The role of ferroptosis in virus infections

Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated wit...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 14; p. 1279655
Main Authors Wang, Jing, Zhu, Junda, Ren, Shuning, Zhang, Zihui, Niu, Kang, Li, Hua, Wu, Wenxue, Peng, Chen
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections.
AbstractList Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections.Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections.
Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD characterized by excessive accumulation of iron and lipid peroxidation. While ferroptosis is primarily considered as a mechanism associated with tumorigenesis, emerging evidence begin to suggest that it may play essential role during virus infections. Recent studies illustrated that activation of ferroptosis could either induce or prohibit various types of RCDs to facilitate virus replication or evade host surveillance. More experimental evidence has demonstrated how viruses regulate ferroptosis to influence replication, transmission, and pathogenesis. This review summarizes ferroptosis-related metabolism, including iron metabolism, lipid peroxidation, and antioxidant metabolism. Furthermore, we discuss the interplay between viral infections and host ferroptosis process, with a focus on the mechanism of how viruses exploit ferroptosis for its own replication. Understanding how ferroptosis impacts virus infection can offer valuable insights into the development of effective therapeutic strategies to combat virus infections.
Author Li, Hua
Niu, Kang
Zhang, Zihui
Zhu, Junda
Wu, Wenxue
Wang, Jing
Peng, Chen
Ren, Shuning
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 2
  givenname: Junda
  surname: Zhu
  fullname: Zhu, Junda
– sequence: 3
  givenname: Shuning
  surname: Ren
  fullname: Ren, Shuning
– sequence: 4
  givenname: Zihui
  surname: Zhang
  fullname: Zhang, Zihui
– sequence: 5
  givenname: Kang
  surname: Niu
  fullname: Niu, Kang
– sequence: 6
  givenname: Hua
  surname: Li
  fullname: Li, Hua
– sequence: 7
  givenname: Wenxue
  surname: Wu
  fullname: Wu, Wenxue
– sequence: 8
  givenname: Chen
  surname: Peng
  fullname: Peng, Chen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38075884$$D View this record in MEDLINE/PubMed
BookMark eNp9UctKAzEUDVKxWvsDLmSWgrTmNXksRXwUCm4quAuZzI2mTCc1mQr-vVNbRVx4F_fFOefCPSdo0MYWEDojeMqY0ld-FVw1pZiyKaFSi7I8QMdECD5hmD4PfvVDNM55ifvgmPb5CA2ZwrJUih-jy8UrFCk2UERfeEgprruYQy5CW7yHtNk2HlwXYptP0aG3TYbxvo7Q093t4uZhMn-8n91czyeOE9ZNnCey5LL0tXW19BUDwpVmyhLvufacVVA7IkFjLnDZD4Cpqzh2oCgBItgIzXa6dbRLs05hZdOHiTaYr0VML8amLrgGjBaMcl_6EsByj3GFpZBE81oK65STvdbFTmud4tsGcmdWITtoGttC3GRDNaaacypIDz3fQzfVCuqfw9_P6gFqB3Ap5pzAGxc6u31Nl2xoDMFma435ssZsrTF7a3oq_UP9Vv-H9AmF6ZDq
CitedBy_id crossref_primary_10_3390_cells14050351
crossref_primary_10_3390_ani14233516
crossref_primary_10_3390_cancers17030530
crossref_primary_10_1007_s10072_024_07832_x
crossref_primary_10_1186_s40779_024_00581_0
crossref_primary_10_1080_22221751_2024_2382235
crossref_primary_10_1016_j_biopha_2024_116866
Cites_doi 10.1007/s00204-022-03317-y
10.1016/j.freeradbiomed.2020.02.027
10.1016/j.semcancer.2019.03.002
10.1126/sciadv.add8539
10.1158/2159-8290.CD-20-0789
10.3390/v13122383
10.1038/s41419-022-04628-9
10.1194/jlr.M072512
10.1016/j.theriogenology.2022.02.022
10.1007/s10565-022-09778-2
10.3389/fcvm.2022.968752
10.1371/journal.ppat.1010718
10.3390/biomedicines10061425
10.21037/atm-21-6942
10.1016/j.redox.2019.101328
10.1002/jcp.26954
10.1016/j.bbrc.2016.08.124
10.1016/j.cell.2012.03.042
10.1016/bs.vh.2019.01.002
10.1038/s41580-020-00324-8
10.1016/j.tcb.2015.10.014
10.3389/fcimb.2023.1142173
10.3390/nu11092101
10.7150/thno.59092
10.1038/s41392-022-01046-3
10.3389/fimmu.2022.779585
10.3389/fnins.2022.904816
10.1038/s41419-021-03559-1
10.1038/s41422-020-00441-1
10.1007/s13238-020-00789-5
10.1038/nri.2016.147
10.3390/ph11040114
10.1016/j.antiviral.2018.06.010
10.3390/v13122469
10.1038/s41590-021-01090-1
10.1080/19390211.2022.2075072
10.1038/s41467-021-21841-w
10.2147/OTT.S254995
10.3390/v14020317
10.1084/jem.20210518
10.12688/f1000research.108667.2
10.1016/j.chembiol.2020.03.014
10.1016/j.ecoenv.2023.114771
10.1007/s10534-022-00458-6
10.1016/j.biopha.2021.111228
10.1038/s41590-020-0699-0
10.1038/s41392-020-00428-9
10.1016/j.freeradbiomed.2013.07.036
10.3390/cancers14235896
10.3390/cells9061505
10.1177/03009858211005537
10.1371/journal.ppat.1002666
10.3390/ijms24010449
10.1006/abbi.2000.2197
10.23750/abm.v91i3.9826
10.1016/j.freeradbiomed.2018.06.037
10.1016/j.phrs.2021.105466
10.1128/JVI.00191-18
10.3390/ijms22126493
10.1146/annurev-nutr-082117-051749
10.1038/s42003-021-02060-x
10.1038/s41422-019-0164-5
10.3390/v13040629
10.3390/life12081255
10.3390/ph13100275
10.1101/gad.314674.118
10.1038/s41467-019-10200-5
10.2174/1389557522666220218123404
10.1038/s41419-022-05027-w
10.1002/cac2.12250
10.1111/jcmm.13008
10.1038/s41557-019-0261-6
10.3390/molecules25081997
10.1136/gutjnl-2014-307904
10.1038/s41419-020-2298-2
10.3390/ijms21062145
10.1371/journal.pone.0083307
10.1038/s41418-017-0012-4
10.1016/j.tim.2022.11.006
10.3389/fcell.2021.637162
10.1038/s41392-022-01110-y
10.1038/s41401-021-00814-1
10.1161/circresaha.121.320518
10.3389/fcell.2020.586578
10.1038/s41586-019-1707-0
10.1007/978-1-0716-0346-8_7
10.1093/femsre/fuaa066
10.1007/s13365-015-0375-6
10.1016/j.emc.2021.04.002
10.21037/jgo-21-916
10.1016/j.redox.2023.102752
10.1146/annurev-nutr-062320-114541
10.1016/j.freeradbiomed.2018.09.014
10.1182/bloodadvances.2016000745
10.1016/j.bbamcr.2020.118913
10.1038/s41467-020-14324-x
10.1007/978-1-4939-2095-2_10
10.1186/s12985-022-01825-y
10.1007/s13238-021-00823-0
10.1038/s41586-019-1705-2
10.1038/s41418-020-00728-1
10.3389/fphar.2022.865689
10.3390/ijms20194968
10.1128/jvi.00460-18
10.1038/s41569-022-00735-4
10.1128/jvi.01611-22
10.1128/mbio.02717-21
10.1016/j.isci.2021.102837
10.1038/nchembio.2239
10.3390/ijms22094591
10.1172/jci.insight.156013
10.1073/pnas.2214936120
10.1002/adma.201904197
10.1084/jem.20140857
10.3390/antiox12020326
10.1038/s41418-022-00939-8
10.3390/cancers12010164
10.1152/physrev.00002.2021
10.1155/2022/3192607
10.1038/cr.2016.95
10.1016/j.molcel.2022.03.022
10.1155/2022/2634431
10.1089/ars.2017.7115
10.1016/j.molcel.2023.03.005
10.1038/s41419-019-2064-5
10.1002/ijc.32709
10.1016/j.biopha.2020.110108
10.1016/j.ejmech.2022.114443
10.1128/mbio.02370-22
10.1073/pnas.1301764110
10.7150/ijms.62903
10.1016/j.yexcr.2023.113474
10.1016/j.cmet.2020.10.011
10.1038/s41568-022-00459-0
10.3390/cells11172726
10.1038/s12276-021-00608-9
10.1038/s41392-020-00216-5
10.1016/j.cell.2013.12.010
10.1016/j.mib.2020.07.007
10.1111/febs.16059
10.4161/23723556.2014.995047
10.1155/2020/8832043
10.1016/j.virs.2022.10.005
10.1080/15548627.2020.1810918
10.3390/cells11142224
ContentType Journal Article
Copyright Copyright © 2023 Wang, Zhu, Ren, Zhang, Niu, Li, Wu and Peng.
Copyright_xml – notice: Copyright © 2023 Wang, Zhu, Ren, Zhang, Niu, Li, Wu and Peng.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3389/fmicb.2023.1279655
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_96324f5f5eea4f00b0767194d76ac8c7
38075884
10_3389_fmicb_2023_1279655
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
ID FETCH-LOGICAL-c413t-cf175475fdacd7fb3e148938a1ff49f43bedc17e904605bede02cb40ce821e163
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:32:53 EDT 2025
Fri Jul 11 01:41:51 EDT 2025
Thu Jan 02 22:40:52 EST 2025
Thu Apr 24 22:56:33 EDT 2025
Tue Jul 01 02:18:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords regulated cell death
virus-host interaction
inhibitors and inducers
viral infections
ferroptosis
Language English
License Copyright © 2023 Wang, Zhu, Ren, Zhang, Niu, Li, Wu and Peng.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-cf175475fdacd7fb3e148938a1ff49f43bedc17e904605bede02cb40ce821e163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2023.1279655
PMID 38075884
PQID 2902944261
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_96324f5f5eea4f00b0767194d76ac8c7
proquest_miscellaneous_2902944261
pubmed_primary_38075884
crossref_citationtrail_10_3389_fmicb_2023_1279655
crossref_primary_10_3389_fmicb_2023_1279655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Martin (ref82) 2013; 110
Zhao (ref141) 2020; 13
Sun (ref106) 2018; 92
Guo (ref42) 2021; 13
Richard (ref95) 2001; 386
Tang (ref108) 2021; 31
Zhang (ref140) 2021; 12
Llabani (ref76) 2019; 11
Monson (ref87) 2021; 45
Callaway (ref11) 2018; 92
Li (ref65) 2022; 12
Guan (ref40) 2021; 4
Mancinelli (ref80) 2020; 25
Farías (ref31) 2022; 11
Koppula (ref57); 12
Liang (ref69) 2019; 31
Park (ref93) 2019; 10
Liu (ref74) 2022; 10
Spackman (ref105) 2020; 2123
Yang (ref128) 2020; 11
Yang (ref130) 2016; 26
Chen (ref16) 2021; 39
Kajarabille (ref51) 2019; 20
Li (ref67) 2020; 5
Zhao (ref143) 2022; 42
Zhou (ref145) 2020; 66
Shaghaghi (ref101) 2022; 22
Zhao (ref142) 2022; 13
Naidu (ref89) 2023; 20
Xia (ref122) 2021; 13
Kung (ref62) 2022; 13
Vogt (ref115) 2021; 22
Chifman (ref20) 2014; 844
Bernier (ref7) 2018; 156
Cavezzi (ref12) 2022; 11
Maiorino (ref79) 2018; 29
Bersuker (ref8) 2019; 575
Dixon (ref26) 2023; 83
Chen (ref17); 28
Yu (ref134) 2017; 21
Gao (ref37) 2022; 7
Rochette (ref96) 2022; 24
Kang (ref53) 2019; 10
Sokolov (ref103) 2023; 36
Xie (ref123) 2022; 11
Kumari (ref61) 2016; 1
Gryzik (ref39) 2021; 1868
Yuan (ref136) 2016; 478
Seibt (ref99) 2019; 133
Chen (ref15); 17
Ursini (ref113) 2020; 152
Galluzzi (ref33) 2018; 25
Wang (ref117) 2022; 23
Chhabra (ref19) 2020; 13
Kaelber (ref50) 2012; 8
Jiang (ref48) 2021; 22
Zangi (ref137) 2022; 238
Wang (ref118) 2023; 97
Mazel-Sanchez (ref84) 2023; 120
Doll (ref28) 2017; 13
Ginzburg (ref38) 2019; 110
Koppula (ref58); 12
Peng (ref94) 2022; 7
Wang (ref119) 2023; 255
Yuan (ref135) 2022; 29
Yang (ref132); 14
Choi (ref21) 2021; 53
Klett (ref56) 2017; 58
Yan (ref126) 2021; 6
Zeng (ref138) 2023; 9
Sun (ref107) 2020; 127
Wessling-Resnick (ref121) 2018; 38
Koren (ref59) 2021; 11
Liu (ref71) 2022; 10
Wei (ref120) 2020; 2020
Tummers (ref112) 2022; 102
Fillebeen (ref32) 2013; 8
Liu (ref73) 2022; 289
Gao (ref35) 2016; 26
Lu (ref77) 2014; 66
Liu (ref72) 2023; 63
Han (ref44) 2022; 130
Tang (ref109) 2018; 233
Cheng (ref18) 2022; 19
Conrad (ref23) 2018; 32
Jia (ref47) 2020; 21
Bayır (ref5) 2020; 27
Chen (ref13); 9
Xu (ref124) 2021; 12
Dixon (ref25) 2012; 149
Liang (ref68) 2022; 82
Santana-Codina (ref98) 2018; 11
Kan (ref52) 2021; 24
Banchini (ref3) 2020; 91
Matsushita (ref83) 2015; 212
Battaglia (ref4) 2020; 9
Habib (ref43) 2021; 136
Yi (ref133) 2022; 13
Du (ref29) 2023; 38
Jorgensen (ref49) 2017; 17
Morales (ref88) 2021; 11
Ashida (ref2) 2021; 59
Dar (ref24) 2022; 7
Kuang (ref60) 2020; 8
Liu (ref70) 2022; 2022
Chen (ref14); 218
Wang (ref116) 2022; 43
Marchetti (ref81) 2020; 21
Tong (ref111) 2023; 424
Yang (ref129) 2014; 156
Lei (ref63) 2022; 22
Verburg (ref114) 2022; 18
Kerr (ref55) 2021; 13
Zheng (ref144) 2020; 32
Ni (ref91) 2022; 13
Song (ref104) 2016; 22
Yang (ref127); 9
Conrad (ref22) 2015; 2
Li (ref64) 2020; 11
Pan (ref92) 2021; 18
Tang (ref110) 2019; 29
Gan (ref34) 2022; 184
Li (ref66) 2021; 166
Guillin (ref41) 2019; 11
Lv (ref78) 2022; 39
Doll (ref27) 2019; 575
Yang (ref131) 2022; 13
Brault (ref9) 2016; 65
Miotto (ref85) 2020; 28
Xu (ref125) 2023; 14
Fang (ref30) 2023; 20
Liu (ref75) 2022; 2022
Sokolov (ref102) 2022; 14
Kawabata (ref54) 2019; 133
Braun (ref10) 2020; 146
Aschner (ref1) 2022; 96
Hu (ref45) 2022; 13
Zhang (ref139) 2023; 13
Gao (ref36) 2023; 31
Sfera (ref100) 2022; 16
Bebber (ref6) 2020; 12
Nemeth (ref90) 2021; 22
Jankauskas (ref46) 2023; 12
Santagostino (ref97) 2021; 58
Mishima (ref86) 2022; 42
References_xml – volume: 96
  start-page: 2391
  year: 2022
  ident: ref1
  article-title: Ferroptosis as a mechanism of non-ferrous metal toxicity
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-022-03317-y
– volume: 152
  start-page: 175
  year: 2020
  ident: ref113
  article-title: Lipid peroxidation and ferroptosis: the role of GSH and GPx4
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.02.027
– volume: 66
  start-page: 89
  year: 2020
  ident: ref145
  article-title: Ferroptosis is a type of autophagy-dependent cell death
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2019.03.002
– volume: 9
  start-page: eadd8539
  year: 2023
  ident: ref138
  article-title: Ferroptosis MRI for early detection of anticancer drug-induced acute cardiac/kidney injuries
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add8539
– volume: 11
  start-page: 245
  year: 2021
  ident: ref59
  article-title: Modes of regulated cell death in Cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-20-0789
– volume: 13
  start-page: 2383
  year: 2021
  ident: ref122
  article-title: Inhibiting ACSL1-related Ferroptosis restrains murine coronavirus infection
  publication-title: Viruses
  doi: 10.3390/v13122383
– volume: 13
  start-page: 182
  year: 2022
  ident: ref91
  article-title: Targeting ferroptosis in acute kidney injury
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-022-04628-9
– volume: 58
  start-page: 884
  year: 2017
  ident: ref56
  article-title: Long-chain acyl-CoA synthetase isoforms differ in preferences for eicosanoid species and long-chain fatty acids
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M072512
– volume: 184
  start-page: 92
  year: 2022
  ident: ref34
  article-title: Ferroptosis-related genes involved in animal reproduction: an overview
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2022.02.022
– volume: 39
  start-page: 827
  year: 2022
  ident: ref78
  article-title: Ferroptosis: from regulation of lipid peroxidation to the treatment of diseases
  publication-title: Cell Biol. Toxicol.
  doi: 10.1007/s10565-022-09778-2
– volume: 9
  start-page: 968752
  ident: ref127
  article-title: Advances in cell death mechanisms involved in viral myocarditis
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.968752
– volume: 18
  start-page: e1010718
  year: 2022
  ident: ref114
  article-title: Viral-mediated activation and inhibition of programmed cell death
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1010718
– volume: 10
  start-page: 1425
  year: 2022
  ident: ref71
  article-title: Ferroptosis inducer improves the efficacy of oncolytic virus-mediated Cancer immunotherapy
  publication-title: Biomedicine
  doi: 10.3390/biomedicines10061425
– volume: 10
  start-page: 368
  year: 2022
  ident: ref74
  article-title: The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-21-6942
– volume: 28
  start-page: 101328
  year: 2020
  ident: ref85
  article-title: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101328
– volume: 233
  start-page: 9179
  year: 2018
  ident: ref109
  article-title: Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26954
– volume: 478
  start-page: 1338
  year: 2016
  ident: ref136
  article-title: Identification of ACSL4 as a biomarker and contributor of ferroptosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.08.124
– volume: 149
  start-page: 1060
  year: 2012
  ident: ref25
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cells
  doi: 10.1016/j.cell.2012.03.042
– volume: 110
  start-page: 17
  year: 2019
  ident: ref38
  article-title: Hepcidin-ferroportin axis in health and disease
  publication-title: Vitam. Horm.
  doi: 10.1016/bs.vh.2019.01.002
– volume: 22
  start-page: 266
  year: 2021
  ident: ref48
  article-title: Ferroptosis: mechanisms, biology and role in disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-00324-8
– volume: 26
  start-page: 165
  year: 2016
  ident: ref130
  article-title: Ferroptosis: death by lipid peroxidation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.10.014
– volume: 13
  start-page: 1142173
  year: 2023
  ident: ref139
  article-title: Erastin inhibits porcine epidemic diarrhea virus replication in Vero cells
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2023.1142173
– volume: 11
  start-page: 2101
  year: 2019
  ident: ref41
  article-title: Selenium, Selenoproteins and viral infection
  publication-title: Nutrients
  doi: 10.3390/nu11092101
– volume: 11
  start-page: 8412
  year: 2021
  ident: ref88
  article-title: Targeting iron metabolism in cancer therapy
  publication-title: Theranostics
  doi: 10.7150/thno.59092
– volume: 7
  start-page: 196
  year: 2022
  ident: ref37
  article-title: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-01046-3
– volume: 13
  start-page: 779585
  year: 2022
  ident: ref142
  article-title: Ferroptosis in rheumatoid arthritis: a potential therapeutic strategy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.779585
– volume: 16
  start-page: 904816
  year: 2022
  ident: ref100
  article-title: Bromodomains in human-immunodeficiency virus-associated neurocognitive disorders: a model of Ferroptosis-induced neurodegeneration
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.904816
– volume: 12
  start-page: 289
  year: 2021
  ident: ref124
  article-title: The emerging role of ferroptosis in intestinal disease
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03559-1
– volume: 31
  start-page: 107
  year: 2021
  ident: ref108
  article-title: Ferroptosis: molecular mechanisms and health implications
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00441-1
– volume: 12
  start-page: 599
  ident: ref57
  article-title: Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00789-5
– volume: 17
  start-page: 151
  year: 2017
  ident: ref49
  article-title: Programmed cell death as a defence against infection
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.147
– volume: 11
  start-page: 114
  year: 2018
  ident: ref98
  article-title: The role of NCOA4-mediated Ferritinophagy in health and disease
  publication-title: Pharmaceuticals (Basel)
  doi: 10.3390/ph11040114
– volume: 156
  start-page: 102
  year: 2018
  ident: ref7
  article-title: Antifungal drug ciclopirox olamine reduces HSV-1 replication and disease in mice
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2018.06.010
– volume: 13
  start-page: 2469
  year: 2021
  ident: ref42
  article-title: Evolutionary dynamics of type 2 porcine reproductive and respiratory syndrome virus by whole-genome analysis
  publication-title: Viruses
  doi: 10.3390/v13122469
– volume: 23
  start-page: 303
  year: 2022
  ident: ref117
  article-title: The kinase complex mTORC2 promotes the longevity of virus-specific memory CD4(+) T cells by preventing ferroptosis
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-021-01090-1
– volume: 20
  start-page: 312
  year: 2023
  ident: ref89
  article-title: SARS-CoV-2 infection dysregulates host Iron (Fe)-redox homeostasis (Fe-R-H): role of Fe-redox regulators, Ferroptosis inhibitors, anticoagulants, and Iron-chelators in COVID-19 control
  publication-title: J. Diet Suppl.
  doi: 10.1080/19390211.2022.2075072
– volume: 12
  start-page: 1589
  year: 2021
  ident: ref140
  article-title: mTORC1 couples cyst(e) ine availability with GPX4 protein synthesis and ferroptosis regulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21841-w
– volume: 13
  start-page: 5429
  year: 2020
  ident: ref141
  article-title: The role of Erastin in Ferroptosis and its prospects in Cancer therapy
  publication-title: Onco. Targets. Ther.
  doi: 10.2147/OTT.S254995
– volume: 14
  start-page: 317
  year: 2022
  ident: ref102
  article-title: Ferristatin II efficiently inhibits SARS-CoV-2 replication in Vero cells
  publication-title: Viruses
  doi: 10.3390/v14020317
– volume: 218
  start-page: e20210518
  ident: ref14
  article-title: Ferroptosis in infection, inflammation, and immunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20210518
– volume: 11
  start-page: 102
  year: 2022
  ident: ref12
  article-title: COVID-19, cation Dysmetabolism, sialic acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: a possible unifying hypothesis
  publication-title: F1000Res.
  doi: 10.12688/f1000research.108667.2
– volume: 27
  start-page: 387
  year: 2020
  ident: ref5
  article-title: Achieving life through death: redox biology of lipid peroxidation in Ferroptosis
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2020.03.014
– volume: 255
  start-page: 114771
  year: 2023
  ident: ref119
  article-title: Ferroptosis mediates decabromodiphenyl ether-induced liver damage and inflammation
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2023.114771
– volume: 36
  start-page: 437
  year: 2023
  ident: ref103
  article-title: Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin
  publication-title: Biometals
  doi: 10.1007/s10534-022-00458-6
– volume: 136
  start-page: 111228
  year: 2021
  ident: ref43
  article-title: The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2021.111228
– volume: 21
  start-page: 727
  year: 2020
  ident: ref47
  article-title: Redox homeostasis maintained by GPX4 facilitates STING activation
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0699-0
– volume: 6
  start-page: 49
  year: 2021
  ident: ref126
  article-title: Ferroptosis: mechanisms and links with diseases
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-020-00428-9
– volume: 66
  start-page: 75
  year: 2014
  ident: ref77
  article-title: The thioredoxin antioxidant system
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.07.036
– volume: 14
  start-page: 5896
  ident: ref132
  article-title: ACSL3 and ACSL4, distinct roles in Ferroptosis and cancers
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14235896
– volume: 9
  start-page: 1505
  year: 2020
  ident: ref4
  article-title: Ferroptosis and Cancer: mitochondria meet the "Iron maiden" cell death
  publication-title: Cells
  doi: 10.3390/cells9061505
– volume: 58
  start-page: 596
  year: 2021
  ident: ref97
  article-title: Mechanisms of regulated cell death: current perspectives
  publication-title: Vet. Pathol.
  doi: 10.1177/03009858211005537
– volume: 8
  start-page: e1002666
  year: 2012
  ident: ref50
  article-title: Evolutionary reconstructions of the transferrin receptor of Caniforms supports canine parvovirus being a re-emerged and not a novel pathogen in dogs
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002666
– volume: 24
  start-page: 449
  year: 2022
  ident: ref96
  article-title: Lipid peroxidation and Iron metabolism: two corner stones in the homeostasis control of Ferroptosis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24010449
– volume: 386
  start-page: 213
  year: 2001
  ident: ref95
  article-title: Human immunodeficiency virus type 1 tat protein impairs selenoglutathione peroxidase expression and activity by a mechanism independent of cellular selenium uptake: consequences on cellular resistance to UV-A radiation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2000.2197
– volume: 91
  start-page: e2020013
  year: 2020
  ident: ref3
  article-title: Iron overload and Hepcidin overexpression could play a key role in COVID infection, and may explain vulnerability in elderly, diabetics, and obese patients
  publication-title: Acta Biomed.
  doi: 10.23750/abm.v91i3.9826
– volume: 133
  start-page: 46
  year: 2019
  ident: ref54
  article-title: Transferrin and transferrin receptors update
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.06.037
– volume: 166
  start-page: 105466
  year: 2021
  ident: ref66
  article-title: Ferroptosis and its emerging roles in cardiovascular diseases
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2021.105466
– volume: 92
  start-page: e00191-18
  year: 2018
  ident: ref106
  article-title: Human cytomegalovirus protein pUL38 prevents premature cell death by binding to ubiquitin-specific protease 24 and regulating Iron metabolism
  publication-title: J. Virol.
  doi: 10.1128/JVI.00191-18
– volume: 22
  start-page: 6493
  year: 2021
  ident: ref90
  article-title: Hepcidin-Ferroportin interaction controls systemic Iron homeostasis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22126493
– volume: 38
  start-page: 431
  year: 2018
  ident: ref121
  article-title: Crossing the Iron gate: why and how transferrin receptors mediate viral entry
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-082117-051749
– volume: 4
  start-page: 525
  year: 2021
  ident: ref40
  article-title: Iron induces two distinct ca(2+) signalling cascades in astrocytes
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02060-x
– volume: 29
  start-page: 347
  year: 2019
  ident: ref110
  article-title: The molecular machinery of regulated cell death
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0164-5
– volume: 13
  start-page: 629
  year: 2021
  ident: ref55
  article-title: Rhinovirus and cell death
  publication-title: Viruses
  doi: 10.3390/v13040629
– volume: 12
  start-page: 1255
  year: 2022
  ident: ref65
  article-title: African swine fever virus: a review
  publication-title: Life (Basel)
  doi: 10.3390/life12081255
– volume: 13
  start-page: 275
  year: 2020
  ident: ref19
  article-title: Iron pathways and Iron chelation approaches in viral, microbial, and fungal infections
  publication-title: Pharmaceuticals (Basel)
  doi: 10.3390/ph13100275
– volume: 32
  start-page: 602
  year: 2018
  ident: ref23
  article-title: Regulation of lipid peroxidation and ferroptosis in diverse species
  publication-title: Genes Dev.
  doi: 10.1101/gad.314674.118
– volume: 10
  start-page: 2184
  year: 2019
  ident: ref53
  article-title: Ciclopirox inhibits hepatitis B virus secretion by blocking capsid assembly
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10200-5
– volume: 22
  start-page: 2271
  year: 2022
  ident: ref101
  article-title: Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/1389557522666220218123404
– volume: 13
  start-page: 592
  year: 2022
  ident: ref133
  article-title: TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-022-05027-w
– volume: 42
  start-page: 88
  year: 2022
  ident: ref143
  article-title: Ferroptosis in cancer and cancer immunotherapy
  publication-title: Cancer Commun.
  doi: 10.1002/cac2.12250
– volume: 21
  start-page: 648
  year: 2017
  ident: ref134
  article-title: Ferroptosis, a new form of cell death, and its relationships with tumourous diseases
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13008
– volume: 11
  start-page: 521
  year: 2019
  ident: ref76
  article-title: Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0261-6
– volume: 25
  start-page: 1997
  year: 2020
  ident: ref80
  article-title: Viral hepatitis and Iron dysregulation: molecular pathways and the role of Lactoferrin
  publication-title: Molecules
  doi: 10.3390/molecules25081997
– volume: 65
  start-page: 144
  year: 2016
  ident: ref9
  article-title: Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-307904
– volume: 11
  start-page: 88
  year: 2020
  ident: ref64
  article-title: Ferroptosis: past, present and future
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-2298-2
– volume: 21
  start-page: 2145
  year: 2020
  ident: ref81
  article-title: Iron metabolism at the Interface between host and pathogen: from nutritional immunity to antibacterial development
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21062145
– volume: 8
  start-page: e83307
  year: 2013
  ident: ref32
  article-title: Hepatitis C virus infection causes iron deficiency in huh 7.5.1 cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083307
– volume: 25
  start-page: 486
  year: 2018
  ident: ref33
  article-title: Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0012-4
– volume: 31
  start-page: 468
  year: 2023
  ident: ref36
  article-title: When ferroptosis meets pathogenic infections
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2022.11.006
– volume: 9
  start-page: 637162
  ident: ref13
  article-title: Characteristics and biomarkers of Ferroptosis
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.637162
– volume: 7
  start-page: 286
  year: 2022
  ident: ref94
  article-title: Regulated cell death (RCD) in cancer: key pathways and targeted therapies
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-01110-y
– volume: 43
  start-page: 1905
  year: 2022
  ident: ref116
  article-title: Ferroptosis in viral infection: the unexplored possibility
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-021-00814-1
– volume: 130
  start-page: 963
  year: 2022
  ident: ref44
  article-title: SARS-CoV-2 infection induces Ferroptosis of sinoatrial node pacemaker cells
  publication-title: Circ. Res.
  doi: 10.1161/circresaha.121.320518
– volume: 8
  start-page: 586578
  year: 2020
  ident: ref60
  article-title: Oxidative damage and antioxidant defense in Ferroptosis
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.586578
– volume: 575
  start-page: 693
  year: 2019
  ident: ref27
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor
  publication-title: Nature
  doi: 10.1038/s41586-019-1707-0
– volume: 2123
  start-page: 83
  year: 2020
  ident: ref105
  article-title: A brief introduction to avian influenza virus
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-0346-8_7
– volume: 45
  start-page: fuaa066
  year: 2021
  ident: ref87
  article-title: Lipid droplets and lipid mediators in viral infection and immunity
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuaa066
– volume: 22
  start-page: 114
  year: 2016
  ident: ref104
  article-title: Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain
  publication-title: J. Neurovirol.
  doi: 10.1007/s13365-015-0375-6
– volume: 39
  start-page: 453
  year: 2021
  ident: ref16
  article-title: Emerging and re-emerging infections in children: COVID/ MIS-C, Zika, Ebola, measles, varicella, pertussis … Immunizations
  publication-title: Emerg. Med. Clin. North Am.
  doi: 10.1016/j.emc.2021.04.002
– volume: 13
  start-page: 754
  year: 2022
  ident: ref45
  article-title: Exosomal mi R-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression
  publication-title: J. Gastrointest. Oncol.
  doi: 10.21037/jgo-21-916
– volume: 63
  start-page: 102752
  year: 2023
  ident: ref72
  article-title: SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap 1-NRF2 axis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2023.102752
– volume: 42
  start-page: 275
  year: 2022
  ident: ref86
  article-title: Nutritional and metabolic control of Ferroptosis
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-062320-114541
– volume: 133
  start-page: 144
  year: 2019
  ident: ref99
  article-title: Role of GPX4 in ferroptosis and its pharmacological implication
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.09.014
– volume: 1
  start-page: 170
  year: 2016
  ident: ref61
  article-title: Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2016000745
– volume: 1868
  start-page: 118913
  year: 2021
  ident: ref39
  article-title: NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells
  publication-title: Biochim. Biophys. Acta, Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2020.118913
– volume: 11
  start-page: 433
  year: 2020
  ident: ref128
  article-title: Nedd 4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14324-x
– volume: 844
  start-page: 201
  year: 2014
  ident: ref20
  article-title: A systems biology approach to iron metabolism
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4939-2095-2_10
– volume: 19
  start-page: 104
  year: 2022
  ident: ref18
  article-title: Swine influenza virus triggers ferroptosis in A549 cells to enhance virus replication
  publication-title: Virol. J.
  doi: 10.1186/s12985-022-01825-y
– volume: 12
  start-page: 675
  ident: ref58
  article-title: Cytochrome P 450 reductase (POR) as a ferroptosis fuel
  publication-title: Protein Cell
  doi: 10.1007/s13238-021-00823-0
– volume: 575
  start-page: 688
  year: 2019
  ident: ref8
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
  doi: 10.1038/s41586-019-1705-2
– volume: 28
  start-page: 1135
  ident: ref17
  article-title: Cellular degradation systems in ferroptosis
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-00728-1
– volume: 13
  start-page: 865689
  year: 2022
  ident: ref131
  article-title: Maresin 1 protect against Ferroptosis-induced liver injury through ROS inhibition and Nrf 2/HO-1/GPX4 activation
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.865689
– volume: 20
  start-page: 4968
  year: 2019
  ident: ref51
  article-title: Programmed cell-death by Ferroptosis: antioxidants as Mitigators
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20194968
– volume: 92
  start-page: e00460-18
  year: 2018
  ident: ref11
  article-title: Complex and dynamic interactions between parvovirus capsids, transferrin receptors, and antibodies control cell infection and host range
  publication-title: J. Virol.
  doi: 10.1128/jvi.00460-18
– volume: 20
  start-page: 7
  year: 2023
  ident: ref30
  article-title: The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-022-00735-4
– volume: 97
  start-page: e0161122
  year: 2023
  ident: ref118
  article-title: Transferrin receptor protein 1 cooperates with mGluR2 to mediate the internalization of rabies virus and SARS-CoV-2
  publication-title: J. Virol.
  doi: 10.1128/jvi.01611-22
– volume: 13
  start-page: e0271721
  year: 2022
  ident: ref62
  article-title: Acyl-coenzyme a Synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via Ferroptosis
  publication-title: MBio
  doi: 10.1128/mbio.02717-21
– volume: 24
  start-page: 102837
  year: 2021
  ident: ref52
  article-title: Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102837
– volume: 13
  start-page: 91
  year: 2017
  ident: ref28
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 22
  start-page: 4591
  year: 2021
  ident: ref115
  article-title: On Iron metabolism and its regulation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22094591
– volume: 7
  start-page: e156013
  year: 2022
  ident: ref24
  article-title: P. aeruginosa augments irradiation injury via 15-lipoxygenase-catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.156013
– volume: 120
  start-page: e2214936120
  year: 2023
  ident: ref84
  article-title: Influenza a virus exploits transferrin receptor recycling to enter host cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2214936120
– volume: 31
  start-page: e1904197
  year: 2019
  ident: ref69
  article-title: Recent Progress in Ferroptosis inducers for Cancer therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904197
– volume: 212
  start-page: 555
  year: 2015
  ident: ref83
  article-title: T cell lipid peroxidation induces ferroptosis and prevents immunity to infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20140857
– volume: 12
  start-page: 326
  year: 2023
  ident: ref46
  article-title: COVID-19 causes Ferroptosis and oxidative stress in human endothelial cells
  publication-title: Antioxidants
  doi: 10.3390/antiox12020326
– volume: 29
  start-page: 1513
  year: 2022
  ident: ref135
  article-title: EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-022-00939-8
– volume: 12
  start-page: 164
  year: 2020
  ident: ref6
  article-title: Ferroptosis in Cancer cell biology
  publication-title: Cancers
  doi: 10.3390/cancers12010164
– volume: 102
  start-page: 411
  year: 2022
  ident: ref112
  article-title: The evolution of regulated cell death pathways in animals and their evasion by pathogens
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00002.2021
– volume: 2022
  start-page: 3192607
  year: 2022
  ident: ref70
  article-title: SLC7A11/GPX4 inactivation-mediated Ferroptosis contributes to the pathogenesis of Triptolide-induced cardiotoxicity
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2022/3192607
– volume: 26
  start-page: 1021
  year: 2016
  ident: ref35
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.95
– volume: 82
  start-page: 2215
  year: 2022
  ident: ref68
  article-title: Ferroptosis at the intersection of lipid metabolism and cellular signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.03.022
– volume: 2022
  start-page: 2634431
  year: 2022
  ident: ref75
  article-title: Ferroptosis: a new regulatory mechanism in osteoporosis
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2022/2634431
– volume: 29
  start-page: 61
  year: 2018
  ident: ref79
  article-title: GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7115
– volume: 83
  start-page: 1030
  year: 2023
  ident: ref26
  article-title: Ferroptosis: a flexible constellation of related biochemical mechanisms
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2023.03.005
– volume: 10
  start-page: 822
  year: 2019
  ident: ref93
  article-title: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-2064-5
– volume: 146
  start-page: 461
  year: 2020
  ident: ref10
  article-title: Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32709
– volume: 127
  start-page: 110108
  year: 2020
  ident: ref107
  article-title: The emerging role of ferroptosis in inflammation
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110108
– volume: 238
  start-page: 114443
  year: 2022
  ident: ref137
  article-title: Synthetic derivatives of the antifungal drug ciclopirox are active against herpes simplex virus 2
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2022.114443
– volume: 14
  start-page: e0237022
  year: 2023
  ident: ref125
  article-title: Herpes simplex virus 1-induced Ferroptosis contributes to viral encephalitis
  publication-title: MBio
  doi: 10.1128/mbio.02370-22
– volume: 110
  start-page: 10777
  year: 2013
  ident: ref82
  article-title: Identification of transferrin receptor 1 as a hepatitis C virus entry factor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1301764110
– volume: 18
  start-page: 3361
  year: 2021
  ident: ref92
  article-title: Ferroptosis and liver fibrosis
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.62903
– volume: 424
  start-page: 113474
  year: 2023
  ident: ref111
  article-title: TFR2 regulates ferroptosis and enhances temozolomide chemo-sensitization in gliomas
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2023.113474
– volume: 32
  start-page: 920
  year: 2020
  ident: ref144
  article-title: The metabolic underpinnings of Ferroptosis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.10.011
– volume: 22
  start-page: 381
  year: 2022
  ident: ref63
  article-title: Targeting ferroptosis as a vulnerability in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-022-00459-0
– volume: 11
  start-page: 2726
  year: 2022
  ident: ref123
  article-title: Molecular mechanisms of Ferroptosis and relevance to cardiovascular disease
  publication-title: Cells
  doi: 10.3390/cells11172726
– volume: 53
  start-page: 711
  year: 2021
  ident: ref21
  article-title: Emerging and re-emerging fatal viral diseases
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-021-00608-9
– volume: 5
  start-page: 108
  year: 2020
  ident: ref67
  article-title: The interaction between ferroptosis and lipid metabolism in cancer
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-020-00216-5
– volume: 156
  start-page: 317
  year: 2014
  ident: ref129
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cells
  doi: 10.1016/j.cell.2013.12.010
– volume: 59
  start-page: 1
  year: 2021
  ident: ref2
  article-title: Shigella infection and host cell death: a double-edged sword for the host and pathogen survival
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2020.07.007
– volume: 289
  start-page: 7038
  year: 2022
  ident: ref73
  article-title: Signaling pathways and defense mechanisms of ferroptosis
  publication-title: FEBS J.
  doi: 10.1111/febs.16059
– volume: 2
  start-page: e995047
  year: 2015
  ident: ref22
  article-title: Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it?
  publication-title: Mol. Cell. Oncol.
  doi: 10.4161/23723556.2014.995047
– volume: 2020
  start-page: 8832043
  year: 2020
  ident: ref120
  article-title: Posttranslational modifications in Ferroptosis
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2020/8832043
– volume: 38
  start-page: 1
  year: 2023
  ident: ref29
  article-title: Revisiting influenza a virus life cycle from a perspective of genome balance
  publication-title: Virol. Sin.
  doi: 10.1016/j.virs.2022.10.005
– volume: 17
  start-page: 2054
  ident: ref15
  article-title: Ferroptosis: machinery and regulation
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1810918
– volume: 11
  start-page: 2224
  year: 2022
  ident: ref31
  article-title: Interplay between lipid metabolism, lipid droplets, and DNA virus infections
  publication-title: Cells
  doi: 10.3390/cells11142224
SSID ssj0000402000
Score 2.4114008
SecondaryResourceType review_article
Snippet Regulated cell death (RCD) is a strategy employed by host cells to defend invasions of pathogens, such as viruses and bacteria. Ferroptosis is a type of RCD...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1279655
SubjectTerms ferroptosis
inhibitors and inducers
regulated cell death
viral infections
virus-host interaction
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR39YXFbxJ17abNu1RxWUR9OTC3kKeUJBW2q7gv3cm6S57US_e2pLQ9pvQ-aaZ-YaQG8n0RGbMRhnTbpsxj8AN2ahIRC5oIWPtOs-9vOazOX1eZIuNVl-YE-blgT1wdyXqidvMZsYIauNYQuDNIPLWLBeqUK6OHHzeRjDlvsEYFsWxr5KBKKwEM1VKjrFZ-DhJWZljbd-GJ3KC_T-zTOdtpntkd6CJ4b1_vH2yZeoDsu0bR34dEkyUCDExMGxsaE3bNh9901VdWNXhZ9Uu8cAnWdXdEZlPn94eZ9HQ9iBS4FH6SFlw6ZRlVgulmZUTk6BCTCESa2lp6UQarRJmSrenCScmTpWksTJFmhjgV8dkVDe1OSWhlFZJ4HgSO-8B-MICQ9DAMTRNDUwJSLKCgKtBExxbU7xziA0QNu5g4wgbH2ALyO16zodXxPh19AMiux6JatbuAtiYDzbmf9k4INcru3BY_bilIWrTLDuelnFaUgwDA3LiDba-FUrpYxnu2X88wjnZwdfyP18uyKhvl-YS6Egvr9zK-waTjNpq
  priority: 102
  providerName: Directory of Open Access Journals
Title The role of ferroptosis in virus infections
URI https://www.ncbi.nlm.nih.gov/pubmed/38075884
https://www.proquest.com/docview/2902944261
https://doaj.org/article/96324f5f5eea4f00b0767194d76ac8c7
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB6sIvhS1Kq9-oMU-iY5dnObbPIgYovnUdAnD-5tyf6SA0k0uSv1v-_MJncgqE99CUnYJclMNt832dn5AH5oaUc6lT5OpQ3TjFmMMOTjnJdZKXLNbFCeu73LJlPxe5bONmAld9QbsH0ztCM9qWnzOPz7_HKJA_6CIk7EW_TA3Ogh6YAPeSKLLE0_wRYikyRFg9ue7ocvMwVLjHVrZ97p-gqfQhn_97lnwKDxLnzuyWN01Xl7DzZctQ_bnZzkyxeg9ImI0gWj2kfeNU39tKjbeRvNq-jPvFnSTpd6VbUHMB1f3_-axL0YQmwQZxax8Qj0QqbelsZKr0eOU92YvOTei8KLkXbWcOmKMNOJB44lRgtmXJ5wh6zrEDarunJfIdLaG43MT5MeH7qk9MgbLDIPKxKHXQbAVyZQpq8UToIVjwojBjKbCmZTZDbVm20A5-s-T12djA9b_yTLrltSjetwom4eVD9kVEGV5H3qU-dK4RnTTGaSF8LKrDS5kQP4vvKLwjFBEx1l5eplq5KCJYWg4HAAR53D1peiAvu0OPfb_7iFY9ihx-p-yZzA5qJZulMkKQt9FoJ73N7M-Fl4C_8By9_k7A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+ferroptosis+in+virus+infections&rft.jtitle=Frontiers+in+microbiology&rft.au=Jing+Wang&rft.au=Junda+Zhu&rft.au=Shuning+Ren&rft.au=Zihui+Zhang&rft.date=2023&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=14&rft_id=info:doi/10.3389%2Ffmicb.2023.1279655&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_96324f5f5eea4f00b0767194d76ac8c7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon