The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia

As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating contro...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 33; no. 4; pp. 758 - 780
Main Authors Sylow, Lykke, Tokarz, Victoria L., Richter, Erik A., Klip, Amira
Format Journal Article
LanguageEnglish
Published United States 06.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
AbstractList As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Author Richter, Erik A.
Tokarz, Victoria L.
Klip, Amira
Sylow, Lykke
Author_xml – sequence: 1
  givenname: Lykke
  orcidid: 0000-0003-0905-5932
  surname: Sylow
  fullname: Sylow, Lykke
– sequence: 2
  givenname: Victoria L.
  surname: Tokarz
  fullname: Tokarz, Victoria L.
– sequence: 3
  givenname: Erik A.
  orcidid: 0000-0002-6850-3056
  surname: Richter
  fullname: Richter, Erik A.
– sequence: 4
  givenname: Amira
  orcidid: 0000-0001-7906-0302
  surname: Klip
  fullname: Klip, Amira
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33826918$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAURS0EgrbwBxiQRwYSnu3ESUZU8SVVYoGByXKdV3CxnRI7Q_89iYCFgem-4dyrpzMnh6ELSMg5g5wBk9fb3HhMOQfOchA5cDggM9YInlUFh8PxLkvICibYCZnHuAUQUjTimJwIUXPZsHpGXp_fkXod9lSbZLsQabehNsTB2TAmjR_oMGlH_RCNwyuaRn6ne-27ISSabIwD0hYT9t4GG97om9sb9FafkqONdhHPfnJBXu5un5cP2erp_nF5s8rM-FnK2qoEI5t6w4qSF_XaiKplnBup66LUyFpRy7ZlaDiiqRpYV5pzkKVs63UDBsSCXH7v7vruc8CYlLfRoHM6YDdExUsGXMpGTOjFDzqsPbZq11uv-7361TEC9Tdg-i7GHjfK2KQnL6nX1ikGajKvtmoyrybzCoQazY9V_qf6u_5P6QsMlog8
CitedBy_id crossref_primary_10_1016_j_gene_2024_148216
crossref_primary_10_1016_j_peptides_2023_171117
crossref_primary_10_1093_jas_skad394
crossref_primary_10_3389_fendo_2021_680153
crossref_primary_10_1113_JP281352
crossref_primary_10_1016_j_archger_2024_105687
crossref_primary_10_3389_fendo_2025_1554617
crossref_primary_10_1038_s41467_024_55036_w
crossref_primary_10_1016_j_cmet_2024_12_009
crossref_primary_10_1016_j_arres_2024_100100
crossref_primary_10_4103_apjtb_apjtb_383_24
crossref_primary_10_1007_s00421_022_05120_0
crossref_primary_10_3390_molecules28020483
crossref_primary_10_1002_cmdc_202400492
crossref_primary_10_3390_ijms22073469
crossref_primary_10_1038_s41598_024_78281_x
crossref_primary_10_1093_jmcb_mjad016
crossref_primary_10_1016_j_jhepr_2023_100963
crossref_primary_10_3390_molecules26206289
crossref_primary_10_1016_j_lfs_2023_122137
crossref_primary_10_1016_j_metabol_2022_155142
crossref_primary_10_1016_j_gene_2023_147656
crossref_primary_10_1016_j_ijbiomac_2024_130737
crossref_primary_10_1210_endocr_bqab199
crossref_primary_10_3390_ani13132159
crossref_primary_10_1038_s41392_021_00723_z
crossref_primary_10_3390_cimb44120410
crossref_primary_10_1002_jcsm_13614
crossref_primary_10_1080_09637486_2022_2154328
crossref_primary_10_14712_23362936_2024_30
crossref_primary_10_1152_ajpregu_00059_2023
crossref_primary_10_14814_phy2_15183
crossref_primary_10_3390_s23125625
crossref_primary_10_1016_j_bbrc_2024_149742
crossref_primary_10_1111_ggi_14864
crossref_primary_10_3390_ijms252413480
crossref_primary_10_1016_j_aquaculture_2022_739142
crossref_primary_10_3390_toxics12010017
crossref_primary_10_1007_s11154_021_09661_1
crossref_primary_10_1016_j_psj_2024_104619
crossref_primary_10_1021_acs_jafc_4c03677
crossref_primary_10_1016_j_cmet_2024_12_011
crossref_primary_10_1152_japplphysiol_00789_2022
crossref_primary_10_1177_20420188221113140
crossref_primary_10_1093_gerona_glac121
crossref_primary_10_1002_jcsm_12880
crossref_primary_10_1038_s41467_023_40595_1
crossref_primary_10_1152_physrev_00015_2022
crossref_primary_10_1017_jns_2024_66
crossref_primary_10_3390_cells10040915
crossref_primary_10_4239_wjd_v15_i8_1704
crossref_primary_10_1186_s12902_024_01579_4
crossref_primary_10_1210_jendso_bvad057
crossref_primary_10_1007_s11154_025_09954_9
crossref_primary_10_1016_j_cell_2024_06_029
crossref_primary_10_1016_j_isci_2023_106895
crossref_primary_10_1016_j_biopha_2023_114244
crossref_primary_10_1152_ajpcell_00085_2024
crossref_primary_10_1152_physiol_00016_2021
crossref_primary_10_5812_mcj_142039
crossref_primary_10_1007_s11356_023_31683_2
crossref_primary_10_1113_JP283039
crossref_primary_10_1113_JP285975
crossref_primary_10_1186_s12877_024_04827_3
crossref_primary_10_1002_mnfr_202100669
crossref_primary_10_1016_j_diabres_2025_112031
crossref_primary_10_3390_biom15010020
crossref_primary_10_1016_j_foodres_2023_112750
crossref_primary_10_1016_j_cld_2023_01_002
crossref_primary_10_1016_j_bcp_2023_115830
crossref_primary_10_1016_j_diabet_2025_101618
crossref_primary_10_1152_physiol_00034_2021
crossref_primary_10_1002_edm2_361
crossref_primary_10_3389_fendo_2023_1165415
crossref_primary_10_1152_ajpendo_00110_2022
crossref_primary_10_7554_eLife_94616_3
crossref_primary_10_1038_s41467_024_54183_4
crossref_primary_10_1038_s41598_023_33878_6
crossref_primary_10_1016_j_xcrm_2023_101372
crossref_primary_10_1016_j_compbiomed_2024_109024
crossref_primary_10_2337_db24_0786
crossref_primary_10_3389_fphar_2022_1066279
crossref_primary_10_1016_j_jep_2023_117249
crossref_primary_10_1016_j_biochi_2022_08_021
crossref_primary_10_1111_ejn_16583
crossref_primary_10_3389_fendo_2023_1111791
crossref_primary_10_7554_eLife_94616
crossref_primary_10_1172_JCI154699
crossref_primary_10_1016_j_mcpro_2023_100655
crossref_primary_10_3390_cells10082093
crossref_primary_10_1111_jdi_14200
crossref_primary_10_1016_j_cmet_2022_10_002
crossref_primary_10_1073_pnas_2211041120
crossref_primary_10_1021_acs_jafc_2c08373
crossref_primary_10_35371_aoem_2023_35_e40
crossref_primary_10_1002_1873_3468_14937
crossref_primary_10_3389_fnut_2024_1324196
crossref_primary_10_3390_cells11192956
crossref_primary_10_4254_wjh_v16_i2_152
crossref_primary_10_1016_j_cellsig_2023_110944
crossref_primary_10_1146_annurev_physiol_042022_031657
crossref_primary_10_1016_j_jcmgh_2024_01_016
crossref_primary_10_1016_j_mce_2025_112466
crossref_primary_10_1039_D2FO02026B
crossref_primary_10_1186_s43141_022_00348_x
crossref_primary_10_1007_s00210_024_03439_3
crossref_primary_10_3389_fendo_2023_1185725
crossref_primary_10_1016_j_tem_2021_07_008
crossref_primary_10_1159_000524059
crossref_primary_10_3389_fendo_2022_878280
crossref_primary_10_1038_s41598_025_85174_0
crossref_primary_10_3389_fendo_2022_1019405
crossref_primary_10_1016_j_jnha_2024_100401
crossref_primary_10_1016_j_jpha_2023_08_013
crossref_primary_10_1080_0284186X_2023_2197124
crossref_primary_10_2337_db21_0601
crossref_primary_10_1371_journal_pone_0310406
crossref_primary_10_1038_s41392_024_01756_w
crossref_primary_10_3390_biom12121734
crossref_primary_10_1016_j_isci_2024_108800
crossref_primary_10_1002_cpz1_803
crossref_primary_10_1038_s41574_023_00933_1
crossref_primary_10_1371_journal_pone_0296815
crossref_primary_10_1016_j_metabol_2023_155607
crossref_primary_10_14814_phy2_15536
crossref_primary_10_1016_j_psj_2024_104657
crossref_primary_10_1038_s41366_023_01283_8
crossref_primary_10_1210_clinem_dgac430
crossref_primary_10_1016_j_bbamcr_2024_119748
crossref_primary_10_1007_s12603_021_1665_8
crossref_primary_10_3389_fendo_2023_1166756
crossref_primary_10_2174_0113895575299439240216081711
crossref_primary_10_1042_BCJ20210185
crossref_primary_10_1038_s41392_024_01951_9
crossref_primary_10_1016_j_lfs_2022_121015
crossref_primary_10_2196_64456
crossref_primary_10_14336_AD_2024_0407
crossref_primary_10_4239_wjd_v14_i5_494
crossref_primary_10_3390_ijms25169037
crossref_primary_10_1111_cpf_12896
crossref_primary_10_3390_ijms241411467
crossref_primary_10_1038_s41598_023_35393_0
crossref_primary_10_1152_ajpendo_00225_2023
crossref_primary_10_1016_j_smhs_2025_02_010
crossref_primary_10_1507_endocrj_EJ23_0151
crossref_primary_10_1111_obr_13762
crossref_primary_10_1007_s00421_023_05135_1
crossref_primary_10_1038_s41598_024_67755_7
crossref_primary_10_1111_jnc_16205
crossref_primary_10_1038_s41598_024_84218_1
crossref_primary_10_21931_RB_2023_08_02_47
crossref_primary_10_1016_j_cmet_2024_02_014
crossref_primary_10_1186_s12987_023_00431_6
crossref_primary_10_1210_endocr_bqae126
crossref_primary_10_3389_fendo_2023_1308373
crossref_primary_10_1021_acsomega_3c01027
crossref_primary_10_1016_j_cmet_2024_04_006
crossref_primary_10_1002_cph4_70003
crossref_primary_10_1152_physiolgenomics_00014_2021
crossref_primary_10_7717_peerj_15761
crossref_primary_10_1093_toxres_tfae197
crossref_primary_10_1002_jcb_30179
crossref_primary_10_1242_jcs_261454
crossref_primary_10_3389_fendo_2022_964132
crossref_primary_10_1186_s12885_021_08820_6
Cites_doi 10.2337/db06-0823
10.1016/0005-2736(96)00041-7
10.1038/259369a0
10.1186/2044-5040-1-26
10.1073/pnas.77.5.2542
10.2337/diab.47.8.1281
10.1152/jappl.1989.66.2.876
10.1007/s001250050946
10.1016/j.cmet.2006.04.008
10.1172/JCI92035
10.2337/diabetes.52.6.1393
10.1016/j.molmet.2020.100998
10.1152/ajpendo.00466.2011
10.2337/diab.42.11.1588
10.1042/BJ20050887
10.1002/oby.20615
10.1007/s00125-008-1014-z
10.1152/ajpendo.00210.2009
10.1152/ajpheart.01279.2010
10.1172/JCI114275
10.1152/ajplegacy.1955.182.1.12
10.1056/NEJMoa2003697
10.1152/ajpendo.00690.2009
10.2337/db06-0062
10.1128/MCB.26.9.3455-3467.2006
10.1007/s00125-013-2897-x
10.1113/JP278600
10.1128/MCB.19.6.4008
10.2337/diab.44.8.936
10.2337/diabetes.49.3.325
10.1152/ajpendo.00408.2002
10.1139/H09-043
10.1152/ajpendo.00392.2017
10.1016/S0021-9258(18)42923-7
10.1016/S0006-291X(88)81020-9
10.1091/mbc.E15-05-0319
10.1111/j.1464-5491.1991.tb01572.x
10.1042/BCJ20200542
10.1172/JCI88880
10.1016/0003-9861(83)90134-0
10.1097/JES.0b013e318275574c
10.1016/j.febslet.2015.08.010
10.3109/00365517009049217
10.1016/j.cmet.2007.01.002
10.1136/bmj.1.3299.516
10.1242/jcs.097063
10.1016/S0021-9258(19)85561-8
10.1042/BJ20081319
10.1172/JCI116230
10.1016/S0021-9258(18)66808-5
10.1074/jbc.M117.818351
10.1007/s00125-012-2811-y
10.2337/diabetes.50.8.1901
10.1091/mbc.e12-04-0263
10.1172/JCI116005
10.1038/78693
10.1113/jphysiol.1996.sp021541
10.1113/JP275602
10.1007/s00125-011-2334-y
10.1074/jbc.M807408200
10.2337/diab.44.9.1010
10.1152/physiolgenomics.00127.2017
10.2337/db16-0154
10.1152/ajpendo.00304.2019
10.1007/BF02658504
10.1111/tra.12282
10.1113/JP278219
10.1146/annurev-physiol-031620-093815
10.2337/diab.36.4.434
10.1152/physrev.00031.2010
10.1016/j.molmet.2013.11.003
10.1152/ajplegacy.1922.62.1.177
10.1038/nature04634
10.1073/pnas.1009523107
10.1007/s00125-012-2644-8
10.1002/oby.22683
10.1021/bi00772a001
10.1152/ajpendo.00008.2018
10.1016/j.cmet.2010.10.006
10.1007/s00125-014-3395-5
10.1016/j.cell.2017.02.004
10.1152/japplphysiol.00921.2011
10.1210/endo-125-2-890
10.1172/JCI86522
10.2337/diabetes.54.6.1692
10.1126/science.3883490
10.2337/db11-1572
10.1074/jbc.C800241200
10.2337/db14-0961
10.1016/0014-5793(87)80452-0
10.1161/01.CIR.101.13.1539
10.14814/phy2.13956
10.2337/diabetes.50.12.2682
10.3390/ijms21165738
10.2337/db09-0988
10.1152/ajpendo.00481.2007
10.1016/j.dib.2017.07.069
10.1152/ajpendo.00243.2018
10.1126/science.1096301
10.1007/s00125-006-0457-3
10.1152/ajpendo.00113.2007
10.1002/dmr.5610020101
10.1007/978-1-4899-1928-1_2
10.7326/0003-4819-113-12-909
10.1152/jappl.1998.85.4.1218
10.1152/ajpcell.1985.249.3.C233
10.1007/s00125-007-0641-0
10.2337/db17-0046
10.1007/s00125-007-0594-3
10.2337/db05-1613
10.1152/ajplegacy.1950.163.1.70
10.1074/jbc.M412317200
10.2337/db16-0530
10.1007/s00018-003-3001-3
10.1113/jphysiol.2008.157107
10.1038/nm.4350
10.1152/jappl.1991.70.3.1245
10.1074/jbc.REV119.008351
10.3389/fphys.2020.00253
10.1152/ajpregu.00002.2017
10.2337/diabetes.49.7.1092
10.1152/ajpregu.00228.2014
10.1016/S0021-9258(18)77362-6
10.2337/diab.45.1.28
10.2337/db06-1698
10.1172/JCI1557
10.1016/S0021-9258(18)51686-0
10.1210/jc.2011-2587
10.2337/diab.30.12.1000
10.1016/S1097-2765(00)80155-0
10.1113/jphysiol.2013.266338
10.1242/bio.20147898
10.1111/j.1748-1716.2010.02180.x
10.1152/ajpendo.00164.2011
10.2337/diab.33.8.794
10.1016/0005-2736(73)90145-4
10.2337/db11-1790
10.1152/ajpheart.01174.2010
10.1113/JP276735
10.1186/s13287-019-1186-0
10.1152/ajpendo.00579.2006
10.2337/dc09-S302
10.1111/j.1748-1716.1991.tb09154.x
10.1038/s42255-021-00359-x
10.2337/diab.8.4.317
10.1056/NEJM199001253220403
10.2337/diab.45.8.1051
10.1038/333183a0
10.1083/jcb.200908057
10.1096/fj.09-137380
10.1161/ATVBAHA.112.250019
10.1073/pnas.86.9.3150
10.1172/JCI42447
10.1016/j.molmet.2018.07.001
10.1152/ajpendo.00273.2006
10.1016/j.cmet.2020.08.007
10.2337/db07-0763
10.1083/jcb.120.2.399
10.1091/mbc.e09-03-0187
10.1016/j.cmet.2007.10.013
10.1111/j.1469-7793.2001.0757h.x
10.1172/JCI94053
10.1002/jcsm.12474
10.1091/mbc.e13-08-0493
10.1016/j.ceb.2010.03.012
10.1016/S0021-9258(19)40147-6
10.1172/JCI118053
10.7554/eLife.53999
10.1210/en.2008-1372
10.1152/physrev.00063.2017
10.1016/j.tem.2017.05.002
10.1074/jbc.M116.737684
10.1126/science.1100747
10.1038/nrendo.2016.162
10.1074/jbc.M111.291500
10.2337/db18-0418
10.1073/pnas.86.8.2535
10.1042/BC20070160
10.1136/bmjsem-2016-000143
10.1113/JP280475
10.1152/jappl.1989.67.1.19
10.2337/dc06-2537
10.1016/0005-2736(83)90315-2
10.1016/j.jdiacomp.2013.09.002
10.1038/s41467-019-13869-w
10.1152/physrev.00038.2012
10.2337/db12-1148
10.1038/ijosup.2012.20
10.1016/S0021-9258(17)34350-8
10.1242/jcs.109.13.2967
10.1194/jlr.R087510
10.1152/ajplegacy.1953.173.2.207
10.2337/diab.46.8.1257
10.1016/j.jpba.2014.01.022
10.1172/JCI200112348
10.1172/JCI7535
10.1007/s00424-002-0862-5
10.1042/BJ20111416
10.1073/pnas.92.13.5817
10.2337/db13-1070
10.2337/diab.39.11.1381
10.1091/mbc.e10-04-0316
10.2337/db15-1661
10.2337/diabetes.50.6.1324
10.2337/diab.46.11.1775
10.1152/ajpcell.1992.263.2.C443
10.2337/diabetes.52.5.1066
10.1128/MCB.24.17.7567-7577.2004
10.1172/JCI110517
10.1016/S0092-8674(04)00400-3
10.1152/ajplegacy.1925.71.3.688
10.1046/j.1365-2362.2003.01106.x
10.1016/j.molmet.2020.101091
10.1172/jci.insight.85477
10.1073/pnas.97.3.1125
10.1016/j.vph.2015.09.002
10.1152/jappl.1992.72.6.2197
10.1083/jcb.142.6.1429
10.1016/j.cmet.2018.08.022
10.1007/s00125-010-1924-4
10.1091/mbc.E20-06-0356
10.1038/ng.244
10.1083/jcb.201802095
10.2337/db10-1116
10.1186/1478-811X-10-30
10.1007/s00125-003-1080-1
10.1083/jcb.135.2.415
10.1172/JCI118124
10.2337/diab.41.12.1562
10.1016/j.cophys.2019.04.008
10.1194/jlr.M080788
10.1210/jc.2012-3876
10.1016/j.cmet.2021.03.019
10.2337/db20-0180
10.1152/ajpendo.00202.2005
10.2337/db16-1075
10.1172/JCI116025
10.2337/diab.47.1.5
10.1016/0003-9861(87)90661-8
10.1111/micc.12044
10.1073/pnas.1710625114
10.1038/ijo.2015.104
10.1152/ajpendo.2000.279.5.E1039
10.1016/S0021-9258(18)83106-4
10.1016/S0021-9258(17)33634-7
10.1042/BJ20120702
10.1152/ajplegacy.1951.167.1.13
10.1091/mbc.e04-03-0266
10.2337/db14-0590
10.1007/s001250051288
10.1113/EP087545
10.2337/db18-0769
10.1007/978-1-4939-7507-5_14
10.1016/j.bcp.2014.08.033
10.2337/diacare.28.1.108
10.1016/0003-2697(68)90127-9
10.1172/JCI111938
10.1152/ajpendo.00419.2001
10.1152/ajpendo.00590.2009
10.2337/db16-1327
10.1172/JCI46405
10.1152/ajpendo.00526.2001
10.2337/diab.42.10.1469
10.2337/diabetes.49.4.647
10.1016/j.ceca.2014.08.012
10.2337/db06-0900
10.1113/JP280294
10.1007/s00125-015-3751-0
10.1073/pnas.92.4.983
10.1139/o83-081
10.1016/j.metabol.2016.07.015
10.1172/JCI117433
10.2337/diabetes.48.5.1192
10.1152/ajpendo.00260.2019
10.1172/JCI6928
10.1016/S0021-9258(19)47209-8
10.1091/mbc.E14-08-1307
10.1038/nature13425
10.1038/cddis.2014.161
10.1016/j.metabol.2020.154169
10.1016/j.cellsig.2013.11.007
10.3390/cells8050434
10.1038/s41467-020-20556-8
10.2337/db10-0698
10.1038/s41574-020-0405-1
10.1152/jappl.1989.66.2.695
10.1113/jphysiol.1976.sp011452
10.1152/jappl.1967.23.1.90
10.2337/diabetes.51.10.2944
10.1152/ajpendo.00482.2018
10.2337/db13-1307
10.1210/jc.2010-2243
ContentType Journal Article
Copyright Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2021.03.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 780
ExternalDocumentID 33826918
10_1016_j_cmet_2021_03_020
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: CIHR
  grantid: FDN-143203
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
AAYXX
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
HZ~
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c413t-d750c698f145248bc37d122c6a845ae1d386dd1ec2eec790b7a220656d8b90c03
ISSN 1550-4131
1932-7420
IngestDate Thu Jul 10 22:10:20 EDT 2025
Thu Apr 03 07:05:06 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords exercise-induced sensitization to insulin
insulin signaling
glucose uptake
insulin
glycogen
GLUT4
skeletal muscle
diabetes
insulin resistance
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-d750c698f145248bc37d122c6a845ae1d386dd1ec2eec790b7a220656d8b90c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6850-3056
0000-0003-0905-5932
0000-0001-7906-0302
OpenAccessLink http://www.cell.com/article/S1550413121001273/pdf
PMID 33826918
PQID 2510266930
PQPubID 23479
PageCount 23
ParticipantIDs proquest_miscellaneous_2510266930
pubmed_primary_33826918
crossref_citationtrail_10_1016_j_cmet_2021_03_020
crossref_primary_10_1016_j_cmet_2021_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-06
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2021
References Bonen (10.1016/j.cmet.2021.03.020_bib27) 2007; 292
Giorgino (10.1016/j.cmet.2021.03.020_bib88) 2000; 97
Mortensen (10.1016/j.cmet.2021.03.020_bib196) 2014; 28
Boguslavsky (10.1016/j.cmet.2021.03.020_bib24) 2012; 23
Klip (10.1016/j.cmet.2021.03.020_bib144) 1983; 221
Sandri (10.1016/j.cmet.2021.03.020_bib242) 2004; 117
(10.1016/j.cmet.2021.03.020_bib113) 2019
Kirwan (10.1016/j.cmet.2021.03.020_bib140) 1992; 72
Wojtaszewski (10.1016/j.cmet.2021.03.020_bib300) 1997; 46
Sylow (10.1016/j.cmet.2021.03.020_bib269) 2017; 13
Høeg (10.1016/j.cmet.2021.03.020_bib107) 2011; 60
Montgomery (10.1016/j.cmet.2021.03.020_bib194) 2019; 34
Rudich (10.1016/j.cmet.2021.03.020_bib238) 2003; 46
Bouskila (10.1016/j.cmet.2021.03.020_bib31) 2010; 12
Frøsig (10.1016/j.cmet.2021.03.020_bib80) 2007; 56
Roach (10.1016/j.cmet.2021.03.020_bib235) 1976; 251
Abdulla (10.1016/j.cmet.2021.03.020_bib1) 2016; 59
Lark (10.1016/j.cmet.2021.03.020_bib315) 2012; 2
Mavalli (10.1016/j.cmet.2021.03.020_bib180) 2010; 120
Taverna (10.1016/j.cmet.2021.03.020_bib272) 1973; 323
Karlsson (10.1016/j.cmet.2021.03.020_bib130) 2005; 54
Moltke (10.1016/j.cmet.2021.03.020_bib193) 2014; 512
Park (10.1016/j.cmet.2021.03.020_bib206) 2016; 291
Jialal (10.1016/j.cmet.2021.03.020_bib125) 1984; 33
Larsen (10.1016/j.cmet.2021.03.020_bib160) 2020; 598
Bouskila (10.1016/j.cmet.2021.03.020_bib30) 2008; 294
Zeng (10.1016/j.cmet.2021.03.020_bib307) 2000; 101
Stuart (10.1016/j.cmet.2021.03.020_bib261) 2013; 98
Koistinen (10.1016/j.cmet.2021.03.020_bib151) 2003; 52
Marette (10.1016/j.cmet.2021.03.020_bib178) 1992; 41
Tsao (10.1016/j.cmet.2021.03.020_bib281) 1996; 45
Skovbro (10.1016/j.cmet.2021.03.020_bib252) 2008; 51
Richter (10.1016/j.cmet.2021.03.020_bib230) 2013; 93
Mitrakou (10.1016/j.cmet.2021.03.020_bib189) 1990; 39
Lauritzen (10.1016/j.cmet.2021.03.020_bib163) 2002; 444
Reibe (10.1016/j.cmet.2021.03.020_bib229) 2018; 50
Wang (10.1016/j.cmet.2021.03.020_bib290) 1996; 135
Jain (10.1016/j.cmet.2021.03.020_bib115) 2015; 589
Boden (10.1016/j.cmet.2021.03.020_bib22) 1993; 42
Aslamy (10.1016/j.cmet.2021.03.020_bib8) 2017; 312
Lauritzen (10.1016/j.cmet.2021.03.020_bib162) 2013; 41
Lundsgaard (10.1016/j.cmet.2021.03.020_bib173) 1938; 14
Charron (10.1016/j.cmet.2021.03.020_bib42) 1989; 86
Henry (10.1016/j.cmet.2021.03.020_bib102) 1995; 44
Shamni (10.1016/j.cmet.2021.03.020_bib248) 2017; 14
Rothman (10.1016/j.cmet.2021.03.020_bib237) 1995; 92
Fink (10.1016/j.cmet.2021.03.020_bib76) 2013; 56
Pataky (10.1016/j.cmet.2021.03.020_bib208) 2019; 317
Sjøberg (10.1016/j.cmet.2021.03.020_bib250) 2011; 301
Daugaard (10.1016/j.cmet.2021.03.020_bib57) 2000; 49
Lund (10.1016/j.cmet.2021.03.020_bib172) 1995; 92
Sun (10.1016/j.cmet.2021.03.020_bib264) 2016; 27
Devlin (10.1016/j.cmet.2021.03.020_bib66) 1987; 36
Koska (10.1016/j.cmet.2021.03.020_bib154) 2016; 65
Lopez (10.1016/j.cmet.2021.03.020_bib170) 2009; 20
Sylow (10.1016/j.cmet.2021.03.020_bib268) 2014; 26
Sjøberg (10.1016/j.cmet.2021.03.020_bib251) 2017; 66
Chaurasia (10.1016/j.cmet.2021.03.020_bib43) 2021; 83
Horton (10.1016/j.cmet.2021.03.020_bib110) 1986; 2
Utriainen (10.1016/j.cmet.2021.03.020_bib286) 1998; 41
Raun (10.1016/j.cmet.2021.03.020_bib227) 2018; 596
Cori (10.1016/j.cmet.2021.03.020_bib51) 1925; 24
Møller (10.1016/j.cmet.2021.03.020_bib191) 2019; 8
Nielsen (10.1016/j.cmet.2021.03.020_bib198) 2001; 531
Zhang (10.1016/j.cmet.2021.03.020_bib308) 2016; 65
Thomas (10.1016/j.cmet.2021.03.020_bib274) 1968; 25
Dirks (10.1016/j.cmet.2021.03.020_bib67) 2016; 65
Richter (10.1016/j.cmet.2021.03.020_bib233) 1989; 66
Wang (10.1016/j.cmet.2021.03.020_bib291) 1999; 19
Bennet (10.1016/j.cmet.2021.03.020_bib16) 1991; 8
Brumfield (10.1016/j.cmet.2021.03.020_bib34) 2021; 32
Houstis (10.1016/j.cmet.2021.03.020_bib111) 2006; 440
Sleigh (10.1016/j.cmet.2021.03.020_bib254) 2012; 97
Little (10.1016/j.cmet.2021.03.020_bib168) 2011; 111
Pehmøller (10.1016/j.cmet.2021.03.020_bib210) 2012; 61
Madsen (10.1016/j.cmet.2021.03.020_bib176) 2018; 315
Goodyear (10.1016/j.cmet.2021.03.020_bib91) 1991; 261
Saxton (10.1016/j.cmet.2021.03.020_bib245) 2017; 168
Gumà (10.1016/j.cmet.2021.03.020_bib94) 1995; 268
Stephens (10.1016/j.cmet.2021.03.020_bib257) 2015; 64
JeBailey (10.1016/j.cmet.2021.03.020_bib123) 2007; 56
Jaldin-Fincati (10.1016/j.cmet.2021.03.020_bib118) 2018; 1713
Kennedy (10.1016/j.cmet.2021.03.020_bib133) 1999; 48
Cacicedo (10.1016/j.cmet.2021.03.020_bib37) 2011; 301
Csapo (10.1016/j.cmet.2021.03.020_bib53) 2020; 11
Foley (10.1016/j.cmet.2021.03.020_bib78) 2014; 3
O’Neill (10.1016/j.cmet.2021.03.020_bib202) 2016; 126
Richter (10.1016/j.cmet.2021.03.020_bib234) 1989; 67
Wallberg-Henriksson (10.1016/j.cmet.2021.03.020_bib289) 1985; 18
Andréasson (10.1016/j.cmet.2021.03.020_bib7) 1991; 142
Funaki (10.1016/j.cmet.2021.03.020_bib82) 2004; 24
Sun (10.1016/j.cmet.2021.03.020_bib263) 2014; 25
Warram (10.1016/j.cmet.2021.03.020_bib296) 1990; 113
Krook (10.1016/j.cmet.2021.03.020_bib157) 1998; 47
Pillon (10.1016/j.cmet.2021.03.020_bib213) 2012; 10
Kirwan (10.1016/j.cmet.2021.03.020_bib141) 2009; 297
Steinberg (10.1016/j.cmet.2021.03.020_bib256) 1994; 94
Weng (10.1016/j.cmet.2021.03.020_bib297) 2020; 21
Batista (10.1016/j.cmet.2021.03.020_bib15) 2020; 32
McArdle (10.1016/j.cmet.2021.03.020_bib181) 1951; 10
Pillon (10.1016/j.cmet.2021.03.020_bib215) 2020; 11
Chiu (10.1016/j.cmet.2021.03.020_bib44) 2010; 21
Fritzen (10.1016/j.cmet.2021.03.020_bib79) 2020; 16
Uezumi (10.1016/j.cmet.2021.03.020_bib285) 2014; 5
Klip (10.1016/j.cmet.2021.03.020_bib145) 1983; 61
Luiken (10.1016/j.cmet.2021.03.020_bib171) 2002; 282
James (10.1016/j.cmet.2021.03.020_bib121) 1988; 333
Tonks (10.1016/j.cmet.2021.03.020_bib278) 2013; 56
Ryder (10.1016/j.cmet.2021.03.020_bib239) 2000; 49
Benninghoff (10.1016/j.cmet.2021.03.020_bib18) 2020; 69
Mîinea (10.1016/j.cmet.2021.03.020_bib185) 2005; 391
Cori (10.1016/j.cmet.2021.03.020_bib52) 1925; 71
Wang (10.1016/j.cmet.2021.03.020_bib292) 2011; 286
Azizi (10.1016/j.cmet.2021.03.020_bib11) 2015; 26
Richter (10.1016/j.cmet.2021.03.020_bib232) 1984; 246
Lizunov (10.1016/j.cmet.2021.03.020_bib169) 2012; 302
Hingst (10.1016/j.cmet.2021.03.020_bib105) 2018; 16
Sylow (10.1016/j.cmet.2021.03.020_bib266) 2019; 12
Sleigh (10.1016/j.cmet.2021.03.020_bib253) 2011; 121
Knudsen (10.1016/j.cmet.2021.03.020_bib150) 2020; 39
Teng (10.1016/j.cmet.2021.03.020_bib273) 2019; 10
Kolka (10.1016/j.cmet.2021.03.020_bib152) 2012; 27
Boulé (10.1016/j.cmet.2021.03.020_bib28) 2005; 28
Kim (10.1016/j.cmet.2021.03.020_bib137) 2000; 279
Baron (10.1016/j.cmet.2021.03.020_bib13) 1988; 255
Albers (10.1016/j.cmet.2021.03.020_bib5) 2015; 309
Lundsgaard (10.1016/j.cmet.2021.03.020_bib174) 2017; 66
Czech (10.1016/j.cmet.2021.03.020_bib56) 2017; 23
Jorfeldt (10.1016/j.cmet.2021.03.020_bib127) 1970; 26
Zierler (10.1016/j.cmet.2021.03.020_bib310) 1959; 8
Kjøbsted (10.1016/j.cmet.2021.03.020_bib142) 2017; 66
Fazakerley (10.1016/j.cmet.2021.03.020_bib75) 2019; 60
Roach (10.1016/j.cmet.2021.03.020_bib236) 2012; 441
Copps (10.1016/j.cmet.2021.03.020_bib50) 2012; 55
Asp (10.1016/j.cmet.2021.03.020_bib9) 1996; 494
Jaldin-Fincati (10.1016/j.cmet.2021.03.020_bib117) 2018; 315
Jensen (10.1016/j.cmet.2021.03.020_bib124) 2014; 92
O’Gorman (10.1016/j.cmet.2021.03.020_bib201) 2006; 49
Esk (10.1016/j.cmet.2021.03.020_bib74) 2010; 188
Lauritzen (10.1016/j.cmet.2021.03.020_bib161) 2009; 34
Richter (10.1016/j.cmet.2021.03.020_bib231) 1982; 69
Bisht (10.1016/j.cmet.2021.03.020_bib21) 2008; 586
Tremblay (10.1016/j.cmet.2021.03.020_bib280) 2001; 50
Lee (10.1016/j.cmet.2021.03.020_bib165) 2016; 31
Erlij (10.1016/j.cmet.2021.03.020_bib73) 1976; 259
Austin (10.1016/j.cmet.2021.03.020_bib10) 2008; 57
McMillin (10.1016/j.cmet.2021.03.020_bib184) 2017; 66
Reaven (10.1016/j.cmet.2021.03.020_bib228) 1997; 13
Mikines (10.1016/j.cmet.2021.03.020_bib186) 1988; 254
Tunduguru (10.1016/j.cmet.2021.03.020_bib282) 2014; 92
Kim (10.1016/j.cmet.2021.03.020_bib136) 1999; 104
Koves (10.1016/j.cmet.2021.03.020_bib155) 2008; 7
Lundsgaard (10.1016/j.cmet.2021.03.020_bib175) 2019; 29
de Souza (10.1016/j.cmet.2021.03.020_bib60) 1997; 46
Marette (10.1016/j.cmet.2021.03.020_bib177) 1992; 263
Stierwalt (10.1016/j.cmet.2021.03.020_bib258) 2018; 6
Pavarotti (10.1016/j.cmet.2021.03.020_bib209) 2021; 478
Sylow (10.1016/j.cmet.2021.03.020_bib267) 2013; 62
Han (10.1016/j.cmet.2021.03.020_bib98) 2020; 105
Young (10.1016/j.cmet.2021.03.020_bib305) 1962; 157
Bennet (10.1016/j.cmet.2021.03.020_bib17) 1990; 259
Habegger (10.1016/j.cmet.2021.03.020_bib95) 2012; 55
Cushman (10.1016/j.cmet.2021.03.020_bib54) 1980; 255
Jaldin-Fincati (10.1016/j.cmet.2021.03.020_bib116) 2017; 28
Ueda (10.1016/j.cmet.2021.03.020_bib283) 2008; 100
DeFronzo (10.1016/j.cmet.2021.03.020_bib62) 1981; 30
Ploug (10.1016/j.cmet.2021.03.020_bib216) 1998; 441
Brüning (10.1016/j.cmet.2021.03.020_bib35) 1998; 2
Vind (10.1016/j.cmet.2021.03.020_bib288) 2011; 54
Ramlal (10.1016/j.cmet.2021.03.020_bib223) 1989; 125
Zisman (10.1016/j.cmet.2021.03.020_bib312) 2000; 6
Khan (10.1016/j.cmet.2021.03.020_bib134) 2015; 39
Chadt (10.1016/j.cmet.2021.03.020_bib40) 2008; 40
Ralston (10.1016/j.cmet.2021.03.020_bib220) 1993; 120
Burdett (10.1016/j.cmet.2021.03.020_bib36) 1987; 253
Coen (10.1016/j.cmet.2021.03.020_bib46) 2010; 59
Huang (10.1016/j.cmet.2021.03.020_bib112) 2005; 280
Shulman (10.1016/j.cmet.2021.03.020_bib249) 1990; 322
Lai (10.1016/j.cmet.2021.03.020_bib158) 2007; 293
Ramlal (10.1016/j.cmet.2021.03.020_bib222) 1988; 157
Hirshman (10.1016/j.cmet.2021.03.020_bib106) 1990; 265
Knudsen (10.1016/j.cmet.2021.03.020_bib149) 2019; 104
Schertzer (10.1016/j.cmet.2021.03.020_bib246) 2009; 150
Konishi (10.1016/j.cmet.2021.03.020_bib153) 2017; 114
Taddeo (10.1016/j.cmet.2021.03.020_bib270) 2013; 3
King (10.1016/j.cmet.2021.03.020_bib139) 1992; 90
Morgan (10.1016/j.cmet.2021.03.020_bib195) 1964; 239
DeFronzo (10.1016/j.cmet.2021.03.020_bib63) 1985; 76
Petersen (10.1016/j.cmet.2021.03.020_bib212) 2018; 98
Garvey (10.1016/j.cmet.2021.03.020_bib84) 1998; 101
Jiang (10.1016/j.cmet.2021.03.020_bib126) 2013; 62
Albers (10.1016/j.cmet.2021.03.020_bib4) 2015; 64
Brostoff (10.1016/j.cmet.2021.03.020_bib33) 2007; 50
Højlund (10.1016/j.cmet.2021.03.020_bib108) 2003; 52
Napoli (10.1016/j.cmet.2021.03.020
References_xml – volume: 56
  start-page: 394
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib123
  article-title: Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells
  publication-title: Diabetes
  doi: 10.2337/db06-0823
– volume: 255
  start-page: E769
  year: 1988
  ident: 10.1016/j.cmet.2021.03.020_bib13
  article-title: Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans
  publication-title: Am. J. Physiol.
– volume: 248
  start-page: E546
  year: 1985
  ident: 10.1016/j.cmet.2021.03.020_bib314
  article-title: Muscle α-aminoisobutyric acid transport after exercise: enhanced stimulation by insulin
  publication-title: Am. J. Physiol.
– volume: 1282
  start-page: 71
  year: 1996
  ident: 10.1016/j.cmet.2021.03.020_bib156
  article-title: Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(96)00041-7
– volume: 259
  start-page: 369
  year: 1976
  ident: 10.1016/j.cmet.2021.03.020_bib219
  article-title: Receptor-binding region of insulin
  publication-title: Nature
  doi: 10.1038/259369a0
– volume: 1
  start-page: 26
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib3
  article-title: T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases
  publication-title: Skelet. Muscle
  doi: 10.1186/2044-5040-1-26
– volume: 77
  start-page: 2542
  year: 1980
  ident: 10.1016/j.cmet.2021.03.020_bib265
  article-title: Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.5.2542
– volume: 47
  start-page: 1281
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib157
  article-title: Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects
  publication-title: Diabetes
  doi: 10.2337/diab.47.8.1281
– volume: 66
  start-page: 876
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib233
  article-title: Effect of exercise on insulin action in human skeletal muscle
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1989.66.2.876
– volume: 41
  start-page: 555
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib286
  article-title: Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM
  publication-title: Diabetologia
  doi: 10.1007/s001250050946
– volume: 4
  start-page: 89
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib32
  article-title: siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.04.008
– volume: 127
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib241
  article-title: Inflammatory mechanisms linking obesity and metabolic disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI92035
– volume: 52
  start-page: 1393
  year: 2003
  ident: 10.1016/j.cmet.2021.03.020_bib108
  article-title: Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.6.1393
– volume: 39
  start-page: 100998
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib150
  article-title: Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2020.100998
– volume: 302
  start-page: E950
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib169
  article-title: Insulin stimulates fusion, but not tethering, of GLUT4 vesicles in skeletal muscle of HA-GLUT4-GFP transgenic mice
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00466.2011
– volume: 42
  start-page: 1588
  year: 1993
  ident: 10.1016/j.cmet.2021.03.020_bib22
  article-title: Effects of insulin on fatty acid reesterification in healthy subjects
  publication-title: Diabetes
  doi: 10.2337/diab.42.11.1588
– volume: 391
  start-page: 87
  year: 2005
  ident: 10.1016/j.cmet.2021.03.020_bib185
  article-title: AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain
  publication-title: Biochem. J.
  doi: 10.1042/BJ20050887
– volume: 22
  start-page: 747
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib77
  article-title: Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.20615
– volume: 51
  start-page: 1253
  year: 2008
  ident: 10.1016/j.cmet.2021.03.020_bib252
  article-title: Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity
  publication-title: Diabetologia
  doi: 10.1007/s00125-008-1014-z
– volume: 297
  start-page: E151
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib141
  article-title: Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00210.2009
– volume: 301
  start-page: H1255
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib37
  article-title: Acute exercise activates AMPK and eNOS in the mouse aorta
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01279.2010
– volume: 84
  start-page: 1124
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib135
  article-title: Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI114275
– volume: 182
  start-page: 12
  year: 1955
  ident: 10.1016/j.cmet.2021.03.020_bib204
  article-title: Effect of insulin on free glucose content of rat diaphragm in vitro
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1955.182.1.12
– volume: 383
  start-page: 721
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib304
  article-title: Effects of diet versus gastric bypass on metabolic function in diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2003697
– volume: 298
  start-page: E1011
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib71
  article-title: An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00690.2009
– volume: 55
  start-page: 2277
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib12
  article-title: Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects
  publication-title: Diabetes
  doi: 10.2337/db06-0062
– volume: 26
  start-page: 3455
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib303
  article-title: FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.9.3455-3467.2006
– volume: 56
  start-page: 1623
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib76
  article-title: Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-2897-x
– volume: 598
  start-page: 303
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib183
  article-title: Insulin-induced membrane permeability to glucose in human muscles at rest and following exercise
  publication-title: J. Physiol.
  doi: 10.1113/JP278600
– volume: 19
  start-page: 4008
  year: 1999
  ident: 10.1016/j.cmet.2021.03.020_bib291
  article-title: Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.6.4008
– volume: 44
  start-page: 936
  year: 1995
  ident: 10.1016/j.cmet.2021.03.020_bib102
  article-title: Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures
  publication-title: Diabetes
  doi: 10.2337/diab.44.8.936
– volume: 49
  start-page: 325
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib301
  article-title: Insulin signaling and insulin sensitivity after exercise in human skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.3.325
– volume: 284
  start-page: E241
  year: 2003
  ident: 10.1016/j.cmet.2021.03.020_bib45
  article-title: Blood flow and muscle metabolism: a focus on insulin action
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00408.2002
– volume: 34
  start-page: 420
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib161
  article-title: In vivo imaging of GLUT4 translocation
  publication-title: Appl. Physiol. Nutr. Metab.
  doi: 10.1139/H09-043
– volume: 315
  start-page: E110
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib176
  article-title: β-Actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00392.2017
– volume: 267
  start-page: 4957
  year: 1992
  ident: 10.1016/j.cmet.2021.03.020_bib190
  article-title: Development regulation of the subcellular distribution and glycosylation of GLUT1 and GLUT4 glucose transporters during myogenesis of L6 muscle cells
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42923-7
– volume: 268
  start-page: E613
  year: 1995
  ident: 10.1016/j.cmet.2021.03.020_bib94
  article-title: Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle
  publication-title: Am. J. Physiol.
– volume: 157
  start-page: 1329
  year: 1988
  ident: 10.1016/j.cmet.2021.03.020_bib222
  article-title: Insulin-mediated translocation of glucose transporters from intracellular membranes to plasma membranes: sole mechanism of stimulation of glucose transport in L6 muscle cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(88)81020-9
– volume: 27
  start-page: 75
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib264
  article-title: A complex of Rab13 with MICAL-L2 and α-actinin-4 is essential for insulin-dependent GLUT4 exocytosis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E15-05-0319
– volume: 8
  start-page: 199
  year: 1991
  ident: 10.1016/j.cmet.2021.03.020_bib16
  article-title: Protein anabolic actions of insulin in the human body
  publication-title: Diabet. Med.
  doi: 10.1111/j.1464-5491.1991.tb01572.x
– volume: 478
  start-page: 407
  year: 2021
  ident: 10.1016/j.cmet.2021.03.020_bib209
  article-title: Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT4 translocation
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20200542
– volume: 127
  start-page: 43
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib302
  article-title: Skeletal muscle inflammation and insulin resistance in obesity
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI88880
– volume: 221
  start-page: 175
  year: 1983
  ident: 10.1016/j.cmet.2021.03.020_bib144
  article-title: The glucose transport system of muscle plasma membranes: characterization by means of [3H]cytochalasin B binding
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(83)90134-0
– volume: 41
  start-page: 77
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib162
  article-title: Insulin- and contraction-induced glucose transporter 4 traffic in muscle: insights from a novel imaging approach
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1097/JES.0b013e318275574c
– volume: 589
  start-page: 2769
  issue: 19 Pt B
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib115
  article-title: Fatty acid transport and transporters in muscle are critically regulated by Akt2
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.08.010
– volume: 26
  start-page: 73
  year: 1970
  ident: 10.1016/j.cmet.2021.03.020_bib127
  article-title: Human forearm muscle metabolism during exercise. V. Quantitative aspects of glucose uptake and lactate production during prolonged exercise
  publication-title: Scand. J. Clin. Lab. Invest.
  doi: 10.3109/00365517009049217
– volume: 260
  start-page: E459
  year: 1991
  ident: 10.1016/j.cmet.2021.03.020_bib68
  article-title: Decreased expression of glucose transporter in muscle from insulin-resistant patients
  publication-title: Am. J. Physiol.
– volume: 5
  start-page: 167
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib109
  article-title: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.01.002
– volume: 1
  start-page: 516
  year: 1924
  ident: 10.1016/j.cmet.2021.03.020_bib164
  article-title: Effect of insulin on the sugar content of arterial and venous blood in diabetes
  publication-title: BMJ
  doi: 10.1136/bmj.1.3299.516
– volume: 124
  start-page: 4147
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib259
  article-title: GLUT4 exocytosis
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.097063
– volume: 255
  start-page: 4758
  year: 1980
  ident: 10.1016/j.cmet.2021.03.020_bib54
  article-title: Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85561-8
– volume: 419
  start-page: 475
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib306
  article-title: GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081319
– volume: 91
  start-page: 514
  year: 1993
  ident: 10.1016/j.cmet.2021.03.020_bib26
  article-title: Effect of insulin on system A amino acid transport in human skeletal muscle
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116230
– volume: 261
  start-page: 14939
  year: 1986
  ident: 10.1016/j.cmet.2021.03.020_bib120
  article-title: Intrinsic differences of insulin receptor kinase activity in red and white muscle
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)66808-5
– volume: 292
  start-page: 19135
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib260
  article-title: Metabolomic analysis of insulin resistance across different mouse strains and diets
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.818351
– volume: 56
  start-page: 875
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib278
  article-title: Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2811-y
– volume: 50
  start-page: 1901
  year: 2001
  ident: 10.1016/j.cmet.2021.03.020_bib280
  article-title: Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (ζ/λ) activities
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.8.1901
– volume: 23
  start-page: 4065
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib24
  article-title: Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-04-0263
– volume: 13
  start-page: 65
  year: 1997
  ident: 10.1016/j.cmet.2021.03.020_bib228
  article-title: Banting Lecture 1988. Role of insulin resistance in human disease. 1988
  publication-title: Nutrition
– volume: 90
  start-page: 1386
  year: 1992
  ident: 10.1016/j.cmet.2021.03.020_bib244
  article-title: Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116005
– volume: 6
  start-page: 924
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib312
  article-title: Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance
  publication-title: Nat. Med.
  doi: 10.1038/78693
– volume: 494
  start-page: 891
  year: 1996
  ident: 10.1016/j.cmet.2021.03.020_bib9
  article-title: Eccentric exercise decreases maximal insulin action in humans: muscle and systemic effects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1996.sp021541
– volume: 596
  start-page: 2283
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib227
  article-title: Rac1 muscle knockout exacerbates the detrimental effect of high-fat diet on insulin-stimulated muscle glucose uptake independently of Akt
  publication-title: J. Physiol.
  doi: 10.1113/JP275602
– volume: 55
  start-page: 457
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib95
  article-title: Fat-induced membrane cholesterol accrual provokes cortical filamentous actin destabilisation and glucose transport dysfunction in skeletal muscle
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2334-y
– volume: 284
  start-page: 4679
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib313
  article-title: Insulin resistance in striated muscle-specific integrin receptor β1-deficient mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807408200
– volume: 44
  start-page: 1010
  year: 1995
  ident: 10.1016/j.cmet.2021.03.020_bib64
  article-title: Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training
  publication-title: Diabetes
  doi: 10.2337/diab.44.9.1010
– volume: 50
  start-page: 376
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib229
  article-title: GeneXX: an online tool for the exploration of transcript changes in skeletal muscle associated with exercise
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00127.2017
– volume: 65
  start-page: 2380
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib308
  article-title: Skeletal muscle TRIB3 mediates glucose toxicity in diabetes and high- fat diet-induced insulin resistance
  publication-title: Diabetes
  doi: 10.2337/db16-0154
– volume: 317
  start-page: E984
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib208
  article-title: Fiber type-specific effects of acute exercise on insulin-stimulated AS160 phosphorylation in insulin-resistant rat skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00304.2019
– volume: 39
  start-page: 1180
  year: 1996
  ident: 10.1016/j.cmet.2021.03.020_bib309
  article-title: Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM
  publication-title: Diabetologia
  doi: 10.1007/BF02658504
– volume: 16
  start-page: 691
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib131
  article-title: An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake
  publication-title: Traffic
  doi: 10.1111/tra.12282
– volume: 598
  start-page: 3803
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib90
  article-title: CrossTalk proposal: intramuscular lipid accumulation causes insulin resistance
  publication-title: J. Physiol.
  doi: 10.1113/JP278219
– volume: 14
  start-page: 163
  year: 1938
  ident: 10.1016/j.cmet.2021.03.020_bib173
  article-title: The Pasteur-Meyerhof reaction in muscle metabolism: Harvey Lecture, November 18, 1937
  publication-title: Bull. N. Y. Acad. Med.
– volume: 83
  start-page: 303
  year: 2021
  ident: 10.1016/j.cmet.2021.03.020_bib43
  article-title: Ceramides in metabolism: key lipotoxic players
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-031620-093815
– volume: 36
  start-page: 434
  year: 1987
  ident: 10.1016/j.cmet.2021.03.020_bib66
  article-title: Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise
  publication-title: Diabetes
  doi: 10.2337/diab.36.4.434
– volume: 91
  start-page: 1447
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib247
  article-title: Fiber types in mammalian skeletal muscles
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00031.2010
– volume: 3
  start-page: 124
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib270
  article-title: Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2013.11.003
– volume: 62
  start-page: 177
  year: 1922
  ident: 10.1016/j.cmet.2021.03.020_bib103
  article-title: Effect of insulin (pancreatic extract) on the sugar consumption of the isolated surviving rabbit heart
  publication-title: Am. J. Physiol. Content
  doi: 10.1152/ajplegacy.1922.62.1.177
– volume: 440
  start-page: 944
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib111
  article-title: Reactive oxygen species have a causal role in multiple forms of insulin resistance
  publication-title: Nature
  doi: 10.1038/nature04634
– volume: 107
  start-page: 19909
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib262
  article-title: Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1009523107
– volume: 55
  start-page: 2565
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib50
  article-title: Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2644-8
– volume: 28
  start-page: 303
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib299
  article-title: Transendothelial insulin transport is impaired in skeletal muscle capillaries of obese male mice
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.22683
– volume: 11
  start-page: 4013
  year: 1972
  ident: 10.1016/j.cmet.2021.03.020_bib211
  article-title: Conformation of proinsulin. A comparison of insulin and proinsulin self-association at neutral pH
  publication-title: Biochemistry
  doi: 10.1021/bi00772a001
– volume: 315
  start-page: E204
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib117
  article-title: Insulin uptake and action in microvascular endothelial cells of lymphatic and blood origin
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00008.2018
– volume: 12
  start-page: 456
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib31
  article-title: Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.10.006
– volume: 58
  start-page: 19
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib38
  article-title: Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3395-5
– volume: 168
  start-page: 960
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib245
  article-title: mTOR signaling in growth, metabolism, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.004
– volume: 111
  start-page: 1554
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib168
  article-title: Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.00921.2011
– volume: 125
  start-page: 890
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib223
  article-title: Decrease in glucose transporter number in skeletal muscle of mildly diabetic (streptozotocin-treated) rats
  publication-title: Endocrinology
  doi: 10.1210/endo-125-2-890
– volume: 126
  start-page: 3433
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib202
  article-title: Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI86522
– volume: 54
  start-page: 1692
  year: 2005
  ident: 10.1016/j.cmet.2021.03.020_bib130
  article-title: Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.6.1692
– volume: 227
  start-page: 1583
  year: 1985
  ident: 10.1016/j.cmet.2021.03.020_bib138
  article-title: Receptor-mediated transport of insulin across endothelial cells
  publication-title: Science
  doi: 10.1126/science.3883490
– volume: 61
  start-page: 2743
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib210
  article-title: Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4
  publication-title: Diabetes
  doi: 10.2337/db11-1572
– volume: 284
  start-page: 13296
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib41
  article-title: FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C800241200
– volume: 64
  start-page: 1615
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib257
  article-title: Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men
  publication-title: Diabetes
  doi: 10.2337/db14-0961
– volume: 224
  start-page: 224
  year: 1987
  ident: 10.1016/j.cmet.2021.03.020_bib147
  article-title: Insulin-induced translocation of glucose transporters in rat hindlimb muscles
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(87)80452-0
– volume: 101
  start-page: 1539
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib307
  article-title: Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.13.1539
– volume: 6
  start-page: e13956
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib258
  article-title: Insulin-stimulated Rac1-GTP binding is not impaired by palmitate treatment in L6 myotubes
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.13956
– volume: 50
  start-page: 2682
  year: 2001
  ident: 10.1016/j.cmet.2021.03.020_bib47
  article-title: Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.12.2682
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib297
  article-title: Collagen 24 α1 is increased in insulin-resistant skeletal muscle and adipose tissue
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21165738
– volume: 59
  start-page: 80
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib46
  article-title: Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content
  publication-title: Diabetes
  doi: 10.2337/db09-0988
– volume: 294
  start-page: E28
  year: 2008
  ident: 10.1016/j.cmet.2021.03.020_bib30
  article-title: Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00481.2007
– volume: 14
  start-page: 329
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib248
  article-title: Supportive data on the regulation of GLUT4 activity by 3-O-methyl-D-glucose
  publication-title: Data Brief
  doi: 10.1016/j.dib.2017.07.069
– volume: 316
  start-page: E866
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib240
  article-title: Intermuscular adipose tissue directly modulates skeletal muscle insulin sensitivity in humans
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00243.2018
– volume: 188
  start-page: 1177
  year: 1975
  ident: 10.1016/j.cmet.2021.03.020_bib72
  article-title: Membrane transport: its relation to cellular metabolic rates
  publication-title: Science
  doi: 10.1126/science.1096301
– volume: 49
  start-page: 2983
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib201
  article-title: Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0457-3
– volume: 293
  start-page: E1622
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib158
  article-title: Glycogen content and contraction regulate glycogen synthase phosphorylation and affinity for UDP-glucose in rat skeletal muscles
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00113.2007
– volume: 2
  start-page: 1
  year: 1986
  ident: 10.1016/j.cmet.2021.03.020_bib110
  article-title: Exercise and physical training: effects on insulin sensitivity and glucose metabolism
  publication-title: Diabetes Metab. Rev.
  doi: 10.1002/dmr.5610020101
– volume: 441
  start-page: 17
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib216
  article-title: Anatomy of glucose transporters in skeletal muscle. Effects of insulin and contractions
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4899-1928-1_2
– volume: 113
  start-page: 909
  year: 1990
  ident: 10.1016/j.cmet.2021.03.020_bib296
  article-title: Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-113-12-909
– volume: 85
  start-page: 1218
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib99
  article-title: Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1998.85.4.1218
– volume: 18
  start-page: C233
  year: 1985
  ident: 10.1016/j.cmet.2021.03.020_bib289
  article-title: Activation of glucose transport in diabetic muscle: response to contraction and insulin
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.1985.249.3.C233
– volume: 50
  start-page: 1351
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib33
  article-title: A diabetic life before and after the insulin era
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0641-0
– volume: 127
  start-page: 1911
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib48
  article-title: Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release, which both impinge on GLUT4 translocation
  publication-title: J. Cell Sci.
– volume: 66
  start-page: 2583
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib174
  article-title: Opposite regulation of insulin sensitivity by dietary lipid versus carbohydrate excess
  publication-title: Diabetes
  doi: 10.2337/db17-0046
– volume: 50
  start-page: 790
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib29
  article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0594-3
– volume: 55
  start-page: 2077
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib159
  article-title: The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/db05-1613
– volume: 163
  start-page: 70
  year: 1950
  ident: 10.1016/j.cmet.2021.03.020_bib166
  article-title: Action of insulin on the ‘permeability’ of cells to free hexoses, as studied by its effect on the distribution of galactose
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1950.163.1.70
– volume: 280
  start-page: 19426
  year: 2005
  ident: 10.1016/j.cmet.2021.03.020_bib112
  article-title: Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412317200
– volume: 66
  start-page: 598
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib142
  article-title: Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK
  publication-title: Diabetes
  doi: 10.2337/db16-0530
– volume: 60
  start-page: 991
  year: 2003
  ident: 10.1016/j.cmet.2021.03.020_bib2
  article-title: Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-003-3001-3
– volume: 586
  start-page: 3825
  year: 2008
  ident: 10.1016/j.cmet.2021.03.020_bib21
  article-title: In vivo inhibition of focal adhesion kinase causes insulin resistance
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.157107
– volume: 23
  start-page: 804
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib56
  article-title: Insulin action and resistance in obesity and type 2 diabetes
  publication-title: Nat. Med.
  doi: 10.1038/nm.4350
– volume: 70
  start-page: 1245
  year: 1991
  ident: 10.1016/j.cmet.2021.03.020_bib188
  article-title: Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1991.70.3.1245
– volume: 294
  start-page: 11369
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib148
  article-title: Thirty sweet years of GLUT4
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.REV119.008351
– volume: 11
  start-page: 253
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib53
  article-title: Skeletal muscle extracellular matrix - what do we know about its composition, regulation, and physiological roles? A narrative review
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00253
– volume: 312
  start-page: R739
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib8
  article-title: Exocytosis proteins as novel targets for diabetes prevention and/or remediation?
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00002.2017
– volume: 49
  start-page: 1092
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib57
  article-title: Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.7.1092
– volume: 309
  start-page: R510
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib5
  article-title: Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00228.2014
– volume: 265
  start-page: 13427
  year: 1990
  ident: 10.1016/j.cmet.2021.03.020_bib70
  article-title: Exercise induces recruitment of the “insulin-responsive glucose transporter”. Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)77362-6
– volume: 45
  start-page: 28
  year: 1996
  ident: 10.1016/j.cmet.2021.03.020_bib281
  article-title: Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle
  publication-title: Diabetes
  doi: 10.2337/diab.45.1.28
– volume: 56
  start-page: 2093
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib80
  article-title: Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160
  publication-title: Diabetes
  doi: 10.2337/db06-1698
– volume: 101
  start-page: 2377
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib84
  article-title: Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI1557
– volume: 239
  start-page: 369
  year: 1964
  ident: 10.1016/j.cmet.2021.03.020_bib195
  article-title: Identification of a mobile carrier-mediated sugar transport system in muscle
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)51686-0
– volume: 97
  start-page: E438
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib254
  article-title: Mitochondrial oxidative phosphorylation is impaired in patients with congenital lipodystrophy
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2011-2587
– volume: 30
  start-page: 1000
  year: 1981
  ident: 10.1016/j.cmet.2021.03.020_bib62
  article-title: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization
  publication-title: Diabetes
  doi: 10.2337/diab.30.12.1000
– volume: 2
  start-page: 559
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib35
  article-title: A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80155-0
– volume: 592
  start-page: 351
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib279
  article-title: Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.266338
– volume: 3
  start-page: 314
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib78
  article-title: Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide
  publication-title: Biol. Open
  doi: 10.1242/bio.20147898
– volume: 201
  start-page: 357
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib101
  article-title: Improved glucose tolerance after intensive life style intervention occurs without changes in muscle ceramide or triacylglycerol in morbidly obese subjects
  publication-title: Acta Physiol. (Oxf.)
  doi: 10.1111/j.1748-1716.2010.02180.x
– volume: 301
  start-page: E391
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib200
  article-title: Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00164.2011
– volume: 157
  start-page: 1
  year: 1962
  ident: 10.1016/j.cmet.2021.03.020_bib305
  article-title: The Croonian Lecture - On insulin and its action
  publication-title: Proc. R. Soc
– volume: 33
  start-page: 794
  year: 1984
  ident: 10.1016/j.cmet.2021.03.020_bib125
  article-title: Processing of insulin by bovine endothelial cells in culture. Internalization without degradation
  publication-title: Diabetes
  doi: 10.2337/diab.33.8.794
– volume: 34
  start-page: 134
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib194
  article-title: Impact of lipotoxicity on tissue “cross talk” and metabolic regulation
  publication-title: Physiology (Bethesda)
– volume: 254
  start-page: E248
  year: 1988
  ident: 10.1016/j.cmet.2021.03.020_bib186
  article-title: Effect of physical exercise on sensitivity and responsiveness to insulin in humans
  publication-title: Am. J. Physiol.
– volume: 323
  start-page: 207
  year: 1973
  ident: 10.1016/j.cmet.2021.03.020_bib272
  article-title: Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(73)90145-4
– volume: 24
  start-page: 465
  year: 1925
  ident: 10.1016/j.cmet.2021.03.020_bib51
  article-title: Insulin and tissue sugar
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 62
  start-page: 355
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib126
  article-title: Altered response of skeletal muscle to IL-6 in type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db11-1790
– volume: 301
  start-page: H450
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib250
  article-title: A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01174.2010
– volume: 247
  start-page: E726
  year: 1984
  ident: 10.1016/j.cmet.2021.03.020_bib217
  article-title: Increased muscle glucose uptake during contractions: no need for insulin
  publication-title: Am. J. Physiol.
– volume: 597
  start-page: 89
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib255
  article-title: Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/JP276735
– volume: 10
  start-page: 103
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib273
  article-title: The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell function
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-019-1186-0
– volume: 292
  start-page: E1740
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib27
  article-title: A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00579.2006
– volume: 246
  start-page: E476
  year: 1984
  ident: 10.1016/j.cmet.2021.03.020_bib232
  article-title: Enhanced muscle glucose metabolism after exercise: modulation by local factors
  publication-title: Am. J. Physiol.
– volume: 32
  start-page: S157
  issue: Suppl 2
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib61
  article-title: Skeletal muscle insulin resistance is the primary defect in type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc09-S302
– volume: 142
  start-page: 255
  year: 1991
  ident: 10.1016/j.cmet.2021.03.020_bib7
  article-title: Decreased insulin-stimulated 3-0-methylglucose transport in in vitro incubated muscle strips from type II diabetic subjects
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1991.tb09154.x
– year: 2021
  ident: 10.1016/j.cmet.2021.03.020_bib96
  article-title: Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake
  publication-title: Nat Metab
  doi: 10.1038/s42255-021-00359-x
– volume: 8
  start-page: 317
  year: 1959
  ident: 10.1016/j.cmet.2021.03.020_bib310
  article-title: The significance of the action of insulin upon muscle membrane potential
  publication-title: Diabetes
  doi: 10.2337/diab.8.4.317
– volume: 322
  start-page: 223
  year: 1990
  ident: 10.1016/j.cmet.2021.03.020_bib249
  article-title: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199001253220403
– volume: 45
  start-page: 1051
  year: 1996
  ident: 10.1016/j.cmet.2021.03.020_bib92
  article-title: Glucose ingestion causes GLUT4 translocation in human skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/diab.45.8.1051
– volume: 333
  start-page: 183
  year: 1988
  ident: 10.1016/j.cmet.2021.03.020_bib121
  article-title: Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein
  publication-title: Nature
  doi: 10.1038/333183a0
– volume: 188
  start-page: 131
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib74
  article-title: The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200908057
– volume: 24
  start-page: 2254
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib284
  article-title: Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma
  publication-title: FASEB J.
  doi: 10.1096/fj.09-137380
– volume: 32
  start-page: 1799
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib225
  article-title: Insulin activation of plasma nonesterified fatty acid uptake in metabolic syndrome
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.112.250019
– volume: 86
  start-page: 3150
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib128
  article-title: Sequence, tissue distribution, and differential expression of mRNA for a putative insulin-responsive glucose transporter in mouse 3T3-L1 adipocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.9.3150
– volume: 120
  start-page: 4007
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib180
  article-title: Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI42447
– volume: 16
  start-page: 24
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib105
  article-title: Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2018.07.001
– volume: 291
  start-page: E1258
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib86
  article-title: How muscle insulin sensitivity is regulated: testing of a hypothesis
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00273.2006
– volume: 32
  start-page: 844
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib15
  article-title: A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.08.007
– volume: 57
  start-page: 2066
  year: 2008
  ident: 10.1016/j.cmet.2021.03.020_bib10
  article-title: siRNA-mediated reduction of inhibitor of nuclear factor-kappaB kinase prevents tumor necrosis factor-α-induced insulin resistance in human skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/db07-0763
– volume: 120
  start-page: 399
  year: 1993
  ident: 10.1016/j.cmet.2021.03.020_bib220
  article-title: Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.120.2.399
– volume: 20
  start-page: 3918
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib170
  article-title: Identification of a distal GLUT4 trafficking event controlled by actin polymerization
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e09-03-0187
– volume: 7
  start-page: 45
  year: 2008
  ident: 10.1016/j.cmet.2021.03.020_bib155
  article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.10.013
– volume: 531
  start-page: 757
  year: 2001
  ident: 10.1016/j.cmet.2021.03.020_bib198
  article-title: Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2001.0757h.x
– volume: 128
  start-page: 699
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib298
  article-title: Insulin exits skeletal muscle capillaries by fluid-phase transport
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI94053
– volume: 10
  start-page: 1241
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib97
  article-title: Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12474
– volume: 25
  start-page: 1159
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib263
  article-title: Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-08-0493
– volume: 22
  start-page: 506
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib23
  article-title: Biogenesis and regulation of insulin-responsive vesicles containing GLUT4
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2010.03.012
– volume: 265
  start-page: 987
  year: 1990
  ident: 10.1016/j.cmet.2021.03.020_bib106
  article-title: Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)40147-6
– volume: 96
  start-page: 427
  year: 1995
  ident: 10.1016/j.cmet.2021.03.020_bib197
  article-title: Mechanisms and time course of impaired skeletal muscle glucose transport activity in streptozocin diabetic rats
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI118053
– volume: 9
  start-page: e53999
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib271
  article-title: Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes
  publication-title: eLife
  doi: 10.7554/eLife.53999
– volume: 150
  start-page: 1935
  year: 2009
  ident: 10.1016/j.cmet.2021.03.020_bib246
  article-title: A transgenic mouse model to study glucose transporter 4myc regulation in skeletal muscle
  publication-title: Endocrinology
  doi: 10.1210/en.2008-1372
– volume: 98
  start-page: 2133
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib212
  article-title: Mechanisms of insulin action and insulin resistance
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00063.2017
– volume: 28
  start-page: 597
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib116
  article-title: Update on GLUT4 vesicle traffic: a cornerstone of insulin action
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2017.05.002
– volume: 291
  start-page: 23978
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib206
  article-title: A role for ceramides, but not sphingomyelins, as antagonists of insulin signaling and mitochondrial metabolism in C2C12 myotubes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.737684
– volume: 306
  start-page: 1383
  year: 2004
  ident: 10.1016/j.cmet.2021.03.020_bib311
  article-title: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase
  publication-title: Science
  doi: 10.1126/science.1100747
– volume: 13
  start-page: 133
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib269
  article-title: Exercise-stimulated glucose uptake - regulation and implications for glycaemic control
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2016.162
– volume: 286
  start-page: 41359
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib292
  article-title: Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.291500
– volume: 68
  start-page: 502
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib93
  article-title: ADAMTS9 regulates skeletal muscle insulin sensitivity through extracellular matrix alterations
  publication-title: Diabetes
  doi: 10.2337/db18-0418
– volume: 86
  start-page: 2535
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib42
  article-title: A glucose transport protein expressed predominately in insulin-responsive tissues
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.8.2535
– volume: 100
  start-page: 645
  year: 2008
  ident: 10.1016/j.cmet.2021.03.020_bib283
  article-title: Activation of the small GTPase Rac1 by a specific guanine-nucleotide-exchange factor suffices to induce glucose uptake into skeletal-muscle cells
  publication-title: Biol. Cell
  doi: 10.1042/BC20070160
– volume: 2
  start-page: e000143
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib20
  article-title: Update on the effects of physical activity on insulin sensitivity in humans
  publication-title: BMJ Open Sport Exerc. Med.
  doi: 10.1136/bmjsem-2016-000143
– volume: 598
  start-page: 5687
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib160
  article-title: The insulin-sensitizing effect of a single exercise bout is similar in type I and type II human muscle fibres
  publication-title: J. Physiol.
  doi: 10.1113/JP280475
– volume: 67
  start-page: 19
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib234
  article-title: Insulin action in human thighs after one-legged immobilization
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1989.67.1.19
– volume: 30
  start-page: 1507
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib205
  article-title: Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study
  publication-title: Diabetes Care
  doi: 10.2337/dc06-2537
– volume: 730
  start-page: 49
  year: 1983
  ident: 10.1016/j.cmet.2021.03.020_bib294
  article-title: Identification of the D-glucose-inhibitable cytochalasin B binding site as the glucose transporter in rat diaphragm plasma and microsomal membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(83)90315-2
– volume: 28
  start-page: 71
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib196
  article-title: Physical inactivity affects skeletal muscle insulin signaling in a birth weight-dependent manner
  publication-title: J. Diabetes Complications
  doi: 10.1016/j.jdiacomp.2013.09.002
– volume: 11
  start-page: 470
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib215
  article-title: Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13869-w
– volume: 261
  start-page: E556
  year: 1991
  ident: 10.1016/j.cmet.2021.03.020_bib91
  article-title: Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle
  publication-title: Am. J. Physiol.
– volume: 93
  start-page: 993
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib230
  article-title: Exercise, GLUT4, and skeletal muscle glucose uptake
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00038.2012
– volume: 62
  start-page: 1865
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib267
  article-title: Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/db12-1148
– volume: 2
  start-page: S31
  issue: Suppl 2
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib315
  article-title: High-fat load: mechanism(s) of insulin resistance in skeletal muscle
  publication-title: Int. J. Obes. Suppl.
  doi: 10.1038/ijosup.2012.20
– volume: 253
  start-page: 8002
  year: 1978
  ident: 10.1016/j.cmet.2021.03.020_bib295
  article-title: Mechanism of insulin action on glucose transport in the isolated rat adipose cell. Enhancement of the number of functional transport systems
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)34350-8
– volume: 109
  start-page: 2967
  year: 1996
  ident: 10.1016/j.cmet.2021.03.020_bib221
  article-title: GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with TGN
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.109.13.2967
– volume: 60
  start-page: 1720
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib75
  article-title: Muscle and adipose tissue insulin resistance: malady without mechanism?
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R087510
– year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib113
– volume: 173
  start-page: 207
  year: 1953
  ident: 10.1016/j.cmet.2021.03.020_bib89
  article-title: Action of insulin on transfer of sugars across cell barriers; common chemical configuration of substances responsive to action of the hormone
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1953.173.2.207
– volume: 46
  start-page: 1257
  year: 1997
  ident: 10.1016/j.cmet.2021.03.020_bib60
  article-title: CL-316,243, a β3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats
  publication-title: Diabetes
  doi: 10.2337/diab.46.8.1257
– volume: 92
  start-page: 203
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib124
  article-title: Insulin diffusion and self-association characterized by real-time UV imaging and Taylor dispersion analysis
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2014.01.022
– volume: 108
  start-page: 371
  year: 2001
  ident: 10.1016/j.cmet.2021.03.020_bib277
  article-title: Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200112348
– volume: 105
  start-page: 311
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib55
  article-title: Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI7535
– volume: 444
  start-page: 710
  year: 2002
  ident: 10.1016/j.cmet.2021.03.020_bib163
  article-title: Gene gun bombardment-mediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-002-0862-5
– volume: 441
  start-page: 763
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib236
  article-title: Glycogen and its metabolism: some new developments and old themes
  publication-title: Biochem. J.
  doi: 10.1042/BJ20111416
– volume: 92
  start-page: 5817
  year: 1995
  ident: 10.1016/j.cmet.2021.03.020_bib172
  article-title: Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.13.5817
– volume: 64
  start-page: 23
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib167
  article-title: Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis
  publication-title: Diabetes
  doi: 10.2337/db13-1070
– volume: 39
  start-page: 1381
  year: 1990
  ident: 10.1016/j.cmet.2021.03.020_bib189
  article-title: Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM
  publication-title: Diabetes
  doi: 10.2337/diab.39.11.1381
– volume: 247
  start-page: E291
  year: 1984
  ident: 10.1016/j.cmet.2021.03.020_bib146
  article-title: Induction of sugar uptake response to insulin by serum depletion in fusing L6 myoblasts
  publication-title: Am. J. Physiol.
– volume: 21
  start-page: 3529
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib44
  article-title: Arp2/3- and cofilin-coordinated actin dynamics is required for insulin-mediated GLUT4 translocation to the surface of muscle cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-04-0316
– volume: 65
  start-page: 2862
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib67
  article-title: One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation
  publication-title: Diabetes
  doi: 10.2337/db15-1661
– volume: 50
  start-page: 1324
  year: 2001
  ident: 10.1016/j.cmet.2021.03.020_bib85
  article-title: GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.6.1324
– volume: 46
  start-page: 1775
  year: 1997
  ident: 10.1016/j.cmet.2021.03.020_bib300
  article-title: Insulin signaling in human skeletal muscle: time course and effect of exercise
  publication-title: Diabetes
  doi: 10.2337/diab.46.11.1775
– volume: 263
  start-page: C443
  year: 1992
  ident: 10.1016/j.cmet.2021.03.020_bib177
  article-title: Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1992.263.2.C443
– volume: 52
  start-page: 1066
  year: 2003
  ident: 10.1016/j.cmet.2021.03.020_bib151
  article-title: 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.5.1066
– volume: 259
  start-page: E185
  year: 1990
  ident: 10.1016/j.cmet.2021.03.020_bib17
  article-title: Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia
  publication-title: Am. J. Physiol.
– volume: 10
  start-page: 13
  year: 1951
  ident: 10.1016/j.cmet.2021.03.020_bib181
  article-title: Myopathy due to a defect in muscle glycogen breakdown
  publication-title: Clin. Sci.
– volume: 24
  start-page: 7567
  year: 2004
  ident: 10.1016/j.cmet.2021.03.020_bib82
  article-title: Separation of insulin signaling into distinct GLUT4 translocation and activation steps
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.17.7567-7577.2004
– volume: 69
  start-page: 785
  year: 1982
  ident: 10.1016/j.cmet.2021.03.020_bib231
  article-title: Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI110517
– volume: 117
  start-page: 399
  year: 2004
  ident: 10.1016/j.cmet.2021.03.020_bib242
  article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00400-3
– volume: 71
  start-page: 688
  year: 1925
  ident: 10.1016/j.cmet.2021.03.020_bib52
  article-title: Comparative study of the sugar concentration in arterial and venous blood during insulin action
  publication-title: Am. J. Physiol. Content
  doi: 10.1152/ajplegacy.1925.71.3.688
– volume: 33
  start-page: 141
  year: 2003
  ident: 10.1016/j.cmet.2021.03.020_bib104
  article-title: Transcapillary insulin transfer in human skeletal muscle
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1046/j.1365-2362.2003.01106.x
– volume: 42
  start-page: 101091
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib179
  article-title: β-catenin regulates muscle glucose transport via actin remodelling and M-cadherin binding
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2020.101091
– volume: 1
  start-page: e85477
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib58
  article-title: Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.85477
– volume: 97
  start-page: 1125
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib88
  article-title: The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.3.1125
– volume: 78
  start-page: 24
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib59
  article-title: Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2
  publication-title: Vascul. Pharmacol.
  doi: 10.1016/j.vph.2015.09.002
– volume: 27
  start-page: 237
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib152
  article-title: The barrier within: endothelial transport of hormones
  publication-title: Physiology (Bethesda)
– volume: 72
  start-page: 2197
  year: 1992
  ident: 10.1016/j.cmet.2021.03.020_bib140
  article-title: Eccentric exercise induces transient insulin resistance in healthy individuals
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1992.72.6.2197
– volume: 142
  start-page: 1429
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib218
  article-title: Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.142.6.1429
– volume: 29
  start-page: 50
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib175
  article-title: Mechanisms preserving insulin action during high dietary fat intake
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.08.022
– volume: 31
  start-page: 336
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib165
  article-title: Endothelial transcytosis of insulin: does it contribute to insulin resistance?
  publication-title: Physiology (Bethesda)
– volume: 54
  start-page: 157
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib288
  article-title: Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training
  publication-title: Diabetologia
  doi: 10.1007/s00125-010-1924-4
– volume: 32
  start-page: 57
  year: 2021
  ident: 10.1016/j.cmet.2021.03.020_bib34
  article-title: Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E20-06-0356
– volume: 40
  start-page: 1354
  year: 2008
  ident: 10.1016/j.cmet.2021.03.020_bib40
  article-title: Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity
  publication-title: Nat. Genet.
  doi: 10.1038/ng.244
– volume: 217
  start-page: 2273
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib276
  article-title: The cell biology of systemic insulin function
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201802095
– volume: 60
  start-page: 416
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib129
  article-title: Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin α2β1 in mice
  publication-title: Diabetes
  doi: 10.2337/db10-1116
– volume: 10
  start-page: 30
  year: 2012
  ident: 10.1016/j.cmet.2021.03.020_bib213
  article-title: Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages
  publication-title: Cell Commun. Signal.
  doi: 10.1186/1478-811X-10-30
– volume: 46
  start-page: 649
  year: 2003
  ident: 10.1016/j.cmet.2021.03.020_bib238
  article-title: Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues
  publication-title: Diabetologia
  doi: 10.1007/s00125-003-1080-1
– volume: 135
  start-page: 415
  year: 1996
  ident: 10.1016/j.cmet.2021.03.020_bib290
  article-title: Insulin unmasks a COOH-terminal Glut4 epitope and increases glucose transport across T-tubules in skeletal muscle
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.135.2.415
– volume: 96
  start-page: 786
  year: 1995
  ident: 10.1016/j.cmet.2021.03.020_bib14
  article-title: Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI118124
– volume: 41
  start-page: 1562
  year: 1992
  ident: 10.1016/j.cmet.2021.03.020_bib178
  article-title: Insulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/diab.41.12.1562
– volume: 12
  start-page: 12
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib266
  article-title: Current advances in our understanding of exercise as medicine in metabolic disease
  publication-title: Curr. Opin. Physiol.
  doi: 10.1016/j.cophys.2019.04.008
– volume: 59
  start-page: 1148
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib214
  article-title: Sphingolipid changes do not underlie fatty acid-evoked GLUT4 insulin resistance nor inflammation signals in muscle cells
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M080788
– volume: 98
  start-page: 2027
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib261
  article-title: Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2012-3876
– volume: 33
  start-page: 748
  year: 2021
  ident: 10.1016/j.cmet.2021.03.020_bib243
  article-title: Insulin action in adipocytes, adipose remodeling, and systemic effects
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.03.019
– volume: 69
  start-page: 2281
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib18
  article-title: The rabgaps tbc1d1 and tbc1d4 control uptake of long-chain fatty acids into skeletal muscle via fatty acid transporter SLC27A4/FATP4
  publication-title: Diabetes
  doi: 10.2337/db20-0180
– volume: 290
  start-page: E560
  year: 2006
  ident: 10.1016/j.cmet.2021.03.020_bib19
  article-title: Increased collagen content in insulin-resistant skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00202.2005
– volume: 66
  start-page: 1491
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib184
  article-title: GLUT4 is not necessary for overload-induced glucose uptake or hypertrophic growth in mouse skeletal muscle
  publication-title: Diabetes
  doi: 10.2337/db16-1075
– volume: 90
  start-page: 1568
  year: 1992
  ident: 10.1016/j.cmet.2021.03.020_bib139
  article-title: Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116025
– volume: 47
  start-page: 5
  year: 1998
  ident: 10.1016/j.cmet.2021.03.020_bib69
  article-title: Selective impairment in GLUT4 translocation to transverse tubules in skeletal muscle of streptozotocin-induced diabetic rats
  publication-title: Diabetes
  doi: 10.2337/diab.47.1.5
– volume: 253
  start-page: 279
  year: 1987
  ident: 10.1016/j.cmet.2021.03.020_bib36
  article-title: Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(87)90661-8
– volume: 248
  start-page: E567
  year: 1985
  ident: 10.1016/j.cmet.2021.03.020_bib119
  article-title: Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats
  publication-title: Am. J. Physiol.
– volume: 20
  start-page: 434
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib87
  article-title: Endothelial cells actively concentrate insulin during its transendothelial transport
  publication-title: Microcirculation
  doi: 10.1111/micc.12044
– volume: 114
  start-page: E8478
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib153
  article-title: Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1710625114
– volume: 39
  start-page: 1607
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib134
  article-title: Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2015.104
– volume: 279
  start-page: E1039
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib137
  article-title: Lipid oxidation is reduced in obese human skeletal muscle
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.2000.279.5.E1039
– volume: 264
  start-page: 7776
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib81
  article-title: Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)83106-4
– volume: 251
  start-page: 1913
  year: 1976
  ident: 10.1016/j.cmet.2021.03.020_bib235
  article-title: Rabbit skeletal muscle glycogen synthase. I. Relationship between phosphorylation state and kinetic properties
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)33634-7
– volume: 449
  start-page: 479
  year: 2013
  ident: 10.1016/j.cmet.2021.03.020_bib293
  article-title: AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues
  publication-title: Biochem. J.
  doi: 10.1042/BJ20120702
– volume: 167
  start-page: 13
  year: 1951
  ident: 10.1016/j.cmet.2021.03.020_bib203
  article-title: Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1951.167.1.13
– volume: 15
  start-page: 5565
  year: 2004
  ident: 10.1016/j.cmet.2021.03.020_bib226
  article-title: Insulin and hypertonicity recruit GLUT4 to the plasma membrane of muscle cells by using N-ethylmaleimide-sensitive factor-dependent SNARE mechanisms but different v-SNAREs: role of TI-VAMP
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-03-0266
– volume: 64
  start-page: 485
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib4
  article-title: Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db14-0590
– volume: 42
  start-page: 1171
  year: 1999
  ident: 10.1016/j.cmet.2021.03.020_bib114
  article-title: Lipolysis in skeletal muscle is rapidly regulated by low physiological doses of insulin
  publication-title: Diabetologia
  doi: 10.1007/s001250051288
– volume: 104
  start-page: 704
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib149
  article-title: Electroporated GLUT4-7myc-GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns
  publication-title: Exp. Physiol.
  doi: 10.1113/EP087545
– volume: 68
  start-page: 1756
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib143
  article-title: TBC1D4 is necessary for enhancing muscle insulin sensitivity in response to AICAR and contraction
  publication-title: Diabetes
  doi: 10.2337/db18-0769
– volume: 1713
  start-page: 175
  year: 2018
  ident: 10.1016/j.cmet.2021.03.020_bib118
  article-title: GLUT4 translocation in single muscle cells in culture: epitope detection by immunofluorescence
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7507-5_14
– volume: 92
  start-page: 380
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib282
  article-title: Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2014.08.033
– volume: 28
  start-page: 108
  year: 2005
  ident: 10.1016/j.cmet.2021.03.020_bib28
  article-title: Effects of exercise training on glucose homeostasis: the HERITAGE Family Study
  publication-title: Diabetes Care
  doi: 10.2337/diacare.28.1.108
– volume: 25
  start-page: 486
  year: 1968
  ident: 10.1016/j.cmet.2021.03.020_bib274
  article-title: A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(68)90127-9
– volume: 76
  start-page: 149
  year: 1985
  ident: 10.1016/j.cmet.2021.03.020_bib63
  article-title: Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI111938
– volume: 282
  start-page: E491
  year: 2002
  ident: 10.1016/j.cmet.2021.03.020_bib171
  article-title: Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00419.2001
– volume: 299
  start-page: E752
  year: 2010
  ident: 10.1016/j.cmet.2021.03.020_bib6
  article-title: Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00590.2009
– volume: 66
  start-page: 1501
  year: 2017
  ident: 10.1016/j.cmet.2021.03.020_bib251
  article-title: Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling
  publication-title: Diabetes
  doi: 10.2337/db16-1327
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib224
  article-title: Insulin-stimulated muscle glucose uptake and insulin signaling in lean and obese humans
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 121
  start-page: 2457
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib253
  article-title: Mitochondrial dysfunction in patients with primary congenital insulin resistance
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI46405
– volume: 282
  start-page: E1267
  year: 2002
  ident: 10.1016/j.cmet.2021.03.020_bib199
  article-title: Decreased insulin action in skeletal muscle from patients with McArdle’s disease
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00526.2001
– volume: 42
  start-page: 1469
  year: 1993
  ident: 10.1016/j.cmet.2021.03.020_bib122
  article-title: Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Importance of the endothelial barrier for insulin
  publication-title: Diabetes
  doi: 10.2337/diab.42.10.1469
– volume: 49
  start-page: 647
  year: 2000
  ident: 10.1016/j.cmet.2021.03.020_bib239
  article-title: Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.4.647
– volume: 56
  start-page: 390
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib49
  article-title: Calcium signaling in insulin action on striated muscle
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2014.08.012
– volume: 56
  start-page: 414
  year: 2007
  ident: 10.1016/j.cmet.2021.03.020_bib275
  article-title: The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic
  publication-title: Diabetes
  doi: 10.2337/db06-0900
– volume: 598
  start-page: 5351
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib192
  article-title: Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/JP280294
– volume: 59
  start-page: 44
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib1
  article-title: Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3751-0
– volume: 92
  start-page: 983
  year: 1995
  ident: 10.1016/j.cmet.2021.03.020_bib237
  article-title: Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.4.983
– volume: 61
  start-page: 644
  year: 1983
  ident: 10.1016/j.cmet.2021.03.020_bib145
  article-title: Insulin binding to differentiating muscle cells in culture
  publication-title: Can. J. Biochem. Cell Biol.
  doi: 10.1139/o83-081
– volume: 256
  start-page: E494
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib39
  article-title: Prolonged increase in insulin-stimulated glucose transport in muscle after exercise
  publication-title: Am. J. Physiol.
– volume: 65
  start-page: 1621
  year: 2016
  ident: 10.1016/j.cmet.2021.03.020_bib154
  article-title: A human model of dietary saturated fatty acid induced insulin resistance
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.07.015
– volume: 94
  start-page: 1172
  year: 1994
  ident: 10.1016/j.cmet.2021.03.020_bib256
  article-title: Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI117433
– volume: 48
  start-page: 1192
  year: 1999
  ident: 10.1016/j.cmet.2021.03.020_bib133
  article-title: Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.5.1192
– volume: 317
  start-page: E1022
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib182
  article-title: Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00260.2019
– volume: 104
  start-page: 733
  year: 1999
  ident: 10.1016/j.cmet.2021.03.020_bib136
  article-title: Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI6928
– volume: 264
  start-page: 19994
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib83
  article-title: The acquisition of increased insulin-responsive hexose transport in 3T3-L1 adipocytes correlates with expression of a novel transporter gene
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)47209-8
– volume: 26
  start-page: 740
  year: 2015
  ident: 10.1016/j.cmet.2021.03.020_bib11
  article-title: Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-08-1307
– volume: 512
  start-page: 190
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib193
  article-title: A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature13425
– volume: 5
  start-page: e1186
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib285
  article-title: Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.161
– volume: 105
  start-page: 154169
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib98
  article-title: Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154169
– volume: 26
  start-page: 323
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib268
  article-title: Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2013.11.007
– volume: 8
  start-page: 434
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib191
  article-title: Rho GTPases-emerging regulators of glucose homeostasis and metabolic health
  publication-title: Cells
  doi: 10.3390/cells8050434
– volume: 12
  start-page: 304
  year: 2021
  ident: 10.1016/j.cmet.2021.03.020_bib65
  article-title: Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20556-8
– volume: 60
  start-page: 64
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib107
  article-title: Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling
  publication-title: Diabetes
  doi: 10.2337/db10-0698
– volume: 16
  start-page: 683
  year: 2020
  ident: 10.1016/j.cmet.2021.03.020_bib79
  article-title: Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-020-0405-1
– volume: 66
  start-page: 695
  year: 1989
  ident: 10.1016/j.cmet.2021.03.020_bib187
  article-title: Effect of training on the dose-response relationship for insulin action in men
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1989.66.2.695
– volume: 259
  start-page: 13
  year: 1976
  ident: 10.1016/j.cmet.2021.03.020_bib73
  article-title: The number of sodium ion pumping sites in skeletal muscle and its modification by insulin
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1976.sp011452
– volume: 23
  start-page: 90
  year: 1967
  ident: 10.1016/j.cmet.2021.03.020_bib100
  article-title: Uptake and release of free fatty acids and other metabolites in the legs of exercising men
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1967.23.1.90
– volume: 51
  start-page: 2944
  year: 2002
  ident: 10.1016/j.cmet.2021.03.020_bib132
  article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.10.2944
– volume: 316
  start-page: E695
  year: 2019
  ident: 10.1016/j.cmet.2021.03.020_bib207
  article-title: Skeletal muscle fiber type-selective effects of acute exercise on insulin-stimulated glucose uptake in insulin-resistant, high-fat-fed rats
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00482.2018
– volume: 63
  start-page: 1725
  year: 2014
  ident: 10.1016/j.cmet.2021.03.020_bib25
  article-title: Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass
  publication-title: Diabetes
  doi: 10.2337/db13-1307
– volume: 96
  start-page: E691
  year: 2011
  ident: 10.1016/j.cmet.2021.03.020_bib287
  article-title: Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2010-2243
SSID ssj0036393
Score 2.6676958
SecondaryResourceType review_article
Snippet As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 758
SubjectTerms Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
Exercise
Glucose - metabolism
Glucose Transporter Type 4 - metabolism
Humans
Insulin - metabolism
Muscle, Skeletal - metabolism
Oxidative Stress
Receptor, Insulin - metabolism
Signal Transduction
Title The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia
URI https://www.ncbi.nlm.nih.gov/pubmed/33826918
https://www.proquest.com/docview/2510266930
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZgEGguiJ1hk5G4lVSJ7SbOcRiBRmynDiqnyHYclEnTjNr0UH49z1uaAQYBUpRUWRzV79PL957fgtCrhIuS66SKmPExMaVpJDkVUayVFJVK8qw0icKfPqenZ-z9YrbYx8_b7JJeTtX33-aV_I9U4RzI1WTJ_oNkh0HhBPwG-cIeJAz7v5ZxaxbsXXaCKx_rg8th2zTwTTHJju12o1zYsE2MEmvRmhYRk97O-qT0ITHGa_BtuVO6rcWYtJ4Y_14LI8luGSoOGqcM2Pp2YejjrmkGfMy7RqytV_pLbRYEajEZ_Msmi983AgH92-z9qB-Wte2Td9zWazF2RJDExq_4MtZOeQIXjMDUjsfa1ZW58ChiI1WZuZLtv6hw5004nyr4X1PzHluE1g06kulFa4UKFjZJc6_CLxfODpeuoxsEbAib3bl4Ez7TFKgZ9VlULuDv5xceolthiMuk5QpLxDKS-R1025sS-Njh4i66plf30E3XXHR3H30FdGCDDuzRgbsKe3TAEQd0YIeO1xiwgQdsYIcNPMIGDth4gM7evZ2fnEa-kUakgKP0UQm0UKU5rxI2I4xLRbMyIUSlgrOZ0ElJeVqWiVZEa5XlscwEIcBN05LLPFYxfYgOVt1KP0bYtBtgaS60FhVjVMusAoYnY0kyXsVZdYSSMFOF8lXmTbOTZRHCCc8LM9GFmegipgVM9BGaDM9cuBorf7z7ZRBAAarQrG-Jle62mwKoegx8M6dwzyMnmWG8IMknV155ig73qH6GDvr1Vj8HwtnLFxY4PwAPW4GZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+many+actions+of+insulin+in+skeletal+muscle%2C+the+paramount+tissue+determining+glycemia&rft.jtitle=Cell+metabolism&rft.au=Sylow%2C+Lykke&rft.au=Tokarz%2C+Victoria+L&rft.au=Richter%2C+Erik+A&rft.au=Klip%2C+Amira&rft.date=2021-04-06&rft.eissn=1932-7420&rft.volume=33&rft.issue=4&rft.spage=758&rft_id=info:doi/10.1016%2Fj.cmet.2021.03.020&rft_id=info%3Apmid%2F33826918&rft.externalDocID=33826918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon