Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability

Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macro...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 37; no. 2; pp. 226 - 236
Main Authors Xu, Rende, Li, Chenguang, Wu, Yizhe, Shen, Li, Ma, Jianying, Qian, Juying, Ge, Junbo
Format Journal Article
LanguageEnglish
Published United States 01.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability. Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions. These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype.
AbstractList Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability.OBJECTIVEEmerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability.Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions.APPROACH AND RESULTSHuman monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions.These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype.CONCLUSIONSThese results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype.
Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability. Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions. These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype.
Author Li, Chenguang
Qian, Juying
Wu, Yizhe
Ge, Junbo
Ma, Jianying
Shen, Li
Xu, Rende
Author_xml – sequence: 1
  givenname: Rende
  surname: Xu
  fullname: Xu, Rende
  organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 2
  givenname: Chenguang
  surname: Li
  fullname: Li, Chenguang
  organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 3
  givenname: Yizhe
  surname: Wu
  fullname: Wu, Yizhe
  organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 4
  givenname: Li
  surname: Shen
  fullname: Shen, Li
  organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 5
  givenname: Jianying
  surname: Ma
  fullname: Ma, Jianying
  organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 6
  givenname: Juying
  surname: Qian
  fullname: Qian, Juying
  organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 7
  givenname: Junbo
  surname: Ge
  fullname: Ge, Junbo
  organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28062499$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha0KVF79A10gL9lM8GPssZdD1JaoIBCCbi2P505j5Nhh7FSiv76TJmxYsLkP6TtXV-ecoIOYIiD0lZIZpZJeto-_rtrrdrvMOFG1pJ_QMRWsrmrJ5cE0k0ZXQtbsCJ3k_EwIqRkjn9ERU0SyWutj9PyQAuA04J9zy2cUz5c2RggZ-4hvrRvTeml_A75PwY7-ry0-RWxjjxcl4wcI8MdGB1u4LUsYU3ZhqsU7fB_sywbwIuZiOx98eT1Dh4MNGb7s-yl6-v7tcX5d3dz9WMzbm8rVlJfK9YrxRnYUtO474bTo6NALx2s9SCJ0owRoZ4kbbCOscpwBk5wN0JFONr3ip-hid3c9pumFXMzKZwch2Ahpkw1VQgqlJ7sm9HyPbroV9GY9-pUdX82bPxOgdsDkRM4jDMb58t-FMlofDCVmG4XZR7FdzC6KScreSd-ufyD6B2M6i_g
CitedBy_id crossref_primary_10_1016_j_jconrel_2019_10_043
crossref_primary_10_3389_fphar_2020_586599
crossref_primary_10_1155_2019_6724903
crossref_primary_10_1016_j_phrs_2022_106112
crossref_primary_10_1161_ATVBAHA_118_311717
crossref_primary_10_1515_hsz_2022_0232
crossref_primary_10_3390_biomedicines10112884
crossref_primary_10_1089_bioe_2022_0001
crossref_primary_10_1016_j_taap_2020_115211
crossref_primary_10_1038_s41598_022_18246_0
crossref_primary_10_1161_ATVBAHA_119_312578
crossref_primary_10_1002_ardp_202200388
crossref_primary_10_1038_s41598_018_27465_3
crossref_primary_10_1248_bpb_b18_00078
crossref_primary_10_3389_fimmu_2023_1225178
crossref_primary_10_1152_physiolgenomics_00134_2021
crossref_primary_10_3389_fcvm_2021_656631
crossref_primary_10_3389_fphar_2022_970234
crossref_primary_10_1371_journal_pone_0192800
crossref_primary_10_3892_ijmm_2023_5341
crossref_primary_10_3390_ijms23158603
crossref_primary_10_3389_fmolb_2021_679797
crossref_primary_10_1016_j_bbrc_2017_12_103
crossref_primary_10_1080_10641963_2017_1377212
crossref_primary_10_1016_j_bcp_2024_116573
crossref_primary_10_1089_scd_2021_0062
crossref_primary_10_3389_fphys_2024_1487775
crossref_primary_10_3389_fphar_2020_603104
crossref_primary_10_1161_ATVBAHA_119_312001
crossref_primary_10_1021_acsbiomaterials_4c02061
crossref_primary_10_1161_ATVBAHA_119_312004
crossref_primary_10_1016_j_diabres_2022_109776
crossref_primary_10_1111_eci_13454
crossref_primary_10_3390_cells11111730
crossref_primary_10_3389_fimmu_2022_997621
crossref_primary_10_1002_iub_2515
crossref_primary_10_1038_s41392_025_02124_y
crossref_primary_10_2147_JIR_S297131
crossref_primary_10_3390_ijms19030802
crossref_primary_10_1161_ATVBAHA_117_309813
crossref_primary_10_3892_mmr_2018_8982
crossref_primary_10_1016_j_molbiopara_2021_111351
crossref_primary_10_1007_s00018_020_03540_9
crossref_primary_10_3389_fphar_2025_1545050
crossref_primary_10_3389_fphys_2022_900094
crossref_primary_10_1016_j_intimp_2024_113628
crossref_primary_10_3390_life12040538
crossref_primary_10_1016_j_vph_2024_107452
crossref_primary_10_1016_j_cca_2019_10_034
crossref_primary_10_1039_D1RA03850H
crossref_primary_10_1161_JAHA_117_007442
crossref_primary_10_1161_ATVBAHA_118_312002
crossref_primary_10_1007_s00232_022_00276_4
crossref_primary_10_1002_cmdc_202200551
crossref_primary_10_1007_s00109_019_01814_9
Cites_doi 10.1038/nri3088
10.1161/ATVBAHA.112.300173
10.1038/nri978
10.1161/ATVBAHA.114.303565
10.1016/j.clim.2011.10.009
10.1172/JCI30836
10.1084/jem.20090866
10.1038/nm.3258
10.1038/mi.2016.60
10.1182/blood-2011-02-339911
10.1523/JNEUROSCI.3593-06.2007
10.2174/187152711794488638
10.1097/MOL.0b013e32834a97e4
10.1097/TP.0b013e318275a2f4
10.1038/ni774
10.1038/ni.1937
10.3389/fncel.2014.00183
10.1161/ATVBAHA.111.236158
10.1161/01.ATV.0000156399.12787.5c
10.1586/14737159.8.2.179
10.1016/j.celrep.2014.07.032
10.1038/jcbfm.2011.101
10.1016/S0008-6363(01)00537-5
10.1038/nrcardio.2014.173
10.1111/imr.12218
10.1161/01.ATV.0000086961.44581.B7
10.1146/annurev-immunol-032414-112212
10.1182/blood-2009-05-221598
10.1007/s00424-010-0819-z
10.1161/ATVBAHA.108.180497
10.1074/jbc.274.9.5746
10.1177/0271678X15611434
10.1038/nature10146
10.1161/CIRCRESAHA.114.302355
10.1161/CIRCRESAHA.115.306361
10.1038/nri3073
ContentType Journal Article
Copyright 2016 American Heart Association, Inc.
Copyright_xml – notice: 2016 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/ATVBAHA.116.308461
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 236
ExternalDocumentID 28062499
10_1161_ATVBAHA_116_308461
Genre Journal Article
GroupedDBID ---
.3C
.55
.GJ
.Z2
01R
0R~
1J1
23N
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYXX
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADGHP
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHJKT
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BOYCO
BQLVK
BS7
C1A
C45
CITATION
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB2
OCUKA
ODA
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
PZZ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
ZGI
ZZMQN
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c413t-cd82376b1e99db5c95b1fd5c349f6059785e9ca0cfa75a8c32e2632feb0b67d83
ISSN 1079-5642
1524-4636
IngestDate Fri Jul 11 01:30:31 EDT 2025
Thu Apr 03 06:59:39 EDT 2025
Tue Jul 01 02:21:57 EDT 2025
Thu Apr 24 23:11:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords KCa3.1 channel
atherosclerosis
macrophage polarization
apolipoprotein
plaque instability
Language English
License 2016 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-cd82376b1e99db5c95b1fd5c349f6059785e9ca0cfa75a8c32e2632feb0b67d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.116.308461
PMID 28062499
PQID 1856589461
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1856589461
pubmed_primary_28062499
crossref_citationtrail_10_1161_ATVBAHA_116_308461
crossref_primary_10_1161_ATVBAHA_116_308461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-00
2017-Feb
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arteriosclerosis, thrombosis, and vascular biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2017
References e_1_3_5_28_2
e_1_3_5_27_2
e_1_3_5_26_2
e_1_3_5_25_2
e_1_3_5_24_2
e_1_3_5_23_2
e_1_3_5_22_2
e_1_3_5_21_2
e_1_3_5_29_2
e_1_3_5_2_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_4_2
e_1_3_5_3_2
e_1_3_5_6_2
Hansen LK (e_1_3_5_38_2) 2014; 61
e_1_3_5_5_2
e_1_3_5_17_2
e_1_3_5_16_2
e_1_3_5_15_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_36_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_19_2
e_1_3_5_18_2
e_1_3_5_31_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_20_2
  doi: 10.1038/nri3088
– volume: 61
  start-page: B4946
  year: 2014
  ident: e_1_3_5_38_2
  article-title: The role of T cell potassium channels, KV1.3 and KCa3.1, in the inflammatory cascade in ulcerative colitis.
  publication-title: Dan Med J
– ident: e_1_3_5_4_2
  doi: 10.1161/ATVBAHA.112.300173
– ident: e_1_3_5_8_2
  doi: 10.1038/nri978
– ident: e_1_3_5_3_2
  doi: 10.1161/ATVBAHA.114.303565
– ident: e_1_3_5_28_2
  doi: 10.1016/j.clim.2011.10.009
– ident: e_1_3_5_17_2
  doi: 10.1172/JCI30836
– ident: e_1_3_5_22_2
  doi: 10.1084/jem.20090866
– ident: e_1_3_5_24_2
  doi: 10.1038/nm.3258
– ident: e_1_3_5_35_2
  doi: 10.1038/mi.2016.60
– ident: e_1_3_5_25_2
  doi: 10.1182/blood-2011-02-339911
– ident: e_1_3_5_36_2
  doi: 10.1523/JNEUROSCI.3593-06.2007
– ident: e_1_3_5_15_2
  doi: 10.2174/187152711794488638
– ident: e_1_3_5_26_2
  doi: 10.1097/MOL.0b013e32834a97e4
– ident: e_1_3_5_16_2
  doi: 10.1097/TP.0b013e318275a2f4
– ident: e_1_3_5_33_2
  doi: 10.1038/ni774
– ident: e_1_3_5_21_2
  doi: 10.1038/ni.1937
– ident: e_1_3_5_18_2
  doi: 10.3389/fncel.2014.00183
– ident: e_1_3_5_19_2
  doi: 10.1161/ATVBAHA.111.236158
– ident: e_1_3_5_32_2
  doi: 10.1161/01.ATV.0000156399.12787.5c
– ident: e_1_3_5_10_2
  doi: 10.1586/14737159.8.2.179
– ident: e_1_3_5_11_2
  doi: 10.1016/j.celrep.2014.07.032
– ident: e_1_3_5_37_2
  doi: 10.1038/jcbfm.2011.101
– ident: e_1_3_5_27_2
  doi: 10.1016/S0008-6363(01)00537-5
– ident: e_1_3_5_6_2
  doi: 10.1038/nrcardio.2014.173
– ident: e_1_3_5_5_2
  doi: 10.1111/imr.12218
– ident: e_1_3_5_30_2
  doi: 10.1161/01.ATV.0000086961.44581.B7
– ident: e_1_3_5_12_2
  doi: 10.1146/annurev-immunol-032414-112212
– ident: e_1_3_5_34_2
  doi: 10.1182/blood-2009-05-221598
– ident: e_1_3_5_31_2
  doi: 10.1007/s00424-010-0819-z
– ident: e_1_3_5_9_2
  doi: 10.1161/ATVBAHA.108.180497
– ident: e_1_3_5_13_2
  doi: 10.1074/jbc.274.9.5746
– ident: e_1_3_5_14_2
  doi: 10.1177/0271678X15611434
– ident: e_1_3_5_23_2
  doi: 10.1038/nature10146
– ident: e_1_3_5_2_2
  doi: 10.1161/CIRCRESAHA.114.302355
– ident: e_1_3_5_29_2
  doi: 10.1161/CIRCRESAHA.115.306361
– ident: e_1_3_5_7_2
  doi: 10.1038/nri3073
SSID ssj0004220
Score 2.4683156
Snippet Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 226
SubjectTerms Animals
Apolipoproteins E - deficiency
Apolipoproteins E - genetics
Atherosclerosis - genetics
Atherosclerosis - metabolism
Atherosclerosis - pathology
Atherosclerosis - prevention & control
Cell Differentiation - drug effects
Cell Line, Tumor
Genetic Predisposition to Disease
Humans
Inflammation Mediators - metabolism
Interferon-gamma - pharmacology
Interleukin-4 - pharmacology
Intermediate-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors
Intermediate-Conductance Calcium-Activated Potassium Channels - genetics
Intermediate-Conductance Calcium-Activated Potassium Channels - metabolism
Lipopolysaccharides - pharmacology
Macrophages - drug effects
Macrophages - metabolism
Macrophages - pathology
Male
Mice, Inbred C57BL
Mice, Knockout
Phenotype
Phosphorylation
Plaque, Atherosclerotic
Potassium Channel Blockers - pharmacology
RNA Interference
Rupture, Spontaneous
Signal Transduction
STAT1 Transcription Factor - metabolism
Transfection
Title Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability
URI https://www.ncbi.nlm.nih.gov/pubmed/28062499
https://www.proquest.com/docview/1856589461
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG82PmQk3lBK4sRO_RgmUMVWxEeHylPk2I4WVJJpbV_2N_FHchc7abYxxHiJmujipL1ffXf23e8IeWV5bGWsTSAVRDqJTspAxakJUqFjy1RasHYpe_ZRTI-SDwu-GI1-DbKWNutirM_-WFfyP1qFa6BXrJK9hmb7QeECfAb9whE0DMd_0vEXnxp4sK_icdRWCtRg63ANY6awN9dxm5GD0asvt3Tpv2ssDlnadve_XfBAL7BZweinDRK4floqZHXFRAJH431u7zfDLNDKi68cRwF2W_hZdGf4kD7F1dM8dZpdbJxWa9ND6rByG_8Wl069JUU70Up-r86Oe8mvvpbksBquVoAFDPvMDzfBhqkMuHCMWmPrJ12WBEhcNpyVHRWMRx8bTrFMDKw1c3ddNgQCDUE2__Y2m2Z4Oo5DcLWirdnrtvovWMM-R7GNjkSU-zHwJHdj3CA3GQQl2C_j4POAm54xx33hv2FXoiWiN5ff47wbdEVs0_o487vkjg9OaOaQdo-MbH2f3Jr59IsH5AcCjjYldYCjHeBoVdMt4OgQcBSwQAFwtAccCl8AHHWAowPAPSRH79_N96eBb9YRaPCD1oE2SHskishKaQquJS-i0nAdJ7KEkFmmE26lVqEuVcrVRMfMYquA0hZhIVIziR-Rnbqp7RNCLdgVw7TRGL9P0liWRvKwLNNScMWZ2SVR99vl2jPZY0OVZX61znbJ6_6eE8fj8lfpl51KcphucQ9N1bbZrHJwb8Fnl63MY6erfjxMUmCJlHvXetZTcnv7R3lGdtanG_scHN118aLF12-KWKRl
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+KCa3.1+Channels+in+Macrophage+Polarization+and+Its+Relevance+in+Atherosclerotic+Plaque+Instability&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Xu%2C+Rende&rft.au=Li%2C+Chenguang&rft.au=Wu%2C+Yizhe&rft.au=Shen%2C+Li&rft.date=2017-02-01&rft.issn=1079-5642&rft.eissn=1524-4636&rft.volume=37&rft.issue=2&rft.spage=226&rft.epage=236&rft_id=info:doi/10.1161%2FATVBAHA.116.308461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_ATVBAHA_116_308461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon