Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures
In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the d...
Saved in:
Published in | Nature physics Vol. 6; no. 6; pp. 448 - 454 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin–orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations.
Non-local transport measurements on mercury telluride quantum wells show clear signatures of the ballistic spin Hall effect. The ballistic nature of the experiment allows the observed effect to be interpreted as a direct consequence of the band structure of these semiconductor nanostructures, rather that being caused by impurity scattering. |
---|---|
AbstractList | In the spin Hall effect, a current passed through a spin-orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin-orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations. [PUBLICATION ABSTRACT] In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin–orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations. Non-local transport measurements on mercury telluride quantum wells show clear signatures of the ballistic spin Hall effect. The ballistic nature of the experiment allows the observed effect to be interpreted as a direct consequence of the band structure of these semiconductor nanostructures, rather that being caused by impurity scattering. In the spin Hall effect, a current passed through a spin-orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin-orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations. |
Author | Buhmann, H Roth, A Brüne, C König, M Molenkamp, L. W Sinova, J Novik, E. G Hanke, W Hankiewicz, E. M |
Author_xml | – givenname: H surname: Buhmann fullname: Buhmann, H organization: Physikalisches Institut (EP3), Universität Würzburg – givenname: E. M surname: Hankiewicz fullname: Hankiewicz, E. M organization: Institut für Theoretische Physik und Astrophysik, Universität Würzburg – givenname: L. W surname: Molenkamp fullname: Molenkamp, L. W organization: Physikalisches Institut (EP3), Universität Würzburg – givenname: C surname: Brüne fullname: Brüne, C organization: Physikalisches Institut (EP3), Universität Würzburg – givenname: J surname: Sinova fullname: Sinova, J organization: Department of Physics, Texas A&M University – givenname: M surname: König fullname: König, M organization: Physikalisches Institut (EP3), Universität Würzburg – givenname: A surname: Roth fullname: Roth, A organization: Physikalisches Institut (EP3), Universität Würzburg – givenname: E. G surname: Novik fullname: Novik, E. G organization: Physikalisches Institut (EP3), Universität Würzburg – givenname: W surname: Hanke fullname: Hanke, W organization: Institut für Theoretische Physik und Astrophysik, Universität Würzburg |
BookMark | eNpt0MtKAzEUBuAgFWyrC5_A4EYURnOdy1JKtULBTV0PmUzSpkwzY5IR-vZNGWlBXOUP5-Nw-CdgZFurALjF6Bkjmr_YbrP3OOX8AoxxxnhCWI5Hp5zRKzDxfosQIymmY7Cc_5haWamgbh0MGwUr0TTGByOhscEZ62PynbFwEQdQaa1kgMfveqWgFbb1wfUy9E75a3CpRePVze87BV9v89VskSw_3z9mr8tEMkxDIrkSIk1rIWouWUFwhirBMY9HoRwhnOs6o7wmlBOSF5rURVVhjTQRMVcS0yl4GPZ2rv3ulQ_lznipmkZY1fa-zDhNGU8pi_L-j9y2vbPxuJKmnGFOcRHR44Cka713SpedMzvh9iVG5bHV8tRqtE-D9dHYtXLnhf_huwFbcezntPYsDo2xhi8 |
CitedBy_id | crossref_primary_10_1038_nnano_2016_159 crossref_primary_10_1103_PhysRevB_89_165311 crossref_primary_10_1002_pssb_201350121 crossref_primary_10_1088_2053_1583_aae7e8 crossref_primary_10_1038_ncomms8252 crossref_primary_10_1063_1_4729261 crossref_primary_10_1002_pssb_201248431 crossref_primary_10_1007_s13391_021_00286_9 crossref_primary_10_1140_epjb_e2014_50042_4 crossref_primary_10_1103_PhysRevB_86_165434 crossref_primary_10_1063_1_4940239 crossref_primary_10_1103_PhysRevLett_105_156602 crossref_primary_10_3367_UFNr_2020_05_038771 crossref_primary_10_1103_PhysRevB_97_075408 crossref_primary_10_1088_1674_1056_21_11_117309 crossref_primary_10_1103_PhysRevB_83_075110 crossref_primary_10_1103_PhysRevB_87_245311 crossref_primary_10_1103_PhysRevB_91_214431 crossref_primary_10_1103_PhysRevLett_125_087701 crossref_primary_10_1088_1367_2630_15_10_105018 crossref_primary_10_1088_0031_8949_2015_T165_014033 crossref_primary_10_1209_0295_5075_98_17004 crossref_primary_10_1007_s11040_020_09342_6 crossref_primary_10_1063_1_4886176 crossref_primary_10_1088_0953_8984_24_27_275302 crossref_primary_10_1088_0957_4484_27_24_245204 crossref_primary_10_1103_PhysRevLett_115_246601 crossref_primary_10_1103_PhysRevB_95_064401 crossref_primary_10_1002_pssb_201248385 crossref_primary_10_1021_acs_nanolett_0c02131 crossref_primary_10_1021_acs_nanolett_5b03080 crossref_primary_10_1038_nnano_2015_107 crossref_primary_10_1103_PhysRevLett_111_157205 crossref_primary_10_1103_PhysRevResearch_6_L012062 crossref_primary_10_1103_PhysRevB_86_245420 crossref_primary_10_1088_0953_8984_28_38_38LT01 crossref_primary_10_1103_PhysRevB_85_245320 crossref_primary_10_1103_PhysRevB_85_195465 crossref_primary_10_1016_j_jallcom_2014_11_199 crossref_primary_10_1103_PhysRevB_88_035316 crossref_primary_10_1103_PhysRevB_102_184422 crossref_primary_10_1063_1_4944777 crossref_primary_10_1103_PhysRevB_85_165450 crossref_primary_10_1103_PhysRevB_92_245425 crossref_primary_10_1209_0295_5075_104_27005 crossref_primary_10_1103_PhysRevB_91_245112 crossref_primary_10_1103_PhysRevB_102_125138 crossref_primary_10_1103_PhysRevLett_132_096301 crossref_primary_10_1088_0953_8984_27_50_505301 crossref_primary_10_1134_S1063782615120143 crossref_primary_10_1103_PhysRevB_85_155414 crossref_primary_10_1103_PhysRevB_88_195431 crossref_primary_10_1063_5_0166556 crossref_primary_10_1103_PhysRevB_94_035409 crossref_primary_10_7566_JPSJ_84_012001 crossref_primary_10_1038_nmat4726 crossref_primary_10_1063_1_3678488 crossref_primary_10_1063_5_0057192 crossref_primary_10_1088_1367_2630_12_6_065012 crossref_primary_10_1103_PhysRevB_84_094534 crossref_primary_10_1103_PhysRevLett_106_107205 crossref_primary_10_1103_PhysRevB_86_075441 crossref_primary_10_1103_PhysRevB_86_235121 crossref_primary_10_1126_science_1195816 crossref_primary_10_1038_ncomms13741 crossref_primary_10_1063_1_3577612 crossref_primary_10_1103_PhysRevB_89_035418 crossref_primary_10_1103_PhysRevB_84_035414 crossref_primary_10_1209_0295_5075_106_17002 crossref_primary_10_7498_aps_66_217201 crossref_primary_10_12693_APhysPolA_133_558 crossref_primary_10_1103_PhysRevB_90_115432 crossref_primary_10_1073_pnas_1812822116 crossref_primary_10_1103_PhysRevB_83_115135 crossref_primary_10_1063_1_4955413 crossref_primary_10_1088_1674_1056_25_6_067204 crossref_primary_10_1103_PhysRevB_95_035308 crossref_primary_10_1134_S1063782613110213 crossref_primary_10_1002_pssb_201350206 crossref_primary_10_1103_PhysRevB_102_045310 crossref_primary_10_1103_PhysRevB_88_085109 crossref_primary_10_1142_S2010324712500087 crossref_primary_10_1038_s41467_023_43965_x crossref_primary_10_1103_RevModPhys_87_1213 crossref_primary_10_1103_PhysRevB_101_184411 crossref_primary_10_1103_PhysRevLett_105_176805 crossref_primary_10_1364_JOSAB_29_000A43 crossref_primary_10_1088_1674_1056_23_1_018503 crossref_primary_10_1103_PhysRevB_84_115419 crossref_primary_10_1063_1_4921765 crossref_primary_10_1088_0268_1242_29_4_043002 crossref_primary_10_1103_PhysRevLett_114_206601 crossref_primary_10_1103_PhysRevLett_106_076803 crossref_primary_10_1063_1_4820770 crossref_primary_10_1038_nphys2322 crossref_primary_10_1021_acs_nanolett_6b02334 crossref_primary_10_1103_PhysRevB_100_125307 crossref_primary_10_1103_PhysRevB_103_144502 crossref_primary_10_1088_1674_1056_24_6_067304 crossref_primary_10_1103_PhysRevB_106_L201102 crossref_primary_10_1103_PhysRevB_82_155327 crossref_primary_10_1103_PhysRevB_102_140406 crossref_primary_10_1109_TMAG_2013_2262947 crossref_primary_10_1103_PhysRevB_91_125412 crossref_primary_10_1038_nnano_2014_128 crossref_primary_10_7566_JPSJ_84_121006 crossref_primary_10_1016_j_tsf_2020_138047 crossref_primary_10_1103_PhysRevB_81_235323 crossref_primary_10_1103_PhysRevB_106_245427 crossref_primary_10_1209_0295_5075_124_27006 crossref_primary_10_1038_ncomms1640 crossref_primary_10_1088_0256_307X_37_3_038101 crossref_primary_10_1103_PhysRevB_90_035444 crossref_primary_10_1142_S0129055X2060003X crossref_primary_10_1063_1_3556680 crossref_primary_10_1103_PhysRevB_94_121408 crossref_primary_10_1063_1_4977869 crossref_primary_10_1103_PhysRevLett_109_076601 crossref_primary_10_1088_1674_1056_23_3_037304 crossref_primary_10_1103_PhysRevLett_109_246604 crossref_primary_10_1038_nmat3279 crossref_primary_10_1063_1_3658853 crossref_primary_10_1103_PhysRevResearch_2_022019 crossref_primary_10_1038_nphys3551 crossref_primary_10_1103_PhysRevX_3_021003 crossref_primary_10_1103_PhysRevB_86_045215 crossref_primary_10_1360_SSPMA_2022_0430 crossref_primary_10_1103_PhysRevB_85_195304 crossref_primary_10_1103_PhysRevB_89_125419 |
Cites_doi | 10.1126/science.1087128 10.1103/PhysRevLett.92.126603 10.1103/PhysRevB.73.115339 10.1103/PhysRevLett.95.046601 10.1126/science.1148047 10.1103/PhysRevLett.94.047204 10.1016/0375-9601(71)90196-4 10.1103/PhysRevLett.83.1834 10.1088/0268-1242/21/4/015 10.1038/nature04937 10.1103/PhysRevB.70.241301 10.1103/PhysRevB.70.115328 10.1103/PhysRevB.72.035321 10.1103/PhysRevLett.98.156601 10.1126/science.1174736 10.1103/PhysRevB.72.155305 10.1126/science.1105514 10.1038/nphys551 10.1038/nphys009 10.1103/PhysRevLett.100.056602 10.1063/1.2199473 10.1103/PhysRevLett.101.246807 10.1038/nmat2098 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2010 Copyright Nature Publishing Group Jun 2010 |
Copyright_xml | – notice: Springer Nature Limited 2010 – notice: Copyright Nature Publishing Group Jun 2010 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PQEST PQQKQ PQUKI Q9U |
DOI | 10.1038/nphys1655 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest Central Student Technology Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 454 |
ExternalDocumentID | 2051234301 10_1038_nphys1655 nphys1655 |
Genre | Feature |
GroupedDBID | 0R 123 1AW 29M 39C 3V. 4.4 5BI 5M7 70F 88I 8FE 8FG 8FH 8R4 8R5 AADWK AAEEF AAPBV AAYJO AAZLF ABAWZ ABDBF ABGIJ ABPTK ABUWG ABZEH ACGFS ACGOD ADBBV ADQMX AEDAW AENEX AFKRA AFSHS AGEZK AGHTU AHBCP AHGBK AHSBF ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ I-F IPNFZ LK5 M2P M7R N9A NNMJJ O9- P2P P62 PCBAR PQEST PQQKQ PQUKI PRINS PROAC Q2X RIG RNS RNT RNTTT SHXYY SIXXV SJN SNYQT TAOOD TBHMF TDRGL TSG TUS 0R~ 6OB AARCD ABJNI ABLJU ABVXF ACGFO ACMJI ADFRT AFBBN AFWHJ AGAYW AHOSX AIBTJ AMTXH CCPQU HZ~ LGEZI LOTEE NADUK NXXTH ODYON ~8M AAYXX CITATION 7U5 7XB 8FD 8FK L7M Q9U AAYZH |
ID | FETCH-LOGICAL-c413t-c5eaa66daad5c492170ba515004080018fd735d2352289f2d9bb1f0f2af2dbc13 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Fri Oct 25 03:36:07 EDT 2024 Thu Oct 10 21:02:11 EDT 2024 Thu Sep 12 19:09:14 EDT 2024 Fri Oct 11 20:46:54 EDT 2024 Tue Jun 15 13:54:11 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-c5eaa66daad5c492170ba515004080018fd735d2352289f2d9bb1f0f2af2dbc13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 365415319 |
PQPubID | 27545 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_753645634 proquest_journals_365415319 crossref_primary_10_1038_nphys1655 springer_journals_10_1038_nphys1655 nature_primary_nphys1655 |
ProviderPackageCode | RNTTT AEDAW ABGIJ AAZLF DB5 RNT AADWK AAYJO AHGBK 70F ADQMX EE. |
PublicationCentury | 2000 |
PublicationDate | 2010-06-01 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2010 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Wunderlich, J., Kaestner, B., Sinova, J., Jungwirth, T. (b9) 2005; 94 Awschalom, D. D., Flatté, M. E. (b1) 2007; 3 Hankiewicz, E. M. (b22) 2005; 72 Weng, K., Chandrasekhar, N., Miniatura, C., Englert, B-G. (b15) 2008 Zhou, B., Lu, H-Z., Chu, R-L., Shen, S-Q., Niu, Q. (b24) 2008; 101 Engel, H-A., Rashba, E. I., Halperin, B. I. (b5) 2007 Hinz, J. (b20) 2006; 21 Sinova, J. (b7) 2004; 92 Kimura, T., Otani, Y., Sato, T., Takahashi, S., Maekawa, S. (b13) 2007; 98 Dyakonov, M. I., Perel, V. I. (b2) 1971; 35 Murakami, S., Nagaosa, N., Zhang, S-C. (b6) 2003; 301 Hankiewicz, E. M., Vignale, G. (b4) 2006; 73 Gui, Y. (b19) 2004; 70 Novik, E. (b21) 2005; 72 Seki, T. (b14) 2008; 7 Kato, Y. K., Myers, R. C., Gossard, A. C., Awschalom, D. D. (b8) 2004; 306 Nikoli , B. K., Souma, S., Zârbo, L., Sinova, J. (b17) 2005; 95 Hirsch, J. E. (b3) 1999; 83 Sih, V. (b10) 2005; 1 Hankiewicz, E. M., Molenkamp, L. W., Jungwirth, T., Sinova, J. (b16) 2004; 70 Yang, W., Chang, K., Zhang, S-C. (b25) 2008; 100 Valenzuela, S. O., Tinkham, M. (b11) 2006; 442 Saitoh, E., Ueda, M., Miyajima, H., Tatara, G. (b12) 2006; 88 König, M. (b18) 2007; 318 Roth, A. (b23) 2009; 325 Kato, Myers, Gossard, Awschalom (CR8) 2004; 306 Murakami, Nagaosa, Zhang (CR6) 2003; 301 Engel, Rashba, Halperin (CR5) 2007 Novik (CR21) 2005; 72 Hankiewicz, Vignale (CR4) 2006; 73 Hankiewicz, Molenkamp, Jungwirth, Sinova (CR16) 2004; 70 Hirsch (CR3) 1999; 83 Gui (CR19) 2004; 70 König (CR18) 2007; 318 Wunderlich, Kaestner, Sinova, Jungwirth (CR9) 2005; 94 Hinz (CR20) 2006; 21 Kimura, Otani, Sato, Takahashi, Maekawa (CR13) 2007; 98 Saitoh, Ueda, Miyajima, Tatara (CR12) 2006; 88 Weng, Chandrasekhar, Miniatura, Englert (CR15) 2008 Hankiewicz (CR22) 2005; 72 Awschalom, Flatté (CR1) 2007; 3 Valenzuela, Tinkham (CR11) 2006; 442 Yang, Chang, Zhang (CR25) 2008; 100 Nikolić, Souma, Zârbo, Sinova (CR17) 2005; 95 Sih (CR10) 2005; 1 Sinova (CR7) 2004; 92 Roth (CR23) 2009; 325 Zhou, Lu, Chu, Shen, Niu (CR24) 2008; 101 Seki (CR14) 2008; 7 Dyakonov, Perel (CR2) 1971; 35 M König (BFnphys1655_CR18) 2007; 318 EM Hankiewicz (BFnphys1655_CR16) 2004; 70 MI Dyakonov (BFnphys1655_CR2) 1971; 35 K Weng (BFnphys1655_CR15) 2008 EM Hankiewicz (BFnphys1655_CR4) 2006; 73 J Wunderlich (BFnphys1655_CR9) 2005; 94 DD Awschalom (BFnphys1655_CR1) 2007; 3 A Roth (BFnphys1655_CR23) 2009; 325 T Kimura (BFnphys1655_CR13) 2007; 98 EM Hankiewicz (BFnphys1655_CR22) 2005; 72 Y Gui (BFnphys1655_CR19) 2004; 70 BK Nikolić (BFnphys1655_CR17) 2005; 95 W Yang (BFnphys1655_CR25) 2008; 100 V Sih (BFnphys1655_CR10) 2005; 1 S Murakami (BFnphys1655_CR6) 2003; 301 H-A Engel (BFnphys1655_CR5) 2007 YK Kato (BFnphys1655_CR8) 2004; 306 E Saitoh (BFnphys1655_CR12) 2006; 88 T Seki (BFnphys1655_CR14) 2008; 7 JE Hirsch (BFnphys1655_CR3) 1999; 83 J Sinova (BFnphys1655_CR7) 2004; 92 B Zhou (BFnphys1655_CR24) 2008; 101 E Novik (BFnphys1655_CR21) 2005; 72 SO Valenzuela (BFnphys1655_CR11) 2006; 442 J Hinz (BFnphys1655_CR20) 2006; 21 |
References_xml | – volume: 1 start-page: 31 year: 2005 end-page: 35 ident: b10 publication-title: Nature Phys. contributor: fullname: Sih, V. – volume: 7 start-page: 125 year: 2008 end-page: 129 ident: b14 publication-title: Nature Matter. contributor: fullname: Seki, T. – volume: 73 start-page: 115339 year: 2006 ident: b4 publication-title: Phys. Rev. B contributor: fullname: Vignale, G. – volume: 94 start-page: 047204 year: 2005 ident: b9 publication-title: Phys. Rev. Lett. contributor: fullname: Jungwirth, T. – volume: 306 start-page: 1910 year: 2004 end-page: 1913 ident: b8 publication-title: Science contributor: fullname: Awschalom, D. D. – volume: 301 start-page: 1348 year: 2003 end-page: 1351 ident: b6 publication-title: Science contributor: fullname: Zhang, S-C. – volume: 70 start-page: 115328 year: 2004 ident: b19 publication-title: Phys. Rev. B contributor: fullname: Gui, Y. – volume: 35 start-page: 459 year: 1971 end-page: 460 ident: b2 publication-title: Phys. Lett. A contributor: fullname: Perel, V. I. – start-page: 49 year: 2008 end-page: 58 ident: b15 article-title: Electron Transport in Nanosystems contributor: fullname: Englert, B-G. – volume: 100 start-page: 056602 year: 2008 ident: b25 publication-title: Phys. Rev. Lett. contributor: fullname: Zhang, S-C. – volume: 83 start-page: 1834 year: 1999 end-page: 1837 ident: b3 publication-title: Phys. Rev. Lett. contributor: fullname: Hirsch, J. E. – volume: 442 start-page: 176 year: 2006 end-page: 179 ident: b11 publication-title: Nature contributor: fullname: Tinkham, M. – volume: 98 start-page: 156601 year: 2007 ident: b13 publication-title: Phys. Rev. Lett. contributor: fullname: Maekawa, S. – volume: 3 start-page: 153 year: 2007 end-page: 159 ident: b1 publication-title: Nature Phys. contributor: fullname: Flatté, M. E. – volume: 72 start-page: 155305 year: 2005 ident: b22 publication-title: Phys. Rev. B contributor: fullname: Hankiewicz, E. M. – volume: 92 start-page: 126603 year: 2004 ident: b7 publication-title: Phys. Rev. Lett. contributor: fullname: Sinova, J. – volume: 95 start-page: 046601 year: 2005 ident: b17 publication-title: Phys. Rev. Lett. contributor: fullname: Sinova, J. – volume: 325 start-page: 294 year: 2009 end-page: 297 ident: b23 publication-title: Science contributor: fullname: Roth, A. – volume: 70 start-page: 241301 year: 2004 ident: b16 publication-title: Phys. Rev. B contributor: fullname: Sinova, J. – volume: 72 start-page: 35321 year: 2005 ident: b21 publication-title: Phys. Rev. B contributor: fullname: Novik, E. – volume: 101 start-page: 246807 year: 2008 ident: b24 publication-title: Phys. Rev. Lett. contributor: fullname: Niu, Q. – volume: 88 start-page: 182509 year: 2006 ident: b12 publication-title: Appl. Phys. Lett. contributor: fullname: Tatara, G. – volume: 21 start-page: 501 year: 2006 end-page: 506 ident: b20 publication-title: Semicond. Sci. Technol. contributor: fullname: Hinz, J. – volume: 318 start-page: 766 year: 2007 end-page: 770 ident: b18 publication-title: Science contributor: fullname: König, M. – year: 2007 ident: b5 article-title: Handbook of Magnetism and Advanced Magnetic Materials contributor: fullname: Halperin, B. I. – volume: 301 start-page: 1348 year: 2003 end-page: 1351 ident: CR6 article-title: Dissipationless quantum spin current at room temperature publication-title: Science doi: 10.1126/science.1087128 contributor: fullname: Zhang – volume: 92 start-page: 126603 year: 2004 ident: CR7 article-title: Universal intrinsic spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.126603 contributor: fullname: Sinova – volume: 73 start-page: 115339 year: 2006 ident: CR4 article-title: Coulomb corrections to the extrinsic spin-Hall effect of a two-dimensional electron gas publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.115339 contributor: fullname: Vignale – volume: 95 start-page: 046601 year: 2005 ident: CR17 article-title: Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.046601 contributor: fullname: Sinova – volume: 318 start-page: 766 year: 2007 end-page: 770 ident: CR18 article-title: Quantum spin Hall insulator state in HgTe quantum wells publication-title: Science doi: 10.1126/science.1148047 contributor: fullname: König – volume: 94 start-page: 047204 year: 2005 ident: CR9 article-title: Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.047204 contributor: fullname: Jungwirth – volume: 35 start-page: 459 year: 1971 end-page: 460 ident: CR2 article-title: Current-induced spin orientation of electrons in semiconductors publication-title: Phys. Lett. A doi: 10.1016/0375-9601(71)90196-4 contributor: fullname: Perel – start-page: 49 year: 2008 end-page: 58 ident: CR15 publication-title: Electron Transport in Nanosystems contributor: fullname: Englert – volume: 83 start-page: 1834 year: 1999 end-page: 1837 ident: CR3 article-title: Spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1834 contributor: fullname: Hirsch – volume: 21 start-page: 501 year: 2006 end-page: 506 ident: CR20 article-title: Gate control of the giant Rashba effect in HgTe quantum wells publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/21/4/015 contributor: fullname: Hinz – volume: 442 start-page: 176 year: 2006 end-page: 179 ident: CR11 article-title: Direct electronic measurement of the spin Hall effect publication-title: Nature doi: 10.1038/nature04937 contributor: fullname: Tinkham – volume: 70 start-page: 241301 year: 2004 ident: CR16 article-title: Manifestation of the spin Hall effect through charge-transport in the mesoscopic regime publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.241301 contributor: fullname: Sinova – volume: 70 start-page: 115328 year: 2004 ident: CR19 article-title: Giant spin–orbit splitting in a HgTe quantum well publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.115328 contributor: fullname: Gui – volume: 72 start-page: 35321 year: 2005 ident: CR21 article-title: Band structure of semimagnetic HgMnTe quantum wells publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.035321 contributor: fullname: Novik – volume: 98 start-page: 156601 year: 2007 ident: CR13 article-title: Room-temperature reversible spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.156601 contributor: fullname: Maekawa – volume: 325 start-page: 294 year: 2009 end-page: 297 ident: CR23 article-title: Nonlocal transport in the quantum spin Hall state publication-title: Science doi: 10.1126/science.1174736 contributor: fullname: Roth – volume: 72 start-page: 155305 year: 2005 ident: CR22 article-title: Charge Hall effect driven by spin-dependent chemical potential gradients and Onsager relations in mesoscopic systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.155305 contributor: fullname: Hankiewicz – volume: 306 start-page: 1910 year: 2004 end-page: 1913 ident: CR8 article-title: Observation of the spin Hall effect in semiconductors publication-title: Science doi: 10.1126/science.1105514 contributor: fullname: Awschalom – volume: 3 start-page: 153 year: 2007 end-page: 159 ident: CR1 article-title: Challenges for semiconductor spintronics publication-title: Nature Phys. doi: 10.1038/nphys551 contributor: fullname: Flatté – volume: 1 start-page: 31 year: 2005 end-page: 35 ident: CR10 article-title: Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases publication-title: Nature Phys. doi: 10.1038/nphys009 contributor: fullname: Sih – volume: 100 start-page: 056602 year: 2008 ident: CR25 article-title: Intrinsic spin Hall effect induced by quantum phase transition in HgCdTe quantum wells publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.056602 contributor: fullname: Zhang – year: 2007 ident: CR5 publication-title: Handbook of Magnetism and Advanced Magnetic Materials contributor: fullname: Halperin – volume: 88 start-page: 182509 year: 2006 ident: CR12 article-title: Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect publication-title: Appl. Phys. Lett. doi: 10.1063/1.2199473 contributor: fullname: Tatara – volume: 101 start-page: 246807 year: 2008 ident: CR24 article-title: Finite size effects on helical edge states in a quantum spin-Hall system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.246807 contributor: fullname: Niu – volume: 7 start-page: 125 year: 2008 end-page: 129 ident: CR14 article-title: Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices publication-title: Nature Matter. doi: 10.1038/nmat2098 contributor: fullname: Seki – volume: 21 start-page: 501 year: 2006 ident: BFnphys1655_CR20 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/21/4/015 contributor: fullname: J Hinz – volume: 100 start-page: 056602 year: 2008 ident: BFnphys1655_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.056602 contributor: fullname: W Yang – volume: 72 start-page: 155305 year: 2005 ident: BFnphys1655_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.155305 contributor: fullname: EM Hankiewicz – volume: 73 start-page: 115339 year: 2006 ident: BFnphys1655_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.115339 contributor: fullname: EM Hankiewicz – volume: 318 start-page: 766 year: 2007 ident: BFnphys1655_CR18 publication-title: Science doi: 10.1126/science.1148047 contributor: fullname: M König – volume: 301 start-page: 1348 year: 2003 ident: BFnphys1655_CR6 publication-title: Science doi: 10.1126/science.1087128 contributor: fullname: S Murakami – volume: 35 start-page: 459 year: 1971 ident: BFnphys1655_CR2 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(71)90196-4 contributor: fullname: MI Dyakonov – volume: 306 start-page: 1910 year: 2004 ident: BFnphys1655_CR8 publication-title: Science doi: 10.1126/science.1105514 contributor: fullname: YK Kato – volume: 101 start-page: 246807 year: 2008 ident: BFnphys1655_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.246807 contributor: fullname: B Zhou – start-page: 49 volume-title: Electron Transport in Nanosystems year: 2008 ident: BFnphys1655_CR15 contributor: fullname: K Weng – volume: 325 start-page: 294 year: 2009 ident: BFnphys1655_CR23 publication-title: Science doi: 10.1126/science.1174736 contributor: fullname: A Roth – volume: 94 start-page: 047204 year: 2005 ident: BFnphys1655_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.047204 contributor: fullname: J Wunderlich – volume: 7 start-page: 125 year: 2008 ident: BFnphys1655_CR14 publication-title: Nature Matter. doi: 10.1038/nmat2098 contributor: fullname: T Seki – volume-title: Handbook of Magnetism and Advanced Magnetic Materials year: 2007 ident: BFnphys1655_CR5 contributor: fullname: H-A Engel – volume: 88 start-page: 182509 year: 2006 ident: BFnphys1655_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2199473 contributor: fullname: E Saitoh – volume: 98 start-page: 156601 year: 2007 ident: BFnphys1655_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.156601 contributor: fullname: T Kimura – volume: 442 start-page: 176 year: 2006 ident: BFnphys1655_CR11 publication-title: Nature doi: 10.1038/nature04937 contributor: fullname: SO Valenzuela – volume: 72 start-page: 35321 year: 2005 ident: BFnphys1655_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.035321 contributor: fullname: E Novik – volume: 3 start-page: 153 year: 2007 ident: BFnphys1655_CR1 publication-title: Nature Phys. doi: 10.1038/nphys551 contributor: fullname: DD Awschalom – volume: 83 start-page: 1834 year: 1999 ident: BFnphys1655_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1834 contributor: fullname: JE Hirsch – volume: 1 start-page: 31 year: 2005 ident: BFnphys1655_CR10 publication-title: Nature Phys. doi: 10.1038/nphys009 contributor: fullname: V Sih – volume: 70 start-page: 241301 year: 2004 ident: BFnphys1655_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.241301 contributor: fullname: EM Hankiewicz – volume: 92 start-page: 126603 year: 2004 ident: BFnphys1655_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.126603 contributor: fullname: J Sinova – volume: 95 start-page: 046601 year: 2005 ident: BFnphys1655_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.046601 contributor: fullname: BK Nikolić – volume: 70 start-page: 115328 year: 2004 ident: BFnphys1655_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.115328 contributor: fullname: Y Gui |
SSID | ssj0042613 |
Score | 2.4317899 |
Snippet | In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A... In the spin Hall effect, a current passed through a spin-orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A... |
SourceID | proquest crossref springer nature |
SourceType | Aggregation Database Publisher |
StartPage | 448 |
SubjectTerms | Accumulation Atomic Cadmium Classical and Continuum Physics Complex Systems Condensed Matter Physics Diffusion Electric currents Electrical measurement Hall effect Mathematical and Computational Physics Mercury Metals Molecular Nanocomposites Nanomaterials Nanostructure Nanostructured materials Optical and Plasma Physics Physics Physics and Astronomy Quantum physics Quantum wells Semiconductors Theoretical Transport Wells |
Title | Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures |
URI | http://dx.doi.org/10.1038/nphys1655 https://link.springer.com/article/10.1038/nphys1655 https://www.proquest.com/docview/365415319 https://search.proquest.com/docview/753645634 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_GRzOoL6WrY2bdY-yaabQ2SIbLC3kjSJDEY66fz_vfTLqeBbSz65JHe_y13uAO5QBCs_0aHDBLJAP9LKCZVijuerKAyk60qZO8jO2HThPy-DZembk5VulRVPzBm1TBN7R96jNmG13TD3mw_HJo2yxtUyg8Y-ND1UFPoNaI7Gs9e3ihVb9YAWLyIDHH1Aq9BCNOwZe3PgMvvEb0cg_QynWcDNXxbSXPBMjuGoRIxkWCzxCewpcwoHuedmkp3BS5UXlCD8JAjniODrdR5-mazMFvvEeiTbrAyZYgEpHDiI_X2fK2K4SYsYsjih7BwWk_H8YeqUKRKcBKXP1kkCxTljknMZJH6E-kVfcIQo9myGNuGelgMaSM_CrDDSnoyEcHVfexy_ReLSC2iY1KgWEE_IAYt8zrGJRRUiShAtSi1QzmnKdBtuKjrFmyISRpxbsGkY18RsQ6ugYF1lp6hT0TQuz0kW16vaBlKX4ga3VgtuVPqZxahPMUR51G_DbbUS3x38mcHlv8N04LAw_9trlCtoIH3VNaKKrejCfjh56kJzOHocTbrlTvoCgzTQsA |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMEF8dTKeETAtRpt2qw9IYQYBcZOm7RblTQJmjSlQx3_H6cvBkjcWuUpJ7E_x44NcIMiWAWZjlwmkAUGsVZupBRz_UDFUSg9T8rSQXbMkmnwMgtntW9OUbtVNjyxZNQyz-wdeZ_ahNV2w9wtP1ybNMoaV-sMGpuwFVAU1fah-PCpYcRWOaDVe8gQxx7QJrAQjfrG3ht4zD7wWxNHP4NpVmDzl320FDvDfdir8SK5rxb4ADaUOYTt0m8zK45g1GQFJQg-CYI5IvhiUQZfJnOzwj6xHimWc0MSLCCV-waxv-8TRQw3eRVBFidUHMN0-Dh5SNw6QYKboexZuVmoOGdMci7DLIhRu7gVHAGKPZmRTben5YCG0rcgK4q1L2MhPH2rfY7fIvPoCXRMblQXiC_kgMUB59jEYgoRZ4gVpRYo5TRl2oGrhk7psoqDkZb2axqlLTEd6FYUbKusFfUamqb1KSnSdk0dIG0pbm9rs-BG5Z9FitoUQ4xHAweum5X47uDPDE7_HeYSdpLJ2ygdPY9fe7BbOQLYC5Uz6CCt1Tnii5W4KHfRF4nZz-M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_FF_GRzfgT1tWxt2qx9Ej82po4xZIO9laRJZDDSSef_76Ufcyr41pI0DZfL3e9ylzuAW1TByk906DCBItCPtHJCpZjj-SoKA-m6UuYBsiM2mPovs2BWphTKyrDKSibmglqmiT0jb1NbsNoyTFuXURHjp_7d8sOxBaSso7WsprEN9a7PaKcG9YfeaPxWiWVrKtDidmSAM-nSKs0QDdvGniK4zF7321BOP1NrFtDzl7c0V0L9A9gv0SO5L5b7ELaUOYKdPIozyY5hWNUIJQhFCUI7IvhikadiJnOzwjGxH8mWc0MG2ECKYA5iX98nihhu0iKfLE4oO4Fpvzd5HDhluQQnQU20cpJAcc6Y5FwGiR-hrdERHOGK3aehLb6nZZcG0rOQK4y0JyMhXN3RHsdnkbj0FGomNaoBxBOyyyKfc_zEIgwRJYgcpRao8zRlugnXFZ3iZZEVI8692TSM18RsQqOg4LrLRlOromlc7pksXq9wE8i6FZndejC4UelnFqNtxRDxUb8JN9VKfA_wZwZn__7mCnaRheLh8-i1BXtFVIA9XTmHGpJaXSDYWInLko2-AKcM1YA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+ballistic+intrinsic+spin+Hall+effect+in+HgTe+nanostructures&rft.jtitle=Nature+physics&rft.au=Br%C3%BCne%2C+C&rft.au=Roth%2C+A&rft.au=Novik%2C+E+G&rft.au=K%C3%B6nig%2C+M&rft.date=2010-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=6&rft.issue=6&rft.spage=448&rft_id=info:doi/10.1038%2Fnphys1655&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2051234301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |