afnan Tehseen, Muhammad Yi, Gang Ouyang, Yujing Raducanu, Vlad-Stefan Danazumi, Ammar Usman Al-Amodi, Amani De Biasio, Alfredo Hamdan, Samir M |
Author_xml | – sequence: 1 givenname: Yujing surname: Ouyang fullname: Ouyang, Yujing – sequence: 2 givenname: Amani surname: Al-Amodi fullname: Al-Amodi, Amani – sequence: 3 givenname: Muhammad surname: Tehseen fullname: Tehseen, Muhammad – sequence: 4 givenname: Lubna surname: Alhudhali fullname: Alhudhali, Lubna – sequence: 5 givenname: Afnan surname: Shirbini fullname: Shirbini, Afnan – sequence: 6 givenname: Masateru surname: Takahashi fullname: Takahashi, Masateru – sequence: 7 givenname: Vlad-Stefan surname: Raducanu fullname: Raducanu, Vlad-Stefan – sequence: 8 givenname: Gang surname: Yi fullname: Yi, Gang – sequence: 9 givenname: Ammar Usman surname: Danazumi fullname: Danazumi, Ammar Usman – sequence: 10 givenname: Alfredo surname: De Biasio fullname: De Biasio, Alfredo email: alfredo.debiasio@kaust.edu.sa – sequence: 11 givenname: Samir M orcidid: 0000-0001-5192-1852 surname: Hamdan fullname: Hamdan, Samir M email: samir.hamdan@kaust.edu.sa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38967018$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rFEEQxZuQkGxiTt6lTyLIJF3T0_PhRWQxKkQU8gE5NbU9NbutPd1r90xA_3rH7CYkIp7qUL96r3jvkO364Imx5yBOQDTy1GM8XX5HUqXaYTOQZZ4VTZnvspmQQmUgivqAHab0TQgoQBX77EDWTVkJqGfs5sL6paOsD47M6IibFUY0A0X7CwcbPA8dv7guBI-0djaFnjj6lvtwS453ExliesNXY4-en32d3y0_mx7EM7bXoUt0vJ1H7Ors_eX8Y3b-5cOn-bvzzBQgh4wULNpKNmb6yFRCNdiCkYi1yY3BArqaWtmqFkUOtCiFbHPVSSNzVRJKtZBH7O1Gdz0uemoN-SGi0-toe4w_dUCrn268XelluNUAsqigbCaFV1uFGH6MlAbd22TIOfQUxqSlqEoBjQQ1oS8emz243Ac6AbABTAwpReq0scNdkJO3dRqE_lOankrT29Kmm9d_3dzL_pt-uaHDuP4v-Btp4qfh |
CitedBy_id | crossref_primary_10_1016_j_virol_2025_110427 crossref_primary_10_1016_j_tvr_2024_200306 |
Cites_doi | 10.1016/j.molcel.2005.07.028 10.1073/pnas.1711291114 10.1038/35003614 10.1038/s41467-020-17443-7 10.1016/j.cell.2017.05.041 10.7554/eLife.04988 10.1016/j.molcel.2020.04.012 10.1126/science.8079175 10.1128/MCB.24.21.9568-9579.2004 10.1038/nature14866 10.1073/pnas.0609251103 10.1091/mbc.e07-10-1035 10.1093/nar/gkz249 10.3109/10409239709082001 10.1038/s41467-020-16910-5 10.1016/j.molcel.2016.11.017 10.1002/j.1460-2075.1988.tb02933.x 10.1074/jbc.M804488200 10.1038/s41467-019-09896-2 10.1038/s41467-019-08886-8 10.1038/nsmb.2851 10.1101/gad.1585607 10.1073/pnas.1303890110 10.1002/2211-5463.13099 10.1016/j.ymeth.2016.03.025 10.1126/science.1144067 10.1371/journal.pgen.1002407 10.1016/j.celrep.2019.07.104 10.1128/JVI.02677-07 10.1096/fj.201700862RR 10.1038/nsmb.1381 10.1093/nar/27.19.3799 10.1016/S0021-9258(19)57411-7 10.1093/nar/gky1321 10.1016/j.molcel.2005.06.037 10.1016/j.molcel.2019.10.005 10.1093/nar/gkv527 10.1146/annurev.biochem.78.072407.103248 10.1073/pnas.1619748114 10.1073/pnas.1819107116 10.1016/j.molcel.2007.06.020 10.1073/pnas.1018824108 10.1016/j.molcel.2008.02.022 10.1073/pnas.2017637117 10.1038/s41467-022-34751-2 10.1016/j.cell.2011.07.045 10.1093/nar/gku1034 10.1111/cas.14776 10.1073/pnas.1523653113 10.1073/pnas.1418334111 10.7554/eLife.21763 10.1038/oncsis.2012.29 10.1073/pnas.97.22.12002 10.1111/febs.14594 10.1016/j.celrep.2019.01.086 10.1038/s41467-019-10137-9 10.1038/nature11730 10.1038/s41467-020-14898-6 10.1158/0008-5472.CAN-15-2890 10.1016/j.jmb.2006.10.097 10.1073/pnas.2119580119 10.1016/j.molcel.2009.12.030 10.1038/nature04317 10.18632/oncotarget.7310 10.1038/sj.embor.7401064 10.1073/pnas.1321076111 10.1038/nature25787 10.1073/pnas.1320202110 10.1073/pnas.1203734109 10.1093/nar/gkm741 10.1016/j.molcel.2006.06.016 10.1128/JVI.02504-12 10.1146/annurev.bi.61.070192.000415 10.1128/MCB.02062-05 10.1038/s41586-022-04759-1 10.1128/MCB.02190-06 10.1002/j.1460-2075.1996.tb00583.x 10.1126/science.1084387 10.1074/jbc.M605596200 10.1098/rsob.170217 10.1093/nar/gkx096 10.15252/embj.2021108819 10.1073/pnas.0602400103 10.1073/pnas.1321349111 10.1038/nature13234 10.1101/gad.291336.116 10.7554/eLife.47405 10.1038/nsmb.3207 10.1158/0008-5472.CAN-09-0925 10.1126/science.aao3172 10.1038/emboj.2009.226 10.1073/pnas.0701062104 10.1128/JVI.01515-08 10.1093/nar/gkt1089 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkae565 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 8896 |
ExternalDocumentID | PMC11347169 38967018 10_1093_nar_gkae565 10.1093/nar/gkae565 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Competitive Research Award grantid: URF/1/4036-01-01 – fundername: King Abdullah University of Science and Technology – fundername: ; – fundername: ; grantid: URF/1/4036-01-01; REP/1/6068-01 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c413t-e51bd739c967c7059ad1c3aa8c2cca41f8ed3d5da021eb603d25f3c3256ea35b3 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:32:11 EDT 2025 Thu Jul 10 23:35:02 EDT 2025 Thu Apr 03 06:57:10 EDT 2025 Tue Jul 01 02:59:30 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Mon Jun 30 08:34:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-e51bd739c967c7059ad1c3aa8c2cca41f8ed3d5da021eb603d25f3c3256ea35b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The first three authors should be regarded as Joint First Authors. |
ORCID | 0000-0001-5192-1852 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkae565 |
PMID | 38967018 |
PQID | 3076019315 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11347169 proquest_miscellaneous_3076019315 pubmed_primary_38967018 crossref_citationtrail_10_1093_nar_gkae565 crossref_primary_10_1093_nar_gkae565 oup_primary_10_1093_nar_gkae565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-27 |
PublicationDateYYYYMMDD | 2024-08-27 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Gambus (2024082703505185000_B21) 2009; 28 Somyajit (2024082703505185000_B30) 2017; 358 Baris (2024082703505185000_B17) 2022; 606 Tanner (2024082703505185000_B66) 2008; 15 Yuan (2024082703505185000_B15) 2020; 11 Cerron (2024082703505185000_B70) 2019; 47 Allera-Moreau (2024082703505185000_B89) 2012; 1 Spardy (2024082703505185000_B88) 2009; 69 Hamdan (2024082703505185000_B51) 2007; 27 Lancey (2024082703505185000_B57) 2020; 11 Das-Bradoo (2024082703505185000_B85) 2006; 26 Klaue (2024082703505185000_B36) 2012 Bosco (2024082703505185000_B69) 2014; 42 Baretić (2024082703505185000_B14) 2020; 78 Kang (2024082703505185000_B42) 2012; 109 Miles (2024082703505185000_B18) 1992; 12 Unsal-Kaçmaz (2024082703505185000_B96) 2007; 27 Beattie (2024082703505185000_B53) 2017; 6 Yoshizawa-Sugata (2024082703505185000_B95) 2007; 282 Eickhoff (2024082703505185000_B44) 2019; 28 Kath (2024082703505185000_B64) 2014; 111 Maier (2024082703505185000_B67) 2000; 97 Hedglin (2024082703505185000_B71) 2016; 113 Zlotkin (2024082703505185000_B3) 1996; 15 Zhou (2024082703505185000_B19) 2004; 24 McGarry (2024082703505185000_B92) 2016; 76 Pospiech (2024082703505185000_B4) 1999; 27 Georgescu (2024082703505185000_B8) 2014; 21 Lewis (2024082703505185000_B48) 2020; 77 Szyjka (2024082703505185000_B27) 2005; 19 Bullock (2024082703505185000_B1) 1997; 32 Wiekowski (2024082703505185000_B72) 1988; 263 Chilkova (2024082703505185000_B78) 2007; 35 Johnson (2024082703505185000_B50) 2007; 104 Mondol (2024082703505185000_B77) 2019; 47 Mayle (2024082703505185000_B33) 2019; 116 Schauer (2024082703505185000_B9) 2017; 114 Fanning (2024082703505185000_B2) 1992; 61 Ilves (2024082703505185000_B39) 2010; 37 Gotter (2024082703505185000_B32) 2007; 366 Wuite (2024082703505185000_B68) 2000; 404 Rashid (2024082703505185000_B58) 2019; 10 Tourrière (2024082703505185000_B28) 2005; 19 Berghuis (2024082703505185000_B75) 2016; 105 Mailand (2024082703505185000_B87) 2006; 23 Kose (2024082703505185000_B46) 2020; 11 Douglas (2024082703505185000_B84) 2018; 555 Yeeles (2024082703505185000_B13) 2017; 65 Bustamante (2024082703505185000_B62) 1994; 265 Lõoke (2024082703505185000_B35) 2017; 31 Hamdan (2024082703505185000_B83) 2009; 78 Lee (2024082703505185000_B65) 2006; 439 Lewis (2024082703505185000_B12) 2017; 114 Zhu (2024082703505185000_B20) 2007; 21 Takahashi (2024082703505185000_B61) 2018; 32 Graham (2024082703505185000_B74) 2017; 169 Zheng (2024082703505185000_B81) 2020; 117 Langston (2024082703505185000_B79) 2008; 283 Bianco (2024082703505185000_B93) 2019; 10 Pandey (2024082703505185000_B59) 2015; 43 Georgescu (2024082703505185000_B49) 2015; 4 Raducanu (2024082703505185000_B82) 2022; 13 Okorokov (2024082703505185000_B34) 2007; 8 Zhao (2024082703505185000_B56) 2008; 82 Hein (2024082703505185000_B54) 2009; 83 Murayama (2024082703505185000_B86) 2021; 112 Moyer (2024082703505185000_B38) 2006; 103 Langston (2024082703505185000_B43) 2014; 111 Stodola (2024082703505185000_B76) 2016; 23 Kilkenny (2024082703505185000_B24) 2017; 7 Yardimci (2024082703505185000_B41) 2012; 492 van Oijen (2024082703505185000_B63) 2003; 301 Yuan (2024082703505185000_B90) 2014; 42 Pursell (2024082703505185000_B5) 2007; 317 Gupta (2024082703505185000_B73) 2013; 110 Simon (2024082703505185000_B23) 2014; 510 Mohni (2024082703505185000_B55) 2013; 87 Dovrat (2024082703505185000_B80) 2014; 111 Kose (2024082703505185000_B45) 2019; 26 Jones (2024082703505185000_B16) 2021; 40 Yao (2024082703505185000_B47) 2022; 119 Yuan (2024082703505185000_B25) 2019; 8 Loparo (2024082703505185000_B52) 2011; 108 Elshenawy (2024082703505185000_B60) 2015; 525 McElhinny (2024082703505185000_B6) 2008; 30 Pantelidou (2024082703505185000_B91) 2016; 7 Chou (2024082703505185000_B94) 2006; 103 Fu (2024082703505185000_B40) 2011; 146 Fairman (2024082703505185000_B10) 1988; 7 Petermann (2024082703505185000_B29) 2008; 19 Miyabe (2024082703505185000_B7) 2011; 7 Szeltner (2024082703505185000_B11) 2021; 11 Fujisawa (2024082703505185000_B26) 2017; 45 Smits (2024082703505185000_B31) 2019; 286 Kang (2024082703505185000_B22) 2013; 110 Burnham (2024082703505185000_B37) 2019; 10 |
References_xml | – volume: 19 start-page: 699 year: 2005 ident: 2024082703505185000_B28 article-title: Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.07.028 – volume: 114 start-page: 10630 year: 2017 ident: 2024082703505185000_B12 article-title: Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1711291114 – volume: 404 start-page: 103 year: 2000 ident: 2024082703505185000_B68 article-title: Single-molecule studies of the effect of template tension on T7 DNA polymerase activity publication-title: Nature doi: 10.1038/35003614 – volume: 11 start-page: 3713 year: 2020 ident: 2024082703505185000_B46 article-title: Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase publication-title: Nat. Commun. doi: 10.1038/s41467-020-17443-7 – volume: 169 start-page: 1201 year: 2017 ident: 2024082703505185000_B74 article-title: Independent and stochastic action of DNA polymerases in the replisome publication-title: Cell doi: 10.1016/j.cell.2017.05.041 – volume: 4 start-page: e04988 year: 2015 ident: 2024082703505185000_B49 article-title: Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation publication-title: eLife doi: 10.7554/eLife.04988 – volume: 78 start-page: 926 year: 2020 ident: 2024082703505185000_B14 article-title: Cryo-EM structure of the fork protection complex bound to CMG at a replication fork publication-title: Mol.Cell doi: 10.1016/j.molcel.2020.04.012 – volume: 265 start-page: 1599 year: 1994 ident: 2024082703505185000_B62 article-title: Entropic elasticity of lambda-phage DNA publication-title: Science doi: 10.1126/science.8079175 – volume: 24 start-page: 9568 year: 2004 ident: 2024082703505185000_B19 article-title: A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase α facilitates DNA replication publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.21.9568-9579.2004 – volume: 525 start-page: 394 year: 2015 ident: 2024082703505185000_B60 article-title: Replisome speed determines the efficiency of the Tus-Ter replication termination barrier publication-title: Nature doi: 10.1038/nature14866 – volume: 103 start-page: 18143 year: 2006 ident: 2024082703505185000_B94 article-title: Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0609251103 – volume: 19 start-page: 2373 year: 2008 ident: 2024082703505185000_B29 article-title: Claspin promotes normal replication fork rates in human cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-10-1035 – volume: 47 start-page: 5723 year: 2019 ident: 2024082703505185000_B70 article-title: Replicative DNA polymerases promote active displacement of SSB proteins during lagging strand synthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz249 – volume: 32 start-page: 503 year: 1997 ident: 2024082703505185000_B1 article-title: The initiation of simian virus 40 DNA replication in vitro publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409239709082001 – volume: 11 start-page: 3156 year: 2020 ident: 2024082703505185000_B15 article-title: Structure of the polymerase epsilon holoenzyme and atomic model of the leading strand replisome publication-title: Nat. Commun. doi: 10.1038/s41467-020-16910-5 – volume: 65 start-page: 105 year: 2017 ident: 2024082703505185000_B13 article-title: How the eukaryotic replisome achieves rapid and efficient DNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.11.017 – volume: 7 start-page: 1211 year: 1988 ident: 2024082703505185000_B10 article-title: Cellular factors required for multiple stages of SV40 DNA replication in vitro publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02933.x – volume: 283 start-page: 29522 year: 2008 ident: 2024082703505185000_B79 article-title: DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804488200 – volume: 10 start-page: 2159 year: 2019 ident: 2024082703505185000_B37 article-title: The mechanism of DNA unwinding by the eukaryotic replicative helicase publication-title: Nat. Commun. doi: 10.1038/s41467-019-09896-2 – volume: 10 start-page: 910 year: 2019 ident: 2024082703505185000_B93 article-title: Overexpression of Claspin and Timeless protects cancer cells from replication stress in a checkpoint-independent manner publication-title: Nat. Commun. doi: 10.1038/s41467-019-08886-8 – volume: 21 start-page: 664 year: 2014 ident: 2024082703505185000_B8 article-title: Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2851 – volume: 21 start-page: 2288 year: 2007 ident: 2024082703505185000_B20 article-title: Mcm10 and and-1/CTF4 recruit DNA polymerase α to chromatin for initiation of DNA replication publication-title: Genes Dev. doi: 10.1101/gad.1585607 – volume: 110 start-page: 7252 year: 2013 ident: 2024082703505185000_B73 article-title: Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1303890110 – volume: 11 start-page: 1054 year: 2021 ident: 2024082703505185000_B11 article-title: Evaluation and modulation of DNA lesion bypass in an SV40 large T antigen-based in vitro replication system publication-title: FEBS Open Bio. doi: 10.1002/2211-5463.13099 – volume: 105 start-page: 90 year: 2016 ident: 2024082703505185000_B75 article-title: High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers publication-title: Methods doi: 10.1016/j.ymeth.2016.03.025 – volume: 317 start-page: 127 year: 2007 ident: 2024082703505185000_B5 article-title: Yeast DNA polymerase epsilon participates in leading-strand DNA replication publication-title: Science doi: 10.1126/science.1144067 – volume: 7 start-page: e1002407 year: 2011 ident: 2024082703505185000_B7 article-title: The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002407 – volume: 28 start-page: 2673 year: 2019 ident: 2024082703505185000_B44 article-title: Molecular basis for ATP-hydrolysis-driven DNA translocation by the CMG helicase of the eukaryotic replisome publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.104 – volume: 82 start-page: 5316 year: 2008 ident: 2024082703505185000_B56 article-title: Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 subunits in Simian virus 40-infected primate cells publication-title: J. Virol. doi: 10.1128/JVI.02677-07 – volume: 32 start-page: 3346 year: 2018 ident: 2024082703505185000_B61 article-title: Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea publication-title: FASEB J. doi: 10.1096/fj.201700862RR – volume: 15 start-page: 170 year: 2008 ident: 2024082703505185000_B66 article-title: Single-molecule studies of fork dynamics in Escherichia coli DNA replication publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1381 – volume: 27 start-page: 3799 year: 1999 ident: 2024082703505185000_B4 article-title: A neutralizing antibody against human DNA polymerase ϵ inhibits cellular but not SV40 DNA replication publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.19.3799 – volume: 263 start-page: 436 year: 1988 ident: 2024082703505185000_B72 article-title: Simian virus 40 large T antigen DNA helicase. Characterization of the ATPase-dependent DNA unwinding activity and its substrate requirements publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)57411-7 – volume: 47 start-page: 1977 year: 2019 ident: 2024082703505185000_B77 article-title: PCNA accelerates the nucleotide incorporation rate by DNA polymerase delta publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1321 – volume: 19 start-page: 691 year: 2005 ident: 2024082703505185000_B27 article-title: Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.06.037 – volume: 77 start-page: 17 year: 2020 ident: 2024082703505185000_B48 article-title: Tunability of DNA polymerase stability during eukaryotic DNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.005 – volume: 43 start-page: 5924 year: 2015 ident: 2024082703505185000_B59 article-title: Two mechanisms coordinate replication termination by the Escherichia coli Tus-Ter complex publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv527 – volume: 78 start-page: 205 year: 2009 ident: 2024082703505185000_B83 article-title: Motors, switches, and contacts in the replisome publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.78.072407.103248 – volume: 114 start-page: 675 year: 2017 ident: 2024082703505185000_B9 article-title: Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1619748114 – volume: 116 start-page: 798 year: 2019 ident: 2024082703505185000_B33 article-title: Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1819107116 – volume: 27 start-page: 539 year: 2007 ident: 2024082703505185000_B51 article-title: Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.020 – volume: 108 start-page: 3584 year: 2011 ident: 2024082703505185000_B52 article-title: Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1018824108 – volume: 30 start-page: 137 year: 2008 ident: 2024082703505185000_B6 article-title: Division of labor at the eukaryotic replication fork publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.02.022 – volume: 117 start-page: 30344 year: 2020 ident: 2024082703505185000_B81 article-title: Structure of eukaryotic DNA polymerase delta bound to the PCNA clamp while encircling DNA publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2017637117 – volume: 13 start-page: 6973 year: 2022 ident: 2024082703505185000_B82 article-title: Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics publication-title: Nat. Commun. doi: 10.1038/s41467-022-34751-2 – volume: 146 start-page: 931 year: 2011 ident: 2024082703505185000_B40 article-title: Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase publication-title: Cell doi: 10.1016/j.cell.2011.07.045 – volume: 42 start-page: 13110 year: 2014 ident: 2024082703505185000_B90 article-title: HERC2-USP20 axis regulates DNA damage checkpoint through Claspin publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1034 – volume: 112 start-page: 1209 year: 2021 ident: 2024082703505185000_B86 article-title: MCM10 compensates for Myc-induced DNA replication stress in breast cancer stem-like cells publication-title: Cancer Sci. doi: 10.1111/cas.14776 – volume: 113 start-page: E1777 year: 2016 ident: 2024082703505185000_B71 article-title: Stability of the human polymerase delta holoenzyme and its implications in lagging strand DNA synthesis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1523653113 – volume: 111 start-page: 15390 year: 2014 ident: 2024082703505185000_B43 article-title: CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1418334111 – volume: 6 start-page: e21763 year: 2017 ident: 2024082703505185000_B53 article-title: Frequent exchange of the DNA polymerase during bacterial chromosome replication publication-title: eLife doi: 10.7554/eLife.21763 – volume: 1 start-page: e30 year: 2012 ident: 2024082703505185000_B89 article-title: DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients publication-title: Oncogenesis doi: 10.1038/oncsis.2012.29 – volume: 97 start-page: 12002 year: 2000 ident: 2024082703505185000_B67 article-title: Replication by a single DNA polymerase of a stretched single-stranded DNA publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.97.22.12002 – volume: 286 start-page: 441 year: 2019 ident: 2024082703505185000_B31 article-title: Claspin - checkpoint adaptor and DNA replication factor publication-title: FEBS J. doi: 10.1111/febs.14594 – volume: 26 start-page: 2113 year: 2019 ident: 2024082703505185000_B45 article-title: Dynamics of the eukaryotic replicative helicase at lagging-strand protein barriers support the steric exclusion model publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.086 – year: 2012 ident: 2024082703505185000_B36 article-title: DNA unwinding by helicases investigated on the single molecule level – volume: 10 start-page: 2104 year: 2019 ident: 2024082703505185000_B58 article-title: Initial state of DNA-dye complex sets the stage for protein induced fluorescence modulation publication-title: Nat. Commun. doi: 10.1038/s41467-019-10137-9 – volume: 492 start-page: 205 year: 2012 ident: 2024082703505185000_B41 article-title: Bypass of a protein barrier by a replicative DNA helicase publication-title: Nature doi: 10.1038/nature11730 – volume: 11 start-page: 1109 year: 2020 ident: 2024082703505185000_B57 article-title: Structure of the processive human Pol delta holoenzyme publication-title: Nat. Commun. doi: 10.1038/s41467-020-14898-6 – volume: 76 start-page: 2384 year: 2016 ident: 2024082703505185000_B92 article-title: The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-PhaseUSP9X role in genome stability publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2890 – volume: 366 start-page: 36 year: 2007 ident: 2024082703505185000_B32 article-title: Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.10.097 – volume: 12 start-page: 5724 year: 1992 ident: 2024082703505185000_B18 article-title: Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo publication-title: Mol. Cell. Biol. – volume: 119 start-page: e2119580119 year: 2022 ident: 2024082703505185000_B47 article-title: CMG helicase can use ATPgammaS to unwind DNA: implications for the rate-limiting step in the reaction mechanism publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2119580119 – volume: 37 start-page: 247 year: 2010 ident: 2024082703505185000_B39 article-title: Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.030 – volume: 439 start-page: 621 year: 2006 ident: 2024082703505185000_B65 article-title: DNA primase acts as a molecular brake in DNA replication publication-title: Nature doi: 10.1038/nature04317 – volume: 7 start-page: 15703 year: 2016 ident: 2024082703505185000_B91 article-title: The E1B19K-deleted oncolytic adenovirus mutant AdΔ19K sensitizes pancreatic cancer cells to drug-induced DNA-damage by down-regulating Claspin and Mre11 publication-title: Oncotarget doi: 10.18632/oncotarget.7310 – volume: 8 start-page: 925 year: 2007 ident: 2024082703505185000_B34 article-title: Hexameric ring structure of human MCM10 DNA replication factor publication-title: EMBO Rep. doi: 10.1038/sj.embor.7401064 – volume: 111 start-page: 7647 year: 2014 ident: 2024082703505185000_B64 article-title: Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1321076111 – volume: 555 start-page: 265 year: 2018 ident: 2024082703505185000_B84 article-title: The mechanism of eukaryotic CMG helicase activation publication-title: Nature doi: 10.1038/nature25787 – volume: 110 start-page: 19760 year: 2013 ident: 2024082703505185000_B22 article-title: Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1320202110 – volume: 109 start-page: 6042 year: 2012 ident: 2024082703505185000_B42 article-title: Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1203734109 – volume: 35 start-page: 6588 year: 2007 ident: 2024082703505185000_B78 article-title: The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm741 – volume: 23 start-page: 307 year: 2006 ident: 2024082703505185000_B87 article-title: Destruction of Claspin by SCFβTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.016 – volume: 87 start-page: 531 year: 2013 ident: 2024082703505185000_B55 article-title: Efficient herpes simplex virus 1 replication requires cellular ATR pathway proteins publication-title: J. Virol. doi: 10.1128/JVI.02504-12 – volume: 61 start-page: 55 year: 1992 ident: 2024082703505185000_B2 article-title: Structure and function of simian virus 40 large tumor antigen publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.61.070192.000415 – volume: 26 start-page: 4806 year: 2006 ident: 2024082703505185000_B85 article-title: Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02062-05 – volume: 606 start-page: 204 year: 2022 ident: 2024082703505185000_B17 article-title: Fast and efficient DNA replication with purified human proteins publication-title: Nature doi: 10.1038/s41586-022-04759-1 – volume: 27 start-page: 3131 year: 2007 ident: 2024082703505185000_B96 article-title: The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02190-06 – volume: 15 start-page: 2298 year: 1996 ident: 2024082703505185000_B3 article-title: DNA polymerase epsilon may be dispensable for SV40-but not cellular-DNA replication publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00583.x – volume: 301 start-page: 1235 year: 2003 ident: 2024082703505185000_B63 article-title: Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder publication-title: Science doi: 10.1126/science.1084387 – volume: 282 start-page: 2729 year: 2007 ident: 2024082703505185000_B95 article-title: Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605596200 – volume: 7 start-page: 170217 year: 2017 ident: 2024082703505185000_B24 article-title: The human CTF4-orthologue AND-1 interacts with DNA polymerase α/primase via its unique C-terminal HMG box publication-title: Open Biology doi: 10.1098/rsob.170217 – volume: 45 start-page: 4550 year: 2017 ident: 2024082703505185000_B26 article-title: Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase epsilon efficiently loads the PCNA sliding clamp publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx096 – volume: 40 start-page: e108819 year: 2021 ident: 2024082703505185000_B16 article-title: Structure of a human replisome shows the organisation and interactions of a DNA replication machine publication-title: EMBO J. doi: 10.15252/embj.2021108819 – volume: 103 start-page: 10236 year: 2006 ident: 2024082703505185000_B38 article-title: Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0602400103 – volume: 111 start-page: 14118 year: 2014 ident: 2024082703505185000_B80 article-title: Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1321349111 – volume: 510 start-page: 293 year: 2014 ident: 2024082703505185000_B23 article-title: A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome publication-title: Nature doi: 10.1038/nature13234 – volume: 31 start-page: 291 year: 2017 ident: 2024082703505185000_B35 article-title: Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase publication-title: Genes Dev. doi: 10.1101/gad.291336.116 – volume: 8 start-page: e47405 year: 2019 ident: 2024082703505185000_B25 article-title: Ctf4 organizes sister replisomes and Pol alpha into a replication factory publication-title: eLife doi: 10.7554/eLife.47405 – volume: 23 start-page: 402 year: 2016 ident: 2024082703505185000_B76 article-title: Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3207 – volume: 69 start-page: 7022 year: 2009 ident: 2024082703505185000_B88 article-title: Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-0925 – volume: 358 start-page: 797 year: 2017 ident: 2024082703505185000_B30 article-title: Redox-sensitive alteration of replisome architecture safeguards genome integrity publication-title: Science doi: 10.1126/science.aao3172 – volume: 28 start-page: 2992 year: 2009 ident: 2024082703505185000_B21 article-title: A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome publication-title: EMBO J. doi: 10.1038/emboj.2009.226 – volume: 104 start-page: 5312 year: 2007 ident: 2024082703505185000_B50 article-title: Exchange of DNA polymerases at the replication fork of bacteriophage T7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0701062104 – volume: 83 start-page: 117 year: 2009 ident: 2024082703505185000_B54 article-title: Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding publication-title: J. Virol. doi: 10.1128/JVI.01515-08 – volume: 42 start-page: 2064 year: 2014 ident: 2024082703505185000_B69 article-title: Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1089 |
SSID | ssj0014154 |
Score | 2.4692068 |
Snippet | The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8880 |
SubjectTerms | Antigens, Polyomavirus Transforming - genetics Antigens, Polyomavirus Transforming - metabolism DNA Helicases - genetics DNA Helicases - metabolism DNA Polymerase III - genetics DNA Polymerase III - metabolism DNA Replication DNA, Single-Stranded - metabolism DNA, Viral - genetics DNA, Viral - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-Directed DNA Polymerase Genome Integrity, Repair and Humans Minichromosome Maintenance Proteins - genetics Minichromosome Maintenance Proteins - metabolism Multienzyme Complexes Replication Protein A - metabolism Simian virus 40 - genetics Simian virus 40 - metabolism Single Molecule Imaging Virus Replication |
Title | Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38967018 https://www.proquest.com/docview/3076019315 https://pubmed.ncbi.nlm.nih.gov/PMC11347169 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA7qi76Id-dlRhg-CMWm6dU3GRsiTAUvzKeSJqcqbqlsU_Dfe5J2ZRPR1-aklH6l35ecnO8Q0lLcz5BIfCcRCIOxNHfinDFHeZlgIhLMBVPv3LsOLx_8q37Qrw7Ijn9J4Sf8TIvR2fObAJQe-KtF-jUW-fc3_TpZgBxUukRZU00_rsrwfsydI565YrYZTfnzaOQM13TXyGolEulFieo6WQC9QTYvNC6Qh1_0hNpjm3Y_fIMst6ct2zbJ0x0S0QCcYdnzFqis7ZjLakta5PTu0XfpCFB8joshUKEV1cUnDGjVeuec2r59tHvbtoM9OWTuFnnodu7bl07VO8GRSEsTBwKWqYgnMgkjGaGGEopJLkQsPcTMZ3kMiqtACeR4yEKXKy_IueSogEDwIOPbZEkXGnYJzd0YrwPOtbUk0jScBCbiCCcDU36DnE5fbCorY3HT32KQlgluniIKaYVCg7Tq4PfST-P3sCNE6O-I4yl6Kb5lk-YQGoqPccpNshF1KcOYnRLN-kYoz8LIZXGDxHM41wHGbXt-RL--WNdtZopuWZjs_fto-2TFQ-ljdp696IAsTUYfcIjSZZI1yWLkdpp24d-0H_E37OTvpA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-molecule+characterization+of+SV40+replisome+and+novel+factors%3A+human+FPC+and+Mcm10&rft.jtitle=Nucleic+acids+research&rft.au=Ouyang%2C+Yujing&rft.au=Al-Amodi%2C+Amani&rft.au=Tehseen%2C+Muhammad&rft.au=Alhudhali%2C+Lubna&rft.date=2024-08-27&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=52&rft.issue=15&rft.spage=8880&rft_id=info:doi/10.1093%2Fnar%2Fgkae565&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |