Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability
Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macro...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 37; no. 2; pp. 226 - 236 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability.
Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions.
These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype. |
---|---|
AbstractList | Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability.OBJECTIVEEmerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability.Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions.APPROACH AND RESULTSHuman monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions.These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype.CONCLUSIONSThese results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype. Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The calcium-activated potassium channel KCa3.1 is critically involved in macrophage activation and function. However, the role of KCa3.1 in macrophage polarization is unknown. This study investigates the potential role of KCa3.1 in transcriptional regulation in macrophage polarization and its relationship to plaque instability. Human monocytes were differentiated into macrophages using macrophage colony-stimulating factor. Macrophages were then polarized into proinflammatory M1 cells by interferon-γ and lipopolysaccharide and into alternative M2 macrophages by interleukin-4. A model for plaque instability was induced by combined partial ligation of the left renal artery and left common carotid artery in apolipoprotein E knockout mice. Significant upregulation of KCa3.1 expression was observed during the differentiation of human monocytes into macrophages. Blocking KCa3.1 significantly reduced the expression of proinflammatory genes during macrophages polarization. Further mechanistic studies indicated that blocking KCa3.1 inhibited macrophage differentiation toward the M1 phenotype by downregulating signal transducer and activator of transcription-1 phosphorylation. In animal models, KCa3.1 blockade therapy strikingly reduced the incidence of plaque rupture and luminal thrombus in carotid arteries, decreased the expression of markers associated with M1 macrophage polarization, and enhanced the expression of M2 markers within atherosclerotic lesions. These results suggest that blocking KCa3.1 suppresses plaque instability in advanced stages of atherosclerosis by inhibiting macrophage polarization toward an M1 phenotype. |
Author | Li, Chenguang Qian, Juying Wu, Yizhe Ge, Junbo Ma, Jianying Shen, Li Xu, Rende |
Author_xml | – sequence: 1 givenname: Rende surname: Xu fullname: Xu, Rende organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 2 givenname: Chenguang surname: Li fullname: Li, Chenguang organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 3 givenname: Yizhe surname: Wu fullname: Wu, Yizhe organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 4 givenname: Li surname: Shen fullname: Shen, Li organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 5 givenname: Jianying surname: Ma fullname: Ma, Jianying organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 6 givenname: Juying surname: Qian fullname: Qian, Juying organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 7 givenname: Junbo surname: Ge fullname: Ge, Junbo organization: From the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28062499$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPGzEUha0KVF79A10gL9lM8GPssZdD1JaoIBCCbi2P505j5Nhh7FSiv76TJmxYsLkP6TtXV-ecoIOYIiD0lZIZpZJeto-_rtrrdrvMOFG1pJ_QMRWsrmrJ5cE0k0ZXQtbsCJ3k_EwIqRkjn9ERU0SyWutj9PyQAuA04J9zy2cUz5c2RggZ-4hvrRvTeml_A75PwY7-ry0-RWxjjxcl4wcI8MdGB1u4LUsYU3ZhqsU7fB_sywbwIuZiOx98eT1Dh4MNGb7s-yl6-v7tcX5d3dz9WMzbm8rVlJfK9YrxRnYUtO474bTo6NALx2s9SCJ0owRoZ4kbbCOscpwBk5wN0JFONr3ip-hid3c9pumFXMzKZwch2Ahpkw1VQgqlJ7sm9HyPbroV9GY9-pUdX82bPxOgdsDkRM4jDMb58t-FMlofDCVmG4XZR7FdzC6KScreSd-ufyD6B2M6i_g |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2019_10_043 crossref_primary_10_3389_fphar_2020_586599 crossref_primary_10_1155_2019_6724903 crossref_primary_10_1016_j_phrs_2022_106112 crossref_primary_10_1161_ATVBAHA_118_311717 crossref_primary_10_1515_hsz_2022_0232 crossref_primary_10_3390_biomedicines10112884 crossref_primary_10_1089_bioe_2022_0001 crossref_primary_10_1016_j_taap_2020_115211 crossref_primary_10_1038_s41598_022_18246_0 crossref_primary_10_1161_ATVBAHA_119_312578 crossref_primary_10_1002_ardp_202200388 crossref_primary_10_1038_s41598_018_27465_3 crossref_primary_10_1248_bpb_b18_00078 crossref_primary_10_3389_fimmu_2023_1225178 crossref_primary_10_1152_physiolgenomics_00134_2021 crossref_primary_10_3389_fcvm_2021_656631 crossref_primary_10_3389_fphar_2022_970234 crossref_primary_10_1371_journal_pone_0192800 crossref_primary_10_3892_ijmm_2023_5341 crossref_primary_10_3390_ijms23158603 crossref_primary_10_3389_fmolb_2021_679797 crossref_primary_10_1016_j_bbrc_2017_12_103 crossref_primary_10_1080_10641963_2017_1377212 crossref_primary_10_1016_j_bcp_2024_116573 crossref_primary_10_1089_scd_2021_0062 crossref_primary_10_3389_fphys_2024_1487775 crossref_primary_10_3389_fphar_2020_603104 crossref_primary_10_1161_ATVBAHA_119_312001 crossref_primary_10_1021_acsbiomaterials_4c02061 crossref_primary_10_1161_ATVBAHA_119_312004 crossref_primary_10_1016_j_diabres_2022_109776 crossref_primary_10_1111_eci_13454 crossref_primary_10_3390_cells11111730 crossref_primary_10_3389_fimmu_2022_997621 crossref_primary_10_1002_iub_2515 crossref_primary_10_1038_s41392_025_02124_y crossref_primary_10_2147_JIR_S297131 crossref_primary_10_3390_ijms19030802 crossref_primary_10_1161_ATVBAHA_117_309813 crossref_primary_10_3892_mmr_2018_8982 crossref_primary_10_1016_j_molbiopara_2021_111351 crossref_primary_10_1007_s00018_020_03540_9 crossref_primary_10_3389_fphar_2025_1545050 crossref_primary_10_3389_fphys_2022_900094 crossref_primary_10_1016_j_intimp_2024_113628 crossref_primary_10_3390_life12040538 crossref_primary_10_1016_j_vph_2024_107452 crossref_primary_10_1016_j_cca_2019_10_034 crossref_primary_10_1039_D1RA03850H crossref_primary_10_1161_JAHA_117_007442 crossref_primary_10_1161_ATVBAHA_118_312002 crossref_primary_10_1007_s00232_022_00276_4 crossref_primary_10_1002_cmdc_202200551 crossref_primary_10_1007_s00109_019_01814_9 |
Cites_doi | 10.1038/nri3088 10.1161/ATVBAHA.112.300173 10.1038/nri978 10.1161/ATVBAHA.114.303565 10.1016/j.clim.2011.10.009 10.1172/JCI30836 10.1084/jem.20090866 10.1038/nm.3258 10.1038/mi.2016.60 10.1182/blood-2011-02-339911 10.1523/JNEUROSCI.3593-06.2007 10.2174/187152711794488638 10.1097/MOL.0b013e32834a97e4 10.1097/TP.0b013e318275a2f4 10.1038/ni774 10.1038/ni.1937 10.3389/fncel.2014.00183 10.1161/ATVBAHA.111.236158 10.1161/01.ATV.0000156399.12787.5c 10.1586/14737159.8.2.179 10.1016/j.celrep.2014.07.032 10.1038/jcbfm.2011.101 10.1016/S0008-6363(01)00537-5 10.1038/nrcardio.2014.173 10.1111/imr.12218 10.1161/01.ATV.0000086961.44581.B7 10.1146/annurev-immunol-032414-112212 10.1182/blood-2009-05-221598 10.1007/s00424-010-0819-z 10.1161/ATVBAHA.108.180497 10.1074/jbc.274.9.5746 10.1177/0271678X15611434 10.1038/nature10146 10.1161/CIRCRESAHA.114.302355 10.1161/CIRCRESAHA.115.306361 10.1038/nri3073 |
ContentType | Journal Article |
Copyright | 2016 American Heart Association, Inc. |
Copyright_xml | – notice: 2016 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/ATVBAHA.116.308461 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 236 |
ExternalDocumentID | 28062499 10_1161_ATVBAHA_116_308461 |
Genre | Journal Article |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO AAYXX ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADGHP ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CITATION CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN ACIJW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c413t-cd82376b1e99db5c95b1fd5c349f6059785e9ca0cfa75a8c32e2632feb0b67d83 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Fri Jul 11 01:30:31 EDT 2025 Thu Apr 03 06:59:39 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Thu Apr 24 23:11:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | KCa3.1 channel atherosclerosis macrophage polarization apolipoprotein plaque instability |
Language | English |
License | 2016 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-cd82376b1e99db5c95b1fd5c349f6059785e9ca0cfa75a8c32e2632feb0b67d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.116.308461 |
PMID | 28062499 |
PQID | 1856589461 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1856589461 pubmed_primary_28062499 crossref_citationtrail_10_1161_ATVBAHA_116_308461 crossref_primary_10_1161_ATVBAHA_116_308461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-00 2017-Feb 20170201 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2017 |
References | e_1_3_5_28_2 e_1_3_5_27_2 e_1_3_5_26_2 e_1_3_5_25_2 e_1_3_5_24_2 e_1_3_5_23_2 e_1_3_5_22_2 e_1_3_5_21_2 e_1_3_5_29_2 e_1_3_5_2_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_4_2 e_1_3_5_3_2 e_1_3_5_6_2 Hansen LK (e_1_3_5_38_2) 2014; 61 e_1_3_5_5_2 e_1_3_5_17_2 e_1_3_5_16_2 e_1_3_5_15_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_36_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_19_2 e_1_3_5_18_2 e_1_3_5_31_2 e_1_3_5_30_2 |
References_xml | – ident: e_1_3_5_20_2 doi: 10.1038/nri3088 – volume: 61 start-page: B4946 year: 2014 ident: e_1_3_5_38_2 article-title: The role of T cell potassium channels, KV1.3 and KCa3.1, in the inflammatory cascade in ulcerative colitis. publication-title: Dan Med J – ident: e_1_3_5_4_2 doi: 10.1161/ATVBAHA.112.300173 – ident: e_1_3_5_8_2 doi: 10.1038/nri978 – ident: e_1_3_5_3_2 doi: 10.1161/ATVBAHA.114.303565 – ident: e_1_3_5_28_2 doi: 10.1016/j.clim.2011.10.009 – ident: e_1_3_5_17_2 doi: 10.1172/JCI30836 – ident: e_1_3_5_22_2 doi: 10.1084/jem.20090866 – ident: e_1_3_5_24_2 doi: 10.1038/nm.3258 – ident: e_1_3_5_35_2 doi: 10.1038/mi.2016.60 – ident: e_1_3_5_25_2 doi: 10.1182/blood-2011-02-339911 – ident: e_1_3_5_36_2 doi: 10.1523/JNEUROSCI.3593-06.2007 – ident: e_1_3_5_15_2 doi: 10.2174/187152711794488638 – ident: e_1_3_5_26_2 doi: 10.1097/MOL.0b013e32834a97e4 – ident: e_1_3_5_16_2 doi: 10.1097/TP.0b013e318275a2f4 – ident: e_1_3_5_33_2 doi: 10.1038/ni774 – ident: e_1_3_5_21_2 doi: 10.1038/ni.1937 – ident: e_1_3_5_18_2 doi: 10.3389/fncel.2014.00183 – ident: e_1_3_5_19_2 doi: 10.1161/ATVBAHA.111.236158 – ident: e_1_3_5_32_2 doi: 10.1161/01.ATV.0000156399.12787.5c – ident: e_1_3_5_10_2 doi: 10.1586/14737159.8.2.179 – ident: e_1_3_5_11_2 doi: 10.1016/j.celrep.2014.07.032 – ident: e_1_3_5_37_2 doi: 10.1038/jcbfm.2011.101 – ident: e_1_3_5_27_2 doi: 10.1016/S0008-6363(01)00537-5 – ident: e_1_3_5_6_2 doi: 10.1038/nrcardio.2014.173 – ident: e_1_3_5_5_2 doi: 10.1111/imr.12218 – ident: e_1_3_5_30_2 doi: 10.1161/01.ATV.0000086961.44581.B7 – ident: e_1_3_5_12_2 doi: 10.1146/annurev-immunol-032414-112212 – ident: e_1_3_5_34_2 doi: 10.1182/blood-2009-05-221598 – ident: e_1_3_5_31_2 doi: 10.1007/s00424-010-0819-z – ident: e_1_3_5_9_2 doi: 10.1161/ATVBAHA.108.180497 – ident: e_1_3_5_13_2 doi: 10.1074/jbc.274.9.5746 – ident: e_1_3_5_14_2 doi: 10.1177/0271678X15611434 – ident: e_1_3_5_23_2 doi: 10.1038/nature10146 – ident: e_1_3_5_2_2 doi: 10.1161/CIRCRESAHA.114.302355 – ident: e_1_3_5_29_2 doi: 10.1161/CIRCRESAHA.115.306361 – ident: e_1_3_5_7_2 doi: 10.1038/nri3073 |
SSID | ssj0004220 |
Score | 2.4683156 |
Snippet | Emerging evidence indicates that proinflammatory macrophage polarization imbalance plays a key role in atherosclerotic plaque progression and instability. The... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 226 |
SubjectTerms | Animals Apolipoproteins E - deficiency Apolipoproteins E - genetics Atherosclerosis - genetics Atherosclerosis - metabolism Atherosclerosis - pathology Atherosclerosis - prevention & control Cell Differentiation - drug effects Cell Line, Tumor Genetic Predisposition to Disease Humans Inflammation Mediators - metabolism Interferon-gamma - pharmacology Interleukin-4 - pharmacology Intermediate-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors Intermediate-Conductance Calcium-Activated Potassium Channels - genetics Intermediate-Conductance Calcium-Activated Potassium Channels - metabolism Lipopolysaccharides - pharmacology Macrophages - drug effects Macrophages - metabolism Macrophages - pathology Male Mice, Inbred C57BL Mice, Knockout Phenotype Phosphorylation Plaque, Atherosclerotic Potassium Channel Blockers - pharmacology RNA Interference Rupture, Spontaneous Signal Transduction STAT1 Transcription Factor - metabolism Transfection |
Title | Role of KCa3.1 Channels in Macrophage Polarization and Its Relevance in Atherosclerotic Plaque Instability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28062499 https://www.proquest.com/docview/1856589461 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG82PmQk3lBK4sRO_RgmUMVWxEeHylPk2I4WVJJpbV_2N_FHchc7abYxxHiJmujipL1ffXf23e8IeWV5bGWsTSAVRDqJTspAxakJUqFjy1RasHYpe_ZRTI-SDwu-GI1-DbKWNutirM_-WFfyP1qFa6BXrJK9hmb7QeECfAb9whE0DMd_0vEXnxp4sK_icdRWCtRg63ANY6awN9dxm5GD0asvt3Tpv2ssDlnadve_XfBAL7BZweinDRK4floqZHXFRAJH431u7zfDLNDKi68cRwF2W_hZdGf4kD7F1dM8dZpdbJxWa9ND6rByG_8Wl069JUU70Up-r86Oe8mvvpbksBquVoAFDPvMDzfBhqkMuHCMWmPrJ12WBEhcNpyVHRWMRx8bTrFMDKw1c3ddNgQCDUE2__Y2m2Z4Oo5DcLWirdnrtvovWMM-R7GNjkSU-zHwJHdj3CA3GQQl2C_j4POAm54xx33hv2FXoiWiN5ff47wbdEVs0_o487vkjg9OaOaQdo-MbH2f3Jr59IsH5AcCjjYldYCjHeBoVdMt4OgQcBSwQAFwtAccCl8AHHWAowPAPSRH79_N96eBb9YRaPCD1oE2SHskishKaQquJS-i0nAdJ7KEkFmmE26lVqEuVcrVRMfMYquA0hZhIVIziR-Rnbqp7RNCLdgVw7TRGL9P0liWRvKwLNNScMWZ2SVR99vl2jPZY0OVZX61znbJ6_6eE8fj8lfpl51KcphucQ9N1bbZrHJwb8Fnl63MY6erfjxMUmCJlHvXetZTcnv7R3lGdtanG_scHN118aLF12-KWKRl |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+KCa3.1+Channels+in+Macrophage+Polarization+and+Its+Relevance+in+Atherosclerotic+Plaque+Instability&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Xu%2C+Rende&rft.au=Li%2C+Chenguang&rft.au=Wu%2C+Yizhe&rft.au=Shen%2C+Li&rft.date=2017-02-01&rft.issn=1079-5642&rft.eissn=1524-4636&rft.volume=37&rft.issue=2&rft.spage=226&rft.epage=236&rft_id=info:doi/10.1161%2FATVBAHA.116.308461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_ATVBAHA_116_308461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |