A Computer-Aided Screening Solution for the Identification of Diabetic Neuropathy From Standing Balance by Leveraging Multi-Domain Features

The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2388 - 2397
Main Authors Mengarelli, Alessandro, Tigrini, Andrea, Verdini, Federica, Scattolini, Mara, Mobarak, Rami, Burattini, Laura, Rabini, Rosa Anna, Fioretti, Sandro
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease.
AbstractList The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease.
The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease.The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease.
Author Burattini, Laura
Scattolini, Mara
Fioretti, Sandro
Tigrini, Andrea
Mengarelli, Alessandro
Rabini, Rosa Anna
Verdini, Federica
Mobarak, Rami
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0002-6087-6763
  surname: Mengarelli
  fullname: Mengarelli, Alessandro
  email: a.mengarelli@staff.univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0002-1600-2137
  surname: Tigrini
  fullname: Tigrini, Andrea
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 3
  givenname: Federica
  orcidid: 0000-0003-4252-3224
  surname: Verdini
  fullname: Verdini, Federica
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 4
  givenname: Mara
  orcidid: 0000-0003-2060-6942
  surname: Scattolini
  fullname: Scattolini, Mara
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 5
  givenname: Rami
  orcidid: 0009-0004-3929-084X
  surname: Mobarak
  fullname: Mobarak, Rami
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 6
  givenname: Laura
  orcidid: 0000-0002-9474-7046
  surname: Burattini
  fullname: Burattini, Laura
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 7
  givenname: Rosa Anna
  orcidid: 0009-0000-2714-6753
  surname: Rabini
  fullname: Rabini, Rosa Anna
  organization: Department of Diabetology, Mazzoni Hospital, Ascoli Piceno, Italy
– sequence: 8
  givenname: Sandro
  orcidid: 0000-0002-7783-3065
  surname: Fioretti
  fullname: Fioretti, Sandro
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38923488$$D View this record in MEDLINE/PubMed
BookMark eNpdkl9v0zAUxS00xLbCF0AIWeKFlxT_jePH0a1QqQyJjmfLSa47V0ncOQ5SPwNfmqQtE-LJ1tXvHN2je67RRRc6QOgtJXNKif70cL_5cTdnhIk5F1QzLl-gKyplkRFGycX05yITnJFLdN33O0KoyqV6hS55MdKiKK7Q7xu8CO1-SBCzG19DjTdVBOh8t8Wb0AzJhw67EHF6BLyqoUve-coex8HhW29LSL7C9zDEsLfp8YCXMbR4k2xXTyafbWO7CnB5wGv4BdFup-m3oUk-uw2t9R1egk1DhP41euls08Ob8ztDP5d3D4uv2fr7l9XiZp1VgvKUVYpokKrglbalkho0oVTX2lFXF7lV2upCjGRe5FS5wkpeV0xqbqkUTuuKz9Dq5FsHuzP76FsbDyZYb46DELfGxjFUA4ZCoQl3JbMKRJ3zUpFSlnVpcweuFHL0-njy2sfwNECfTOv7CpoxNIShN5wopnRBxnVn6MN_6C4MsRuTTpQULNdEj9T7MzWULdTP6_092QiwE1DF0PcR3DNCiZl6YY69MFMvzLkXo-jdSeQB4B-BVIxwwf8Agr6zbA
CODEN ITNSB3
Cites_doi 10.1007/s10916-011-9715-0
10.1186/2251-6581-12-29
10.1016/j.jbiomech.2020.109793
10.1016/j.diabres.2019.107843
10.1016/j.clinbiomech.2009.07.003
10.1016/j.clinbiomech.2019.12.019
10.1152/ajpheart.2000.278.6.h2039
10.1016/j.mcna.2013.03.007
10.1371/journal.pone.0135255
10.1109/TNSRE.2023.3248322
10.1016/S0140-6736(13)62219-9
10.14814/phy2.12329
10.1016/S0966-6362(98)00044-7
10.1007/s00221-008-1521-7
10.1038/s41572-019-0092-1
10.1016/j.engappai.2023.106658
10.1007/s00125-019-05023-4
10.1007/BF00229788
10.1016/j.jtv.2023.10.002
10.2337/diacare.22.2.328
10.1097/PHM.0000000000000426
10.1210/er.2018-00107
10.1007/s10439-013-0790-x
10.2337/dc16-2042
10.1016/j.gaitpost.2022.09.090
10.1016/j.gaitpost.2019.10.039
10.1109/JBHI.2022.3205058
10.1007/s11071-021-06759-8
10.1007/978-0-387-84858-7
10.3390/medicina57111145
10.1109/JBHI.2020.3040225
10.1166/jmihi.2012.1093
10.1016/j.clinbiomech.2011.03.004
10.1007/s00521-021-06431-7
10.1109/TNSRE.2023.3236454
10.1109/EMBC.2019.8856812
10.1016/j.icte.2018.10.005
10.1046/j.1464-5491.2002.00819.x
10.1007/s12553-023-00751-5
10.1016/j.medengphy.2009.06.004
10.1002/sim.7009
10.1016/S0167-9457(01)00024-0
10.1016/j.jbiomech.2021.110725
10.1016/j.gaitpost.2010.05.017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3419235
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2397
ExternalDocumentID oai_doaj_org_article_1e8903fb2a7e4d63b70b5bdba6fefb45
38923488
10_1109_TNSRE_2024_3419235
10572034
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c413t-c709e5783c9ab759e90119d9f1fd86a79a98441368617f8a53dc2593a154f99c3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:22:56 EDT 2025
Fri Jul 11 07:00:11 EDT 2025
Sun Jul 13 03:52:02 EDT 2025
Wed Feb 19 01:58:15 EST 2025
Tue Jul 01 00:15:00 EDT 2025
Wed Aug 27 02:03:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-c709e5783c9ab759e90119d9f1fd86a79a98441368617f8a53dc2593a154f99c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6087-6763
0000-0003-4252-3224
0000-0002-1600-2137
0000-0003-2060-6942
0009-0000-2714-6753
0000-0002-7783-3065
0009-0004-3929-084X
0000-0002-9474-7046
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10572034
PMID 38923488
PQID 3075426909
PQPubID 85423
PageCount 10
ParticipantIDs proquest_miscellaneous_3072798078
doaj_primary_oai_doaj_org_article_1e8903fb2a7e4d63b70b5bdba6fefb45
crossref_primary_10_1109_TNSRE_2024_3419235
ieee_primary_10572034
pubmed_primary_38923488
proquest_journals_3075426909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Webber (ref38) 2014
ref2
ref1
ref17
ref39
ref16
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Kahn (ref35) 1992; 15
ref5
ref40
Swapna (ref13) 2018; 4
References_xml – ident: ref17
  doi: 10.1007/s10916-011-9715-0
– ident: ref26
  doi: 10.1186/2251-6581-12-29
– ident: ref43
  doi: 10.1016/j.jbiomech.2020.109793
– ident: ref2
  doi: 10.1016/j.diabres.2019.107843
– ident: ref21
  doi: 10.1016/j.clinbiomech.2009.07.003
– ident: ref23
  doi: 10.1016/j.clinbiomech.2019.12.019
– ident: ref39
  doi: 10.1152/ajpheart.2000.278.6.h2039
– ident: ref7
  doi: 10.1016/j.mcna.2013.03.007
– ident: ref27
  doi: 10.1371/journal.pone.0135255
– ident: ref15
  doi: 10.1109/TNSRE.2023.3248322
– ident: ref5
  doi: 10.1016/S0140-6736(13)62219-9
– ident: ref24
  doi: 10.14814/phy2.12329
– ident: ref30
  doi: 10.1016/S0966-6362(98)00044-7
– ident: ref33
  doi: 10.1007/s00221-008-1521-7
– ident: ref1
  doi: 10.1038/s41572-019-0092-1
– ident: ref46
  doi: 10.1016/j.engappai.2023.106658
– ident: ref14
  doi: 10.1007/s00125-019-05023-4
– ident: ref28
  doi: 10.1007/BF00229788
– ident: ref22
  doi: 10.1016/j.jtv.2023.10.002
– ident: ref10
  doi: 10.2337/diacare.22.2.328
– ident: ref25
  doi: 10.1097/PHM.0000000000000426
– ident: ref11
  doi: 10.1210/er.2018-00107
– ident: ref29
  doi: 10.1007/s10439-013-0790-x
– ident: ref6
  doi: 10.2337/dc16-2042
– ident: ref4
  doi: 10.1016/j.gaitpost.2022.09.090
– ident: ref19
  doi: 10.1016/j.gaitpost.2019.10.039
– ident: ref41
  doi: 10.1109/JBHI.2022.3205058
– ident: ref40
  doi: 10.1007/s11071-021-06759-8
– ident: ref42
  doi: 10.1007/978-0-387-84858-7
– ident: ref20
  doi: 10.3390/medicina57111145
– ident: ref3
  doi: 10.1109/JBHI.2020.3040225
– ident: ref18
  doi: 10.1166/jmihi.2012.1093
– ident: ref16
  doi: 10.1016/j.clinbiomech.2011.03.004
– volume: 15
  start-page: 1095
  issue: 8
  year: 1992
  ident: ref35
  article-title: Proceedings of a consensus development conference on standardized measures in diabetic neuropathy. autonomic nervous system testing
  publication-title: Diabetes Care
– ident: ref45
  doi: 10.1007/s00521-021-06431-7
– ident: ref31
  doi: 10.1109/TNSRE.2023.3236454
– volume-title: Recurrence Quantification Analysis: Theory Best Practices
  year: 2014
  ident: ref38
– ident: ref34
  doi: 10.1109/EMBC.2019.8856812
– volume: 4
  start-page: 243
  issue: 4
  year: 2018
  ident: ref13
  article-title: Diabetes detection using deep learning algorithms
  publication-title: ICT Exp.
  doi: 10.1016/j.icte.2018.10.005
– ident: ref36
  doi: 10.1046/j.1464-5491.2002.00819.x
– ident: ref12
  doi: 10.1007/s12553-023-00751-5
– ident: ref32
  doi: 10.1016/j.medengphy.2009.06.004
– ident: ref9
  doi: 10.1002/sim.7009
– ident: ref37
  doi: 10.1016/S0167-9457(01)00024-0
– ident: ref44
  doi: 10.1016/j.jbiomech.2021.110725
– ident: ref8
  doi: 10.1016/j.gaitpost.2010.05.017
SSID ssj0017657
Score 2.4266887
Snippet The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work,...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 2388
SubjectTerms Adult
Aged
Algorithms
Artificial neural networks
Asymptomatic
Center of pressure
computer aided diagnosis
Diabetes
Diabetes mellitus
Diabetic Neuropathies - diagnosis
Diabetic Neuropathies - physiopathology
Diabetic neuropathy
Diagnosis
Diagnosis, Computer-Assisted - methods
Diseases
Effectiveness
Female
Humans
Information processing
Information retrieval
Limiting
machine learning
Male
Middle Aged
peripheral neuropathy
Postural Balance - physiology
Regulation
Reproducibility of Results
Standing Position
static posture
Task analysis
Trajectory
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgqZS4YJMndhx4uMWuqoq6KG7lXqL_JT20ASV3UN_Q_90x3ayLAfEpdckcizPjOebsecbQo6YZm2oWKC-tQ0VZWDU-NZTH0-hykq6kKrSfl7Isytxfl1f77T6infCMj1wXrjj0reK8WAq3XjhJDcNM7VxRsvggxGJvRR93hRMjecHjUwcn2jOggpesalchqnj5cXi8hQDw0p8jVxmVWr09sclJeb-sdXKv1Fn8j7z5-TZCBthlqf7gjzx_UvyaZciGJaZHwA-w-Vf7NuvyP0MpuYNdLZy3sHCxus26LVgSosBgldAMAi5cjeMqTwYAuRLMysLicgjtjC-g_ntcAOLsSYGTuL9SOvB3MEPj7aROh9Bqu2l34cbveohQs0Nhvb75Gp-uvx2RscmDNSif1tT2zDl0ay5Vdo0tfKxVlU5FcrgWqkbpVWLkIrLFrFQaHXNncWQimvEZkEpy1-TvX7o_VsCpUZ8iAGp01ILb7RiOGAtQ8w-YeQnCvJlkkP3K3NtdClGYapLUuui1LpRagU5iaLafhl5stMD1J5u1J7uf9pTkP0o6J3f1fFcGqdyMEm-G436d4fbYR0rf5kqyOH2NZpjPGPRvR826ZuqUZHEvyBvssZsB0dsWHHcMN89xszfk6dxNXI26IDsrW83_gPio7X5mEzhAeSHC24
  priority: 102
  providerName: Directory of Open Access Journals
Title A Computer-Aided Screening Solution for the Identification of Diabetic Neuropathy From Standing Balance by Leveraging Multi-Domain Features
URI https://ieeexplore.ieee.org/document/10572034
https://www.ncbi.nlm.nih.gov/pubmed/38923488
https://www.proquest.com/docview/3075426909
https://www.proquest.com/docview/3072798078
https://doaj.org/article/1e8903fb2a7e4d63b70b5bdba6fefb45
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1x4Flgo1SABF5StEzsPH7fQVYVgD92t1FtkO2NpVTVB282h_AX-NGM7WQpSJW7RJnI2mhnPw_N9w9h7rnnlMu4SrGyZyNTxxGCFCfpTqDQrGhdQad8XxdmF_HqZXw5g9YCFQcTQfIZTfxnO8pvO9r5Uduxn0mZcyD22R5lbBGvtjgzKItB6kgXLRIqMjwgZro5Xi-X5KeWCmZx6-rJM-Hk15KkzIcPElT8OKfD2D4NW7o85g--ZP2aL8V_HlpOrab81U_vzH0LH__6sJ-zREIXCLKrNU_YA22fsw13GYVhFugH4COd_kXk_Z79mMM6CSGbrBhtYWt-9Q04QxiobUCwMFFtCBAK7oTIInYPYg7O2EHhB_ETkW5hvumtYDhAbOPHtlhbB3MI3JFMLg5QgQIWTL921XrfgI9d-gzcH7GJ-uvp8lgwzHRJL7nKb2JIrpF1CWKVNmSv00FfVKJe6pip0qbSqKEITRUWhlat0LhpLGZrQFOo5pax4wfbbrsVXDFJN4Sblt40utESjFacF88L5YhYlknLCPo2CrX9E6o46pDxc1UEjaq8R9aARE3biZb970tNuhx9IVPVgxXWKleLCmUyXKJtCmJKb3DRGFw6dkbTIgRfvnddFyU7Y4ahK9bBH3NS0u-YeSMzVhL3b3Sbr9kc2usWuD89kpfIzASbsZVTB3eKjAr--56Vv2EP_gbFedMj2t5se31IEtTVHofJwFOznN_SIFog
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOcCFZ4FAgUECLsjp2rt-7DGFRgHSHJpU6s3aXc9KEaqN0vhQ_gJ_mtm1HQpSJW5WbK1jzczON7Mz3zD2jmteuIS7CAubRzJ2PDJYYIT-FCpOssqFrrSTRTY7k1_P0_O-WT30wiBiKD7Dsb8MZ_lVY1ufKjv0M2kTLuRtdoccf5p07Vq7Q4M8C8SeZMMykiLhQ48MV4erxfL0mKLBRI49gVki_MQa8tWJkGHmyh-XFJj7-1ErN6PO4H2mD9hi-N9d0cn3cbs1Y_vzH0rH__6wh-x-j0Nh0inOI3YL68fs_XXOYVh1hAPwAU7_ovN-wn5NYJgGEU3WFVawtL5-h9wgDHk2IDQMhC6hawV2fW4QGgddFc7aQmAG8TORr2C6aS5g2TfZwJEvuLQI5grmSMYWRilBaBaOPjcXel2Dx67tBi_32dn0ePVpFvVTHSJLDnMb2ZwrpH1CWKVNnir0za-qUi52VZHpXGlVEEYTWUHgyhU6FZWlGE1oAntOKSuesr26qfE5g1gT4KQIt9KZlmi04rRgmjmfzqJQUo7Yx0Gw5Y-OvKMMQQ9XZdCI0mtE2WvEiB152e-e9MTb4QcSVdnbcRljobhwJtE5yioTJucmNZXRmUNnJC2y78V77XWdZEfsYFClst8lLkvaX1PfSszViL3d3Sb79oc2usamDc8kufJTAUbsWaeCu8UHBX5xw0vfsLuz1cm8nH9ZfHvJ7vmP7bJHB2xvu2nxFeGprXkdrOg3C7UY3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computer-Aided+Screening+Solution+for+the+Identification+of+Diabetic+Neuropathy+From+Standing+Balance+by+Leveraging+Multi-Domain+Features&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Mengarelli%2C+Alessandro&rft.au=Tigrini%2C+Andrea&rft.au=Verdini%2C+Federica&rft.au=Scattolini%2C+Mara&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=2388&rft.epage=2397&rft_id=info:doi/10.1109%2FTNSRE.2024.3419235&rft_id=info%3Apmid%2F38923488&rft.externalDocID=10572034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon