The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating contro...
Saved in:
Published in | Cell metabolism Vol. 33; no. 4; pp. 758 - 780 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
06.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes. |
---|---|
AbstractList | As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes. As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes. |
Author | Richter, Erik A. Tokarz, Victoria L. Klip, Amira Sylow, Lykke |
Author_xml | – sequence: 1 givenname: Lykke orcidid: 0000-0003-0905-5932 surname: Sylow fullname: Sylow, Lykke – sequence: 2 givenname: Victoria L. surname: Tokarz fullname: Tokarz, Victoria L. – sequence: 3 givenname: Erik A. orcidid: 0000-0002-6850-3056 surname: Richter fullname: Richter, Erik A. – sequence: 4 givenname: Amira orcidid: 0000-0001-7906-0302 surname: Klip fullname: Klip, Amira |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33826918$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAURS0EgrbwBxiQRwYSnu3ESUZU8SVVYoGByXKdV3CxnRI7Q_89iYCFgem-4dyrpzMnh6ELSMg5g5wBk9fb3HhMOQfOchA5cDggM9YInlUFh8PxLkvICibYCZnHuAUQUjTimJwIUXPZsHpGXp_fkXod9lSbZLsQabehNsTB2TAmjR_oMGlH_RCNwyuaRn6ne-27ISSabIwD0hYT9t4GG97om9sb9FafkqONdhHPfnJBXu5un5cP2erp_nF5s8rM-FnK2qoEI5t6w4qSF_XaiKplnBup66LUyFpRy7ZlaDiiqRpYV5pzkKVs63UDBsSCXH7v7vruc8CYlLfRoHM6YDdExUsGXMpGTOjFDzqsPbZq11uv-7361TEC9Tdg-i7GHjfK2KQnL6nX1ikGajKvtmoyrybzCoQazY9V_qf6u_5P6QsMlog8 |
CitedBy_id | crossref_primary_10_1016_j_gene_2024_148216 crossref_primary_10_1016_j_peptides_2023_171117 crossref_primary_10_1093_jas_skad394 crossref_primary_10_3389_fendo_2021_680153 crossref_primary_10_1113_JP281352 crossref_primary_10_1016_j_archger_2024_105687 crossref_primary_10_3389_fendo_2025_1554617 crossref_primary_10_1038_s41467_024_55036_w crossref_primary_10_1016_j_cmet_2024_12_009 crossref_primary_10_1016_j_arres_2024_100100 crossref_primary_10_4103_apjtb_apjtb_383_24 crossref_primary_10_1007_s00421_022_05120_0 crossref_primary_10_3390_molecules28020483 crossref_primary_10_1002_cmdc_202400492 crossref_primary_10_3390_ijms22073469 crossref_primary_10_1038_s41598_024_78281_x crossref_primary_10_1093_jmcb_mjad016 crossref_primary_10_1016_j_jhepr_2023_100963 crossref_primary_10_3390_molecules26206289 crossref_primary_10_1016_j_lfs_2023_122137 crossref_primary_10_1016_j_metabol_2022_155142 crossref_primary_10_1016_j_gene_2023_147656 crossref_primary_10_1016_j_ijbiomac_2024_130737 crossref_primary_10_1210_endocr_bqab199 crossref_primary_10_3390_ani13132159 crossref_primary_10_1038_s41392_021_00723_z crossref_primary_10_3390_cimb44120410 crossref_primary_10_1002_jcsm_13614 crossref_primary_10_1080_09637486_2022_2154328 crossref_primary_10_14712_23362936_2024_30 crossref_primary_10_1152_ajpregu_00059_2023 crossref_primary_10_14814_phy2_15183 crossref_primary_10_3390_s23125625 crossref_primary_10_1016_j_bbrc_2024_149742 crossref_primary_10_1111_ggi_14864 crossref_primary_10_3390_ijms252413480 crossref_primary_10_1016_j_aquaculture_2022_739142 crossref_primary_10_3390_toxics12010017 crossref_primary_10_1007_s11154_021_09661_1 crossref_primary_10_1016_j_psj_2024_104619 crossref_primary_10_1021_acs_jafc_4c03677 crossref_primary_10_1016_j_cmet_2024_12_011 crossref_primary_10_1152_japplphysiol_00789_2022 crossref_primary_10_1177_20420188221113140 crossref_primary_10_1093_gerona_glac121 crossref_primary_10_1002_jcsm_12880 crossref_primary_10_1038_s41467_023_40595_1 crossref_primary_10_1152_physrev_00015_2022 crossref_primary_10_1017_jns_2024_66 crossref_primary_10_3390_cells10040915 crossref_primary_10_4239_wjd_v15_i8_1704 crossref_primary_10_1186_s12902_024_01579_4 crossref_primary_10_1210_jendso_bvad057 crossref_primary_10_1007_s11154_025_09954_9 crossref_primary_10_1016_j_cell_2024_06_029 crossref_primary_10_1016_j_isci_2023_106895 crossref_primary_10_1016_j_biopha_2023_114244 crossref_primary_10_1152_ajpcell_00085_2024 crossref_primary_10_1152_physiol_00016_2021 crossref_primary_10_5812_mcj_142039 crossref_primary_10_1007_s11356_023_31683_2 crossref_primary_10_1113_JP283039 crossref_primary_10_1113_JP285975 crossref_primary_10_1186_s12877_024_04827_3 crossref_primary_10_1002_mnfr_202100669 crossref_primary_10_1016_j_diabres_2025_112031 crossref_primary_10_3390_biom15010020 crossref_primary_10_1016_j_foodres_2023_112750 crossref_primary_10_1016_j_cld_2023_01_002 crossref_primary_10_1016_j_bcp_2023_115830 crossref_primary_10_1016_j_diabet_2025_101618 crossref_primary_10_1152_physiol_00034_2021 crossref_primary_10_1002_edm2_361 crossref_primary_10_3389_fendo_2023_1165415 crossref_primary_10_1152_ajpendo_00110_2022 crossref_primary_10_7554_eLife_94616_3 crossref_primary_10_1038_s41467_024_54183_4 crossref_primary_10_1038_s41598_023_33878_6 crossref_primary_10_1016_j_xcrm_2023_101372 crossref_primary_10_1016_j_compbiomed_2024_109024 crossref_primary_10_2337_db24_0786 crossref_primary_10_3389_fphar_2022_1066279 crossref_primary_10_1016_j_jep_2023_117249 crossref_primary_10_1016_j_biochi_2022_08_021 crossref_primary_10_1111_ejn_16583 crossref_primary_10_3389_fendo_2023_1111791 crossref_primary_10_7554_eLife_94616 crossref_primary_10_1172_JCI154699 crossref_primary_10_1016_j_mcpro_2023_100655 crossref_primary_10_3390_cells10082093 crossref_primary_10_1111_jdi_14200 crossref_primary_10_1016_j_cmet_2022_10_002 crossref_primary_10_1073_pnas_2211041120 crossref_primary_10_1021_acs_jafc_2c08373 crossref_primary_10_35371_aoem_2023_35_e40 crossref_primary_10_1002_1873_3468_14937 crossref_primary_10_3389_fnut_2024_1324196 crossref_primary_10_3390_cells11192956 crossref_primary_10_4254_wjh_v16_i2_152 crossref_primary_10_1016_j_cellsig_2023_110944 crossref_primary_10_1146_annurev_physiol_042022_031657 crossref_primary_10_1016_j_jcmgh_2024_01_016 crossref_primary_10_1016_j_mce_2025_112466 crossref_primary_10_1039_D2FO02026B crossref_primary_10_1186_s43141_022_00348_x crossref_primary_10_1007_s00210_024_03439_3 crossref_primary_10_3389_fendo_2023_1185725 crossref_primary_10_1016_j_tem_2021_07_008 crossref_primary_10_1159_000524059 crossref_primary_10_3389_fendo_2022_878280 crossref_primary_10_1038_s41598_025_85174_0 crossref_primary_10_3389_fendo_2022_1019405 crossref_primary_10_1016_j_jnha_2024_100401 crossref_primary_10_1016_j_jpha_2023_08_013 crossref_primary_10_1080_0284186X_2023_2197124 crossref_primary_10_2337_db21_0601 crossref_primary_10_1371_journal_pone_0310406 crossref_primary_10_1038_s41392_024_01756_w crossref_primary_10_3390_biom12121734 crossref_primary_10_1016_j_isci_2024_108800 crossref_primary_10_1002_cpz1_803 crossref_primary_10_1038_s41574_023_00933_1 crossref_primary_10_1371_journal_pone_0296815 crossref_primary_10_1016_j_metabol_2023_155607 crossref_primary_10_14814_phy2_15536 crossref_primary_10_1016_j_psj_2024_104657 crossref_primary_10_1038_s41366_023_01283_8 crossref_primary_10_1210_clinem_dgac430 crossref_primary_10_1016_j_bbamcr_2024_119748 crossref_primary_10_1007_s12603_021_1665_8 crossref_primary_10_3389_fendo_2023_1166756 crossref_primary_10_2174_0113895575299439240216081711 crossref_primary_10_1042_BCJ20210185 crossref_primary_10_1038_s41392_024_01951_9 crossref_primary_10_1016_j_lfs_2022_121015 crossref_primary_10_2196_64456 crossref_primary_10_14336_AD_2024_0407 crossref_primary_10_4239_wjd_v14_i5_494 crossref_primary_10_3390_ijms25169037 crossref_primary_10_1111_cpf_12896 crossref_primary_10_3390_ijms241411467 crossref_primary_10_1038_s41598_023_35393_0 crossref_primary_10_1152_ajpendo_00225_2023 crossref_primary_10_1016_j_smhs_2025_02_010 crossref_primary_10_1507_endocrj_EJ23_0151 crossref_primary_10_1111_obr_13762 crossref_primary_10_1007_s00421_023_05135_1 crossref_primary_10_1038_s41598_024_67755_7 crossref_primary_10_1111_jnc_16205 crossref_primary_10_1038_s41598_024_84218_1 crossref_primary_10_21931_RB_2023_08_02_47 crossref_primary_10_1016_j_cmet_2024_02_014 crossref_primary_10_1186_s12987_023_00431_6 crossref_primary_10_1210_endocr_bqae126 crossref_primary_10_3389_fendo_2023_1308373 crossref_primary_10_1021_acsomega_3c01027 crossref_primary_10_1016_j_cmet_2024_04_006 crossref_primary_10_1002_cph4_70003 crossref_primary_10_1152_physiolgenomics_00014_2021 crossref_primary_10_7717_peerj_15761 crossref_primary_10_1093_toxres_tfae197 crossref_primary_10_1002_jcb_30179 crossref_primary_10_1242_jcs_261454 crossref_primary_10_3389_fendo_2022_964132 crossref_primary_10_1186_s12885_021_08820_6 |
Cites_doi | 10.2337/db06-0823 10.1016/0005-2736(96)00041-7 10.1038/259369a0 10.1186/2044-5040-1-26 10.1073/pnas.77.5.2542 10.2337/diab.47.8.1281 10.1152/jappl.1989.66.2.876 10.1007/s001250050946 10.1016/j.cmet.2006.04.008 10.1172/JCI92035 10.2337/diabetes.52.6.1393 10.1016/j.molmet.2020.100998 10.1152/ajpendo.00466.2011 10.2337/diab.42.11.1588 10.1042/BJ20050887 10.1002/oby.20615 10.1007/s00125-008-1014-z 10.1152/ajpendo.00210.2009 10.1152/ajpheart.01279.2010 10.1172/JCI114275 10.1152/ajplegacy.1955.182.1.12 10.1056/NEJMoa2003697 10.1152/ajpendo.00690.2009 10.2337/db06-0062 10.1128/MCB.26.9.3455-3467.2006 10.1007/s00125-013-2897-x 10.1113/JP278600 10.1128/MCB.19.6.4008 10.2337/diab.44.8.936 10.2337/diabetes.49.3.325 10.1152/ajpendo.00408.2002 10.1139/H09-043 10.1152/ajpendo.00392.2017 10.1016/S0021-9258(18)42923-7 10.1016/S0006-291X(88)81020-9 10.1091/mbc.E15-05-0319 10.1111/j.1464-5491.1991.tb01572.x 10.1042/BCJ20200542 10.1172/JCI88880 10.1016/0003-9861(83)90134-0 10.1097/JES.0b013e318275574c 10.1016/j.febslet.2015.08.010 10.3109/00365517009049217 10.1016/j.cmet.2007.01.002 10.1136/bmj.1.3299.516 10.1242/jcs.097063 10.1016/S0021-9258(19)85561-8 10.1042/BJ20081319 10.1172/JCI116230 10.1016/S0021-9258(18)66808-5 10.1074/jbc.M117.818351 10.1007/s00125-012-2811-y 10.2337/diabetes.50.8.1901 10.1091/mbc.e12-04-0263 10.1172/JCI116005 10.1038/78693 10.1113/jphysiol.1996.sp021541 10.1113/JP275602 10.1007/s00125-011-2334-y 10.1074/jbc.M807408200 10.2337/diab.44.9.1010 10.1152/physiolgenomics.00127.2017 10.2337/db16-0154 10.1152/ajpendo.00304.2019 10.1007/BF02658504 10.1111/tra.12282 10.1113/JP278219 10.1146/annurev-physiol-031620-093815 10.2337/diab.36.4.434 10.1152/physrev.00031.2010 10.1016/j.molmet.2013.11.003 10.1152/ajplegacy.1922.62.1.177 10.1038/nature04634 10.1073/pnas.1009523107 10.1007/s00125-012-2644-8 10.1002/oby.22683 10.1021/bi00772a001 10.1152/ajpendo.00008.2018 10.1016/j.cmet.2010.10.006 10.1007/s00125-014-3395-5 10.1016/j.cell.2017.02.004 10.1152/japplphysiol.00921.2011 10.1210/endo-125-2-890 10.1172/JCI86522 10.2337/diabetes.54.6.1692 10.1126/science.3883490 10.2337/db11-1572 10.1074/jbc.C800241200 10.2337/db14-0961 10.1016/0014-5793(87)80452-0 10.1161/01.CIR.101.13.1539 10.14814/phy2.13956 10.2337/diabetes.50.12.2682 10.3390/ijms21165738 10.2337/db09-0988 10.1152/ajpendo.00481.2007 10.1016/j.dib.2017.07.069 10.1152/ajpendo.00243.2018 10.1126/science.1096301 10.1007/s00125-006-0457-3 10.1152/ajpendo.00113.2007 10.1002/dmr.5610020101 10.1007/978-1-4899-1928-1_2 10.7326/0003-4819-113-12-909 10.1152/jappl.1998.85.4.1218 10.1152/ajpcell.1985.249.3.C233 10.1007/s00125-007-0641-0 10.2337/db17-0046 10.1007/s00125-007-0594-3 10.2337/db05-1613 10.1152/ajplegacy.1950.163.1.70 10.1074/jbc.M412317200 10.2337/db16-0530 10.1007/s00018-003-3001-3 10.1113/jphysiol.2008.157107 10.1038/nm.4350 10.1152/jappl.1991.70.3.1245 10.1074/jbc.REV119.008351 10.3389/fphys.2020.00253 10.1152/ajpregu.00002.2017 10.2337/diabetes.49.7.1092 10.1152/ajpregu.00228.2014 10.1016/S0021-9258(18)77362-6 10.2337/diab.45.1.28 10.2337/db06-1698 10.1172/JCI1557 10.1016/S0021-9258(18)51686-0 10.1210/jc.2011-2587 10.2337/diab.30.12.1000 10.1016/S1097-2765(00)80155-0 10.1113/jphysiol.2013.266338 10.1242/bio.20147898 10.1111/j.1748-1716.2010.02180.x 10.1152/ajpendo.00164.2011 10.2337/diab.33.8.794 10.1016/0005-2736(73)90145-4 10.2337/db11-1790 10.1152/ajpheart.01174.2010 10.1113/JP276735 10.1186/s13287-019-1186-0 10.1152/ajpendo.00579.2006 10.2337/dc09-S302 10.1111/j.1748-1716.1991.tb09154.x 10.1038/s42255-021-00359-x 10.2337/diab.8.4.317 10.1056/NEJM199001253220403 10.2337/diab.45.8.1051 10.1038/333183a0 10.1083/jcb.200908057 10.1096/fj.09-137380 10.1161/ATVBAHA.112.250019 10.1073/pnas.86.9.3150 10.1172/JCI42447 10.1016/j.molmet.2018.07.001 10.1152/ajpendo.00273.2006 10.1016/j.cmet.2020.08.007 10.2337/db07-0763 10.1083/jcb.120.2.399 10.1091/mbc.e09-03-0187 10.1016/j.cmet.2007.10.013 10.1111/j.1469-7793.2001.0757h.x 10.1172/JCI94053 10.1002/jcsm.12474 10.1091/mbc.e13-08-0493 10.1016/j.ceb.2010.03.012 10.1016/S0021-9258(19)40147-6 10.1172/JCI118053 10.7554/eLife.53999 10.1210/en.2008-1372 10.1152/physrev.00063.2017 10.1016/j.tem.2017.05.002 10.1074/jbc.M116.737684 10.1126/science.1100747 10.1038/nrendo.2016.162 10.1074/jbc.M111.291500 10.2337/db18-0418 10.1073/pnas.86.8.2535 10.1042/BC20070160 10.1136/bmjsem-2016-000143 10.1113/JP280475 10.1152/jappl.1989.67.1.19 10.2337/dc06-2537 10.1016/0005-2736(83)90315-2 10.1016/j.jdiacomp.2013.09.002 10.1038/s41467-019-13869-w 10.1152/physrev.00038.2012 10.2337/db12-1148 10.1038/ijosup.2012.20 10.1016/S0021-9258(17)34350-8 10.1242/jcs.109.13.2967 10.1194/jlr.R087510 10.1152/ajplegacy.1953.173.2.207 10.2337/diab.46.8.1257 10.1016/j.jpba.2014.01.022 10.1172/JCI200112348 10.1172/JCI7535 10.1007/s00424-002-0862-5 10.1042/BJ20111416 10.1073/pnas.92.13.5817 10.2337/db13-1070 10.2337/diab.39.11.1381 10.1091/mbc.e10-04-0316 10.2337/db15-1661 10.2337/diabetes.50.6.1324 10.2337/diab.46.11.1775 10.1152/ajpcell.1992.263.2.C443 10.2337/diabetes.52.5.1066 10.1128/MCB.24.17.7567-7577.2004 10.1172/JCI110517 10.1016/S0092-8674(04)00400-3 10.1152/ajplegacy.1925.71.3.688 10.1046/j.1365-2362.2003.01106.x 10.1016/j.molmet.2020.101091 10.1172/jci.insight.85477 10.1073/pnas.97.3.1125 10.1016/j.vph.2015.09.002 10.1152/jappl.1992.72.6.2197 10.1083/jcb.142.6.1429 10.1016/j.cmet.2018.08.022 10.1007/s00125-010-1924-4 10.1091/mbc.E20-06-0356 10.1038/ng.244 10.1083/jcb.201802095 10.2337/db10-1116 10.1186/1478-811X-10-30 10.1007/s00125-003-1080-1 10.1083/jcb.135.2.415 10.1172/JCI118124 10.2337/diab.41.12.1562 10.1016/j.cophys.2019.04.008 10.1194/jlr.M080788 10.1210/jc.2012-3876 10.1016/j.cmet.2021.03.019 10.2337/db20-0180 10.1152/ajpendo.00202.2005 10.2337/db16-1075 10.1172/JCI116025 10.2337/diab.47.1.5 10.1016/0003-9861(87)90661-8 10.1111/micc.12044 10.1073/pnas.1710625114 10.1038/ijo.2015.104 10.1152/ajpendo.2000.279.5.E1039 10.1016/S0021-9258(18)83106-4 10.1016/S0021-9258(17)33634-7 10.1042/BJ20120702 10.1152/ajplegacy.1951.167.1.13 10.1091/mbc.e04-03-0266 10.2337/db14-0590 10.1007/s001250051288 10.1113/EP087545 10.2337/db18-0769 10.1007/978-1-4939-7507-5_14 10.1016/j.bcp.2014.08.033 10.2337/diacare.28.1.108 10.1016/0003-2697(68)90127-9 10.1172/JCI111938 10.1152/ajpendo.00419.2001 10.1152/ajpendo.00590.2009 10.2337/db16-1327 10.1172/JCI46405 10.1152/ajpendo.00526.2001 10.2337/diab.42.10.1469 10.2337/diabetes.49.4.647 10.1016/j.ceca.2014.08.012 10.2337/db06-0900 10.1113/JP280294 10.1007/s00125-015-3751-0 10.1073/pnas.92.4.983 10.1139/o83-081 10.1016/j.metabol.2016.07.015 10.1172/JCI117433 10.2337/diabetes.48.5.1192 10.1152/ajpendo.00260.2019 10.1172/JCI6928 10.1016/S0021-9258(19)47209-8 10.1091/mbc.E14-08-1307 10.1038/nature13425 10.1038/cddis.2014.161 10.1016/j.metabol.2020.154169 10.1016/j.cellsig.2013.11.007 10.3390/cells8050434 10.1038/s41467-020-20556-8 10.2337/db10-0698 10.1038/s41574-020-0405-1 10.1152/jappl.1989.66.2.695 10.1113/jphysiol.1976.sp011452 10.1152/jappl.1967.23.1.90 10.2337/diabetes.51.10.2944 10.1152/ajpendo.00482.2018 10.2337/db13-1307 10.1210/jc.2010-2243 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmet.2021.03.020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 780 |
ExternalDocumentID | 33826918 10_1016_j_cmet_2021_03_020 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: CIHR grantid: FDN-143203 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO AAYXX ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF HZ~ IHE IXB J1W JIG M3Z M41 O-L O9- OK1 OZT P2P RIG ROL RPZ SES SSZ TR2 UNMZH AACTN CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c413t-d750c698f145248bc37d122c6a845ae1d386dd1ec2eec790b7a220656d8b90c03 |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Jul 10 22:10:20 EDT 2025 Thu Apr 03 07:05:06 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | exercise-induced sensitization to insulin insulin signaling glucose uptake insulin glycogen GLUT4 skeletal muscle diabetes insulin resistance |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-d750c698f145248bc37d122c6a845ae1d386dd1ec2eec790b7a220656d8b90c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6850-3056 0000-0003-0905-5932 0000-0001-7906-0302 |
OpenAccessLink | http://www.cell.com/article/S1550413121001273/pdf |
PMID | 33826918 |
PQID | 2510266930 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2510266930 pubmed_primary_33826918 crossref_citationtrail_10_1016_j_cmet_2021_03_020 crossref_primary_10_1016_j_cmet_2021_03_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-06 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
References | Bonen (10.1016/j.cmet.2021.03.020_bib27) 2007; 292 Giorgino (10.1016/j.cmet.2021.03.020_bib88) 2000; 97 Mortensen (10.1016/j.cmet.2021.03.020_bib196) 2014; 28 Boguslavsky (10.1016/j.cmet.2021.03.020_bib24) 2012; 23 Klip (10.1016/j.cmet.2021.03.020_bib144) 1983; 221 Sandri (10.1016/j.cmet.2021.03.020_bib242) 2004; 117 (10.1016/j.cmet.2021.03.020_bib113) 2019 Kirwan (10.1016/j.cmet.2021.03.020_bib140) 1992; 72 Wojtaszewski (10.1016/j.cmet.2021.03.020_bib300) 1997; 46 Sylow (10.1016/j.cmet.2021.03.020_bib269) 2017; 13 Høeg (10.1016/j.cmet.2021.03.020_bib107) 2011; 60 Montgomery (10.1016/j.cmet.2021.03.020_bib194) 2019; 34 Rudich (10.1016/j.cmet.2021.03.020_bib238) 2003; 46 Bouskila (10.1016/j.cmet.2021.03.020_bib31) 2010; 12 Frøsig (10.1016/j.cmet.2021.03.020_bib80) 2007; 56 Roach (10.1016/j.cmet.2021.03.020_bib235) 1976; 251 Abdulla (10.1016/j.cmet.2021.03.020_bib1) 2016; 59 Lark (10.1016/j.cmet.2021.03.020_bib315) 2012; 2 Mavalli (10.1016/j.cmet.2021.03.020_bib180) 2010; 120 Taverna (10.1016/j.cmet.2021.03.020_bib272) 1973; 323 Karlsson (10.1016/j.cmet.2021.03.020_bib130) 2005; 54 Moltke (10.1016/j.cmet.2021.03.020_bib193) 2014; 512 Park (10.1016/j.cmet.2021.03.020_bib206) 2016; 291 Jialal (10.1016/j.cmet.2021.03.020_bib125) 1984; 33 Larsen (10.1016/j.cmet.2021.03.020_bib160) 2020; 598 Bouskila (10.1016/j.cmet.2021.03.020_bib30) 2008; 294 Zeng (10.1016/j.cmet.2021.03.020_bib307) 2000; 101 Stuart (10.1016/j.cmet.2021.03.020_bib261) 2013; 98 Koistinen (10.1016/j.cmet.2021.03.020_bib151) 2003; 52 Marette (10.1016/j.cmet.2021.03.020_bib178) 1992; 41 Tsao (10.1016/j.cmet.2021.03.020_bib281) 1996; 45 Skovbro (10.1016/j.cmet.2021.03.020_bib252) 2008; 51 Richter (10.1016/j.cmet.2021.03.020_bib230) 2013; 93 Mitrakou (10.1016/j.cmet.2021.03.020_bib189) 1990; 39 Lauritzen (10.1016/j.cmet.2021.03.020_bib163) 2002; 444 Reibe (10.1016/j.cmet.2021.03.020_bib229) 2018; 50 Wang (10.1016/j.cmet.2021.03.020_bib290) 1996; 135 Jain (10.1016/j.cmet.2021.03.020_bib115) 2015; 589 Boden (10.1016/j.cmet.2021.03.020_bib22) 1993; 42 Aslamy (10.1016/j.cmet.2021.03.020_bib8) 2017; 312 Lauritzen (10.1016/j.cmet.2021.03.020_bib162) 2013; 41 Lundsgaard (10.1016/j.cmet.2021.03.020_bib173) 1938; 14 Charron (10.1016/j.cmet.2021.03.020_bib42) 1989; 86 Henry (10.1016/j.cmet.2021.03.020_bib102) 1995; 44 Shamni (10.1016/j.cmet.2021.03.020_bib248) 2017; 14 Rothman (10.1016/j.cmet.2021.03.020_bib237) 1995; 92 Fink (10.1016/j.cmet.2021.03.020_bib76) 2013; 56 Pataky (10.1016/j.cmet.2021.03.020_bib208) 2019; 317 Sjøberg (10.1016/j.cmet.2021.03.020_bib250) 2011; 301 Daugaard (10.1016/j.cmet.2021.03.020_bib57) 2000; 49 Lund (10.1016/j.cmet.2021.03.020_bib172) 1995; 92 Sun (10.1016/j.cmet.2021.03.020_bib264) 2016; 27 Devlin (10.1016/j.cmet.2021.03.020_bib66) 1987; 36 Koska (10.1016/j.cmet.2021.03.020_bib154) 2016; 65 Lopez (10.1016/j.cmet.2021.03.020_bib170) 2009; 20 Sylow (10.1016/j.cmet.2021.03.020_bib268) 2014; 26 Sjøberg (10.1016/j.cmet.2021.03.020_bib251) 2017; 66 Chaurasia (10.1016/j.cmet.2021.03.020_bib43) 2021; 83 Horton (10.1016/j.cmet.2021.03.020_bib110) 1986; 2 Utriainen (10.1016/j.cmet.2021.03.020_bib286) 1998; 41 Raun (10.1016/j.cmet.2021.03.020_bib227) 2018; 596 Cori (10.1016/j.cmet.2021.03.020_bib51) 1925; 24 Møller (10.1016/j.cmet.2021.03.020_bib191) 2019; 8 Nielsen (10.1016/j.cmet.2021.03.020_bib198) 2001; 531 Zhang (10.1016/j.cmet.2021.03.020_bib308) 2016; 65 Thomas (10.1016/j.cmet.2021.03.020_bib274) 1968; 25 Dirks (10.1016/j.cmet.2021.03.020_bib67) 2016; 65 Richter (10.1016/j.cmet.2021.03.020_bib233) 1989; 66 Wang (10.1016/j.cmet.2021.03.020_bib291) 1999; 19 Bennet (10.1016/j.cmet.2021.03.020_bib16) 1991; 8 Brumfield (10.1016/j.cmet.2021.03.020_bib34) 2021; 32 Houstis (10.1016/j.cmet.2021.03.020_bib111) 2006; 440 Sleigh (10.1016/j.cmet.2021.03.020_bib254) 2012; 97 Little (10.1016/j.cmet.2021.03.020_bib168) 2011; 111 Pehmøller (10.1016/j.cmet.2021.03.020_bib210) 2012; 61 Madsen (10.1016/j.cmet.2021.03.020_bib176) 2018; 315 Goodyear (10.1016/j.cmet.2021.03.020_bib91) 1991; 261 Saxton (10.1016/j.cmet.2021.03.020_bib245) 2017; 168 Gumà (10.1016/j.cmet.2021.03.020_bib94) 1995; 268 Stephens (10.1016/j.cmet.2021.03.020_bib257) 2015; 64 JeBailey (10.1016/j.cmet.2021.03.020_bib123) 2007; 56 Jaldin-Fincati (10.1016/j.cmet.2021.03.020_bib118) 2018; 1713 Kennedy (10.1016/j.cmet.2021.03.020_bib133) 1999; 48 Cacicedo (10.1016/j.cmet.2021.03.020_bib37) 2011; 301 Csapo (10.1016/j.cmet.2021.03.020_bib53) 2020; 11 Foley (10.1016/j.cmet.2021.03.020_bib78) 2014; 3 O’Neill (10.1016/j.cmet.2021.03.020_bib202) 2016; 126 Richter (10.1016/j.cmet.2021.03.020_bib234) 1989; 67 Wallberg-Henriksson (10.1016/j.cmet.2021.03.020_bib289) 1985; 18 Andréasson (10.1016/j.cmet.2021.03.020_bib7) 1991; 142 Funaki (10.1016/j.cmet.2021.03.020_bib82) 2004; 24 Sun (10.1016/j.cmet.2021.03.020_bib263) 2014; 25 Warram (10.1016/j.cmet.2021.03.020_bib296) 1990; 113 Krook (10.1016/j.cmet.2021.03.020_bib157) 1998; 47 Pillon (10.1016/j.cmet.2021.03.020_bib213) 2012; 10 Kirwan (10.1016/j.cmet.2021.03.020_bib141) 2009; 297 Steinberg (10.1016/j.cmet.2021.03.020_bib256) 1994; 94 Weng (10.1016/j.cmet.2021.03.020_bib297) 2020; 21 Batista (10.1016/j.cmet.2021.03.020_bib15) 2020; 32 McArdle (10.1016/j.cmet.2021.03.020_bib181) 1951; 10 Pillon (10.1016/j.cmet.2021.03.020_bib215) 2020; 11 Chiu (10.1016/j.cmet.2021.03.020_bib44) 2010; 21 Fritzen (10.1016/j.cmet.2021.03.020_bib79) 2020; 16 Uezumi (10.1016/j.cmet.2021.03.020_bib285) 2014; 5 Klip (10.1016/j.cmet.2021.03.020_bib145) 1983; 61 Luiken (10.1016/j.cmet.2021.03.020_bib171) 2002; 282 James (10.1016/j.cmet.2021.03.020_bib121) 1988; 333 Tonks (10.1016/j.cmet.2021.03.020_bib278) 2013; 56 Ryder (10.1016/j.cmet.2021.03.020_bib239) 2000; 49 Benninghoff (10.1016/j.cmet.2021.03.020_bib18) 2020; 69 Mîinea (10.1016/j.cmet.2021.03.020_bib185) 2005; 391 Cori (10.1016/j.cmet.2021.03.020_bib52) 1925; 71 Wang (10.1016/j.cmet.2021.03.020_bib292) 2011; 286 Azizi (10.1016/j.cmet.2021.03.020_bib11) 2015; 26 Richter (10.1016/j.cmet.2021.03.020_bib232) 1984; 246 Lizunov (10.1016/j.cmet.2021.03.020_bib169) 2012; 302 Hingst (10.1016/j.cmet.2021.03.020_bib105) 2018; 16 Sylow (10.1016/j.cmet.2021.03.020_bib266) 2019; 12 Sleigh (10.1016/j.cmet.2021.03.020_bib253) 2011; 121 Knudsen (10.1016/j.cmet.2021.03.020_bib150) 2020; 39 Teng (10.1016/j.cmet.2021.03.020_bib273) 2019; 10 Kolka (10.1016/j.cmet.2021.03.020_bib152) 2012; 27 Boulé (10.1016/j.cmet.2021.03.020_bib28) 2005; 28 Kim (10.1016/j.cmet.2021.03.020_bib137) 2000; 279 Baron (10.1016/j.cmet.2021.03.020_bib13) 1988; 255 Albers (10.1016/j.cmet.2021.03.020_bib5) 2015; 309 Lundsgaard (10.1016/j.cmet.2021.03.020_bib174) 2017; 66 Czech (10.1016/j.cmet.2021.03.020_bib56) 2017; 23 Jorfeldt (10.1016/j.cmet.2021.03.020_bib127) 1970; 26 Zierler (10.1016/j.cmet.2021.03.020_bib310) 1959; 8 Kjøbsted (10.1016/j.cmet.2021.03.020_bib142) 2017; 66 Fazakerley (10.1016/j.cmet.2021.03.020_bib75) 2019; 60 Roach (10.1016/j.cmet.2021.03.020_bib236) 2012; 441 Copps (10.1016/j.cmet.2021.03.020_bib50) 2012; 55 Asp (10.1016/j.cmet.2021.03.020_bib9) 1996; 494 Jaldin-Fincati (10.1016/j.cmet.2021.03.020_bib117) 2018; 315 Jensen (10.1016/j.cmet.2021.03.020_bib124) 2014; 92 O’Gorman (10.1016/j.cmet.2021.03.020_bib201) 2006; 49 Esk (10.1016/j.cmet.2021.03.020_bib74) 2010; 188 Lauritzen (10.1016/j.cmet.2021.03.020_bib161) 2009; 34 Richter (10.1016/j.cmet.2021.03.020_bib231) 1982; 69 Bisht (10.1016/j.cmet.2021.03.020_bib21) 2008; 586 Tremblay (10.1016/j.cmet.2021.03.020_bib280) 2001; 50 Lee (10.1016/j.cmet.2021.03.020_bib165) 2016; 31 Erlij (10.1016/j.cmet.2021.03.020_bib73) 1976; 259 Austin (10.1016/j.cmet.2021.03.020_bib10) 2008; 57 McMillin (10.1016/j.cmet.2021.03.020_bib184) 2017; 66 Reaven (10.1016/j.cmet.2021.03.020_bib228) 1997; 13 Mikines (10.1016/j.cmet.2021.03.020_bib186) 1988; 254 Tunduguru (10.1016/j.cmet.2021.03.020_bib282) 2014; 92 Kim (10.1016/j.cmet.2021.03.020_bib136) 1999; 104 Koves (10.1016/j.cmet.2021.03.020_bib155) 2008; 7 Lundsgaard (10.1016/j.cmet.2021.03.020_bib175) 2019; 29 de Souza (10.1016/j.cmet.2021.03.020_bib60) 1997; 46 Marette (10.1016/j.cmet.2021.03.020_bib177) 1992; 263 Stierwalt (10.1016/j.cmet.2021.03.020_bib258) 2018; 6 Pavarotti (10.1016/j.cmet.2021.03.020_bib209) 2021; 478 Sylow (10.1016/j.cmet.2021.03.020_bib267) 2013; 62 Han (10.1016/j.cmet.2021.03.020_bib98) 2020; 105 Young (10.1016/j.cmet.2021.03.020_bib305) 1962; 157 Bennet (10.1016/j.cmet.2021.03.020_bib17) 1990; 259 Habegger (10.1016/j.cmet.2021.03.020_bib95) 2012; 55 Cushman (10.1016/j.cmet.2021.03.020_bib54) 1980; 255 Jaldin-Fincati (10.1016/j.cmet.2021.03.020_bib116) 2017; 28 Ueda (10.1016/j.cmet.2021.03.020_bib283) 2008; 100 DeFronzo (10.1016/j.cmet.2021.03.020_bib62) 1981; 30 Ploug (10.1016/j.cmet.2021.03.020_bib216) 1998; 441 Brüning (10.1016/j.cmet.2021.03.020_bib35) 1998; 2 Vind (10.1016/j.cmet.2021.03.020_bib288) 2011; 54 Ramlal (10.1016/j.cmet.2021.03.020_bib223) 1989; 125 Zisman (10.1016/j.cmet.2021.03.020_bib312) 2000; 6 Khan (10.1016/j.cmet.2021.03.020_bib134) 2015; 39 Chadt (10.1016/j.cmet.2021.03.020_bib40) 2008; 40 Ralston (10.1016/j.cmet.2021.03.020_bib220) 1993; 120 Burdett (10.1016/j.cmet.2021.03.020_bib36) 1987; 253 Coen (10.1016/j.cmet.2021.03.020_bib46) 2010; 59 Huang (10.1016/j.cmet.2021.03.020_bib112) 2005; 280 Shulman (10.1016/j.cmet.2021.03.020_bib249) 1990; 322 Lai (10.1016/j.cmet.2021.03.020_bib158) 2007; 293 Ramlal (10.1016/j.cmet.2021.03.020_bib222) 1988; 157 Hirshman (10.1016/j.cmet.2021.03.020_bib106) 1990; 265 Knudsen (10.1016/j.cmet.2021.03.020_bib149) 2019; 104 Schertzer (10.1016/j.cmet.2021.03.020_bib246) 2009; 150 Konishi (10.1016/j.cmet.2021.03.020_bib153) 2017; 114 Taddeo (10.1016/j.cmet.2021.03.020_bib270) 2013; 3 King (10.1016/j.cmet.2021.03.020_bib139) 1992; 90 Morgan (10.1016/j.cmet.2021.03.020_bib195) 1964; 239 DeFronzo (10.1016/j.cmet.2021.03.020_bib63) 1985; 76 Petersen (10.1016/j.cmet.2021.03.020_bib212) 2018; 98 Garvey (10.1016/j.cmet.2021.03.020_bib84) 1998; 101 Jiang (10.1016/j.cmet.2021.03.020_bib126) 2013; 62 Albers (10.1016/j.cmet.2021.03.020_bib4) 2015; 64 Brostoff (10.1016/j.cmet.2021.03.020_bib33) 2007; 50 Højlund (10.1016/j.cmet.2021.03.020_bib108) 2003; 52 Napoli (10.1016/j.cmet.2021.03.020 |
References_xml | – volume: 56 start-page: 394 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib123 article-title: Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells publication-title: Diabetes doi: 10.2337/db06-0823 – volume: 255 start-page: E769 year: 1988 ident: 10.1016/j.cmet.2021.03.020_bib13 article-title: Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans publication-title: Am. J. Physiol. – volume: 248 start-page: E546 year: 1985 ident: 10.1016/j.cmet.2021.03.020_bib314 article-title: Muscle α-aminoisobutyric acid transport after exercise: enhanced stimulation by insulin publication-title: Am. J. Physiol. – volume: 1282 start-page: 71 year: 1996 ident: 10.1016/j.cmet.2021.03.020_bib156 article-title: Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(96)00041-7 – volume: 259 start-page: 369 year: 1976 ident: 10.1016/j.cmet.2021.03.020_bib219 article-title: Receptor-binding region of insulin publication-title: Nature doi: 10.1038/259369a0 – volume: 1 start-page: 26 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib3 article-title: T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases publication-title: Skelet. Muscle doi: 10.1186/2044-5040-1-26 – volume: 77 start-page: 2542 year: 1980 ident: 10.1016/j.cmet.2021.03.020_bib265 article-title: Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.77.5.2542 – volume: 47 start-page: 1281 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib157 article-title: Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects publication-title: Diabetes doi: 10.2337/diab.47.8.1281 – volume: 66 start-page: 876 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib233 article-title: Effect of exercise on insulin action in human skeletal muscle publication-title: J Appl Physiol (1985) doi: 10.1152/jappl.1989.66.2.876 – volume: 41 start-page: 555 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib286 article-title: Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM publication-title: Diabetologia doi: 10.1007/s001250050946 – volume: 4 start-page: 89 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib32 article-title: siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.04.008 – volume: 127 start-page: 1 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib241 article-title: Inflammatory mechanisms linking obesity and metabolic disease publication-title: J. Clin. Invest. doi: 10.1172/JCI92035 – volume: 52 start-page: 1393 year: 2003 ident: 10.1016/j.cmet.2021.03.020_bib108 article-title: Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.52.6.1393 – volume: 39 start-page: 100998 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib150 article-title: Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation publication-title: Mol. Metab. doi: 10.1016/j.molmet.2020.100998 – volume: 302 start-page: E950 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib169 article-title: Insulin stimulates fusion, but not tethering, of GLUT4 vesicles in skeletal muscle of HA-GLUT4-GFP transgenic mice publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00466.2011 – volume: 42 start-page: 1588 year: 1993 ident: 10.1016/j.cmet.2021.03.020_bib22 article-title: Effects of insulin on fatty acid reesterification in healthy subjects publication-title: Diabetes doi: 10.2337/diab.42.11.1588 – volume: 391 start-page: 87 year: 2005 ident: 10.1016/j.cmet.2021.03.020_bib185 article-title: AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain publication-title: Biochem. J. doi: 10.1042/BJ20050887 – volume: 22 start-page: 747 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib77 article-title: Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans publication-title: Obesity (Silver Spring) doi: 10.1002/oby.20615 – volume: 51 start-page: 1253 year: 2008 ident: 10.1016/j.cmet.2021.03.020_bib252 article-title: Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity publication-title: Diabetologia doi: 10.1007/s00125-008-1014-z – volume: 297 start-page: E151 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib141 article-title: Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00210.2009 – volume: 301 start-page: H1255 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib37 article-title: Acute exercise activates AMPK and eNOS in the mouse aorta publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01279.2010 – volume: 84 start-page: 1124 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib135 article-title: Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action publication-title: J. Clin. Invest. doi: 10.1172/JCI114275 – volume: 182 start-page: 12 year: 1955 ident: 10.1016/j.cmet.2021.03.020_bib204 article-title: Effect of insulin on free glucose content of rat diaphragm in vitro publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1955.182.1.12 – volume: 383 start-page: 721 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib304 article-title: Effects of diet versus gastric bypass on metabolic function in diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2003697 – volume: 298 start-page: E1011 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib71 article-title: An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00690.2009 – volume: 55 start-page: 2277 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib12 article-title: Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects publication-title: Diabetes doi: 10.2337/db06-0062 – volume: 26 start-page: 3455 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib303 article-title: FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.9.3455-3467.2006 – volume: 56 start-page: 1623 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib76 article-title: Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-013-2897-x – volume: 598 start-page: 303 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib183 article-title: Insulin-induced membrane permeability to glucose in human muscles at rest and following exercise publication-title: J. Physiol. doi: 10.1113/JP278600 – volume: 19 start-page: 4008 year: 1999 ident: 10.1016/j.cmet.2021.03.020_bib291 article-title: Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.6.4008 – volume: 44 start-page: 936 year: 1995 ident: 10.1016/j.cmet.2021.03.020_bib102 article-title: Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures publication-title: Diabetes doi: 10.2337/diab.44.8.936 – volume: 49 start-page: 325 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib301 article-title: Insulin signaling and insulin sensitivity after exercise in human skeletal muscle publication-title: Diabetes doi: 10.2337/diabetes.49.3.325 – volume: 284 start-page: E241 year: 2003 ident: 10.1016/j.cmet.2021.03.020_bib45 article-title: Blood flow and muscle metabolism: a focus on insulin action publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00408.2002 – volume: 34 start-page: 420 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib161 article-title: In vivo imaging of GLUT4 translocation publication-title: Appl. Physiol. Nutr. Metab. doi: 10.1139/H09-043 – volume: 315 start-page: E110 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib176 article-title: β-Actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00392.2017 – volume: 267 start-page: 4957 year: 1992 ident: 10.1016/j.cmet.2021.03.020_bib190 article-title: Development regulation of the subcellular distribution and glycosylation of GLUT1 and GLUT4 glucose transporters during myogenesis of L6 muscle cells publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42923-7 – volume: 268 start-page: E613 year: 1995 ident: 10.1016/j.cmet.2021.03.020_bib94 article-title: Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle publication-title: Am. J. Physiol. – volume: 157 start-page: 1329 year: 1988 ident: 10.1016/j.cmet.2021.03.020_bib222 article-title: Insulin-mediated translocation of glucose transporters from intracellular membranes to plasma membranes: sole mechanism of stimulation of glucose transport in L6 muscle cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(88)81020-9 – volume: 27 start-page: 75 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib264 article-title: A complex of Rab13 with MICAL-L2 and α-actinin-4 is essential for insulin-dependent GLUT4 exocytosis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E15-05-0319 – volume: 8 start-page: 199 year: 1991 ident: 10.1016/j.cmet.2021.03.020_bib16 article-title: Protein anabolic actions of insulin in the human body publication-title: Diabet. Med. doi: 10.1111/j.1464-5491.1991.tb01572.x – volume: 478 start-page: 407 year: 2021 ident: 10.1016/j.cmet.2021.03.020_bib209 article-title: Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT4 translocation publication-title: Biochem. J. doi: 10.1042/BCJ20200542 – volume: 127 start-page: 43 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib302 article-title: Skeletal muscle inflammation and insulin resistance in obesity publication-title: J. Clin. Invest. doi: 10.1172/JCI88880 – volume: 221 start-page: 175 year: 1983 ident: 10.1016/j.cmet.2021.03.020_bib144 article-title: The glucose transport system of muscle plasma membranes: characterization by means of [3H]cytochalasin B binding publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(83)90134-0 – volume: 41 start-page: 77 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib162 article-title: Insulin- and contraction-induced glucose transporter 4 traffic in muscle: insights from a novel imaging approach publication-title: Exerc. Sport Sci. Rev. doi: 10.1097/JES.0b013e318275574c – volume: 589 start-page: 2769 issue: 19 Pt B year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib115 article-title: Fatty acid transport and transporters in muscle are critically regulated by Akt2 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.08.010 – volume: 26 start-page: 73 year: 1970 ident: 10.1016/j.cmet.2021.03.020_bib127 article-title: Human forearm muscle metabolism during exercise. V. Quantitative aspects of glucose uptake and lactate production during prolonged exercise publication-title: Scand. J. Clin. Lab. Invest. doi: 10.3109/00365517009049217 – volume: 260 start-page: E459 year: 1991 ident: 10.1016/j.cmet.2021.03.020_bib68 article-title: Decreased expression of glucose transporter in muscle from insulin-resistant patients publication-title: Am. J. Physiol. – volume: 5 start-page: 167 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib109 article-title: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.01.002 – volume: 1 start-page: 516 year: 1924 ident: 10.1016/j.cmet.2021.03.020_bib164 article-title: Effect of insulin on the sugar content of arterial and venous blood in diabetes publication-title: BMJ doi: 10.1136/bmj.1.3299.516 – volume: 124 start-page: 4147 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib259 article-title: GLUT4 exocytosis publication-title: J. Cell Sci. doi: 10.1242/jcs.097063 – volume: 255 start-page: 4758 year: 1980 ident: 10.1016/j.cmet.2021.03.020_bib54 article-title: Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85561-8 – volume: 419 start-page: 475 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib306 article-title: GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity publication-title: Biochem. J. doi: 10.1042/BJ20081319 – volume: 91 start-page: 514 year: 1993 ident: 10.1016/j.cmet.2021.03.020_bib26 article-title: Effect of insulin on system A amino acid transport in human skeletal muscle publication-title: J. Clin. Invest. doi: 10.1172/JCI116230 – volume: 261 start-page: 14939 year: 1986 ident: 10.1016/j.cmet.2021.03.020_bib120 article-title: Intrinsic differences of insulin receptor kinase activity in red and white muscle publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66808-5 – volume: 292 start-page: 19135 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib260 article-title: Metabolomic analysis of insulin resistance across different mouse strains and diets publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.818351 – volume: 56 start-page: 875 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib278 article-title: Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects publication-title: Diabetologia doi: 10.1007/s00125-012-2811-y – volume: 50 start-page: 1901 year: 2001 ident: 10.1016/j.cmet.2021.03.020_bib280 article-title: Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (ζ/λ) activities publication-title: Diabetes doi: 10.2337/diabetes.50.8.1901 – volume: 23 start-page: 4065 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib24 article-title: Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-04-0263 – volume: 13 start-page: 65 year: 1997 ident: 10.1016/j.cmet.2021.03.020_bib228 article-title: Banting Lecture 1988. Role of insulin resistance in human disease. 1988 publication-title: Nutrition – volume: 90 start-page: 1386 year: 1992 ident: 10.1016/j.cmet.2021.03.020_bib244 article-title: Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin publication-title: J. Clin. Invest. doi: 10.1172/JCI116005 – volume: 6 start-page: 924 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib312 article-title: Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance publication-title: Nat. Med. doi: 10.1038/78693 – volume: 494 start-page: 891 year: 1996 ident: 10.1016/j.cmet.2021.03.020_bib9 article-title: Eccentric exercise decreases maximal insulin action in humans: muscle and systemic effects publication-title: J. Physiol. doi: 10.1113/jphysiol.1996.sp021541 – volume: 596 start-page: 2283 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib227 article-title: Rac1 muscle knockout exacerbates the detrimental effect of high-fat diet on insulin-stimulated muscle glucose uptake independently of Akt publication-title: J. Physiol. doi: 10.1113/JP275602 – volume: 55 start-page: 457 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib95 article-title: Fat-induced membrane cholesterol accrual provokes cortical filamentous actin destabilisation and glucose transport dysfunction in skeletal muscle publication-title: Diabetologia doi: 10.1007/s00125-011-2334-y – volume: 284 start-page: 4679 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib313 article-title: Insulin resistance in striated muscle-specific integrin receptor β1-deficient mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807408200 – volume: 44 start-page: 1010 year: 1995 ident: 10.1016/j.cmet.2021.03.020_bib64 article-title: Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training publication-title: Diabetes doi: 10.2337/diab.44.9.1010 – volume: 50 start-page: 376 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib229 article-title: GeneXX: an online tool for the exploration of transcript changes in skeletal muscle associated with exercise publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00127.2017 – volume: 65 start-page: 2380 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib308 article-title: Skeletal muscle TRIB3 mediates glucose toxicity in diabetes and high- fat diet-induced insulin resistance publication-title: Diabetes doi: 10.2337/db16-0154 – volume: 317 start-page: E984 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib208 article-title: Fiber type-specific effects of acute exercise on insulin-stimulated AS160 phosphorylation in insulin-resistant rat skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00304.2019 – volume: 39 start-page: 1180 year: 1996 ident: 10.1016/j.cmet.2021.03.020_bib309 article-title: Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM publication-title: Diabetologia doi: 10.1007/BF02658504 – volume: 16 start-page: 691 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib131 article-title: An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake publication-title: Traffic doi: 10.1111/tra.12282 – volume: 598 start-page: 3803 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib90 article-title: CrossTalk proposal: intramuscular lipid accumulation causes insulin resistance publication-title: J. Physiol. doi: 10.1113/JP278219 – volume: 14 start-page: 163 year: 1938 ident: 10.1016/j.cmet.2021.03.020_bib173 article-title: The Pasteur-Meyerhof reaction in muscle metabolism: Harvey Lecture, November 18, 1937 publication-title: Bull. N. Y. Acad. Med. – volume: 83 start-page: 303 year: 2021 ident: 10.1016/j.cmet.2021.03.020_bib43 article-title: Ceramides in metabolism: key lipotoxic players publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-031620-093815 – volume: 36 start-page: 434 year: 1987 ident: 10.1016/j.cmet.2021.03.020_bib66 article-title: Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise publication-title: Diabetes doi: 10.2337/diab.36.4.434 – volume: 91 start-page: 1447 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib247 article-title: Fiber types in mammalian skeletal muscles publication-title: Physiol. Rev. doi: 10.1152/physrev.00031.2010 – volume: 3 start-page: 124 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib270 article-title: Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle publication-title: Mol. Metab. doi: 10.1016/j.molmet.2013.11.003 – volume: 62 start-page: 177 year: 1922 ident: 10.1016/j.cmet.2021.03.020_bib103 article-title: Effect of insulin (pancreatic extract) on the sugar consumption of the isolated surviving rabbit heart publication-title: Am. J. Physiol. Content doi: 10.1152/ajplegacy.1922.62.1.177 – volume: 440 start-page: 944 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib111 article-title: Reactive oxygen species have a causal role in multiple forms of insulin resistance publication-title: Nature doi: 10.1038/nature04634 – volume: 107 start-page: 19909 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib262 article-title: Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1009523107 – volume: 55 start-page: 2565 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib50 article-title: Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2 publication-title: Diabetologia doi: 10.1007/s00125-012-2644-8 – volume: 28 start-page: 303 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib299 article-title: Transendothelial insulin transport is impaired in skeletal muscle capillaries of obese male mice publication-title: Obesity (Silver Spring) doi: 10.1002/oby.22683 – volume: 11 start-page: 4013 year: 1972 ident: 10.1016/j.cmet.2021.03.020_bib211 article-title: Conformation of proinsulin. A comparison of insulin and proinsulin self-association at neutral pH publication-title: Biochemistry doi: 10.1021/bi00772a001 – volume: 315 start-page: E204 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib117 article-title: Insulin uptake and action in microvascular endothelial cells of lymphatic and blood origin publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00008.2018 – volume: 12 start-page: 456 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib31 article-title: Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.10.006 – volume: 58 start-page: 19 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib38 article-title: Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle publication-title: Diabetologia doi: 10.1007/s00125-014-3395-5 – volume: 168 start-page: 960 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib245 article-title: mTOR signaling in growth, metabolism, and disease publication-title: Cell doi: 10.1016/j.cell.2017.02.004 – volume: 111 start-page: 1554 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib168 article-title: Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.00921.2011 – volume: 125 start-page: 890 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib223 article-title: Decrease in glucose transporter number in skeletal muscle of mildly diabetic (streptozotocin-treated) rats publication-title: Endocrinology doi: 10.1210/endo-125-2-890 – volume: 126 start-page: 3433 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib202 article-title: Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis publication-title: J. Clin. Invest. doi: 10.1172/JCI86522 – volume: 54 start-page: 1692 year: 2005 ident: 10.1016/j.cmet.2021.03.020_bib130 article-title: Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects publication-title: Diabetes doi: 10.2337/diabetes.54.6.1692 – volume: 227 start-page: 1583 year: 1985 ident: 10.1016/j.cmet.2021.03.020_bib138 article-title: Receptor-mediated transport of insulin across endothelial cells publication-title: Science doi: 10.1126/science.3883490 – volume: 61 start-page: 2743 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib210 article-title: Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4 publication-title: Diabetes doi: 10.2337/db11-1572 – volume: 284 start-page: 13296 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib41 article-title: FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.C800241200 – volume: 64 start-page: 1615 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib257 article-title: Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men publication-title: Diabetes doi: 10.2337/db14-0961 – volume: 224 start-page: 224 year: 1987 ident: 10.1016/j.cmet.2021.03.020_bib147 article-title: Insulin-induced translocation of glucose transporters in rat hindlimb muscles publication-title: FEBS Lett. doi: 10.1016/0014-5793(87)80452-0 – volume: 101 start-page: 1539 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib307 article-title: Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells publication-title: Circulation doi: 10.1161/01.CIR.101.13.1539 – volume: 6 start-page: e13956 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib258 article-title: Insulin-stimulated Rac1-GTP binding is not impaired by palmitate treatment in L6 myotubes publication-title: Physiol. Rep. doi: 10.14814/phy2.13956 – volume: 50 start-page: 2682 year: 2001 ident: 10.1016/j.cmet.2021.03.020_bib47 article-title: Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment publication-title: Diabetes doi: 10.2337/diabetes.50.12.2682 – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib297 article-title: Collagen 24 α1 is increased in insulin-resistant skeletal muscle and adipose tissue publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21165738 – volume: 59 start-page: 80 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib46 article-title: Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content publication-title: Diabetes doi: 10.2337/db09-0988 – volume: 294 start-page: E28 year: 2008 ident: 10.1016/j.cmet.2021.03.020_bib30 article-title: Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00481.2007 – volume: 14 start-page: 329 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib248 article-title: Supportive data on the regulation of GLUT4 activity by 3-O-methyl-D-glucose publication-title: Data Brief doi: 10.1016/j.dib.2017.07.069 – volume: 316 start-page: E866 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib240 article-title: Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00243.2018 – volume: 188 start-page: 1177 year: 1975 ident: 10.1016/j.cmet.2021.03.020_bib72 article-title: Membrane transport: its relation to cellular metabolic rates publication-title: Science doi: 10.1126/science.1096301 – volume: 49 start-page: 2983 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib201 article-title: Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-006-0457-3 – volume: 293 start-page: E1622 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib158 article-title: Glycogen content and contraction regulate glycogen synthase phosphorylation and affinity for UDP-glucose in rat skeletal muscles publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00113.2007 – volume: 2 start-page: 1 year: 1986 ident: 10.1016/j.cmet.2021.03.020_bib110 article-title: Exercise and physical training: effects on insulin sensitivity and glucose metabolism publication-title: Diabetes Metab. Rev. doi: 10.1002/dmr.5610020101 – volume: 441 start-page: 17 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib216 article-title: Anatomy of glucose transporters in skeletal muscle. Effects of insulin and contractions publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4899-1928-1_2 – volume: 113 start-page: 909 year: 1990 ident: 10.1016/j.cmet.2021.03.020_bib296 article-title: Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-113-12-909 – volume: 85 start-page: 1218 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib99 article-title: Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise publication-title: J Appl Physiol (1985) doi: 10.1152/jappl.1998.85.4.1218 – volume: 18 start-page: C233 year: 1985 ident: 10.1016/j.cmet.2021.03.020_bib289 article-title: Activation of glucose transport in diabetic muscle: response to contraction and insulin publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.1985.249.3.C233 – volume: 50 start-page: 1351 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib33 article-title: A diabetic life before and after the insulin era publication-title: Diabetologia doi: 10.1007/s00125-007-0641-0 – volume: 127 start-page: 1911 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib48 article-title: Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release, which both impinge on GLUT4 translocation publication-title: J. Cell Sci. – volume: 66 start-page: 2583 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib174 article-title: Opposite regulation of insulin sensitivity by dietary lipid versus carbohydrate excess publication-title: Diabetes doi: 10.2337/db17-0046 – volume: 50 start-page: 790 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib29 article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle publication-title: Diabetologia doi: 10.1007/s00125-007-0594-3 – volume: 55 start-page: 2077 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib159 article-title: The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle publication-title: Diabetes doi: 10.2337/db05-1613 – volume: 163 start-page: 70 year: 1950 ident: 10.1016/j.cmet.2021.03.020_bib166 article-title: Action of insulin on the ‘permeability’ of cells to free hexoses, as studied by its effect on the distribution of galactose publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1950.163.1.70 – volume: 280 start-page: 19426 year: 2005 ident: 10.1016/j.cmet.2021.03.020_bib112 article-title: Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412317200 – volume: 66 start-page: 598 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib142 article-title: Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK publication-title: Diabetes doi: 10.2337/db16-0530 – volume: 60 start-page: 991 year: 2003 ident: 10.1016/j.cmet.2021.03.020_bib2 article-title: Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-003-3001-3 – volume: 586 start-page: 3825 year: 2008 ident: 10.1016/j.cmet.2021.03.020_bib21 article-title: In vivo inhibition of focal adhesion kinase causes insulin resistance publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.157107 – volume: 23 start-page: 804 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib56 article-title: Insulin action and resistance in obesity and type 2 diabetes publication-title: Nat. Med. doi: 10.1038/nm.4350 – volume: 70 start-page: 1245 year: 1991 ident: 10.1016/j.cmet.2021.03.020_bib188 article-title: Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body publication-title: J Appl Physiol (1985) doi: 10.1152/jappl.1991.70.3.1245 – volume: 294 start-page: 11369 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib148 article-title: Thirty sweet years of GLUT4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.REV119.008351 – volume: 11 start-page: 253 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib53 article-title: Skeletal muscle extracellular matrix - what do we know about its composition, regulation, and physiological roles? A narrative review publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00253 – volume: 312 start-page: R739 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib8 article-title: Exocytosis proteins as novel targets for diabetes prevention and/or remediation? publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00002.2017 – volume: 49 start-page: 1092 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib57 article-title: Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training publication-title: Diabetes doi: 10.2337/diabetes.49.7.1092 – volume: 309 start-page: R510 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib5 article-title: Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00228.2014 – volume: 265 start-page: 13427 year: 1990 ident: 10.1016/j.cmet.2021.03.020_bib70 article-title: Exercise induces recruitment of the “insulin-responsive glucose transporter”. Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)77362-6 – volume: 45 start-page: 28 year: 1996 ident: 10.1016/j.cmet.2021.03.020_bib281 article-title: Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle publication-title: Diabetes doi: 10.2337/diab.45.1.28 – volume: 56 start-page: 2093 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib80 article-title: Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160 publication-title: Diabetes doi: 10.2337/db06-1698 – volume: 101 start-page: 2377 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib84 article-title: Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance publication-title: J. Clin. Invest. doi: 10.1172/JCI1557 – volume: 239 start-page: 369 year: 1964 ident: 10.1016/j.cmet.2021.03.020_bib195 article-title: Identification of a mobile carrier-mediated sugar transport system in muscle publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)51686-0 – volume: 97 start-page: E438 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib254 article-title: Mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2011-2587 – volume: 30 start-page: 1000 year: 1981 ident: 10.1016/j.cmet.2021.03.020_bib62 article-title: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization publication-title: Diabetes doi: 10.2337/diab.30.12.1000 – volume: 2 start-page: 559 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib35 article-title: A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80155-0 – volume: 592 start-page: 351 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib279 article-title: Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.266338 – volume: 3 start-page: 314 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib78 article-title: Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide publication-title: Biol. Open doi: 10.1242/bio.20147898 – volume: 201 start-page: 357 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib101 article-title: Improved glucose tolerance after intensive life style intervention occurs without changes in muscle ceramide or triacylglycerol in morbidly obese subjects publication-title: Acta Physiol. (Oxf.) doi: 10.1111/j.1748-1716.2010.02180.x – volume: 301 start-page: E391 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib200 article-title: Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00164.2011 – volume: 157 start-page: 1 year: 1962 ident: 10.1016/j.cmet.2021.03.020_bib305 article-title: The Croonian Lecture - On insulin and its action publication-title: Proc. R. Soc – volume: 33 start-page: 794 year: 1984 ident: 10.1016/j.cmet.2021.03.020_bib125 article-title: Processing of insulin by bovine endothelial cells in culture. Internalization without degradation publication-title: Diabetes doi: 10.2337/diab.33.8.794 – volume: 34 start-page: 134 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib194 article-title: Impact of lipotoxicity on tissue “cross talk” and metabolic regulation publication-title: Physiology (Bethesda) – volume: 254 start-page: E248 year: 1988 ident: 10.1016/j.cmet.2021.03.020_bib186 article-title: Effect of physical exercise on sensitivity and responsiveness to insulin in humans publication-title: Am. J. Physiol. – volume: 323 start-page: 207 year: 1973 ident: 10.1016/j.cmet.2021.03.020_bib272 article-title: Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(73)90145-4 – volume: 24 start-page: 465 year: 1925 ident: 10.1016/j.cmet.2021.03.020_bib51 article-title: Insulin and tissue sugar publication-title: J. Pharmacol. Exp. Ther. – volume: 62 start-page: 355 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib126 article-title: Altered response of skeletal muscle to IL-6 in type 2 diabetic patients publication-title: Diabetes doi: 10.2337/db11-1790 – volume: 301 start-page: H450 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib250 article-title: A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01174.2010 – volume: 247 start-page: E726 year: 1984 ident: 10.1016/j.cmet.2021.03.020_bib217 article-title: Increased muscle glucose uptake during contractions: no need for insulin publication-title: Am. J. Physiol. – volume: 597 start-page: 89 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib255 article-title: Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle publication-title: J. Physiol. doi: 10.1113/JP276735 – volume: 10 start-page: 103 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib273 article-title: The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-019-1186-0 – volume: 292 start-page: E1740 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib27 article-title: A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00579.2006 – volume: 246 start-page: E476 year: 1984 ident: 10.1016/j.cmet.2021.03.020_bib232 article-title: Enhanced muscle glucose metabolism after exercise: modulation by local factors publication-title: Am. J. Physiol. – volume: 32 start-page: S157 issue: Suppl 2 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib61 article-title: Skeletal muscle insulin resistance is the primary defect in type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc09-S302 – volume: 142 start-page: 255 year: 1991 ident: 10.1016/j.cmet.2021.03.020_bib7 article-title: Decreased insulin-stimulated 3-0-methylglucose transport in in vitro incubated muscle strips from type II diabetic subjects publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1991.tb09154.x – year: 2021 ident: 10.1016/j.cmet.2021.03.020_bib96 article-title: Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake publication-title: Nat Metab doi: 10.1038/s42255-021-00359-x – volume: 8 start-page: 317 year: 1959 ident: 10.1016/j.cmet.2021.03.020_bib310 article-title: The significance of the action of insulin upon muscle membrane potential publication-title: Diabetes doi: 10.2337/diab.8.4.317 – volume: 322 start-page: 223 year: 1990 ident: 10.1016/j.cmet.2021.03.020_bib249 article-title: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199001253220403 – volume: 45 start-page: 1051 year: 1996 ident: 10.1016/j.cmet.2021.03.020_bib92 article-title: Glucose ingestion causes GLUT4 translocation in human skeletal muscle publication-title: Diabetes doi: 10.2337/diab.45.8.1051 – volume: 333 start-page: 183 year: 1988 ident: 10.1016/j.cmet.2021.03.020_bib121 article-title: Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein publication-title: Nature doi: 10.1038/333183a0 – volume: 188 start-page: 131 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib74 article-title: The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step publication-title: J. Cell Biol. doi: 10.1083/jcb.200908057 – volume: 24 start-page: 2254 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib284 article-title: Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma publication-title: FASEB J. doi: 10.1096/fj.09-137380 – volume: 32 start-page: 1799 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib225 article-title: Insulin activation of plasma nonesterified fatty acid uptake in metabolic syndrome publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.112.250019 – volume: 86 start-page: 3150 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib128 article-title: Sequence, tissue distribution, and differential expression of mRNA for a putative insulin-responsive glucose transporter in mouse 3T3-L1 adipocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.86.9.3150 – volume: 120 start-page: 4007 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib180 article-title: Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI42447 – volume: 16 start-page: 24 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib105 article-title: Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle publication-title: Mol. Metab. doi: 10.1016/j.molmet.2018.07.001 – volume: 291 start-page: E1258 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib86 article-title: How muscle insulin sensitivity is regulated: testing of a hypothesis publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00273.2006 – volume: 32 start-page: 844 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib15 article-title: A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.08.007 – volume: 57 start-page: 2066 year: 2008 ident: 10.1016/j.cmet.2021.03.020_bib10 article-title: siRNA-mediated reduction of inhibitor of nuclear factor-kappaB kinase prevents tumor necrosis factor-α-induced insulin resistance in human skeletal muscle publication-title: Diabetes doi: 10.2337/db07-0763 – volume: 120 start-page: 399 year: 1993 ident: 10.1016/j.cmet.2021.03.020_bib220 article-title: Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis publication-title: J. Cell Biol. doi: 10.1083/jcb.120.2.399 – volume: 20 start-page: 3918 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib170 article-title: Identification of a distal GLUT4 trafficking event controlled by actin polymerization publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-03-0187 – volume: 7 start-page: 45 year: 2008 ident: 10.1016/j.cmet.2021.03.020_bib155 article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.10.013 – volume: 531 start-page: 757 year: 2001 ident: 10.1016/j.cmet.2021.03.020_bib198 article-title: Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2001.0757h.x – volume: 128 start-page: 699 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib298 article-title: Insulin exits skeletal muscle capillaries by fluid-phase transport publication-title: J. Clin. Invest. doi: 10.1172/JCI94053 – volume: 10 start-page: 1241 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib97 article-title: Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12474 – volume: 25 start-page: 1159 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib263 article-title: Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e13-08-0493 – volume: 22 start-page: 506 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib23 article-title: Biogenesis and regulation of insulin-responsive vesicles containing GLUT4 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2010.03.012 – volume: 265 start-page: 987 year: 1990 ident: 10.1016/j.cmet.2021.03.020_bib106 article-title: Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)40147-6 – volume: 96 start-page: 427 year: 1995 ident: 10.1016/j.cmet.2021.03.020_bib197 article-title: Mechanisms and time course of impaired skeletal muscle glucose transport activity in streptozocin diabetic rats publication-title: J. Clin. Invest. doi: 10.1172/JCI118053 – volume: 9 start-page: e53999 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib271 article-title: Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes publication-title: eLife doi: 10.7554/eLife.53999 – volume: 150 start-page: 1935 year: 2009 ident: 10.1016/j.cmet.2021.03.020_bib246 article-title: A transgenic mouse model to study glucose transporter 4myc regulation in skeletal muscle publication-title: Endocrinology doi: 10.1210/en.2008-1372 – volume: 98 start-page: 2133 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib212 article-title: Mechanisms of insulin action and insulin resistance publication-title: Physiol. Rev. doi: 10.1152/physrev.00063.2017 – volume: 28 start-page: 597 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib116 article-title: Update on GLUT4 vesicle traffic: a cornerstone of insulin action publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2017.05.002 – volume: 291 start-page: 23978 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib206 article-title: A role for ceramides, but not sphingomyelins, as antagonists of insulin signaling and mitochondrial metabolism in C2C12 myotubes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.737684 – volume: 306 start-page: 1383 year: 2004 ident: 10.1016/j.cmet.2021.03.020_bib311 article-title: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase publication-title: Science doi: 10.1126/science.1100747 – volume: 13 start-page: 133 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib269 article-title: Exercise-stimulated glucose uptake - regulation and implications for glycaemic control publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2016.162 – volume: 286 start-page: 41359 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib292 article-title: Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.291500 – volume: 68 start-page: 502 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib93 article-title: ADAMTS9 regulates skeletal muscle insulin sensitivity through extracellular matrix alterations publication-title: Diabetes doi: 10.2337/db18-0418 – volume: 86 start-page: 2535 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib42 article-title: A glucose transport protein expressed predominately in insulin-responsive tissues publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.86.8.2535 – volume: 100 start-page: 645 year: 2008 ident: 10.1016/j.cmet.2021.03.020_bib283 article-title: Activation of the small GTPase Rac1 by a specific guanine-nucleotide-exchange factor suffices to induce glucose uptake into skeletal-muscle cells publication-title: Biol. Cell doi: 10.1042/BC20070160 – volume: 2 start-page: e000143 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib20 article-title: Update on the effects of physical activity on insulin sensitivity in humans publication-title: BMJ Open Sport Exerc. Med. doi: 10.1136/bmjsem-2016-000143 – volume: 598 start-page: 5687 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib160 article-title: The insulin-sensitizing effect of a single exercise bout is similar in type I and type II human muscle fibres publication-title: J. Physiol. doi: 10.1113/JP280475 – volume: 67 start-page: 19 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib234 article-title: Insulin action in human thighs after one-legged immobilization publication-title: J Appl Physiol (1985) doi: 10.1152/jappl.1989.67.1.19 – volume: 30 start-page: 1507 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib205 article-title: Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study publication-title: Diabetes Care doi: 10.2337/dc06-2537 – volume: 730 start-page: 49 year: 1983 ident: 10.1016/j.cmet.2021.03.020_bib294 article-title: Identification of the D-glucose-inhibitable cytochalasin B binding site as the glucose transporter in rat diaphragm plasma and microsomal membranes publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(83)90315-2 – volume: 28 start-page: 71 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib196 article-title: Physical inactivity affects skeletal muscle insulin signaling in a birth weight-dependent manner publication-title: J. Diabetes Complications doi: 10.1016/j.jdiacomp.2013.09.002 – volume: 11 start-page: 470 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib215 article-title: Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity publication-title: Nat. Commun. doi: 10.1038/s41467-019-13869-w – volume: 261 start-page: E556 year: 1991 ident: 10.1016/j.cmet.2021.03.020_bib91 article-title: Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle publication-title: Am. J. Physiol. – volume: 93 start-page: 993 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib230 article-title: Exercise, GLUT4, and skeletal muscle glucose uptake publication-title: Physiol. Rev. doi: 10.1152/physrev.00038.2012 – volume: 62 start-page: 1865 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib267 article-title: Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle publication-title: Diabetes doi: 10.2337/db12-1148 – volume: 2 start-page: S31 issue: Suppl 2 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib315 article-title: High-fat load: mechanism(s) of insulin resistance in skeletal muscle publication-title: Int. J. Obes. Suppl. doi: 10.1038/ijosup.2012.20 – volume: 253 start-page: 8002 year: 1978 ident: 10.1016/j.cmet.2021.03.020_bib295 article-title: Mechanism of insulin action on glucose transport in the isolated rat adipose cell. Enhancement of the number of functional transport systems publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34350-8 – volume: 109 start-page: 2967 year: 1996 ident: 10.1016/j.cmet.2021.03.020_bib221 article-title: GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with TGN publication-title: J. Cell Sci. doi: 10.1242/jcs.109.13.2967 – volume: 60 start-page: 1720 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib75 article-title: Muscle and adipose tissue insulin resistance: malady without mechanism? publication-title: J. Lipid Res. doi: 10.1194/jlr.R087510 – year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib113 – volume: 173 start-page: 207 year: 1953 ident: 10.1016/j.cmet.2021.03.020_bib89 article-title: Action of insulin on transfer of sugars across cell barriers; common chemical configuration of substances responsive to action of the hormone publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1953.173.2.207 – volume: 46 start-page: 1257 year: 1997 ident: 10.1016/j.cmet.2021.03.020_bib60 article-title: CL-316,243, a β3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats publication-title: Diabetes doi: 10.2337/diab.46.8.1257 – volume: 92 start-page: 203 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib124 article-title: Insulin diffusion and self-association characterized by real-time UV imaging and Taylor dispersion analysis publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2014.01.022 – volume: 108 start-page: 371 year: 2001 ident: 10.1016/j.cmet.2021.03.020_bib277 article-title: Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles publication-title: J. Clin. Invest. doi: 10.1172/JCI200112348 – volume: 105 start-page: 311 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib55 article-title: Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle publication-title: J. Clin. Invest. doi: 10.1172/JCI7535 – volume: 444 start-page: 710 year: 2002 ident: 10.1016/j.cmet.2021.03.020_bib163 article-title: Gene gun bombardment-mediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo publication-title: Pflugers Arch. doi: 10.1007/s00424-002-0862-5 – volume: 441 start-page: 763 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib236 article-title: Glycogen and its metabolism: some new developments and old themes publication-title: Biochem. J. doi: 10.1042/BJ20111416 – volume: 92 start-page: 5817 year: 1995 ident: 10.1016/j.cmet.2021.03.020_bib172 article-title: Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.13.5817 – volume: 64 start-page: 23 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib167 article-title: Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis publication-title: Diabetes doi: 10.2337/db13-1070 – volume: 39 start-page: 1381 year: 1990 ident: 10.1016/j.cmet.2021.03.020_bib189 article-title: Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM publication-title: Diabetes doi: 10.2337/diab.39.11.1381 – volume: 247 start-page: E291 year: 1984 ident: 10.1016/j.cmet.2021.03.020_bib146 article-title: Induction of sugar uptake response to insulin by serum depletion in fusing L6 myoblasts publication-title: Am. J. Physiol. – volume: 21 start-page: 3529 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib44 article-title: Arp2/3- and cofilin-coordinated actin dynamics is required for insulin-mediated GLUT4 translocation to the surface of muscle cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-04-0316 – volume: 65 start-page: 2862 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib67 article-title: One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation publication-title: Diabetes doi: 10.2337/db15-1661 – volume: 50 start-page: 1324 year: 2001 ident: 10.1016/j.cmet.2021.03.020_bib85 article-title: GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? publication-title: Diabetes doi: 10.2337/diabetes.50.6.1324 – volume: 46 start-page: 1775 year: 1997 ident: 10.1016/j.cmet.2021.03.020_bib300 article-title: Insulin signaling in human skeletal muscle: time course and effect of exercise publication-title: Diabetes doi: 10.2337/diab.46.11.1775 – volume: 263 start-page: C443 year: 1992 ident: 10.1016/j.cmet.2021.03.020_bib177 article-title: Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1992.263.2.C443 – volume: 52 start-page: 1066 year: 2003 ident: 10.1016/j.cmet.2021.03.020_bib151 article-title: 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.52.5.1066 – volume: 259 start-page: E185 year: 1990 ident: 10.1016/j.cmet.2021.03.020_bib17 article-title: Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia publication-title: Am. J. Physiol. – volume: 10 start-page: 13 year: 1951 ident: 10.1016/j.cmet.2021.03.020_bib181 article-title: Myopathy due to a defect in muscle glycogen breakdown publication-title: Clin. Sci. – volume: 24 start-page: 7567 year: 2004 ident: 10.1016/j.cmet.2021.03.020_bib82 article-title: Separation of insulin signaling into distinct GLUT4 translocation and activation steps publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.17.7567-7577.2004 – volume: 69 start-page: 785 year: 1982 ident: 10.1016/j.cmet.2021.03.020_bib231 article-title: Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin publication-title: J. Clin. Invest. doi: 10.1172/JCI110517 – volume: 117 start-page: 399 year: 2004 ident: 10.1016/j.cmet.2021.03.020_bib242 article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy publication-title: Cell doi: 10.1016/S0092-8674(04)00400-3 – volume: 71 start-page: 688 year: 1925 ident: 10.1016/j.cmet.2021.03.020_bib52 article-title: Comparative study of the sugar concentration in arterial and venous blood during insulin action publication-title: Am. J. Physiol. Content doi: 10.1152/ajplegacy.1925.71.3.688 – volume: 33 start-page: 141 year: 2003 ident: 10.1016/j.cmet.2021.03.020_bib104 article-title: Transcapillary insulin transfer in human skeletal muscle publication-title: Eur. J. Clin. Invest. doi: 10.1046/j.1365-2362.2003.01106.x – volume: 42 start-page: 101091 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib179 article-title: β-catenin regulates muscle glucose transport via actin remodelling and M-cadherin binding publication-title: Mol. Metab. doi: 10.1016/j.molmet.2020.101091 – volume: 1 start-page: e85477 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib58 article-title: Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass publication-title: JCI Insight doi: 10.1172/jci.insight.85477 – volume: 97 start-page: 1125 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib88 article-title: The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.3.1125 – volume: 78 start-page: 24 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib59 article-title: Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2 publication-title: Vascul. Pharmacol. doi: 10.1016/j.vph.2015.09.002 – volume: 27 start-page: 237 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib152 article-title: The barrier within: endothelial transport of hormones publication-title: Physiology (Bethesda) – volume: 72 start-page: 2197 year: 1992 ident: 10.1016/j.cmet.2021.03.020_bib140 article-title: Eccentric exercise induces transient insulin resistance in healthy individuals publication-title: J Appl Physiol (1985) doi: 10.1152/jappl.1992.72.6.2197 – volume: 142 start-page: 1429 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib218 article-title: Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions publication-title: J. Cell Biol. doi: 10.1083/jcb.142.6.1429 – volume: 29 start-page: 50 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib175 article-title: Mechanisms preserving insulin action during high dietary fat intake publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.08.022 – volume: 31 start-page: 336 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib165 article-title: Endothelial transcytosis of insulin: does it contribute to insulin resistance? publication-title: Physiology (Bethesda) – volume: 54 start-page: 157 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib288 article-title: Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training publication-title: Diabetologia doi: 10.1007/s00125-010-1924-4 – volume: 32 start-page: 57 year: 2021 ident: 10.1016/j.cmet.2021.03.020_bib34 article-title: Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E20-06-0356 – volume: 40 start-page: 1354 year: 2008 ident: 10.1016/j.cmet.2021.03.020_bib40 article-title: Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity publication-title: Nat. Genet. doi: 10.1038/ng.244 – volume: 217 start-page: 2273 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib276 article-title: The cell biology of systemic insulin function publication-title: J. Cell Biol. doi: 10.1083/jcb.201802095 – volume: 60 start-page: 416 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib129 article-title: Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin α2β1 in mice publication-title: Diabetes doi: 10.2337/db10-1116 – volume: 10 start-page: 30 year: 2012 ident: 10.1016/j.cmet.2021.03.020_bib213 article-title: Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages publication-title: Cell Commun. Signal. doi: 10.1186/1478-811X-10-30 – volume: 46 start-page: 649 year: 2003 ident: 10.1016/j.cmet.2021.03.020_bib238 article-title: Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues publication-title: Diabetologia doi: 10.1007/s00125-003-1080-1 – volume: 135 start-page: 415 year: 1996 ident: 10.1016/j.cmet.2021.03.020_bib290 article-title: Insulin unmasks a COOH-terminal Glut4 epitope and increases glucose transport across T-tubules in skeletal muscle publication-title: J. Cell Biol. doi: 10.1083/jcb.135.2.415 – volume: 96 start-page: 786 year: 1995 ident: 10.1016/j.cmet.2021.03.020_bib14 article-title: Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans publication-title: J. Clin. Invest. doi: 10.1172/JCI118124 – volume: 41 start-page: 1562 year: 1992 ident: 10.1016/j.cmet.2021.03.020_bib178 article-title: Insulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle publication-title: Diabetes doi: 10.2337/diab.41.12.1562 – volume: 12 start-page: 12 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib266 article-title: Current advances in our understanding of exercise as medicine in metabolic disease publication-title: Curr. Opin. Physiol. doi: 10.1016/j.cophys.2019.04.008 – volume: 59 start-page: 1148 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib214 article-title: Sphingolipid changes do not underlie fatty acid-evoked GLUT4 insulin resistance nor inflammation signals in muscle cells publication-title: J. Lipid Res. doi: 10.1194/jlr.M080788 – volume: 98 start-page: 2027 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib261 article-title: Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2012-3876 – volume: 33 start-page: 748 year: 2021 ident: 10.1016/j.cmet.2021.03.020_bib243 article-title: Insulin action in adipocytes, adipose remodeling, and systemic effects publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.03.019 – volume: 69 start-page: 2281 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib18 article-title: The rabgaps tbc1d1 and tbc1d4 control uptake of long-chain fatty acids into skeletal muscle via fatty acid transporter SLC27A4/FATP4 publication-title: Diabetes doi: 10.2337/db20-0180 – volume: 290 start-page: E560 year: 2006 ident: 10.1016/j.cmet.2021.03.020_bib19 article-title: Increased collagen content in insulin-resistant skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00202.2005 – volume: 66 start-page: 1491 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib184 article-title: GLUT4 is not necessary for overload-induced glucose uptake or hypertrophic growth in mouse skeletal muscle publication-title: Diabetes doi: 10.2337/db16-1075 – volume: 90 start-page: 1568 year: 1992 ident: 10.1016/j.cmet.2021.03.020_bib139 article-title: Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation publication-title: J. Clin. Invest. doi: 10.1172/JCI116025 – volume: 47 start-page: 5 year: 1998 ident: 10.1016/j.cmet.2021.03.020_bib69 article-title: Selective impairment in GLUT4 translocation to transverse tubules in skeletal muscle of streptozotocin-induced diabetic rats publication-title: Diabetes doi: 10.2337/diab.47.1.5 – volume: 253 start-page: 279 year: 1987 ident: 10.1016/j.cmet.2021.03.020_bib36 article-title: Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(87)90661-8 – volume: 248 start-page: E567 year: 1985 ident: 10.1016/j.cmet.2021.03.020_bib119 article-title: Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats publication-title: Am. J. Physiol. – volume: 20 start-page: 434 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib87 article-title: Endothelial cells actively concentrate insulin during its transendothelial transport publication-title: Microcirculation doi: 10.1111/micc.12044 – volume: 114 start-page: E8478 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib153 article-title: Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1710625114 – volume: 39 start-page: 1607 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib134 article-title: Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance publication-title: Int. J. Obes. doi: 10.1038/ijo.2015.104 – volume: 279 start-page: E1039 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib137 article-title: Lipid oxidation is reduced in obese human skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.2000.279.5.E1039 – volume: 264 start-page: 7776 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib81 article-title: Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)83106-4 – volume: 251 start-page: 1913 year: 1976 ident: 10.1016/j.cmet.2021.03.020_bib235 article-title: Rabbit skeletal muscle glycogen synthase. I. Relationship between phosphorylation state and kinetic properties publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)33634-7 – volume: 449 start-page: 479 year: 2013 ident: 10.1016/j.cmet.2021.03.020_bib293 article-title: AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues publication-title: Biochem. J. doi: 10.1042/BJ20120702 – volume: 167 start-page: 13 year: 1951 ident: 10.1016/j.cmet.2021.03.020_bib203 article-title: Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1951.167.1.13 – volume: 15 start-page: 5565 year: 2004 ident: 10.1016/j.cmet.2021.03.020_bib226 article-title: Insulin and hypertonicity recruit GLUT4 to the plasma membrane of muscle cells by using N-ethylmaleimide-sensitive factor-dependent SNARE mechanisms but different v-SNAREs: role of TI-VAMP publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-03-0266 – volume: 64 start-page: 485 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib4 article-title: Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes publication-title: Diabetes doi: 10.2337/db14-0590 – volume: 42 start-page: 1171 year: 1999 ident: 10.1016/j.cmet.2021.03.020_bib114 article-title: Lipolysis in skeletal muscle is rapidly regulated by low physiological doses of insulin publication-title: Diabetologia doi: 10.1007/s001250051288 – volume: 104 start-page: 704 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib149 article-title: Electroporated GLUT4-7myc-GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns publication-title: Exp. Physiol. doi: 10.1113/EP087545 – volume: 68 start-page: 1756 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib143 article-title: TBC1D4 is necessary for enhancing muscle insulin sensitivity in response to AICAR and contraction publication-title: Diabetes doi: 10.2337/db18-0769 – volume: 1713 start-page: 175 year: 2018 ident: 10.1016/j.cmet.2021.03.020_bib118 article-title: GLUT4 translocation in single muscle cells in culture: epitope detection by immunofluorescence publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7507-5_14 – volume: 92 start-page: 380 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib282 article-title: Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2014.08.033 – volume: 28 start-page: 108 year: 2005 ident: 10.1016/j.cmet.2021.03.020_bib28 article-title: Effects of exercise training on glucose homeostasis: the HERITAGE Family Study publication-title: Diabetes Care doi: 10.2337/diacare.28.1.108 – volume: 25 start-page: 486 year: 1968 ident: 10.1016/j.cmet.2021.03.020_bib274 article-title: A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose publication-title: Anal. Biochem. doi: 10.1016/0003-2697(68)90127-9 – volume: 76 start-page: 149 year: 1985 ident: 10.1016/j.cmet.2021.03.020_bib63 article-title: Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus publication-title: J. Clin. Invest. doi: 10.1172/JCI111938 – volume: 282 start-page: E491 year: 2002 ident: 10.1016/j.cmet.2021.03.020_bib171 article-title: Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00419.2001 – volume: 299 start-page: E752 year: 2010 ident: 10.1016/j.cmet.2021.03.020_bib6 article-title: Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00590.2009 – volume: 66 start-page: 1501 year: 2017 ident: 10.1016/j.cmet.2021.03.020_bib251 article-title: Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling publication-title: Diabetes doi: 10.2337/db16-1327 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib224 article-title: Insulin-stimulated muscle glucose uptake and insulin signaling in lean and obese humans publication-title: J. Clin. Endocrinol. Metab. – volume: 121 start-page: 2457 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib253 article-title: Mitochondrial dysfunction in patients with primary congenital insulin resistance publication-title: J. Clin. Invest. doi: 10.1172/JCI46405 – volume: 282 start-page: E1267 year: 2002 ident: 10.1016/j.cmet.2021.03.020_bib199 article-title: Decreased insulin action in skeletal muscle from patients with McArdle’s disease publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00526.2001 – volume: 42 start-page: 1469 year: 1993 ident: 10.1016/j.cmet.2021.03.020_bib122 article-title: Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Importance of the endothelial barrier for insulin publication-title: Diabetes doi: 10.2337/diab.42.10.1469 – volume: 49 start-page: 647 year: 2000 ident: 10.1016/j.cmet.2021.03.020_bib239 article-title: Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients publication-title: Diabetes doi: 10.2337/diabetes.49.4.647 – volume: 56 start-page: 390 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib49 article-title: Calcium signaling in insulin action on striated muscle publication-title: Cell Calcium doi: 10.1016/j.ceca.2014.08.012 – volume: 56 start-page: 414 year: 2007 ident: 10.1016/j.cmet.2021.03.020_bib275 article-title: The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic publication-title: Diabetes doi: 10.2337/db06-0900 – volume: 598 start-page: 5351 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib192 article-title: Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle publication-title: J. Physiol. doi: 10.1113/JP280294 – volume: 59 start-page: 44 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib1 article-title: Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis publication-title: Diabetologia doi: 10.1007/s00125-015-3751-0 – volume: 92 start-page: 983 year: 1995 ident: 10.1016/j.cmet.2021.03.020_bib237 article-title: Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.4.983 – volume: 61 start-page: 644 year: 1983 ident: 10.1016/j.cmet.2021.03.020_bib145 article-title: Insulin binding to differentiating muscle cells in culture publication-title: Can. J. Biochem. Cell Biol. doi: 10.1139/o83-081 – volume: 256 start-page: E494 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib39 article-title: Prolonged increase in insulin-stimulated glucose transport in muscle after exercise publication-title: Am. J. Physiol. – volume: 65 start-page: 1621 year: 2016 ident: 10.1016/j.cmet.2021.03.020_bib154 article-title: A human model of dietary saturated fatty acid induced insulin resistance publication-title: Metabolism doi: 10.1016/j.metabol.2016.07.015 – volume: 94 start-page: 1172 year: 1994 ident: 10.1016/j.cmet.2021.03.020_bib256 article-title: Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release publication-title: J. Clin. Invest. doi: 10.1172/JCI117433 – volume: 48 start-page: 1192 year: 1999 ident: 10.1016/j.cmet.2021.03.020_bib133 article-title: Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.48.5.1192 – volume: 317 start-page: E1022 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib182 article-title: Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00260.2019 – volume: 104 start-page: 733 year: 1999 ident: 10.1016/j.cmet.2021.03.020_bib136 article-title: Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes publication-title: J. Clin. Invest. doi: 10.1172/JCI6928 – volume: 264 start-page: 19994 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib83 article-title: The acquisition of increased insulin-responsive hexose transport in 3T3-L1 adipocytes correlates with expression of a novel transporter gene publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)47209-8 – volume: 26 start-page: 740 year: 2015 ident: 10.1016/j.cmet.2021.03.020_bib11 article-title: Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-08-1307 – volume: 512 start-page: 190 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib193 article-title: A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes publication-title: Nature doi: 10.1038/nature13425 – volume: 5 start-page: e1186 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib285 article-title: Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.161 – volume: 105 start-page: 154169 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib98 article-title: Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion publication-title: Metabolism doi: 10.1016/j.metabol.2020.154169 – volume: 26 start-page: 323 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib268 article-title: Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2013.11.007 – volume: 8 start-page: 434 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib191 article-title: Rho GTPases-emerging regulators of glucose homeostasis and metabolic health publication-title: Cells doi: 10.3390/cells8050434 – volume: 12 start-page: 304 year: 2021 ident: 10.1016/j.cmet.2021.03.020_bib65 article-title: Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training publication-title: Nat. Commun. doi: 10.1038/s41467-020-20556-8 – volume: 60 start-page: 64 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib107 article-title: Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling publication-title: Diabetes doi: 10.2337/db10-0698 – volume: 16 start-page: 683 year: 2020 ident: 10.1016/j.cmet.2021.03.020_bib79 article-title: Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-020-0405-1 – volume: 66 start-page: 695 year: 1989 ident: 10.1016/j.cmet.2021.03.020_bib187 article-title: Effect of training on the dose-response relationship for insulin action in men publication-title: J Appl Physiol (1985) doi: 10.1152/jappl.1989.66.2.695 – volume: 259 start-page: 13 year: 1976 ident: 10.1016/j.cmet.2021.03.020_bib73 article-title: The number of sodium ion pumping sites in skeletal muscle and its modification by insulin publication-title: J. Physiol. doi: 10.1113/jphysiol.1976.sp011452 – volume: 23 start-page: 90 year: 1967 ident: 10.1016/j.cmet.2021.03.020_bib100 article-title: Uptake and release of free fatty acids and other metabolites in the legs of exercising men publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1967.23.1.90 – volume: 51 start-page: 2944 year: 2002 ident: 10.1016/j.cmet.2021.03.020_bib132 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.10.2944 – volume: 316 start-page: E695 year: 2019 ident: 10.1016/j.cmet.2021.03.020_bib207 article-title: Skeletal muscle fiber type-selective effects of acute exercise on insulin-stimulated glucose uptake in insulin-resistant, high-fat-fed rats publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00482.2018 – volume: 63 start-page: 1725 year: 2014 ident: 10.1016/j.cmet.2021.03.020_bib25 article-title: Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass publication-title: Diabetes doi: 10.2337/db13-1307 – volume: 96 start-page: E691 year: 2011 ident: 10.1016/j.cmet.2021.03.020_bib287 article-title: Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2010-2243 |
SSID | ssj0036393 |
Score | 2.6676958 |
SecondaryResourceType | review_article |
Snippet | As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 758 |
SubjectTerms | Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - pathology Exercise Glucose - metabolism Glucose Transporter Type 4 - metabolism Humans Insulin - metabolism Muscle, Skeletal - metabolism Oxidative Stress Receptor, Insulin - metabolism Signal Transduction |
Title | The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33826918 https://www.proquest.com/docview/2510266930 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEGguiJ1hk5G4lVSJ7SbOcRiBRmynDiqnyHYclEnTjNr0UH49z1uaAQYBUpRUWRzV79PL957fgtCrhIuS66SKmPExMaVpJDkVUayVFJVK8qw0icKfPqenZ-z9YrbYx8_b7JJeTtX33-aV_I9U4RzI1WTJ_oNkh0HhBPwG-cIeJAz7v5ZxaxbsXXaCKx_rg8th2zTwTTHJju12o1zYsE2MEmvRmhYRk97O-qT0ITHGa_BtuVO6rcWYtJ4Y_14LI8luGSoOGqcM2Pp2YejjrmkGfMy7RqytV_pLbRYEajEZ_Msmi983AgH92-z9qB-Wte2Td9zWazF2RJDExq_4MtZOeQIXjMDUjsfa1ZW58ChiI1WZuZLtv6hw5004nyr4X1PzHluE1g06kulFa4UKFjZJc6_CLxfODpeuoxsEbAib3bl4Ez7TFKgZ9VlULuDv5xceolthiMuk5QpLxDKS-R1025sS-Njh4i66plf30E3XXHR3H30FdGCDDuzRgbsKe3TAEQd0YIeO1xiwgQdsYIcNPMIGDth4gM7evZ2fnEa-kUakgKP0UQm0UKU5rxI2I4xLRbMyIUSlgrOZ0ElJeVqWiVZEa5XlscwEIcBN05LLPFYxfYgOVt1KP0bYtBtgaS60FhVjVMusAoYnY0kyXsVZdYSSMFOF8lXmTbOTZRHCCc8LM9GFmegipgVM9BGaDM9cuBorf7z7ZRBAAarQrG-Jle62mwKoegx8M6dwzyMnmWG8IMknV155ig73qH6GDvr1Vj8HwtnLFxY4PwAPW4GZ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+many+actions+of+insulin+in+skeletal+muscle%2C+the+paramount+tissue+determining+glycemia&rft.jtitle=Cell+metabolism&rft.au=Sylow%2C+Lykke&rft.au=Tokarz%2C+Victoria+L&rft.au=Richter%2C+Erik+A&rft.au=Klip%2C+Amira&rft.date=2021-04-06&rft.eissn=1932-7420&rft.volume=33&rft.issue=4&rft.spage=758&rft_id=info:doi/10.1016%2Fj.cmet.2021.03.020&rft_id=info%3Apmid%2F33826918&rft.externalDocID=33826918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |