A Computer-Aided Screening Solution for the Identification of Diabetic Neuropathy From Standing Balance by Leveraging Multi-Domain Features
The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 2388 - 2397 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease. |
---|---|
AbstractList | The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease. The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease.The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work, we explored the suitability of standing balance task for identifying the presence of DN. Further, we proposed two diagnosis pathways in order to succeed in distinguishing between different stages of the disease. We considered a cohort of non-neuropathic (NN), asymptomatic neuropathic (AN), and symptomatic neuropathic (SN) diabetic patients. From the center of pressure (COP), a series of features belonging to different description domains were extracted. In order to exploit the whole information retrievable from COP, a majority voting ensemble was applied to the output of classifiers trained separately on different COP components. The ensemble of kNN classifiers provided over 86% accuracy for the first diagnosis pathway, made by a 3-class classification task for distinguishing between NN, AN, and SN patients. The second pathway offered higher performances, with over 97% accuracy in identifying patients with symptomatic and asymptomatic neuropathy. Notably, in the last case, no asymptomatic patient went undetected. This work showed that properly leveraging all the information that can be mined from COP trajectory recorded during standing balance is effective for achieving reliable DN identification. This work is a step toward a clinical tool for neuropathy diagnosis, also in the early stages of the disease. |
Author | Burattini, Laura Scattolini, Mara Fioretti, Sandro Tigrini, Andrea Mengarelli, Alessandro Rabini, Rosa Anna Verdini, Federica Mobarak, Rami |
Author_xml | – sequence: 1 givenname: Alessandro orcidid: 0000-0002-6087-6763 surname: Mengarelli fullname: Mengarelli, Alessandro email: a.mengarelli@staff.univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 2 givenname: Andrea orcidid: 0000-0002-1600-2137 surname: Tigrini fullname: Tigrini, Andrea organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 3 givenname: Federica orcidid: 0000-0003-4252-3224 surname: Verdini fullname: Verdini, Federica organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 4 givenname: Mara orcidid: 0000-0003-2060-6942 surname: Scattolini fullname: Scattolini, Mara organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 5 givenname: Rami orcidid: 0009-0004-3929-084X surname: Mobarak fullname: Mobarak, Rami organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 6 givenname: Laura orcidid: 0000-0002-9474-7046 surname: Burattini fullname: Burattini, Laura organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 7 givenname: Rosa Anna orcidid: 0009-0000-2714-6753 surname: Rabini fullname: Rabini, Rosa Anna organization: Department of Diabetology, Mazzoni Hospital, Ascoli Piceno, Italy – sequence: 8 givenname: Sandro orcidid: 0000-0002-7783-3065 surname: Fioretti fullname: Fioretti, Sandro organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38923488$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkl9v0zAUxS00xLbCF0AIWeKFlxT_jePH0a1QqQyJjmfLSa47V0ncOQ5SPwNfmqQtE-LJ1tXvHN2je67RRRc6QOgtJXNKif70cL_5cTdnhIk5F1QzLl-gKyplkRFGycX05yITnJFLdN33O0KoyqV6hS55MdKiKK7Q7xu8CO1-SBCzG19DjTdVBOh8t8Wb0AzJhw67EHF6BLyqoUve-coex8HhW29LSL7C9zDEsLfp8YCXMbR4k2xXTyafbWO7CnB5wGv4BdFup-m3oUk-uw2t9R1egk1DhP41euls08Ob8ztDP5d3D4uv2fr7l9XiZp1VgvKUVYpokKrglbalkho0oVTX2lFXF7lV2upCjGRe5FS5wkpeV0xqbqkUTuuKz9Dq5FsHuzP76FsbDyZYb46DELfGxjFUA4ZCoQl3JbMKRJ3zUpFSlnVpcweuFHL0-njy2sfwNECfTOv7CpoxNIShN5wopnRBxnVn6MN_6C4MsRuTTpQULNdEj9T7MzWULdTP6_092QiwE1DF0PcR3DNCiZl6YY69MFMvzLkXo-jdSeQB4B-BVIxwwf8Agr6zbA |
CODEN | ITNSB3 |
Cites_doi | 10.1007/s10916-011-9715-0 10.1186/2251-6581-12-29 10.1016/j.jbiomech.2020.109793 10.1016/j.diabres.2019.107843 10.1016/j.clinbiomech.2009.07.003 10.1016/j.clinbiomech.2019.12.019 10.1152/ajpheart.2000.278.6.h2039 10.1016/j.mcna.2013.03.007 10.1371/journal.pone.0135255 10.1109/TNSRE.2023.3248322 10.1016/S0140-6736(13)62219-9 10.14814/phy2.12329 10.1016/S0966-6362(98)00044-7 10.1007/s00221-008-1521-7 10.1038/s41572-019-0092-1 10.1016/j.engappai.2023.106658 10.1007/s00125-019-05023-4 10.1007/BF00229788 10.1016/j.jtv.2023.10.002 10.2337/diacare.22.2.328 10.1097/PHM.0000000000000426 10.1210/er.2018-00107 10.1007/s10439-013-0790-x 10.2337/dc16-2042 10.1016/j.gaitpost.2022.09.090 10.1016/j.gaitpost.2019.10.039 10.1109/JBHI.2022.3205058 10.1007/s11071-021-06759-8 10.1007/978-0-387-84858-7 10.3390/medicina57111145 10.1109/JBHI.2020.3040225 10.1166/jmihi.2012.1093 10.1016/j.clinbiomech.2011.03.004 10.1007/s00521-021-06431-7 10.1109/TNSRE.2023.3236454 10.1109/EMBC.2019.8856812 10.1016/j.icte.2018.10.005 10.1046/j.1464-5491.2002.00819.x 10.1007/s12553-023-00751-5 10.1016/j.medengphy.2009.06.004 10.1002/sim.7009 10.1016/S0167-9457(01)00024-0 10.1016/j.jbiomech.2021.110725 10.1016/j.gaitpost.2010.05.017 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3419235 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2397 |
ExternalDocumentID | oai_doaj_org_article_1e8903fb2a7e4d63b70b5bdba6fefb45 38923488 10_1109_TNSRE_2024_3419235 10572034 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c413t-c709e5783c9ab759e90119d9f1fd86a79a98441368617f8a53dc2593a154f99c3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:22:56 EDT 2025 Fri Jul 11 07:00:11 EDT 2025 Sun Jul 13 03:52:02 EDT 2025 Wed Feb 19 01:58:15 EST 2025 Tue Jul 01 00:15:00 EDT 2025 Wed Aug 27 02:03:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-c709e5783c9ab759e90119d9f1fd86a79a98441368617f8a53dc2593a154f99c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6087-6763 0000-0003-4252-3224 0000-0002-1600-2137 0000-0003-2060-6942 0009-0000-2714-6753 0000-0002-7783-3065 0009-0004-3929-084X 0000-0002-9474-7046 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10572034 |
PMID | 38923488 |
PQID | 3075426909 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3072798078 doaj_primary_oai_doaj_org_article_1e8903fb2a7e4d63b70b5bdba6fefb45 crossref_primary_10_1109_TNSRE_2024_3419235 ieee_primary_10572034 pubmed_primary_38923488 proquest_journals_3075426909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Webber (ref38) 2014 ref2 ref1 ref17 ref39 ref16 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Kahn (ref35) 1992; 15 ref5 ref40 Swapna (ref13) 2018; 4 |
References_xml | – ident: ref17 doi: 10.1007/s10916-011-9715-0 – ident: ref26 doi: 10.1186/2251-6581-12-29 – ident: ref43 doi: 10.1016/j.jbiomech.2020.109793 – ident: ref2 doi: 10.1016/j.diabres.2019.107843 – ident: ref21 doi: 10.1016/j.clinbiomech.2009.07.003 – ident: ref23 doi: 10.1016/j.clinbiomech.2019.12.019 – ident: ref39 doi: 10.1152/ajpheart.2000.278.6.h2039 – ident: ref7 doi: 10.1016/j.mcna.2013.03.007 – ident: ref27 doi: 10.1371/journal.pone.0135255 – ident: ref15 doi: 10.1109/TNSRE.2023.3248322 – ident: ref5 doi: 10.1016/S0140-6736(13)62219-9 – ident: ref24 doi: 10.14814/phy2.12329 – ident: ref30 doi: 10.1016/S0966-6362(98)00044-7 – ident: ref33 doi: 10.1007/s00221-008-1521-7 – ident: ref1 doi: 10.1038/s41572-019-0092-1 – ident: ref46 doi: 10.1016/j.engappai.2023.106658 – ident: ref14 doi: 10.1007/s00125-019-05023-4 – ident: ref28 doi: 10.1007/BF00229788 – ident: ref22 doi: 10.1016/j.jtv.2023.10.002 – ident: ref10 doi: 10.2337/diacare.22.2.328 – ident: ref25 doi: 10.1097/PHM.0000000000000426 – ident: ref11 doi: 10.1210/er.2018-00107 – ident: ref29 doi: 10.1007/s10439-013-0790-x – ident: ref6 doi: 10.2337/dc16-2042 – ident: ref4 doi: 10.1016/j.gaitpost.2022.09.090 – ident: ref19 doi: 10.1016/j.gaitpost.2019.10.039 – ident: ref41 doi: 10.1109/JBHI.2022.3205058 – ident: ref40 doi: 10.1007/s11071-021-06759-8 – ident: ref42 doi: 10.1007/978-0-387-84858-7 – ident: ref20 doi: 10.3390/medicina57111145 – ident: ref3 doi: 10.1109/JBHI.2020.3040225 – ident: ref18 doi: 10.1166/jmihi.2012.1093 – ident: ref16 doi: 10.1016/j.clinbiomech.2011.03.004 – volume: 15 start-page: 1095 issue: 8 year: 1992 ident: ref35 article-title: Proceedings of a consensus development conference on standardized measures in diabetic neuropathy. autonomic nervous system testing publication-title: Diabetes Care – ident: ref45 doi: 10.1007/s00521-021-06431-7 – ident: ref31 doi: 10.1109/TNSRE.2023.3236454 – volume-title: Recurrence Quantification Analysis: Theory Best Practices year: 2014 ident: ref38 – ident: ref34 doi: 10.1109/EMBC.2019.8856812 – volume: 4 start-page: 243 issue: 4 year: 2018 ident: ref13 article-title: Diabetes detection using deep learning algorithms publication-title: ICT Exp. doi: 10.1016/j.icte.2018.10.005 – ident: ref36 doi: 10.1046/j.1464-5491.2002.00819.x – ident: ref12 doi: 10.1007/s12553-023-00751-5 – ident: ref32 doi: 10.1016/j.medengphy.2009.06.004 – ident: ref9 doi: 10.1002/sim.7009 – ident: ref37 doi: 10.1016/S0167-9457(01)00024-0 – ident: ref44 doi: 10.1016/j.jbiomech.2021.110725 – ident: ref8 doi: 10.1016/j.gaitpost.2010.05.017 |
SSID | ssj0017657 |
Score | 2.4266887 |
Snippet | The early diagnosis of diabetic neuropathy (DN) is fundamental in order to enact timely therapeutic strategies for limiting disease progression. In this work,... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 2388 |
SubjectTerms | Adult Aged Algorithms Artificial neural networks Asymptomatic Center of pressure computer aided diagnosis Diabetes Diabetes mellitus Diabetic Neuropathies - diagnosis Diabetic Neuropathies - physiopathology Diabetic neuropathy Diagnosis Diagnosis, Computer-Assisted - methods Diseases Effectiveness Female Humans Information processing Information retrieval Limiting machine learning Male Middle Aged peripheral neuropathy Postural Balance - physiology Regulation Reproducibility of Results Standing Position static posture Task analysis Trajectory |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgqZS4YJMndhx4uMWuqoq6KG7lXqL_JT20ASV3UN_Q_90x3ayLAfEpdckcizPjOebsecbQo6YZm2oWKC-tQ0VZWDU-NZTH0-hykq6kKrSfl7Isytxfl1f77T6infCMj1wXrjj0reK8WAq3XjhJDcNM7VxRsvggxGJvRR93hRMjecHjUwcn2jOggpesalchqnj5cXi8hQDw0p8jVxmVWr09sclJeb-sdXKv1Fn8j7z5-TZCBthlqf7gjzx_UvyaZciGJaZHwA-w-Vf7NuvyP0MpuYNdLZy3sHCxus26LVgSosBgldAMAi5cjeMqTwYAuRLMysLicgjtjC-g_ntcAOLsSYGTuL9SOvB3MEPj7aROh9Bqu2l34cbveohQs0Nhvb75Gp-uvx2RscmDNSif1tT2zDl0ay5Vdo0tfKxVlU5FcrgWqkbpVWLkIrLFrFQaHXNncWQimvEZkEpy1-TvX7o_VsCpUZ8iAGp01ILb7RiOGAtQ8w-YeQnCvJlkkP3K3NtdClGYapLUuui1LpRagU5iaLafhl5stMD1J5u1J7uf9pTkP0o6J3f1fFcGqdyMEm-G436d4fbYR0rf5kqyOH2NZpjPGPRvR826ZuqUZHEvyBvssZsB0dsWHHcMN89xszfk6dxNXI26IDsrW83_gPio7X5mEzhAeSHC24 priority: 102 providerName: Directory of Open Access Journals |
Title | A Computer-Aided Screening Solution for the Identification of Diabetic Neuropathy From Standing Balance by Leveraging Multi-Domain Features |
URI | https://ieeexplore.ieee.org/document/10572034 https://www.ncbi.nlm.nih.gov/pubmed/38923488 https://www.proquest.com/docview/3075426909 https://www.proquest.com/docview/3072798078 https://doaj.org/article/1e8903fb2a7e4d63b70b5bdba6fefb45 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1x4Flgo1SABF5StEzsPH7fQVYVgD92t1FtkO2NpVTVB282h_AX-NGM7WQpSJW7RJnI2mhnPw_N9w9h7rnnlMu4SrGyZyNTxxGCFCfpTqDQrGhdQad8XxdmF_HqZXw5g9YCFQcTQfIZTfxnO8pvO9r5Uduxn0mZcyD22R5lbBGvtjgzKItB6kgXLRIqMjwgZro5Xi-X5KeWCmZx6-rJM-Hk15KkzIcPElT8OKfD2D4NW7o85g--ZP2aL8V_HlpOrab81U_vzH0LH__6sJ-zREIXCLKrNU_YA22fsw13GYVhFugH4COd_kXk_Z79mMM6CSGbrBhtYWt-9Q04QxiobUCwMFFtCBAK7oTIInYPYg7O2EHhB_ETkW5hvumtYDhAbOPHtlhbB3MI3JFMLg5QgQIWTL921XrfgI9d-gzcH7GJ-uvp8lgwzHRJL7nKb2JIrpF1CWKVNmSv00FfVKJe6pip0qbSqKEITRUWhlat0LhpLGZrQFOo5pax4wfbbrsVXDFJN4Sblt40utESjFacF88L5YhYlknLCPo2CrX9E6o46pDxc1UEjaq8R9aARE3biZb970tNuhx9IVPVgxXWKleLCmUyXKJtCmJKb3DRGFw6dkbTIgRfvnddFyU7Y4ahK9bBH3NS0u-YeSMzVhL3b3Sbr9kc2usWuD89kpfIzASbsZVTB3eKjAr--56Vv2EP_gbFedMj2t5se31IEtTVHofJwFOznN_SIFog |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOcCFZ4FAgUECLsjp2rt-7DGFRgHSHJpU6s3aXc9KEaqN0vhQ_gJ_mtm1HQpSJW5WbK1jzczON7Mz3zD2jmteuIS7CAubRzJ2PDJYYIT-FCpOssqFrrSTRTY7k1_P0_O-WT30wiBiKD7Dsb8MZ_lVY1ufKjv0M2kTLuRtdoccf5p07Vq7Q4M8C8SeZMMykiLhQ48MV4erxfL0mKLBRI49gVki_MQa8tWJkGHmyh-XFJj7-1ErN6PO4H2mD9hi-N9d0cn3cbs1Y_vzH0rH__6wh-x-j0Nh0inOI3YL68fs_XXOYVh1hAPwAU7_ovN-wn5NYJgGEU3WFVawtL5-h9wgDHk2IDQMhC6hawV2fW4QGgddFc7aQmAG8TORr2C6aS5g2TfZwJEvuLQI5grmSMYWRilBaBaOPjcXel2Dx67tBi_32dn0ePVpFvVTHSJLDnMb2ZwrpH1CWKVNnir0za-qUi52VZHpXGlVEEYTWUHgyhU6FZWlGE1oAntOKSuesr26qfE5g1gT4KQIt9KZlmi04rRgmjmfzqJQUo7Yx0Gw5Y-OvKMMQQ9XZdCI0mtE2WvEiB152e-e9MTb4QcSVdnbcRljobhwJtE5yioTJucmNZXRmUNnJC2y78V77XWdZEfsYFClst8lLkvaX1PfSszViL3d3Sb79oc2usamDc8kufJTAUbsWaeCu8UHBX5xw0vfsLuz1cm8nH9ZfHvJ7vmP7bJHB2xvu2nxFeGprXkdrOg3C7UY3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computer-Aided+Screening+Solution+for+the+Identification+of+Diabetic+Neuropathy+From+Standing+Balance+by+Leveraging+Multi-Domain+Features&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Mengarelli%2C+Alessandro&rft.au=Tigrini%2C+Andrea&rft.au=Verdini%2C+Federica&rft.au=Scattolini%2C+Mara&rft.date=2024&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=32&rft.spage=2388&rft.epage=2397&rft_id=info:doi/10.1109%2FTNSRE.2024.3419235&rft_id=info%3Apmid%2F38923488&rft.externalDocID=10572034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |