The role of ferroptosis in virus infections
Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated wit...
Saved in:
Published in | Frontiers in microbiology Vol. 14; p. 1279655 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections. |
---|---|
AbstractList | Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections.Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections. Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections. |
Author | Li, Hua Niu, Kang Zhang, Zihui Zhu, Junda Wu, Wenxue Wang, Jing Peng, Chen Ren, Shuning |
Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 2 givenname: Junda surname: Zhu fullname: Zhu, Junda – sequence: 3 givenname: Shuning surname: Ren fullname: Ren, Shuning – sequence: 4 givenname: Zihui surname: Zhang fullname: Zhang, Zihui – sequence: 5 givenname: Kang surname: Niu fullname: Niu, Kang – sequence: 6 givenname: Hua surname: Li fullname: Li, Hua – sequence: 7 givenname: Wenxue surname: Wu fullname: Wu, Wenxue – sequence: 8 givenname: Chen surname: Peng fullname: Peng, Chen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38075884$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctKAzEUDVKxWvsDLmSWgrTmNXksRXwUCm4quAuZzI2mTCc1mQr-vVNbRVx4F_fFOefCPSdo0MYWEDojeMqY0ld-FVw1pZiyKaFSi7I8QMdECD5hmD4PfvVDNM55ifvgmPb5CA2ZwrJUih-jy8UrFCk2UERfeEgprruYQy5CW7yHtNk2HlwXYptP0aG3TYbxvo7Q093t4uZhMn-8n91czyeOE9ZNnCey5LL0tXW19BUDwpVmyhLvufacVVA7IkFjLnDZD4Cpqzh2oCgBItgIzXa6dbRLs05hZdOHiTaYr0VML8amLrgGjBaMcl_6EsByj3GFpZBE81oK65STvdbFTmud4tsGcmdWITtoGttC3GRDNaaacypIDz3fQzfVCuqfw9_P6gFqB3Ap5pzAGxc6u31Nl2xoDMFma435ssZsrTF7a3oq_UP9Vv-H9AmF6ZDq |
CitedBy_id | crossref_primary_10_3390_cells14050351 crossref_primary_10_3390_ani14233516 crossref_primary_10_3390_cancers17030530 crossref_primary_10_1007_s10072_024_07832_x crossref_primary_10_1186_s40779_024_00581_0 crossref_primary_10_1080_22221751_2024_2382235 crossref_primary_10_1016_j_biopha_2024_116866 |
Cites_doi | 10.1007/s00204-022-03317-y 10.1016/j.freeradbiomed.2020.02.027 10.1016/j.semcancer.2019.03.002 10.1126/sciadv.add8539 10.1158/2159-8290.CD-20-0789 10.3390/v13122383 10.1038/s41419-022-04628-9 10.1194/jlr.M072512 10.1016/j.theriogenology.2022.02.022 10.1007/s10565-022-09778-2 10.3389/fcvm.2022.968752 10.1371/journal.ppat.1010718 10.3390/biomedicines10061425 10.21037/atm-21-6942 10.1016/j.redox.2019.101328 10.1002/jcp.26954 10.1016/j.bbrc.2016.08.124 10.1016/j.cell.2012.03.042 10.1016/bs.vh.2019.01.002 10.1038/s41580-020-00324-8 10.1016/j.tcb.2015.10.014 10.3389/fcimb.2023.1142173 10.3390/nu11092101 10.7150/thno.59092 10.1038/s41392-022-01046-3 10.3389/fimmu.2022.779585 10.3389/fnins.2022.904816 10.1038/s41419-021-03559-1 10.1038/s41422-020-00441-1 10.1007/s13238-020-00789-5 10.1038/nri.2016.147 10.3390/ph11040114 10.1016/j.antiviral.2018.06.010 10.3390/v13122469 10.1038/s41590-021-01090-1 10.1080/19390211.2022.2075072 10.1038/s41467-021-21841-w 10.2147/OTT.S254995 10.3390/v14020317 10.1084/jem.20210518 10.12688/f1000research.108667.2 10.1016/j.chembiol.2020.03.014 10.1016/j.ecoenv.2023.114771 10.1007/s10534-022-00458-6 10.1016/j.biopha.2021.111228 10.1038/s41590-020-0699-0 10.1038/s41392-020-00428-9 10.1016/j.freeradbiomed.2013.07.036 10.3390/cancers14235896 10.3390/cells9061505 10.1177/03009858211005537 10.1371/journal.ppat.1002666 10.3390/ijms24010449 10.1006/abbi.2000.2197 10.23750/abm.v91i3.9826 10.1016/j.freeradbiomed.2018.06.037 10.1016/j.phrs.2021.105466 10.1128/JVI.00191-18 10.3390/ijms22126493 10.1146/annurev-nutr-082117-051749 10.1038/s42003-021-02060-x 10.1038/s41422-019-0164-5 10.3390/v13040629 10.3390/life12081255 10.3390/ph13100275 10.1101/gad.314674.118 10.1038/s41467-019-10200-5 10.2174/1389557522666220218123404 10.1038/s41419-022-05027-w 10.1002/cac2.12250 10.1111/jcmm.13008 10.1038/s41557-019-0261-6 10.3390/molecules25081997 10.1136/gutjnl-2014-307904 10.1038/s41419-020-2298-2 10.3390/ijms21062145 10.1371/journal.pone.0083307 10.1038/s41418-017-0012-4 10.1016/j.tim.2022.11.006 10.3389/fcell.2021.637162 10.1038/s41392-022-01110-y 10.1038/s41401-021-00814-1 10.1161/circresaha.121.320518 10.3389/fcell.2020.586578 10.1038/s41586-019-1707-0 10.1007/978-1-0716-0346-8_7 10.1093/femsre/fuaa066 10.1007/s13365-015-0375-6 10.1016/j.emc.2021.04.002 10.21037/jgo-21-916 10.1016/j.redox.2023.102752 10.1146/annurev-nutr-062320-114541 10.1016/j.freeradbiomed.2018.09.014 10.1182/bloodadvances.2016000745 10.1016/j.bbamcr.2020.118913 10.1038/s41467-020-14324-x 10.1007/978-1-4939-2095-2_10 10.1186/s12985-022-01825-y 10.1007/s13238-021-00823-0 10.1038/s41586-019-1705-2 10.1038/s41418-020-00728-1 10.3389/fphar.2022.865689 10.3390/ijms20194968 10.1128/jvi.00460-18 10.1038/s41569-022-00735-4 10.1128/jvi.01611-22 10.1128/mbio.02717-21 10.1016/j.isci.2021.102837 10.1038/nchembio.2239 10.3390/ijms22094591 10.1172/jci.insight.156013 10.1073/pnas.2214936120 10.1002/adma.201904197 10.1084/jem.20140857 10.3390/antiox12020326 10.1038/s41418-022-00939-8 10.3390/cancers12010164 10.1152/physrev.00002.2021 10.1155/2022/3192607 10.1038/cr.2016.95 10.1016/j.molcel.2022.03.022 10.1155/2022/2634431 10.1089/ars.2017.7115 10.1016/j.molcel.2023.03.005 10.1038/s41419-019-2064-5 10.1002/ijc.32709 10.1016/j.biopha.2020.110108 10.1016/j.ejmech.2022.114443 10.1128/mbio.02370-22 10.1073/pnas.1301764110 10.7150/ijms.62903 10.1016/j.yexcr.2023.113474 10.1016/j.cmet.2020.10.011 10.1038/s41568-022-00459-0 10.3390/cells11172726 10.1038/s12276-021-00608-9 10.1038/s41392-020-00216-5 10.1016/j.cell.2013.12.010 10.1016/j.mib.2020.07.007 10.1111/febs.16059 10.4161/23723556.2014.995047 10.1155/2020/8832043 10.1016/j.virs.2022.10.005 10.1080/15548627.2020.1810918 10.3390/cells11142224 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Wang, Zhu, Ren, Zhang, Niu, Li, Wu and Peng. |
Copyright_xml | – notice: Copyright © 2023 Wang, Zhu, Ren, Zhang, Niu, Li, Wu and Peng. |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3389/fmicb.2023.1279655 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_96324f5f5eea4f00b0767194d76ac8c7 38075884 10_3389_fmicb_2023_1279655 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 |
ID | FETCH-LOGICAL-c413t-cf175475fdacd7fb3e148938a1ff49f43bedc17e904605bede02cb40ce821e163 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:32:53 EDT 2025 Fri Jul 11 01:41:51 EDT 2025 Thu Jan 02 22:40:52 EST 2025 Thu Apr 24 22:56:33 EDT 2025 Tue Jul 01 02:18:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | regulated cell death virus-host interaction inhibitors and inducers viral infections ferroptosis |
Language | English |
License | Copyright © 2023 Wang, Zhu, Ren, Zhang, Niu, Li, Wu and Peng. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-cf175475fdacd7fb3e148938a1ff49f43bedc17e904605bede02cb40ce821e163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2023.1279655 |
PMID | 38075884 |
PQID | 2902944261 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_96324f5f5eea4f00b0767194d76ac8c7 proquest_miscellaneous_2902944261 pubmed_primary_38075884 crossref_citationtrail_10_3389_fmicb_2023_1279655 crossref_primary_10_3389_fmicb_2023_1279655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Martin (ref82) 2013; 110 Zhao (ref141) 2020; 13 Sun (ref106) 2018; 92 Guo (ref42) 2021; 13 Richard (ref95) 2001; 386 Tang (ref108) 2021; 31 Zhang (ref140) 2021; 12 Llabani (ref76) 2019; 11 Monson (ref87) 2021; 45 Callaway (ref11) 2018; 92 Li (ref65) 2022; 12 Guan (ref40) 2021; 4 Mancinelli (ref80) 2020; 25 Farías (ref31) 2022; 11 Koppula (ref57); 12 Liang (ref69) 2019; 31 Park (ref93) 2019; 10 Liu (ref74) 2022; 10 Spackman (ref105) 2020; 2123 Yang (ref128) 2020; 11 Yang (ref130) 2016; 26 Chen (ref16) 2021; 39 Kajarabille (ref51) 2019; 20 Li (ref67) 2020; 5 Zhao (ref143) 2022; 42 Zhou (ref145) 2020; 66 Shaghaghi (ref101) 2022; 22 Zhao (ref142) 2022; 13 Naidu (ref89) 2023; 20 Xia (ref122) 2021; 13 Kung (ref62) 2022; 13 Vogt (ref115) 2021; 22 Chifman (ref20) 2014; 844 Bernier (ref7) 2018; 156 Cavezzi (ref12) 2022; 11 Maiorino (ref79) 2018; 29 Bersuker (ref8) 2019; 575 Dixon (ref26) 2023; 83 Chen (ref17); 28 Yu (ref134) 2017; 21 Gao (ref37) 2022; 7 Rochette (ref96) 2022; 24 Kang (ref53) 2019; 10 Sokolov (ref103) 2023; 36 Xie (ref123) 2022; 11 Kumari (ref61) 2016; 1 Gryzik (ref39) 2021; 1868 Yuan (ref136) 2016; 478 Seibt (ref99) 2019; 133 Chen (ref15); 17 Ursini (ref113) 2020; 152 Galluzzi (ref33) 2018; 25 Wang (ref117) 2022; 23 Chhabra (ref19) 2020; 13 Kaelber (ref50) 2012; 8 Jiang (ref48) 2021; 22 Zangi (ref137) 2022; 238 Wang (ref118) 2023; 97 Mazel-Sanchez (ref84) 2023; 120 Doll (ref28) 2017; 13 Ginzburg (ref38) 2019; 110 Koppula (ref58); 12 Peng (ref94) 2022; 7 Wang (ref119) 2023; 255 Yuan (ref135) 2022; 29 Yang (ref132); 14 Choi (ref21) 2021; 53 Klett (ref56) 2017; 58 Yan (ref126) 2021; 6 Zeng (ref138) 2023; 9 Sun (ref107) 2020; 127 Wessling-Resnick (ref121) 2018; 38 Koren (ref59) 2021; 11 Liu (ref71) 2022; 10 Wei (ref120) 2020; 2020 Tummers (ref112) 2022; 102 Fillebeen (ref32) 2013; 8 Liu (ref73) 2022; 289 Gao (ref35) 2016; 26 Lu (ref77) 2014; 66 Liu (ref72) 2023; 63 Han (ref44) 2022; 130 Tang (ref109) 2018; 233 Cheng (ref18) 2022; 19 Conrad (ref23) 2018; 32 Jia (ref47) 2020; 21 Bayır (ref5) 2020; 27 Chen (ref13); 9 Xu (ref124) 2021; 12 Dixon (ref25) 2012; 149 Liang (ref68) 2022; 82 Santana-Codina (ref98) 2018; 11 Kan (ref52) 2021; 24 Banchini (ref3) 2020; 91 Matsushita (ref83) 2015; 212 Battaglia (ref4) 2020; 9 Habib (ref43) 2021; 136 Yi (ref133) 2022; 13 Du (ref29) 2023; 38 Jorgensen (ref49) 2017; 17 Morales (ref88) 2021; 11 Ashida (ref2) 2021; 59 Dar (ref24) 2022; 7 Kuang (ref60) 2020; 8 Liu (ref70) 2022; 2022 Chen (ref14); 218 Wang (ref116) 2022; 43 Marchetti (ref81) 2020; 21 Tong (ref111) 2023; 424 Yang (ref129) 2014; 156 Lei (ref63) 2022; 22 Verburg (ref114) 2022; 18 Kerr (ref55) 2021; 13 Zheng (ref144) 2020; 32 Ni (ref91) 2022; 13 Song (ref104) 2016; 22 Yang (ref127); 9 Conrad (ref22) 2015; 2 Li (ref64) 2020; 11 Pan (ref92) 2021; 18 Tang (ref110) 2019; 29 Gan (ref34) 2022; 184 Li (ref66) 2021; 166 Guillin (ref41) 2019; 11 Lv (ref78) 2022; 39 Doll (ref27) 2019; 575 Yang (ref131) 2022; 13 Brault (ref9) 2016; 65 Miotto (ref85) 2020; 28 Xu (ref125) 2023; 14 Fang (ref30) 2023; 20 Liu (ref75) 2022; 2022 Sokolov (ref102) 2022; 14 Kawabata (ref54) 2019; 133 Braun (ref10) 2020; 146 Aschner (ref1) 2022; 96 Hu (ref45) 2022; 13 Zhang (ref139) 2023; 13 Gao (ref36) 2023; 31 Sfera (ref100) 2022; 16 Bebber (ref6) 2020; 12 Nemeth (ref90) 2021; 22 Jankauskas (ref46) 2023; 12 Santagostino (ref97) 2021; 58 Mishima (ref86) 2022; 42 |
References_xml | – volume: 96 start-page: 2391 year: 2022 ident: ref1 article-title: Ferroptosis as a mechanism of non-ferrous metal toxicity publication-title: Arch. Toxicol. doi: 10.1007/s00204-022-03317-y – volume: 152 start-page: 175 year: 2020 ident: ref113 article-title: Lipid peroxidation and ferroptosis: the role of GSH and GPx4 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.02.027 – volume: 66 start-page: 89 year: 2020 ident: ref145 article-title: Ferroptosis is a type of autophagy-dependent cell death publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.03.002 – volume: 9 start-page: eadd8539 year: 2023 ident: ref138 article-title: Ferroptosis MRI for early detection of anticancer drug-induced acute cardiac/kidney injuries publication-title: Sci. Adv. doi: 10.1126/sciadv.add8539 – volume: 11 start-page: 245 year: 2021 ident: ref59 article-title: Modes of regulated cell death in Cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-20-0789 – volume: 13 start-page: 2383 year: 2021 ident: ref122 article-title: Inhibiting ACSL1-related Ferroptosis restrains murine coronavirus infection publication-title: Viruses doi: 10.3390/v13122383 – volume: 13 start-page: 182 year: 2022 ident: ref91 article-title: Targeting ferroptosis in acute kidney injury publication-title: Cell Death Dis. doi: 10.1038/s41419-022-04628-9 – volume: 58 start-page: 884 year: 2017 ident: ref56 article-title: Long-chain acyl-CoA synthetase isoforms differ in preferences for eicosanoid species and long-chain fatty acids publication-title: J. Lipid Res. doi: 10.1194/jlr.M072512 – volume: 184 start-page: 92 year: 2022 ident: ref34 article-title: Ferroptosis-related genes involved in animal reproduction: an overview publication-title: Theriogenology doi: 10.1016/j.theriogenology.2022.02.022 – volume: 39 start-page: 827 year: 2022 ident: ref78 article-title: Ferroptosis: from regulation of lipid peroxidation to the treatment of diseases publication-title: Cell Biol. Toxicol. doi: 10.1007/s10565-022-09778-2 – volume: 9 start-page: 968752 ident: ref127 article-title: Advances in cell death mechanisms involved in viral myocarditis publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.968752 – volume: 18 start-page: e1010718 year: 2022 ident: ref114 article-title: Viral-mediated activation and inhibition of programmed cell death publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010718 – volume: 10 start-page: 1425 year: 2022 ident: ref71 article-title: Ferroptosis inducer improves the efficacy of oncolytic virus-mediated Cancer immunotherapy publication-title: Biomedicine doi: 10.3390/biomedicines10061425 – volume: 10 start-page: 368 year: 2022 ident: ref74 article-title: The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review publication-title: Ann. Transl. Med. doi: 10.21037/atm-21-6942 – volume: 28 start-page: 101328 year: 2020 ident: ref85 article-title: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1 publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101328 – volume: 233 start-page: 9179 year: 2018 ident: ref109 article-title: Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26954 – volume: 478 start-page: 1338 year: 2016 ident: ref136 article-title: Identification of ACSL4 as a biomarker and contributor of ferroptosis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.08.124 – volume: 149 start-page: 1060 year: 2012 ident: ref25 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cells doi: 10.1016/j.cell.2012.03.042 – volume: 110 start-page: 17 year: 2019 ident: ref38 article-title: Hepcidin-ferroportin axis in health and disease publication-title: Vitam. Horm. doi: 10.1016/bs.vh.2019.01.002 – volume: 22 start-page: 266 year: 2021 ident: ref48 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00324-8 – volume: 26 start-page: 165 year: 2016 ident: ref130 article-title: Ferroptosis: death by lipid peroxidation publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.10.014 – volume: 13 start-page: 1142173 year: 2023 ident: ref139 article-title: Erastin inhibits porcine epidemic diarrhea virus replication in Vero cells publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2023.1142173 – volume: 11 start-page: 2101 year: 2019 ident: ref41 article-title: Selenium, Selenoproteins and viral infection publication-title: Nutrients doi: 10.3390/nu11092101 – volume: 11 start-page: 8412 year: 2021 ident: ref88 article-title: Targeting iron metabolism in cancer therapy publication-title: Theranostics doi: 10.7150/thno.59092 – volume: 7 start-page: 196 year: 2022 ident: ref37 article-title: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-01046-3 – volume: 13 start-page: 779585 year: 2022 ident: ref142 article-title: Ferroptosis in rheumatoid arthritis: a potential therapeutic strategy publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.779585 – volume: 16 start-page: 904816 year: 2022 ident: ref100 article-title: Bromodomains in human-immunodeficiency virus-associated neurocognitive disorders: a model of Ferroptosis-induced neurodegeneration publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.904816 – volume: 12 start-page: 289 year: 2021 ident: ref124 article-title: The emerging role of ferroptosis in intestinal disease publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03559-1 – volume: 31 start-page: 107 year: 2021 ident: ref108 article-title: Ferroptosis: molecular mechanisms and health implications publication-title: Cell Res. doi: 10.1038/s41422-020-00441-1 – volume: 12 start-page: 599 ident: ref57 article-title: Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy publication-title: Protein Cell doi: 10.1007/s13238-020-00789-5 – volume: 17 start-page: 151 year: 2017 ident: ref49 article-title: Programmed cell death as a defence against infection publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.147 – volume: 11 start-page: 114 year: 2018 ident: ref98 article-title: The role of NCOA4-mediated Ferritinophagy in health and disease publication-title: Pharmaceuticals (Basel) doi: 10.3390/ph11040114 – volume: 156 start-page: 102 year: 2018 ident: ref7 article-title: Antifungal drug ciclopirox olamine reduces HSV-1 replication and disease in mice publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2018.06.010 – volume: 13 start-page: 2469 year: 2021 ident: ref42 article-title: Evolutionary dynamics of type 2 porcine reproductive and respiratory syndrome virus by whole-genome analysis publication-title: Viruses doi: 10.3390/v13122469 – volume: 23 start-page: 303 year: 2022 ident: ref117 article-title: The kinase complex mTORC2 promotes the longevity of virus-specific memory CD4(+) T cells by preventing ferroptosis publication-title: Nat. Immunol. doi: 10.1038/s41590-021-01090-1 – volume: 20 start-page: 312 year: 2023 ident: ref89 article-title: SARS-CoV-2 infection dysregulates host Iron (Fe)-redox homeostasis (Fe-R-H): role of Fe-redox regulators, Ferroptosis inhibitors, anticoagulants, and Iron-chelators in COVID-19 control publication-title: J. Diet Suppl. doi: 10.1080/19390211.2022.2075072 – volume: 12 start-page: 1589 year: 2021 ident: ref140 article-title: mTORC1 couples cyst(e) ine availability with GPX4 protein synthesis and ferroptosis regulation publication-title: Nat. Commun. doi: 10.1038/s41467-021-21841-w – volume: 13 start-page: 5429 year: 2020 ident: ref141 article-title: The role of Erastin in Ferroptosis and its prospects in Cancer therapy publication-title: Onco. Targets. Ther. doi: 10.2147/OTT.S254995 – volume: 14 start-page: 317 year: 2022 ident: ref102 article-title: Ferristatin II efficiently inhibits SARS-CoV-2 replication in Vero cells publication-title: Viruses doi: 10.3390/v14020317 – volume: 218 start-page: e20210518 ident: ref14 article-title: Ferroptosis in infection, inflammation, and immunity publication-title: J. Exp. Med. doi: 10.1084/jem.20210518 – volume: 11 start-page: 102 year: 2022 ident: ref12 article-title: COVID-19, cation Dysmetabolism, sialic acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: a possible unifying hypothesis publication-title: F1000Res. doi: 10.12688/f1000research.108667.2 – volume: 27 start-page: 387 year: 2020 ident: ref5 article-title: Achieving life through death: redox biology of lipid peroxidation in Ferroptosis publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2020.03.014 – volume: 255 start-page: 114771 year: 2023 ident: ref119 article-title: Ferroptosis mediates decabromodiphenyl ether-induced liver damage and inflammation publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2023.114771 – volume: 36 start-page: 437 year: 2023 ident: ref103 article-title: Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin publication-title: Biometals doi: 10.1007/s10534-022-00458-6 – volume: 136 start-page: 111228 year: 2021 ident: ref43 article-title: The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.111228 – volume: 21 start-page: 727 year: 2020 ident: ref47 article-title: Redox homeostasis maintained by GPX4 facilitates STING activation publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0699-0 – volume: 6 start-page: 49 year: 2021 ident: ref126 article-title: Ferroptosis: mechanisms and links with diseases publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-00428-9 – volume: 66 start-page: 75 year: 2014 ident: ref77 article-title: The thioredoxin antioxidant system publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.07.036 – volume: 14 start-page: 5896 ident: ref132 article-title: ACSL3 and ACSL4, distinct roles in Ferroptosis and cancers publication-title: Cancers (Basel) doi: 10.3390/cancers14235896 – volume: 9 start-page: 1505 year: 2020 ident: ref4 article-title: Ferroptosis and Cancer: mitochondria meet the "Iron maiden" cell death publication-title: Cells doi: 10.3390/cells9061505 – volume: 58 start-page: 596 year: 2021 ident: ref97 article-title: Mechanisms of regulated cell death: current perspectives publication-title: Vet. Pathol. doi: 10.1177/03009858211005537 – volume: 8 start-page: e1002666 year: 2012 ident: ref50 article-title: Evolutionary reconstructions of the transferrin receptor of Caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002666 – volume: 24 start-page: 449 year: 2022 ident: ref96 article-title: Lipid peroxidation and Iron metabolism: two corner stones in the homeostasis control of Ferroptosis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24010449 – volume: 386 start-page: 213 year: 2001 ident: ref95 article-title: Human immunodeficiency virus type 1 tat protein impairs selenoglutathione peroxidase expression and activity by a mechanism independent of cellular selenium uptake: consequences on cellular resistance to UV-A radiation publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2000.2197 – volume: 91 start-page: e2020013 year: 2020 ident: ref3 article-title: Iron overload and Hepcidin overexpression could play a key role in COVID infection, and may explain vulnerability in elderly, diabetics, and obese patients publication-title: Acta Biomed. doi: 10.23750/abm.v91i3.9826 – volume: 133 start-page: 46 year: 2019 ident: ref54 article-title: Transferrin and transferrin receptors update publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.06.037 – volume: 166 start-page: 105466 year: 2021 ident: ref66 article-title: Ferroptosis and its emerging roles in cardiovascular diseases publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2021.105466 – volume: 92 start-page: e00191-18 year: 2018 ident: ref106 article-title: Human cytomegalovirus protein pUL38 prevents premature cell death by binding to ubiquitin-specific protease 24 and regulating Iron metabolism publication-title: J. Virol. doi: 10.1128/JVI.00191-18 – volume: 22 start-page: 6493 year: 2021 ident: ref90 article-title: Hepcidin-Ferroportin interaction controls systemic Iron homeostasis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22126493 – volume: 38 start-page: 431 year: 2018 ident: ref121 article-title: Crossing the Iron gate: why and how transferrin receptors mediate viral entry publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-082117-051749 – volume: 4 start-page: 525 year: 2021 ident: ref40 article-title: Iron induces two distinct ca(2+) signalling cascades in astrocytes publication-title: Commun. Biol. doi: 10.1038/s42003-021-02060-x – volume: 29 start-page: 347 year: 2019 ident: ref110 article-title: The molecular machinery of regulated cell death publication-title: Cell Res. doi: 10.1038/s41422-019-0164-5 – volume: 13 start-page: 629 year: 2021 ident: ref55 article-title: Rhinovirus and cell death publication-title: Viruses doi: 10.3390/v13040629 – volume: 12 start-page: 1255 year: 2022 ident: ref65 article-title: African swine fever virus: a review publication-title: Life (Basel) doi: 10.3390/life12081255 – volume: 13 start-page: 275 year: 2020 ident: ref19 article-title: Iron pathways and Iron chelation approaches in viral, microbial, and fungal infections publication-title: Pharmaceuticals (Basel) doi: 10.3390/ph13100275 – volume: 32 start-page: 602 year: 2018 ident: ref23 article-title: Regulation of lipid peroxidation and ferroptosis in diverse species publication-title: Genes Dev. doi: 10.1101/gad.314674.118 – volume: 10 start-page: 2184 year: 2019 ident: ref53 article-title: Ciclopirox inhibits hepatitis B virus secretion by blocking capsid assembly publication-title: Nat. Commun. doi: 10.1038/s41467-019-10200-5 – volume: 22 start-page: 2271 year: 2022 ident: ref101 article-title: Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease publication-title: Mini Rev. Med. Chem. doi: 10.2174/1389557522666220218123404 – volume: 13 start-page: 592 year: 2022 ident: ref133 article-title: TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1 publication-title: Cell Death Dis. doi: 10.1038/s41419-022-05027-w – volume: 42 start-page: 88 year: 2022 ident: ref143 article-title: Ferroptosis in cancer and cancer immunotherapy publication-title: Cancer Commun. doi: 10.1002/cac2.12250 – volume: 21 start-page: 648 year: 2017 ident: ref134 article-title: Ferroptosis, a new form of cell death, and its relationships with tumourous diseases publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.13008 – volume: 11 start-page: 521 year: 2019 ident: ref76 article-title: Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis publication-title: Nat. Chem. doi: 10.1038/s41557-019-0261-6 – volume: 25 start-page: 1997 year: 2020 ident: ref80 article-title: Viral hepatitis and Iron dysregulation: molecular pathways and the role of Lactoferrin publication-title: Molecules doi: 10.3390/molecules25081997 – volume: 65 start-page: 144 year: 2016 ident: ref9 article-title: Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity publication-title: Gut doi: 10.1136/gutjnl-2014-307904 – volume: 11 start-page: 88 year: 2020 ident: ref64 article-title: Ferroptosis: past, present and future publication-title: Cell Death Dis. doi: 10.1038/s41419-020-2298-2 – volume: 21 start-page: 2145 year: 2020 ident: ref81 article-title: Iron metabolism at the Interface between host and pathogen: from nutritional immunity to antibacterial development publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21062145 – volume: 8 start-page: e83307 year: 2013 ident: ref32 article-title: Hepatitis C virus infection causes iron deficiency in huh 7.5.1 cells publication-title: PLoS One doi: 10.1371/journal.pone.0083307 – volume: 25 start-page: 486 year: 2018 ident: ref33 article-title: Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018 publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0012-4 – volume: 31 start-page: 468 year: 2023 ident: ref36 article-title: When ferroptosis meets pathogenic infections publication-title: Trends Microbiol. doi: 10.1016/j.tim.2022.11.006 – volume: 9 start-page: 637162 ident: ref13 article-title: Characteristics and biomarkers of Ferroptosis publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.637162 – volume: 7 start-page: 286 year: 2022 ident: ref94 article-title: Regulated cell death (RCD) in cancer: key pathways and targeted therapies publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-01110-y – volume: 43 start-page: 1905 year: 2022 ident: ref116 article-title: Ferroptosis in viral infection: the unexplored possibility publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-021-00814-1 – volume: 130 start-page: 963 year: 2022 ident: ref44 article-title: SARS-CoV-2 infection induces Ferroptosis of sinoatrial node pacemaker cells publication-title: Circ. Res. doi: 10.1161/circresaha.121.320518 – volume: 8 start-page: 586578 year: 2020 ident: ref60 article-title: Oxidative damage and antioxidant defense in Ferroptosis publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.586578 – volume: 575 start-page: 693 year: 2019 ident: ref27 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 2123 start-page: 83 year: 2020 ident: ref105 article-title: A brief introduction to avian influenza virus publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-0346-8_7 – volume: 45 start-page: fuaa066 year: 2021 ident: ref87 article-title: Lipid droplets and lipid mediators in viral infection and immunity publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuaa066 – volume: 22 start-page: 114 year: 2016 ident: ref104 article-title: Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain publication-title: J. Neurovirol. doi: 10.1007/s13365-015-0375-6 – volume: 39 start-page: 453 year: 2021 ident: ref16 article-title: Emerging and re-emerging infections in children: COVID/ MIS-C, Zika, Ebola, measles, varicella, pertussis … Immunizations publication-title: Emerg. Med. Clin. North Am. doi: 10.1016/j.emc.2021.04.002 – volume: 13 start-page: 754 year: 2022 ident: ref45 article-title: Exosomal mi R-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression publication-title: J. Gastrointest. Oncol. doi: 10.21037/jgo-21-916 – volume: 63 start-page: 102752 year: 2023 ident: ref72 article-title: SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap 1-NRF2 axis publication-title: Redox Biol. doi: 10.1016/j.redox.2023.102752 – volume: 42 start-page: 275 year: 2022 ident: ref86 article-title: Nutritional and metabolic control of Ferroptosis publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-062320-114541 – volume: 133 start-page: 144 year: 2019 ident: ref99 article-title: Role of GPX4 in ferroptosis and its pharmacological implication publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.09.014 – volume: 1 start-page: 170 year: 2016 ident: ref61 article-title: Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease publication-title: Blood Adv. doi: 10.1182/bloodadvances.2016000745 – volume: 1868 start-page: 118913 year: 2021 ident: ref39 article-title: NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells publication-title: Biochim. Biophys. Acta, Mol. Cell Res. doi: 10.1016/j.bbamcr.2020.118913 – volume: 11 start-page: 433 year: 2020 ident: ref128 article-title: Nedd 4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma publication-title: Nat. Commun. doi: 10.1038/s41467-020-14324-x – volume: 844 start-page: 201 year: 2014 ident: ref20 article-title: A systems biology approach to iron metabolism publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4939-2095-2_10 – volume: 19 start-page: 104 year: 2022 ident: ref18 article-title: Swine influenza virus triggers ferroptosis in A549 cells to enhance virus replication publication-title: Virol. J. doi: 10.1186/s12985-022-01825-y – volume: 12 start-page: 675 ident: ref58 article-title: Cytochrome P 450 reductase (POR) as a ferroptosis fuel publication-title: Protein Cell doi: 10.1007/s13238-021-00823-0 – volume: 575 start-page: 688 year: 2019 ident: ref8 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 28 start-page: 1135 ident: ref17 article-title: Cellular degradation systems in ferroptosis publication-title: Cell Death Differ. doi: 10.1038/s41418-020-00728-1 – volume: 13 start-page: 865689 year: 2022 ident: ref131 article-title: Maresin 1 protect against Ferroptosis-induced liver injury through ROS inhibition and Nrf 2/HO-1/GPX4 activation publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.865689 – volume: 20 start-page: 4968 year: 2019 ident: ref51 article-title: Programmed cell-death by Ferroptosis: antioxidants as Mitigators publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20194968 – volume: 92 start-page: e00460-18 year: 2018 ident: ref11 article-title: Complex and dynamic interactions between parvovirus capsids, transferrin receptors, and antibodies control cell infection and host range publication-title: J. Virol. doi: 10.1128/jvi.00460-18 – volume: 20 start-page: 7 year: 2023 ident: ref30 article-title: The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-022-00735-4 – volume: 97 start-page: e0161122 year: 2023 ident: ref118 article-title: Transferrin receptor protein 1 cooperates with mGluR2 to mediate the internalization of rabies virus and SARS-CoV-2 publication-title: J. Virol. doi: 10.1128/jvi.01611-22 – volume: 13 start-page: e0271721 year: 2022 ident: ref62 article-title: Acyl-coenzyme a Synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via Ferroptosis publication-title: MBio doi: 10.1128/mbio.02717-21 – volume: 24 start-page: 102837 year: 2021 ident: ref52 article-title: Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells publication-title: iScience doi: 10.1016/j.isci.2021.102837 – volume: 13 start-page: 91 year: 2017 ident: ref28 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 22 start-page: 4591 year: 2021 ident: ref115 article-title: On Iron metabolism and its regulation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22094591 – volume: 7 start-page: e156013 year: 2022 ident: ref24 article-title: P. aeruginosa augments irradiation injury via 15-lipoxygenase-catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis publication-title: JCI Insight doi: 10.1172/jci.insight.156013 – volume: 120 start-page: e2214936120 year: 2023 ident: ref84 article-title: Influenza a virus exploits transferrin receptor recycling to enter host cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2214936120 – volume: 31 start-page: e1904197 year: 2019 ident: ref69 article-title: Recent Progress in Ferroptosis inducers for Cancer therapy publication-title: Adv. Mater. doi: 10.1002/adma.201904197 – volume: 212 start-page: 555 year: 2015 ident: ref83 article-title: T cell lipid peroxidation induces ferroptosis and prevents immunity to infection publication-title: J. Exp. Med. doi: 10.1084/jem.20140857 – volume: 12 start-page: 326 year: 2023 ident: ref46 article-title: COVID-19 causes Ferroptosis and oxidative stress in human endothelial cells publication-title: Antioxidants doi: 10.3390/antiox12020326 – volume: 29 start-page: 1513 year: 2022 ident: ref135 article-title: EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma publication-title: Cell Death Differ. doi: 10.1038/s41418-022-00939-8 – volume: 12 start-page: 164 year: 2020 ident: ref6 article-title: Ferroptosis in Cancer cell biology publication-title: Cancers doi: 10.3390/cancers12010164 – volume: 102 start-page: 411 year: 2022 ident: ref112 article-title: The evolution of regulated cell death pathways in animals and their evasion by pathogens publication-title: Physiol. Rev. doi: 10.1152/physrev.00002.2021 – volume: 2022 start-page: 3192607 year: 2022 ident: ref70 article-title: SLC7A11/GPX4 inactivation-mediated Ferroptosis contributes to the pathogenesis of Triptolide-induced cardiotoxicity publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2022/3192607 – volume: 26 start-page: 1021 year: 2016 ident: ref35 article-title: Ferroptosis is an autophagic cell death process publication-title: Cell Res. doi: 10.1038/cr.2016.95 – volume: 82 start-page: 2215 year: 2022 ident: ref68 article-title: Ferroptosis at the intersection of lipid metabolism and cellular signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.03.022 – volume: 2022 start-page: 2634431 year: 2022 ident: ref75 article-title: Ferroptosis: a new regulatory mechanism in osteoporosis publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2022/2634431 – volume: 29 start-page: 61 year: 2018 ident: ref79 article-title: GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7115 – volume: 83 start-page: 1030 year: 2023 ident: ref26 article-title: Ferroptosis: a flexible constellation of related biochemical mechanisms publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.03.005 – volume: 10 start-page: 822 year: 2019 ident: ref93 article-title: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation publication-title: Cell Death Dis. doi: 10.1038/s41419-019-2064-5 – volume: 146 start-page: 461 year: 2020 ident: ref10 article-title: Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis publication-title: Int. J. Cancer doi: 10.1002/ijc.32709 – volume: 127 start-page: 110108 year: 2020 ident: ref107 article-title: The emerging role of ferroptosis in inflammation publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110108 – volume: 238 start-page: 114443 year: 2022 ident: ref137 article-title: Synthetic derivatives of the antifungal drug ciclopirox are active against herpes simplex virus 2 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2022.114443 – volume: 14 start-page: e0237022 year: 2023 ident: ref125 article-title: Herpes simplex virus 1-induced Ferroptosis contributes to viral encephalitis publication-title: MBio doi: 10.1128/mbio.02370-22 – volume: 110 start-page: 10777 year: 2013 ident: ref82 article-title: Identification of transferrin receptor 1 as a hepatitis C virus entry factor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1301764110 – volume: 18 start-page: 3361 year: 2021 ident: ref92 article-title: Ferroptosis and liver fibrosis publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.62903 – volume: 424 start-page: 113474 year: 2023 ident: ref111 article-title: TFR2 regulates ferroptosis and enhances temozolomide chemo-sensitization in gliomas publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2023.113474 – volume: 32 start-page: 920 year: 2020 ident: ref144 article-title: The metabolic underpinnings of Ferroptosis publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.10.011 – volume: 22 start-page: 381 year: 2022 ident: ref63 article-title: Targeting ferroptosis as a vulnerability in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-022-00459-0 – volume: 11 start-page: 2726 year: 2022 ident: ref123 article-title: Molecular mechanisms of Ferroptosis and relevance to cardiovascular disease publication-title: Cells doi: 10.3390/cells11172726 – volume: 53 start-page: 711 year: 2021 ident: ref21 article-title: Emerging and re-emerging fatal viral diseases publication-title: Exp. Mol. Med. doi: 10.1038/s12276-021-00608-9 – volume: 5 start-page: 108 year: 2020 ident: ref67 article-title: The interaction between ferroptosis and lipid metabolism in cancer publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-00216-5 – volume: 156 start-page: 317 year: 2014 ident: ref129 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cells doi: 10.1016/j.cell.2013.12.010 – volume: 59 start-page: 1 year: 2021 ident: ref2 article-title: Shigella infection and host cell death: a double-edged sword for the host and pathogen survival publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2020.07.007 – volume: 289 start-page: 7038 year: 2022 ident: ref73 article-title: Signaling pathways and defense mechanisms of ferroptosis publication-title: FEBS J. doi: 10.1111/febs.16059 – volume: 2 start-page: e995047 year: 2015 ident: ref22 article-title: Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it? publication-title: Mol. Cell. Oncol. doi: 10.4161/23723556.2014.995047 – volume: 2020 start-page: 8832043 year: 2020 ident: ref120 article-title: Posttranslational modifications in Ferroptosis publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2020/8832043 – volume: 38 start-page: 1 year: 2023 ident: ref29 article-title: Revisiting influenza a virus life cycle from a perspective of genome balance publication-title: Virol. Sin. doi: 10.1016/j.virs.2022.10.005 – volume: 17 start-page: 2054 ident: ref15 article-title: Ferroptosis: machinery and regulation publication-title: Autophagy doi: 10.1080/15548627.2020.1810918 – volume: 11 start-page: 2224 year: 2022 ident: ref31 article-title: Interplay between lipid metabolism, lipid droplets, and DNA virus infections publication-title: Cells doi: 10.3390/cells11142224 |
SSID | ssj0000402000 |
Score | 2.4114008 |
SecondaryResourceType | review_article |
Snippet | Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 1279655 |
SubjectTerms | ferroptosis inhibitors and inducers regulated cell death viral infections virus-host interaction |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR39YXFbxJ17abNu1RxWUR9OTC3kKeUJBW2q7gv3cm6S57US_e2pLQ9pvQ-aaZ-YaQG8n0RGbMRhnTbpsxj8AN2ahIRC5oIWPtOs-9vOazOX1eZIuNVl-YE-blgT1wdyXqidvMZsYIauNYQuDNIPLWLBeqUK6OHHzeRjDlvsEYFsWxr5KBKKwEM1VKjrFZ-DhJWZljbd-GJ3KC_T-zTOdtpntkd6CJ4b1_vH2yZeoDsu0bR34dEkyUCDExMGxsaE3bNh9901VdWNXhZ9Uu8cAnWdXdEZlPn94eZ9HQ9iBS4FH6SFlw6ZRlVgulmZUTk6BCTCESa2lp6UQarRJmSrenCScmTpWksTJFmhjgV8dkVDe1OSWhlFZJ4HgSO-8B-MICQ9DAMTRNDUwJSLKCgKtBExxbU7xziA0QNu5g4wgbH2ALyO16zodXxPh19AMiux6JatbuAtiYDzbmf9k4INcru3BY_bilIWrTLDuelnFaUgwDA3LiDba-FUrpYxnu2X88wjnZwdfyP18uyKhvl-YS6Egvr9zK-waTjNpq priority: 102 providerName: Directory of Open Access Journals |
Title | The role of ferroptosis in virus infections |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38075884 https://www.proquest.com/docview/2902944261 https://doaj.org/article/96324f5f5eea4f00b0767194d76ac8c7 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB6sIvhS1Kq9-oMU-iY5dnObbPIgYovnUdAnD-5tyf6SA0k0uSv1v-_MJncgqE99CUnYJclMNt832dn5AH5oaUc6lT5OpQ3TjFmMMOTjnJdZKXLNbFCeu73LJlPxe5bONmAld9QbsH0ztCM9qWnzOPz7_HKJA_6CIk7EW_TA3Ogh6YAPeSKLLE0_wRYikyRFg9ue7ocvMwVLjHVrZ97p-gqfQhn_97lnwKDxLnzuyWN01Xl7DzZctQ_bnZzkyxeg9ImI0gWj2kfeNU39tKjbeRvNq-jPvFnSTpd6VbUHMB1f3_-axL0YQmwQZxax8Qj0QqbelsZKr0eOU92YvOTei8KLkXbWcOmKMNOJB44lRgtmXJ5wh6zrEDarunJfIdLaG43MT5MeH7qk9MgbLDIPKxKHXQbAVyZQpq8UToIVjwojBjKbCmZTZDbVm20A5-s-T12djA9b_yTLrltSjetwom4eVD9kVEGV5H3qU-dK4RnTTGaSF8LKrDS5kQP4vvKLwjFBEx1l5eplq5KCJYWg4HAAR53D1peiAvu0OPfb_7iFY9ihx-p-yZzA5qJZulMkKQt9FoJ73N7M-Fl4C_8By9_k7A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+ferroptosis+in+virus+infections&rft.jtitle=Frontiers+in+microbiology&rft.au=Jing+Wang&rft.au=Junda+Zhu&rft.au=Shuning+Ren&rft.au=Zihui+Zhang&rft.date=2023&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=14&rft_id=info:doi/10.3389%2Ffmicb.2023.1279655&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_96324f5f5eea4f00b0767194d76ac8c7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |