CGNet: A Light-weight Context Guided Network for Semantic Segmentation

The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; p. 1
Main Authors Wu, Tianyi, Tang, Sheng, Rui, Zhang, Cao, Juan, Zhang, Yongdong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore the inherent characteristic of semantic segmentation. To tackle this problem, we propose a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation. We first propose the Context Guided (CG) block, which learns the joint feature of both local feature and surrounding context effectively and efficiently, and further improves the joint feature with the global context. Based on the CG block, we develop CGNet which captures contextual information in all stages of the network. CGNet is specially tailored to exploit the inherent property of semantic segmentation and increase the segmentation accuracy. Moreover, CGNet is elaborately designed to reduce the number of parameters and save memory footprint. Under an equivalent number of parameters, the proposed CGNet significantly outperforms existing light-weight segmentation networks. Extensive experiments on Cityscapes and CamVid datasets verify the effectiveness of the proposed approach. Specifically, without any post-processing and multi-scale testing, the proposed CGNet achieves 64.8% mean IoU on Cityscapes with less than 0.5 M parameters.
AbstractList The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore the inherent characteristic of semantic segmentation. To tackle this problem, we propose a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation. We first propose the Context Guided (CG) block, which learns the joint feature of both local feature and surrounding context effectively and efficiently, and further improves the joint feature with the global context. Based on the CG block, we develop CGNet which captures contextual information in all stages of the network. CGNet is specially tailored to exploit the inherent property of semantic segmentation and increase the segmentation accuracy. Moreover, CGNet is elaborately designed to reduce the number of parameters and save memory footprint. Under an equivalent number of parameters, the proposed CGNet significantly outperforms existing light-weight segmentation networks. Extensive experiments on Cityscapes and CamVid datasets verify the effectiveness of the proposed approach. Specifically, without any post-processing and multi-scale testing, the proposed CGNet achieves 64.8% mean IoU on Cityscapes with less than 0.5 M parameters.
The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore the inherent characteristic of semantic segmentation. To tackle this problem, we propose a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation. We first propose the Context Guided (CG) block, which learns the joint feature of both local feature and surrounding context effectively and efficiently, and further improves the joint feature with the global context. Based on the CG block, we develop CGNet which captures contextual information in all stages of the network. CGNet is specially tailored to exploit the inherent property of semantic segmentation and increase the segmentation accuracy. Moreover, CGNet is elaborately designed to reduce the number of parameters and save memory footprint. Under an equivalent number of parameters, the proposed CGNet significantly outperforms existing light-weight segmentation networks. Extensive experiments on Cityscapes and CamVid datasets verify the effectiveness of the proposed approach. Specifically, without any post-processing and multi-scale testing, the proposed CGNet achieves 64.8% mean IoU on Cityscapes with less than 0.5 M parameters.The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of parameters hence unsuitable for mobile devices, while other small memory footprint models follow the spirit of classification network and ignore the inherent characteristic of semantic segmentation. To tackle this problem, we propose a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation. We first propose the Context Guided (CG) block, which learns the joint feature of both local feature and surrounding context effectively and efficiently, and further improves the joint feature with the global context. Based on the CG block, we develop CGNet which captures contextual information in all stages of the network. CGNet is specially tailored to exploit the inherent property of semantic segmentation and increase the segmentation accuracy. Moreover, CGNet is elaborately designed to reduce the number of parameters and save memory footprint. Under an equivalent number of parameters, the proposed CGNet significantly outperforms existing light-weight segmentation networks. Extensive experiments on Cityscapes and CamVid datasets verify the effectiveness of the proposed approach. Specifically, without any post-processing and multi-scale testing, the proposed CGNet achieves 64.8% mean IoU on Cityscapes with less than 0.5 M parameters.
Author Rui, Zhang
Tang, Sheng
Wu, Tianyi
Cao, Juan
Zhang, Yongdong
Author_xml – sequence: 1
  givenname: Tianyi
  surname: Wu
  fullname: Wu, Tianyi
  organization: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, 100190, and University of the Chinese Academy of Sciences, Beijing, China, 100049
– sequence: 2
  givenname: Sheng
  surname: Tang
  fullname: Tang, Sheng
  organization: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, 100190, and University of the Chinese Academy of Sciences, Beijing, China, 100049. (e-mail: ts@ict.ac.cn)
– sequence: 3
  givenname: Zhang
  surname: Rui
  fullname: Rui, Zhang
  organization: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, 100190, and University of the Chinese Academy of Sciences, Beijing, China, 100049
– sequence: 4
  givenname: Juan
  surname: Cao
  fullname: Cao, Juan
  organization: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, 100190, and University of the Chinese Academy of Sciences, Beijing, China, 100049
– sequence: 5
  givenname: Yongdong
  surname: Zhang
  fullname: Zhang, Yongdong
  organization: Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, 100190, and University of the Chinese Academy of Sciences, Beijing, China, 100049
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33306466$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LAzEQxYMoWj_ugiALXrxszSTZTeNNitZCUUE9h-zurKZ2NzWbRf3vTWn14MHTzJDfe0zm7ZPt1rVIyDHQIQBVF0_ThyGjjA45FYzm2RYZgBKQ0jhux55mMpUg1B7Z77o5pSAyyHfJHuec5iLPB-RmPLnDcJlcJTP78hrSD1yVZOzagJ8hmfS2wiqJyIfzb0ntfPKIjWmDLWPz0mAbTLCuPSQ7tVl0eLSpB-T55vppfJvO7ifT8dUsLQXwkKIYZXWGcRGeSSkNw7qWTEihigqAQQEGC85LWWTK1KxSvFCl4aMKsEQVnw7I-dp36d17j13Qje1KXCxMi67vdPSiORuJTEb07A86d71v43YrChSIEeWROt1QfdFgpZfeNsZ_6Z8LRSBfA6V3Xeex1qVd_zl4YxcaqF5FoWMUehWF3kQRhfSP8Mf7H8nJWmIR8RdXTDEhFP8GfXuRJg
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TGRS_2022_3203910
crossref_primary_10_5194_gmd_17_3533_2024
crossref_primary_10_1016_j_jag_2023_103646
crossref_primary_10_1016_j_knosys_2023_110932
crossref_primary_10_1109_JBHI_2023_3312338
crossref_primary_10_1186_s43238_025_00175_2
crossref_primary_10_3390_app14104063
crossref_primary_10_1007_s40747_023_01054_y
crossref_primary_10_1016_j_bspc_2022_104278
crossref_primary_10_1016_j_neucom_2024_127975
crossref_primary_10_1016_j_compbiomed_2023_107844
crossref_primary_10_1016_j_sigpro_2023_109150
crossref_primary_10_11834_jig_230670
crossref_primary_10_1007_s10489_021_02446_8
crossref_primary_10_1109_TITS_2024_3455416
crossref_primary_10_1109_TIP_2023_3301342
crossref_primary_10_1007_s44196_024_00654_x
crossref_primary_10_1109_TSMC_2024_3377280
crossref_primary_10_1109_TIM_2022_3205669
crossref_primary_10_1109_ACCESS_2024_3448364
crossref_primary_10_1007_s11554_024_01502_z
crossref_primary_10_1049_itr2_12204
crossref_primary_10_1007_s00521_022_08102_7
crossref_primary_10_11834_jig_211127
crossref_primary_10_1109_TAI_2024_3355354
crossref_primary_10_1109_JSTARS_2023_3314847
crossref_primary_10_1109_ACCESS_2024_3516814
crossref_primary_10_1109_TII_2021_3123233
crossref_primary_10_12677_AIRR_2024_131003
crossref_primary_10_1155_2023_1987988
crossref_primary_10_1109_TMM_2024_3372835
crossref_primary_10_1016_j_jag_2024_104111
crossref_primary_10_1016_j_bspc_2023_104896
crossref_primary_10_1016_j_engappai_2023_107316
crossref_primary_10_1080_01431161_2021_2014077
crossref_primary_10_1587_transinf_2024EDP7025
crossref_primary_10_1007_s11554_022_01236_w
crossref_primary_10_3390_math12142185
crossref_primary_10_3788_LOP220914
crossref_primary_10_1109_TNNLS_2022_3176493
crossref_primary_10_1016_j_heliyon_2024_e34782
crossref_primary_10_3390_app122412786
crossref_primary_10_3390_agriculture12101543
crossref_primary_10_1016_j_measurement_2024_116193
crossref_primary_10_1049_ipr2_13058
crossref_primary_10_1109_TCYB_2022_3162873
crossref_primary_10_1109_TMM_2022_3157995
crossref_primary_10_1051_bioconf_202411103020
crossref_primary_10_1109_TIP_2024_3444190
crossref_primary_10_3390_s24217040
crossref_primary_10_1016_j_jag_2024_103950
crossref_primary_10_1109_TGRS_2024_3351437
crossref_primary_10_1109_TIP_2024_3423390
crossref_primary_10_1016_j_neunet_2023_10_046
crossref_primary_10_1016_j_engappai_2024_109016
crossref_primary_10_1109_ACCESS_2024_3400962
crossref_primary_10_1016_j_vlsi_2024_102150
crossref_primary_10_1109_ACCESS_2024_3524454
crossref_primary_10_3390_app15052823
crossref_primary_10_1016_j_media_2024_103395
crossref_primary_10_1038_s41598_024_58965_0
crossref_primary_10_1007_s11760_023_02539_6
crossref_primary_10_1016_j_engappai_2022_105510
crossref_primary_10_1109_ACCESS_2024_3439858
crossref_primary_10_1109_TITS_2023_3330498
crossref_primary_10_1016_j_engappai_2023_106324
crossref_primary_10_1016_j_patcog_2023_110215
crossref_primary_10_1109_JSTARS_2024_3374233
crossref_primary_10_1016_j_autcon_2022_104139
crossref_primary_10_3390_math11173644
crossref_primary_10_1016_j_engappai_2024_108903
crossref_primary_10_1016_j_cag_2022_10_002
crossref_primary_10_1016_j_cag_2023_12_015
crossref_primary_10_3390_app14167273
crossref_primary_10_1016_j_jag_2024_104093
crossref_primary_10_1016_j_patcog_2022_109228
crossref_primary_10_1007_s10489_022_03932_3
crossref_primary_10_3788_LOP231461
crossref_primary_10_1016_j_knosys_2024_112520
crossref_primary_10_1109_ACCESS_2021_3071866
crossref_primary_10_3390_ijgi13100347
crossref_primary_10_1007_s10278_024_01217_4
crossref_primary_10_1109_TIP_2022_3166673
crossref_primary_10_1007_s00138_023_01500_4
crossref_primary_10_3389_fnbot_2022_1075520
crossref_primary_10_1016_j_imavis_2023_104823
crossref_primary_10_1109_TMM_2023_3290426
crossref_primary_10_3390_s25010103
crossref_primary_10_1016_j_neunet_2023_01_008
crossref_primary_10_1109_TITS_2022_3232897
crossref_primary_10_1007_s11263_024_02045_3
crossref_primary_10_1016_j_cviu_2024_104196
crossref_primary_10_1016_j_neucom_2022_12_036
crossref_primary_10_1109_TGRS_2021_3131152
crossref_primary_10_1109_TCBBIO_2024_3525409
crossref_primary_10_7717_peerj_cs_1746
crossref_primary_10_1016_j_compbiomed_2023_107898
crossref_primary_10_1029_2022JD037041
crossref_primary_10_1007_s11554_025_01661_7
crossref_primary_10_1016_j_engappai_2023_107673
crossref_primary_10_1109_ACCESS_2024_3503676
crossref_primary_10_3390_electronics13173361
crossref_primary_10_1016_j_compag_2024_109445
crossref_primary_10_1016_j_engappai_2022_105070
crossref_primary_10_3390_rs16173169
crossref_primary_10_1016_j_neucom_2023_03_006
crossref_primary_10_1088_1361_665X_abea1e
crossref_primary_10_1109_TIP_2021_3122004
crossref_primary_10_1016_j_eswa_2023_120084
crossref_primary_10_1007_s11063_023_11145_z
crossref_primary_10_1109_LRA_2022_3187278
crossref_primary_10_3390_s24165145
crossref_primary_10_1007_s00371_025_03853_5
crossref_primary_10_1007_s11042_023_15823_x
crossref_primary_10_1016_j_imavis_2024_105408
crossref_primary_10_1109_JSEN_2024_3383233
crossref_primary_10_1007_s13042_023_02077_0
crossref_primary_10_1134_S1054661824700081
crossref_primary_10_1109_TITS_2021_3098355
crossref_primary_10_1016_j_dcan_2023_05_010
crossref_primary_10_1109_TITS_2023_3300537
crossref_primary_10_1109_TIM_2024_3427806
crossref_primary_10_1186_s12903_024_04193_x
crossref_primary_10_1016_j_engappai_2023_107086
crossref_primary_10_1364_AO_449589
crossref_primary_10_1155_2022_3215083
crossref_primary_10_1117_1_JEI_32_4_043033
crossref_primary_10_1111_mice_13119
crossref_primary_10_1080_01431161_2023_2224101
crossref_primary_10_1117_1_JEI_33_1_013008
crossref_primary_10_1016_j_bspc_2024_107457
crossref_primary_10_1109_TGRS_2022_3152587
crossref_primary_10_3390_electronics13163226
crossref_primary_10_1016_j_cag_2023_07_039
crossref_primary_10_1016_j_cag_2024_104144
crossref_primary_10_1109_TCSVT_2022_3144184
crossref_primary_10_1016_j_neucom_2025_129489
crossref_primary_10_3389_fpls_2023_1320448
crossref_primary_10_3390_rs15112810
crossref_primary_10_3390_s24134302
crossref_primary_10_1007_s13369_024_09904_8
crossref_primary_10_1109_TUFFC_2022_3169684
crossref_primary_10_1016_j_compag_2022_107355
crossref_primary_10_1117_1_JEI_33_2_023042
crossref_primary_10_1109_TIV_2022_3176860
crossref_primary_10_1109_JSTARS_2022_3181303
crossref_primary_10_1007_s11042_022_12821_3
crossref_primary_10_1080_10589759_2024_2430384
crossref_primary_10_1109_TII_2024_3366221
crossref_primary_10_1109_JSEN_2023_3347584
crossref_primary_10_1016_j_asoc_2024_112065
crossref_primary_10_1016_j_engappai_2023_107736
crossref_primary_10_1016_j_compeleceng_2024_109996
crossref_primary_10_1109_TIM_2022_3212113
crossref_primary_10_1007_s10489_023_04688_0
crossref_primary_10_1007_s13735_024_00321_z
crossref_primary_10_1016_j_autcon_2024_105816
crossref_primary_10_1088_1742_6596_2418_1_012081
crossref_primary_10_3390_rs14246256
crossref_primary_10_1016_j_knosys_2023_110541
crossref_primary_10_1109_TGRS_2024_3378970
crossref_primary_10_1007_s11042_024_18911_8
crossref_primary_10_53941_ijndi_2025_100006
crossref_primary_10_1007_s43684_025_00096_y
crossref_primary_10_1007_s10044_024_01237_4
crossref_primary_10_1109_JSTARS_2024_3492533
crossref_primary_10_1016_j_conengprac_2023_105560
crossref_primary_10_1093_jas_skae098
crossref_primary_10_1109_TGRS_2024_3515157
crossref_primary_10_1088_1742_6596_2234_1_012012
crossref_primary_10_1002_rob_22406
crossref_primary_10_1080_01431161_2024_2411069
crossref_primary_10_1109_TIE_2023_3243265
crossref_primary_10_1109_TIP_2021_3109518
crossref_primary_10_1109_TIP_2023_3318967
crossref_primary_10_1007_s13344_024_0068_0
crossref_primary_10_1109_TIP_2023_3305090
crossref_primary_10_1109_ACCESS_2025_3546946
crossref_primary_10_3390_rs16091478
crossref_primary_10_1016_j_autcon_2025_106068
crossref_primary_10_1109_TIP_2023_3298475
crossref_primary_10_1016_j_imavis_2021_104195
crossref_primary_10_1117_1_JEI_33_3_033015
crossref_primary_10_3390_electronics13153053
crossref_primary_10_1587_transinf_2021EDP7254
crossref_primary_10_3390_s23239488
crossref_primary_10_1016_j_eswa_2022_118537
crossref_primary_10_1016_j_isprsjprs_2024_03_001
crossref_primary_10_1109_TITS_2022_3186587
crossref_primary_10_1109_TITS_2022_3161141
crossref_primary_10_1109_ACCESS_2024_3414859
crossref_primary_10_1109_TMM_2024_3405648
crossref_primary_10_1109_TITS_2023_3292278
crossref_primary_10_11834_jig_230605
crossref_primary_10_1088_1361_6501_ad9106
crossref_primary_10_1016_j_patcog_2022_109289
crossref_primary_10_1109_ACCESS_2024_3511430
crossref_primary_10_1109_LRA_2024_3349812
crossref_primary_10_20965_jaciii_2023_p0673
crossref_primary_10_1007_s00371_024_03569_y
crossref_primary_10_1109_TIP_2024_3425048
crossref_primary_10_3389_fnbot_2023_1119231
crossref_primary_10_1016_j_compbiomed_2023_106932
crossref_primary_10_3390_rs15194708
crossref_primary_10_1109_TII_2022_3233674
crossref_primary_10_1109_TIM_2023_3341127
crossref_primary_10_1007_s11220_021_00375_x
crossref_primary_10_3390_rs14164095
crossref_primary_10_1109_JSEN_2023_3304623
crossref_primary_10_1016_j_compbiomed_2022_106531
crossref_primary_10_3390_electronics13122406
crossref_primary_10_1080_2150704X_2023_2185110
crossref_primary_10_1109_TNNLS_2022_3230821
crossref_primary_10_1007_s00530_024_01596_2
crossref_primary_10_3390_s25061786
crossref_primary_10_1002_int_22804
crossref_primary_10_1109_TITS_2022_3182311
crossref_primary_10_1007_s11432_021_3590_1
crossref_primary_10_3233_THC_230278
crossref_primary_10_3390_app13031493
crossref_primary_10_1080_22797254_2023_2289616
crossref_primary_10_3390_rs14215399
crossref_primary_10_2139_ssrn_4100186
crossref_primary_10_1007_s10514_023_10113_9
crossref_primary_10_1109_TITS_2023_3248089
crossref_primary_10_3390_app12189095
crossref_primary_10_1016_j_autcon_2024_105614
crossref_primary_10_1109_TCE_2024_3373630
crossref_primary_10_3390_rs16132308
crossref_primary_10_1016_j_compbiomed_2024_108733
crossref_primary_10_3724_SP_J_1089_2022_19255
crossref_primary_10_3390_electronics13010043
crossref_primary_10_1007_s11042_023_15307_y
crossref_primary_10_1007_s11554_023_01290_y
crossref_primary_10_1109_TCSVT_2023_3298796
crossref_primary_10_1016_j_engappai_2025_110375
crossref_primary_10_3390_electronics11193238
crossref_primary_10_1038_s41597_024_03288_y
crossref_primary_10_1109_TIP_2021_3122293
crossref_primary_10_34133_plantphenomics_0025
crossref_primary_10_1016_j_compag_2024_109544
crossref_primary_10_1109_JSEN_2024_3410403
crossref_primary_10_3390_rs13214357
crossref_primary_10_3389_fpls_2022_1043884
crossref_primary_10_1007_s00521_022_06932_z
crossref_primary_10_1109_JSEN_2022_3188697
crossref_primary_10_3390_info15040230
crossref_primary_10_1016_j_eswa_2024_124586
crossref_primary_10_1117_1_JEI_33_4_043014
crossref_primary_10_1109_TETCI_2023_3245103
crossref_primary_10_1016_j_neucom_2022_11_062
crossref_primary_10_3390_cells11111830
crossref_primary_10_1109_TMM_2024_3428349
crossref_primary_10_1016_j_bspc_2024_107062
crossref_primary_10_1109_TCSVT_2023_3271523
crossref_primary_10_1109_TITS_2024_3383405
crossref_primary_10_3390_biomimetics8040356
crossref_primary_10_1109_TCDS_2022_3225200
crossref_primary_10_2139_ssrn_4125814
crossref_primary_10_1109_TIP_2022_3162101
crossref_primary_10_3390_rs14246291
crossref_primary_10_1109_TIM_2023_3269107
crossref_primary_10_3390_electronics13183699
crossref_primary_10_1016_j_jag_2024_104258
crossref_primary_10_1007_s11042_023_17916_z
crossref_primary_10_1007_s11263_022_01677_7
crossref_primary_10_1088_1742_6596_1966_1_012047
crossref_primary_10_1109_ACCESS_2023_3345790
crossref_primary_10_1016_j_autcon_2021_103833
crossref_primary_10_1364_OL_441817
crossref_primary_10_1109_TMI_2022_3215580
crossref_primary_10_1007_s41348_022_00584_w
crossref_primary_10_1038_s41598_022_09452_x
crossref_primary_10_1016_j_isprsjprs_2022_09_004
crossref_primary_10_3389_fnbot_2023_1204418
crossref_primary_10_1016_j_eswa_2024_125793
crossref_primary_10_1007_s11042_023_17260_2
crossref_primary_10_1109_TIM_2022_3224526
crossref_primary_10_1109_ACCESS_2023_3266251
crossref_primary_10_1007_s12559_025_10407_3
crossref_primary_10_1109_JSEN_2021_3062660
crossref_primary_10_1016_j_jvcir_2023_104028
crossref_primary_10_1007_s11227_023_05112_7
crossref_primary_10_1088_1742_6596_2010_1_012128
crossref_primary_10_1109_TIM_2021_3124053
crossref_primary_10_1109_TITS_2023_3348631
crossref_primary_10_1016_j_aei_2024_102964
crossref_primary_10_1109_TCSVT_2023_3293166
crossref_primary_10_1137_23M1577663
crossref_primary_10_1016_j_neucom_2021_07_019
crossref_primary_10_3390_app14219819
crossref_primary_10_1049_ipr2_12816
crossref_primary_10_1109_TIM_2022_3214605
crossref_primary_10_3390_rs17040685
crossref_primary_10_1007_s00521_022_07474_0
crossref_primary_10_1007_s10489_021_02437_9
crossref_primary_10_1109_TAI_2023_3341976
crossref_primary_10_3390_app142411741
crossref_primary_10_1007_s40747_023_01031_5
crossref_primary_10_1016_j_jag_2021_102456
crossref_primary_10_1109_TCSVT_2022_3216313
crossref_primary_10_1080_01431161_2022_2073795
crossref_primary_10_3390_rs14246193
crossref_primary_10_1007_s00371_023_03043_1
crossref_primary_10_1109_JBHI_2024_3350245
crossref_primary_10_1016_j_neucom_2021_12_003
crossref_primary_10_1109_ACCESS_2025_3529812
crossref_primary_10_3390_s24175460
crossref_primary_10_1109_TIP_2020_3048682
crossref_primary_10_1007_s00530_024_01417_6
crossref_primary_10_1109_TGRS_2022_3175613
crossref_primary_10_1109_TIM_2025_3547485
crossref_primary_10_1109_TMM_2021_3094333
crossref_primary_10_3724_SP_J_1089_2022_18909
crossref_primary_10_1109_TGRS_2022_3200872
crossref_primary_10_1088_1402_4896_ad69d5
crossref_primary_10_11834_jig_230653
crossref_primary_10_3390_s23146382
crossref_primary_10_1007_s00371_025_03800_4
crossref_primary_10_1007_s00521_025_11008_9
crossref_primary_10_1016_j_knosys_2022_109832
crossref_primary_10_1016_j_robot_2024_104900
crossref_primary_10_1109_TCBB_2022_3195705
crossref_primary_10_5194_gmd_18_1017_2025
crossref_primary_10_1007_s11263_024_02318_x
crossref_primary_10_3390_s24010095
crossref_primary_10_3390_rs15051325
crossref_primary_10_1109_ACCESS_2024_3359425
crossref_primary_10_1109_TCSVT_2024_3376773
crossref_primary_10_1109_TGRS_2023_3330856
crossref_primary_10_1109_TIP_2023_3272283
crossref_primary_10_1007_s13042_021_01443_0
crossref_primary_10_1109_JSTARS_2021_3078483
crossref_primary_10_1109_LGRS_2023_3304309
crossref_primary_10_3389_fpls_2023_1268218
crossref_primary_10_1007_s00138_025_01667_y
crossref_primary_10_1109_TITS_2020_3044672
crossref_primary_10_3390_electronics13153033
Cites_doi 10.1109/IVS.2017.7995966
10.1109/CVPR.2018.00199
10.1109/CVPR.2017.518
10.1109/CVPR.2015.7298965
10.1109/CVPR.2017.549
10.1109/ICCV.2015.179
10.1109/CVPR.2017.243
10.1007/978-3-030-01219-9_25
10.1109/CVPR.2018.00747
10.1007/978-3-030-01240-3_17
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2017.660
10.24963/ijcai.2018/161
10.1109/CVPRW.2018.00201
10.1007/978-3-030-58520-4_3
10.1162/pres.1997.6.4.355
10.1007/978-3-319-46478-7_25
10.1109/ICIP.2019.8803154
10.1109/CVPR.2016.482
10.1109/ICME.2019.00166
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00388
10.24963/ijcai.2017/479
10.1007/978-3-540-88682-2_5
10.1109/ITSC.2013.6728473
10.1109/CVPR.2018.00254
10.1109/TPAMI.2018.2890637
10.1109/CVPR.2016.396
10.1109/CVPR.2018.00474
10.1109/TMM.2017.2729786
10.1007/978-3-319-46487-9_32
10.1109/CVPR.2017.353
10.1007/978-3-030-01261-8_20
10.1007/978-3-030-01249-6_34
10.1109/CVPR.2015.7298594
10.1109/CVPR.2019.00326
10.1109/ICCV.2017.224
10.1109/CVPR.2019.00975
10.1109/TITS.2017.2750080
10.1109/CVPR.2018.00813
10.1109/CVPR.2016.350
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2020.3042065
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 33306466
10_1109_TIP_2020_3042065
9292449
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFC0820605
– fundername: National Natural Science Foundation of China
  grantid: 61525206, U1703261, 61871004
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
VH1
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c413t-e485f5e00135777a2eff724749bd1121b1aeb33c7b59af2d93b9ca38d1ece9eb3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 05:24:46 EDT 2025
Mon Jun 30 10:14:49 EDT 2025
Wed Feb 19 02:30:26 EST 2025
Tue Jul 01 02:03:24 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Wed Aug 27 02:33:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-e485f5e00135777a2eff724749bd1121b1aeb33c7b59af2d93b9ca38d1ece9eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8691-8549
0000-0003-3573-2407
0000-0002-7857-1546
0000-0001-7434-0487
0000-0002-1151-1792
PMID 33306466
PQID 2471914803
PQPubID 85429
PageCount 1
ParticipantIDs proquest_miscellaneous_2470628457
ieee_primary_9292449
pubmed_primary_33306466
crossref_citationtrail_10_1109_TIP_2020_3042065
proquest_journals_2471914803
crossref_primary_10_1109_TIP_2020_3042065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref59
ref58
ref53
ref52
ref55
ref11
chen (ref15) 2016
ref54
ref10
ref17
ref19
wu (ref34) 2019
ref18
chen (ref9) 2018
ref50
azuma (ref3) 1997; 6
ref46
zhang (ref43) 2012
ref45
ref48
ref42
ref41
ref44
paszke (ref13) 2016
ref8
ref7
yu (ref14) 2015
ref4
ref6
ref5
howard (ref51) 2017
liu (ref40) 2017
kingma (ref56) 2015
ref35
ref37
ref36
treml (ref16) 2016; 2
ref33
ref32
chen (ref23) 2018
ref2
ref39
ref38
hu (ref49) 2017
chen (ref57) 2020
ref24
ref26
ref25
ref20
yuan (ref31) 2018
ref22
ref21
ref27
evening (ref1) 2012
ref29
liu (ref28) 2019
chen (ref30) 2017
bahdanau (ref47) 2014
References_xml – ident: ref53
  doi: 10.1109/IVS.2017.7995966
– ident: ref8
  doi: 10.1109/CVPR.2018.00199
– ident: ref58
  doi: 10.1109/CVPR.2017.518
– start-page: 1520
  year: 2017
  ident: ref40
  article-title: Learning affinity via spatial propagation networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/CVPR.2015.7298965
– ident: ref18
  doi: 10.1109/CVPR.2017.549
– ident: ref42
  doi: 10.1109/ICCV.2015.179
– ident: ref7
  doi: 10.1109/CVPR.2017.243
– start-page: 109
  year: 2012
  ident: ref43
  article-title: Efficient inference for fully-connected CRFs with stationarity
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref11
  doi: 10.1007/978-3-030-01219-9_25
– ident: ref37
  doi: 10.1109/CVPR.2018.00747
– year: 2019
  ident: ref28
  article-title: FDDWNet: A lightweight convolutional neural network for real-time sementic segmentation
  publication-title: arXiv 1911 00632
– year: 2015
  ident: ref14
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: arXiv 1511 07122
– ident: ref41
  doi: 10.1007/978-3-030-01240-3_17
– year: 2016
  ident: ref13
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
  publication-title: ArXiv 1606 02147
– ident: ref20
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref17
  doi: 10.1109/CVPR.2017.660
– ident: ref55
  doi: 10.24963/ijcai.2018/161
– volume: 2
  start-page: 7
  year: 2016
  ident: ref16
  article-title: Speeding up semantic segmentation for autonomous driving
  publication-title: Proc MLITS NIPS Workshop
– ident: ref25
  doi: 10.1109/CVPRW.2018.00201
– year: 2012
  ident: ref1
  publication-title: Adobe Photoshop CS3 for photographers a professional image editor's guide to the creative use of Photoshop for the Macintosh and PC
– ident: ref46
  doi: 10.1007/978-3-030-58520-4_3
– year: 2018
  ident: ref31
  article-title: OCNet: Object context network for scene parsing
  publication-title: arXiv 1809 00916
– volume: 6
  start-page: 355
  year: 1997
  ident: ref3
  article-title: A survey of augmented reality
  publication-title: Presence Teleoperators Virtual Environ
  doi: 10.1162/pres.1997.6.4.355
– ident: ref44
  doi: 10.1007/978-3-319-46478-7_25
– ident: ref27
  doi: 10.1109/ICIP.2019.8803154
– ident: ref45
  doi: 10.1109/CVPR.2016.482
– start-page: 1
  year: 2015
  ident: ref56
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc ICLR
– ident: ref33
  doi: 10.1109/ICME.2019.00166
– ident: ref6
  doi: 10.1109/CVPR.2016.90
– year: 2017
  ident: ref49
  article-title: Squeeze-and-Excitation networks
  publication-title: arXiv 1709 01507
– start-page: 8699
  year: 2018
  ident: ref23
  article-title: Searching for efficient multi-scale architectures for dense image prediction
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1109/CVPR.2018.00388
– year: 2017
  ident: ref30
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv 1706 05587
– year: 2017
  ident: ref51
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref39
  doi: 10.24963/ijcai.2017/479
– ident: ref24
  doi: 10.1007/978-3-540-88682-2_5
– year: 2018
  ident: ref9
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: arXiv 1802 02611
– start-page: 1
  year: 2020
  ident: ref57
  article-title: Fasterseg: Searching for faster real-time semantic segmentation
  publication-title: Proc Int Conf Learn Represent
– ident: ref2
  doi: 10.1109/ITSC.2013.6728473
– ident: ref36
  doi: 10.1109/CVPR.2018.00254
– year: 2019
  ident: ref34
  article-title: Consensus feature network for scene parsing
  publication-title: arXiv 1907 12411
– ident: ref38
  doi: 10.1109/TPAMI.2018.2890637
– year: 2016
  ident: ref15
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: arXiv 1606 00915
– ident: ref48
  doi: 10.1109/CVPR.2016.396
– ident: ref54
  doi: 10.1109/CVPR.2018.00474
– ident: ref32
  doi: 10.1109/TMM.2017.2729786
– year: 2014
  ident: ref47
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv 1409 0473
– ident: ref59
  doi: 10.1007/978-3-319-46487-9_32
– ident: ref19
  doi: 10.1109/CVPR.2017.353
– ident: ref22
  doi: 10.1007/978-3-030-01261-8_20
– ident: ref12
  doi: 10.1007/978-3-030-01249-6_34
– ident: ref52
  doi: 10.1109/CVPR.2015.7298594
– ident: ref35
  doi: 10.1109/CVPR.2019.00326
– ident: ref29
  doi: 10.1109/ICCV.2017.224
– ident: ref26
  doi: 10.1109/CVPR.2019.00975
– ident: ref21
  doi: 10.1109/TITS.2017.2750080
– ident: ref50
  doi: 10.1109/CVPR.2018.00813
– ident: ref5
  doi: 10.1109/CVPR.2016.350
SSID ssj0014516
Score 2.7207959
Snippet The demand of applying semantic segmentation model on mobile devices has been increasing rapidly. Current state-of-the-art networks have enormous amount of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Computational modeling
Computer architecture
Context
Context Guided
Context modeling
Electronic devices
Global Context
Image segmentation
Mathematical models
Memory devices
Mobile handsets
Parameters
Post-production processing
Predictive models
Semantic Segmentation
Semantics
Surrounding Context
Title CGNet: A Light-weight Context Guided Network for Semantic Segmentation
URI https://ieeexplore.ieee.org/document/9292449
https://www.ncbi.nlm.nih.gov/pubmed/33306466
https://www.proquest.com/docview/2471914803
https://www.proquest.com/docview/2470628457
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7SPpTsob-yrd7aokFfBnNiW3Jk9a2Epe1YwmAJ5M1YsjzKVqe0Ni3763eSZW-UtfTNIMm2dCfuO53uO4ATOTak7Cr2ozwc-wwNlp-FReInuWZo3wxIMYnCs_n4Ysm-rOJVDz51uTBaa3v5TA_No43l52tVm6OyEZpytEZiAzbQcWtytbqIgSk4ayObMfc5wv42JBmI0eLyGzqCEfqnqKFocvuwRalB3pYa8a81suVVnkaa1uJMd2DW_mtz0eTnsK7kUP1-ROP40snswraDnuSs0ZU96OlyH3YcDCVuk9_tw6t_OAoHMJ2cz3V1Ss7IV8s5cm_PUolltXqoyHl9lePoeXObnCAEJt_1NYrrSuHDj2uX2lS-huX082Jy4bviC75Cu1b5miVxEWsDEWPOeRbpouAR40zIHDFaKMMM_XCquIxFVkS5oFKojCZ5qJUW2PQGNst1qQ-ASBUKFaBnFhQJyynNBIKMMKNMUakKHnowaoWQKsdMbgpk_EqthxKIFCWYGgmmToIefOxG3DSsHM_0HZjF7_q5dffgsJVz6rbtXYrzM3x3SUA9-NA144YzUZSs1Ova9jF5pyzmHrxt9KN7d6tW7_7_zffQj8yVGHuCcwib1W2tjxDTVPLYKvMf98vtVQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIkE5UGj5CRQwEhw4ZDexnXWMxKEqbHfpdoXEVuotjR0HVdAsYhMVeBZehXdj7DgBIeBWiVsk_0S2x55vPDOfAZ6okSVl10lIi3gUclRYYR6XaZgWhqN-syDFJgofzkeTI_76ODleg299LowxxgWfmYH9dL78Yqkbe1U2RFWO2kj6EMoD8-UcDbTVi-lLXM2nlI5fLfYmoX9DINR4PNeh4WlSJsYinUQIkVNTloJywaUqEGrEKs7RnGRaqETmJS0kU1LnLC1io43EIuz3ElxGnJHQNjus91HYJ26dLzURoUBDo3OCRnK4mL5B05OiRYx7ApX8BlxhzGJ9R8b4U_-5B13-jm2djhtvwvdudtrQlveDplYD_fU34sj_dfpuwHUPrsluuxtuwpqptmDTA23ij7HVFlz7hYVxG8Z7-3NTPye7ZOZYVc7dbTFxvF2fa7LfnBbYet7GyxME-eStOUOBPNX48e7MJ29Vt-DoQsZ2G9arZWXuAlE6ljpC2zMqU14wlkuEUXHOuGZKlyIOYNgteqY997p9AuRD5mywSGYoMZmVmMxLTADP-hYfW96Rf9Tdtovd1_PrHMBOJ1eZP5hWGY7PMvqlEQvgcV-MR4r1E-WVWTaujs2s5YkI4E4rj33fnRjf-_M_H8HVyeJwls2m84P7sEFtAJC7r9qB9fpTYx4ggqvVQ7eRCJxctOj9AFGbTDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CGNet%3A+A+Light-weight+Context+Guided+Network+for+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wu%2C+Tianyi&rft.au=Tang%2C+Sheng&rft.au=Rui%2C+Zhang&rft.au=Cao%2C+Juan&rft.date=2021-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIP.2020.3042065&rft_id=info%3Apmid%2F33306466&rft.externalDocID=9292449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon