Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures

In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the d...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 6; no. 6; pp. 448 - 454
Main Authors Buhmann, H, Hankiewicz, E. M, Molenkamp, L. W, Brüne, C, Sinova, J, König, M, Roth, A, Novik, E. G, Hanke, W
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2010
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin–orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations. Non-local transport measurements on mercury telluride quantum wells show clear signatures of the ballistic spin Hall effect. The ballistic nature of the experiment allows the observed effect to be interpreted as a direct consequence of the band structure of these semiconductor nanostructures, rather that being caused by impurity scattering.
AbstractList In the spin Hall effect, a current passed through a spin-orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin-orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations. [PUBLICATION ABSTRACT]
In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin–orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations. Non-local transport measurements on mercury telluride quantum wells show clear signatures of the ballistic spin Hall effect. The ballistic nature of the experiment allows the observed effect to be interpreted as a direct consequence of the band structure of these semiconductor nanostructures, rather that being caused by impurity scattering.
In the spin Hall effect, a current passed through a spin-orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A number of possible mechanisms have been described, extrinsic as well as intrinsic ones, and they may occur in the ballistic as well as the diffusive transport regime. A central problem for experimentalists in studying the effect is the very small signals that result from the spin accumulation. Electrical measurements on metals have yielded reliable signatures of the spin Hall effect, but in semiconductors the spin accumulation could only be detected by optical techniques. Here we report experimental evidence for electrical manipulation and detection of the ballistic intrinsic spin Hall effect (ISHE) in semiconductors. We perform a non-local electrical measurement in nanoscale H-shaped structures built on high-mobility HgTe/(Hg, Cd)Te quantum wells. When the samples are tuned into the p-regime, we observe a large non-local resistance signal due to the ISHE, several orders of magnitude larger than in metals. In the n-regime, where the spin-orbit splitting is reduced, the signal is at least one order of magnitude smaller and vanishes for narrower quantum wells. We verify our experimental observations by quantum transport calculations.
Author Buhmann, H
Roth, A
Brüne, C
König, M
Molenkamp, L. W
Sinova, J
Novik, E. G
Hanke, W
Hankiewicz, E. M
Author_xml – givenname: H
  surname: Buhmann
  fullname: Buhmann, H
  organization: Physikalisches Institut (EP3), Universität Würzburg
– givenname: E. M
  surname: Hankiewicz
  fullname: Hankiewicz, E. M
  organization: Institut für Theoretische Physik und Astrophysik, Universität Würzburg
– givenname: L. W
  surname: Molenkamp
  fullname: Molenkamp, L. W
  organization: Physikalisches Institut (EP3), Universität Würzburg
– givenname: C
  surname: Brüne
  fullname: Brüne, C
  organization: Physikalisches Institut (EP3), Universität Würzburg
– givenname: J
  surname: Sinova
  fullname: Sinova, J
  organization: Department of Physics, Texas A&M University
– givenname: M
  surname: König
  fullname: König, M
  organization: Physikalisches Institut (EP3), Universität Würzburg
– givenname: A
  surname: Roth
  fullname: Roth, A
  organization: Physikalisches Institut (EP3), Universität Würzburg
– givenname: E. G
  surname: Novik
  fullname: Novik, E. G
  organization: Physikalisches Institut (EP3), Universität Würzburg
– givenname: W
  surname: Hanke
  fullname: Hanke, W
  organization: Institut für Theoretische Physik und Astrophysik, Universität Würzburg
BookMark eNpt0MtKAzEUBuAgFWyrC5_A4EYURnOdy1JKtULBTV0PmUzSpkwzY5IR-vZNGWlBXOUP5-Nw-CdgZFurALjF6Bkjmr_YbrP3OOX8AoxxxnhCWI5Hp5zRKzDxfosQIymmY7Cc_5haWamgbh0MGwUr0TTGByOhscEZ62PynbFwEQdQaa1kgMfveqWgFbb1wfUy9E75a3CpRePVze87BV9v89VskSw_3z9mr8tEMkxDIrkSIk1rIWouWUFwhirBMY9HoRwhnOs6o7wmlBOSF5rURVVhjTQRMVcS0yl4GPZ2rv3ulQ_lznipmkZY1fa-zDhNGU8pi_L-j9y2vbPxuJKmnGFOcRHR44Cka713SpedMzvh9iVG5bHV8tRqtE-D9dHYtXLnhf_huwFbcezntPYsDo2xhi8
CitedBy_id crossref_primary_10_1038_nnano_2016_159
crossref_primary_10_1103_PhysRevB_89_165311
crossref_primary_10_1002_pssb_201350121
crossref_primary_10_1088_2053_1583_aae7e8
crossref_primary_10_1038_ncomms8252
crossref_primary_10_1063_1_4729261
crossref_primary_10_1002_pssb_201248431
crossref_primary_10_1007_s13391_021_00286_9
crossref_primary_10_1140_epjb_e2014_50042_4
crossref_primary_10_1103_PhysRevB_86_165434
crossref_primary_10_1063_1_4940239
crossref_primary_10_1103_PhysRevLett_105_156602
crossref_primary_10_3367_UFNr_2020_05_038771
crossref_primary_10_1103_PhysRevB_97_075408
crossref_primary_10_1088_1674_1056_21_11_117309
crossref_primary_10_1103_PhysRevB_83_075110
crossref_primary_10_1103_PhysRevB_87_245311
crossref_primary_10_1103_PhysRevB_91_214431
crossref_primary_10_1103_PhysRevLett_125_087701
crossref_primary_10_1088_1367_2630_15_10_105018
crossref_primary_10_1088_0031_8949_2015_T165_014033
crossref_primary_10_1209_0295_5075_98_17004
crossref_primary_10_1007_s11040_020_09342_6
crossref_primary_10_1063_1_4886176
crossref_primary_10_1088_0953_8984_24_27_275302
crossref_primary_10_1088_0957_4484_27_24_245204
crossref_primary_10_1103_PhysRevLett_115_246601
crossref_primary_10_1103_PhysRevB_95_064401
crossref_primary_10_1002_pssb_201248385
crossref_primary_10_1021_acs_nanolett_0c02131
crossref_primary_10_1021_acs_nanolett_5b03080
crossref_primary_10_1038_nnano_2015_107
crossref_primary_10_1103_PhysRevLett_111_157205
crossref_primary_10_1103_PhysRevResearch_6_L012062
crossref_primary_10_1103_PhysRevB_86_245420
crossref_primary_10_1088_0953_8984_28_38_38LT01
crossref_primary_10_1103_PhysRevB_85_245320
crossref_primary_10_1103_PhysRevB_85_195465
crossref_primary_10_1016_j_jallcom_2014_11_199
crossref_primary_10_1103_PhysRevB_88_035316
crossref_primary_10_1103_PhysRevB_102_184422
crossref_primary_10_1063_1_4944777
crossref_primary_10_1103_PhysRevB_85_165450
crossref_primary_10_1103_PhysRevB_92_245425
crossref_primary_10_1209_0295_5075_104_27005
crossref_primary_10_1103_PhysRevB_91_245112
crossref_primary_10_1103_PhysRevB_102_125138
crossref_primary_10_1103_PhysRevLett_132_096301
crossref_primary_10_1088_0953_8984_27_50_505301
crossref_primary_10_1134_S1063782615120143
crossref_primary_10_1103_PhysRevB_85_155414
crossref_primary_10_1103_PhysRevB_88_195431
crossref_primary_10_1063_5_0166556
crossref_primary_10_1103_PhysRevB_94_035409
crossref_primary_10_7566_JPSJ_84_012001
crossref_primary_10_1038_nmat4726
crossref_primary_10_1063_1_3678488
crossref_primary_10_1063_5_0057192
crossref_primary_10_1088_1367_2630_12_6_065012
crossref_primary_10_1103_PhysRevB_84_094534
crossref_primary_10_1103_PhysRevLett_106_107205
crossref_primary_10_1103_PhysRevB_86_075441
crossref_primary_10_1103_PhysRevB_86_235121
crossref_primary_10_1126_science_1195816
crossref_primary_10_1038_ncomms13741
crossref_primary_10_1063_1_3577612
crossref_primary_10_1103_PhysRevB_89_035418
crossref_primary_10_1103_PhysRevB_84_035414
crossref_primary_10_1209_0295_5075_106_17002
crossref_primary_10_7498_aps_66_217201
crossref_primary_10_12693_APhysPolA_133_558
crossref_primary_10_1103_PhysRevB_90_115432
crossref_primary_10_1073_pnas_1812822116
crossref_primary_10_1103_PhysRevB_83_115135
crossref_primary_10_1063_1_4955413
crossref_primary_10_1088_1674_1056_25_6_067204
crossref_primary_10_1103_PhysRevB_95_035308
crossref_primary_10_1134_S1063782613110213
crossref_primary_10_1002_pssb_201350206
crossref_primary_10_1103_PhysRevB_102_045310
crossref_primary_10_1103_PhysRevB_88_085109
crossref_primary_10_1142_S2010324712500087
crossref_primary_10_1038_s41467_023_43965_x
crossref_primary_10_1103_RevModPhys_87_1213
crossref_primary_10_1103_PhysRevB_101_184411
crossref_primary_10_1103_PhysRevLett_105_176805
crossref_primary_10_1364_JOSAB_29_000A43
crossref_primary_10_1088_1674_1056_23_1_018503
crossref_primary_10_1103_PhysRevB_84_115419
crossref_primary_10_1063_1_4921765
crossref_primary_10_1088_0268_1242_29_4_043002
crossref_primary_10_1103_PhysRevLett_114_206601
crossref_primary_10_1103_PhysRevLett_106_076803
crossref_primary_10_1063_1_4820770
crossref_primary_10_1038_nphys2322
crossref_primary_10_1021_acs_nanolett_6b02334
crossref_primary_10_1103_PhysRevB_100_125307
crossref_primary_10_1103_PhysRevB_103_144502
crossref_primary_10_1088_1674_1056_24_6_067304
crossref_primary_10_1103_PhysRevB_106_L201102
crossref_primary_10_1103_PhysRevB_82_155327
crossref_primary_10_1103_PhysRevB_102_140406
crossref_primary_10_1109_TMAG_2013_2262947
crossref_primary_10_1103_PhysRevB_91_125412
crossref_primary_10_1038_nnano_2014_128
crossref_primary_10_7566_JPSJ_84_121006
crossref_primary_10_1016_j_tsf_2020_138047
crossref_primary_10_1103_PhysRevB_81_235323
crossref_primary_10_1103_PhysRevB_106_245427
crossref_primary_10_1209_0295_5075_124_27006
crossref_primary_10_1038_ncomms1640
crossref_primary_10_1088_0256_307X_37_3_038101
crossref_primary_10_1103_PhysRevB_90_035444
crossref_primary_10_1142_S0129055X2060003X
crossref_primary_10_1063_1_3556680
crossref_primary_10_1103_PhysRevB_94_121408
crossref_primary_10_1063_1_4977869
crossref_primary_10_1103_PhysRevLett_109_076601
crossref_primary_10_1088_1674_1056_23_3_037304
crossref_primary_10_1103_PhysRevLett_109_246604
crossref_primary_10_1038_nmat3279
crossref_primary_10_1063_1_3658853
crossref_primary_10_1103_PhysRevResearch_2_022019
crossref_primary_10_1038_nphys3551
crossref_primary_10_1103_PhysRevX_3_021003
crossref_primary_10_1103_PhysRevB_86_045215
crossref_primary_10_1360_SSPMA_2022_0430
crossref_primary_10_1103_PhysRevB_85_195304
crossref_primary_10_1103_PhysRevB_89_125419
Cites_doi 10.1126/science.1087128
10.1103/PhysRevLett.92.126603
10.1103/PhysRevB.73.115339
10.1103/PhysRevLett.95.046601
10.1126/science.1148047
10.1103/PhysRevLett.94.047204
10.1016/0375-9601(71)90196-4
10.1103/PhysRevLett.83.1834
10.1088/0268-1242/21/4/015
10.1038/nature04937
10.1103/PhysRevB.70.241301
10.1103/PhysRevB.70.115328
10.1103/PhysRevB.72.035321
10.1103/PhysRevLett.98.156601
10.1126/science.1174736
10.1103/PhysRevB.72.155305
10.1126/science.1105514
10.1038/nphys551
10.1038/nphys009
10.1103/PhysRevLett.100.056602
10.1063/1.2199473
10.1103/PhysRevLett.101.246807
10.1038/nmat2098
ContentType Journal Article
Copyright Springer Nature Limited 2010
Copyright Nature Publishing Group Jun 2010
Copyright_xml – notice: Springer Nature Limited 2010
– notice: Copyright Nature Publishing Group Jun 2010
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys1655
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList ProQuest Central Student

Technology Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 454
ExternalDocumentID 2051234301
10_1038_nphys1655
nphys1655
Genre Feature
GroupedDBID 0R
123
1AW
29M
39C
3V.
4.4
5BI
5M7
70F
88I
8FE
8FG
8FH
8R4
8R5
AADWK
AAEEF
AAPBV
AAYJO
AAZLF
ABAWZ
ABDBF
ABGIJ
ABPTK
ABUWG
ABZEH
ACGFS
ACGOD
ADBBV
ADQMX
AEDAW
AENEX
AFKRA
AFSHS
AGEZK
AGHTU
AHBCP
AHGBK
AHSBF
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ
I-F
IPNFZ
LK5
M2P
M7R
N9A
NNMJJ
O9-
P2P
P62
PCBAR
PQEST
PQQKQ
PQUKI
PRINS
PROAC
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
TAOOD
TBHMF
TDRGL
TSG
TUS
0R~
6OB
AARCD
ABJNI
ABLJU
ABVXF
ACGFO
ACMJI
ADFRT
AFBBN
AFWHJ
AGAYW
AHOSX
AIBTJ
AMTXH
CCPQU
HZ~
LGEZI
LOTEE
NADUK
NXXTH
ODYON
~8M
AAYXX
CITATION
7U5
7XB
8FD
8FK
L7M
Q9U
AAYZH
ID FETCH-LOGICAL-c413t-c5eaa66daad5c492170ba515004080018fd735d2352289f2d9bb1f0f2af2dbc13
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri Oct 25 03:36:07 EDT 2024
Thu Oct 10 21:02:11 EDT 2024
Thu Sep 12 19:09:14 EDT 2024
Fri Oct 11 20:46:54 EDT 2024
Tue Jun 15 13:54:11 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-c5eaa66daad5c492170ba515004080018fd735d2352289f2d9bb1f0f2af2dbc13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 365415319
PQPubID 27545
PageCount 7
ParticipantIDs proquest_miscellaneous_753645634
proquest_journals_365415319
crossref_primary_10_1038_nphys1655
springer_journals_10_1038_nphys1655
nature_primary_nphys1655
ProviderPackageCode RNTTT
AEDAW
ABGIJ
AAZLF
DB5
RNT
AADWK
AAYJO
AHGBK
70F
ADQMX
EE.
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wunderlich, J., Kaestner, B., Sinova, J., Jungwirth, T. (b9) 2005; 94
Awschalom, D. D., Flatté, M. E. (b1) 2007; 3
Hankiewicz, E. M. (b22) 2005; 72
Weng, K., Chandrasekhar, N., Miniatura, C., Englert, B-G. (b15) 2008
Zhou, B., Lu, H-Z., Chu, R-L., Shen, S-Q., Niu, Q. (b24) 2008; 101
Engel, H-A., Rashba, E. I., Halperin, B. I. (b5) 2007
Hinz, J. (b20) 2006; 21
Sinova, J. (b7) 2004; 92
Kimura, T., Otani, Y., Sato, T., Takahashi, S., Maekawa, S. (b13) 2007; 98
Dyakonov, M. I., Perel, V. I. (b2) 1971; 35
Murakami, S., Nagaosa, N., Zhang, S-C. (b6) 2003; 301
Hankiewicz, E. M., Vignale, G. (b4) 2006; 73
Gui, Y. (b19) 2004; 70
Novik, E. (b21) 2005; 72
Seki, T. (b14) 2008; 7
Kato, Y. K., Myers, R. C., Gossard, A. C., Awschalom, D. D. (b8) 2004; 306
Nikoli , B. K., Souma, S., Zârbo, L., Sinova, J. (b17) 2005; 95
Hirsch, J. E. (b3) 1999; 83
Sih, V. (b10) 2005; 1
Hankiewicz, E. M., Molenkamp, L. W., Jungwirth, T., Sinova, J. (b16) 2004; 70
Yang, W., Chang, K., Zhang, S-C. (b25) 2008; 100
Valenzuela, S. O., Tinkham, M. (b11) 2006; 442
Saitoh, E., Ueda, M., Miyajima, H., Tatara, G. (b12) 2006; 88
König, M. (b18) 2007; 318
Roth, A. (b23) 2009; 325
Kato, Myers, Gossard, Awschalom (CR8) 2004; 306
Murakami, Nagaosa, Zhang (CR6) 2003; 301
Engel, Rashba, Halperin (CR5) 2007
Novik (CR21) 2005; 72
Hankiewicz, Vignale (CR4) 2006; 73
Hankiewicz, Molenkamp, Jungwirth, Sinova (CR16) 2004; 70
Hirsch (CR3) 1999; 83
Gui (CR19) 2004; 70
König (CR18) 2007; 318
Wunderlich, Kaestner, Sinova, Jungwirth (CR9) 2005; 94
Hinz (CR20) 2006; 21
Kimura, Otani, Sato, Takahashi, Maekawa (CR13) 2007; 98
Saitoh, Ueda, Miyajima, Tatara (CR12) 2006; 88
Weng, Chandrasekhar, Miniatura, Englert (CR15) 2008
Hankiewicz (CR22) 2005; 72
Awschalom, Flatté (CR1) 2007; 3
Valenzuela, Tinkham (CR11) 2006; 442
Yang, Chang, Zhang (CR25) 2008; 100
Nikolić, Souma, Zârbo, Sinova (CR17) 2005; 95
Sih (CR10) 2005; 1
Sinova (CR7) 2004; 92
Roth (CR23) 2009; 325
Zhou, Lu, Chu, Shen, Niu (CR24) 2008; 101
Seki (CR14) 2008; 7
Dyakonov, Perel (CR2) 1971; 35
M König (BFnphys1655_CR18) 2007; 318
EM Hankiewicz (BFnphys1655_CR16) 2004; 70
MI Dyakonov (BFnphys1655_CR2) 1971; 35
K Weng (BFnphys1655_CR15) 2008
EM Hankiewicz (BFnphys1655_CR4) 2006; 73
J Wunderlich (BFnphys1655_CR9) 2005; 94
DD Awschalom (BFnphys1655_CR1) 2007; 3
A Roth (BFnphys1655_CR23) 2009; 325
T Kimura (BFnphys1655_CR13) 2007; 98
EM Hankiewicz (BFnphys1655_CR22) 2005; 72
Y Gui (BFnphys1655_CR19) 2004; 70
BK Nikolić (BFnphys1655_CR17) 2005; 95
W Yang (BFnphys1655_CR25) 2008; 100
V Sih (BFnphys1655_CR10) 2005; 1
S Murakami (BFnphys1655_CR6) 2003; 301
H-A Engel (BFnphys1655_CR5) 2007
YK Kato (BFnphys1655_CR8) 2004; 306
E Saitoh (BFnphys1655_CR12) 2006; 88
T Seki (BFnphys1655_CR14) 2008; 7
JE Hirsch (BFnphys1655_CR3) 1999; 83
J Sinova (BFnphys1655_CR7) 2004; 92
B Zhou (BFnphys1655_CR24) 2008; 101
E Novik (BFnphys1655_CR21) 2005; 72
SO Valenzuela (BFnphys1655_CR11) 2006; 442
J Hinz (BFnphys1655_CR20) 2006; 21
References_xml – volume: 1
  start-page: 31
  year: 2005
  end-page: 35
  ident: b10
  publication-title: Nature Phys.
  contributor:
    fullname: Sih, V.
– volume: 7
  start-page: 125
  year: 2008
  end-page: 129
  ident: b14
  publication-title: Nature Matter.
  contributor:
    fullname: Seki, T.
– volume: 73
  start-page: 115339
  year: 2006
  ident: b4
  publication-title: Phys. Rev. B
  contributor:
    fullname: Vignale, G.
– volume: 94
  start-page: 047204
  year: 2005
  ident: b9
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Jungwirth, T.
– volume: 306
  start-page: 1910
  year: 2004
  end-page: 1913
  ident: b8
  publication-title: Science
  contributor:
    fullname: Awschalom, D. D.
– volume: 301
  start-page: 1348
  year: 2003
  end-page: 1351
  ident: b6
  publication-title: Science
  contributor:
    fullname: Zhang, S-C.
– volume: 70
  start-page: 115328
  year: 2004
  ident: b19
  publication-title: Phys. Rev. B
  contributor:
    fullname: Gui, Y.
– volume: 35
  start-page: 459
  year: 1971
  end-page: 460
  ident: b2
  publication-title: Phys. Lett. A
  contributor:
    fullname: Perel, V. I.
– start-page: 49
  year: 2008
  end-page: 58
  ident: b15
  article-title: Electron Transport in Nanosystems
  contributor:
    fullname: Englert, B-G.
– volume: 100
  start-page: 056602
  year: 2008
  ident: b25
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Zhang, S-C.
– volume: 83
  start-page: 1834
  year: 1999
  end-page: 1837
  ident: b3
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Hirsch, J. E.
– volume: 442
  start-page: 176
  year: 2006
  end-page: 179
  ident: b11
  publication-title: Nature
  contributor:
    fullname: Tinkham, M.
– volume: 98
  start-page: 156601
  year: 2007
  ident: b13
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Maekawa, S.
– volume: 3
  start-page: 153
  year: 2007
  end-page: 159
  ident: b1
  publication-title: Nature Phys.
  contributor:
    fullname: Flatté, M. E.
– volume: 72
  start-page: 155305
  year: 2005
  ident: b22
  publication-title: Phys. Rev. B
  contributor:
    fullname: Hankiewicz, E. M.
– volume: 92
  start-page: 126603
  year: 2004
  ident: b7
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Sinova, J.
– volume: 95
  start-page: 046601
  year: 2005
  ident: b17
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Sinova, J.
– volume: 325
  start-page: 294
  year: 2009
  end-page: 297
  ident: b23
  publication-title: Science
  contributor:
    fullname: Roth, A.
– volume: 70
  start-page: 241301
  year: 2004
  ident: b16
  publication-title: Phys. Rev. B
  contributor:
    fullname: Sinova, J.
– volume: 72
  start-page: 35321
  year: 2005
  ident: b21
  publication-title: Phys. Rev. B
  contributor:
    fullname: Novik, E.
– volume: 101
  start-page: 246807
  year: 2008
  ident: b24
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Niu, Q.
– volume: 88
  start-page: 182509
  year: 2006
  ident: b12
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Tatara, G.
– volume: 21
  start-page: 501
  year: 2006
  end-page: 506
  ident: b20
  publication-title: Semicond. Sci. Technol.
  contributor:
    fullname: Hinz, J.
– volume: 318
  start-page: 766
  year: 2007
  end-page: 770
  ident: b18
  publication-title: Science
  contributor:
    fullname: König, M.
– year: 2007
  ident: b5
  article-title: Handbook of Magnetism and Advanced Magnetic Materials
  contributor:
    fullname: Halperin, B. I.
– volume: 301
  start-page: 1348
  year: 2003
  end-page: 1351
  ident: CR6
  article-title: Dissipationless quantum spin current at room temperature
  publication-title: Science
  doi: 10.1126/science.1087128
  contributor:
    fullname: Zhang
– volume: 92
  start-page: 126603
  year: 2004
  ident: CR7
  article-title: Universal intrinsic spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.126603
  contributor:
    fullname: Sinova
– volume: 73
  start-page: 115339
  year: 2006
  ident: CR4
  article-title: Coulomb corrections to the extrinsic spin-Hall effect of a two-dimensional electron gas
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.115339
  contributor:
    fullname: Vignale
– volume: 95
  start-page: 046601
  year: 2005
  ident: CR17
  article-title: Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.046601
  contributor:
    fullname: Sinova
– volume: 318
  start-page: 766
  year: 2007
  end-page: 770
  ident: CR18
  article-title: Quantum spin Hall insulator state in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1148047
  contributor:
    fullname: König
– volume: 94
  start-page: 047204
  year: 2005
  ident: CR9
  article-title: Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.047204
  contributor:
    fullname: Jungwirth
– volume: 35
  start-page: 459
  year: 1971
  end-page: 460
  ident: CR2
  article-title: Current-induced spin orientation of electrons in semiconductors
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(71)90196-4
  contributor:
    fullname: Perel
– start-page: 49
  year: 2008
  end-page: 58
  ident: CR15
  publication-title: Electron Transport in Nanosystems
  contributor:
    fullname: Englert
– volume: 83
  start-page: 1834
  year: 1999
  end-page: 1837
  ident: CR3
  article-title: Spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1834
  contributor:
    fullname: Hirsch
– volume: 21
  start-page: 501
  year: 2006
  end-page: 506
  ident: CR20
  article-title: Gate control of the giant Rashba effect in HgTe quantum wells
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/21/4/015
  contributor:
    fullname: Hinz
– volume: 442
  start-page: 176
  year: 2006
  end-page: 179
  ident: CR11
  article-title: Direct electronic measurement of the spin Hall effect
  publication-title: Nature
  doi: 10.1038/nature04937
  contributor:
    fullname: Tinkham
– volume: 70
  start-page: 241301
  year: 2004
  ident: CR16
  article-title: Manifestation of the spin Hall effect through charge-transport in the mesoscopic regime
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.241301
  contributor:
    fullname: Sinova
– volume: 70
  start-page: 115328
  year: 2004
  ident: CR19
  article-title: Giant spin–orbit splitting in a HgTe quantum well
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.115328
  contributor:
    fullname: Gui
– volume: 72
  start-page: 35321
  year: 2005
  ident: CR21
  article-title: Band structure of semimagnetic HgMnTe quantum wells
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.035321
  contributor:
    fullname: Novik
– volume: 98
  start-page: 156601
  year: 2007
  ident: CR13
  article-title: Room-temperature reversible spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.156601
  contributor:
    fullname: Maekawa
– volume: 325
  start-page: 294
  year: 2009
  end-page: 297
  ident: CR23
  article-title: Nonlocal transport in the quantum spin Hall state
  publication-title: Science
  doi: 10.1126/science.1174736
  contributor:
    fullname: Roth
– volume: 72
  start-page: 155305
  year: 2005
  ident: CR22
  article-title: Charge Hall effect driven by spin-dependent chemical potential gradients and Onsager relations in mesoscopic systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.155305
  contributor:
    fullname: Hankiewicz
– volume: 306
  start-page: 1910
  year: 2004
  end-page: 1913
  ident: CR8
  article-title: Observation of the spin Hall effect in semiconductors
  publication-title: Science
  doi: 10.1126/science.1105514
  contributor:
    fullname: Awschalom
– volume: 3
  start-page: 153
  year: 2007
  end-page: 159
  ident: CR1
  article-title: Challenges for semiconductor spintronics
  publication-title: Nature Phys.
  doi: 10.1038/nphys551
  contributor:
    fullname: Flatté
– volume: 1
  start-page: 31
  year: 2005
  end-page: 35
  ident: CR10
  article-title: Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases
  publication-title: Nature Phys.
  doi: 10.1038/nphys009
  contributor:
    fullname: Sih
– volume: 100
  start-page: 056602
  year: 2008
  ident: CR25
  article-title: Intrinsic spin Hall effect induced by quantum phase transition in HgCdTe quantum wells
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.056602
  contributor:
    fullname: Zhang
– year: 2007
  ident: CR5
  publication-title: Handbook of Magnetism and Advanced Magnetic Materials
  contributor:
    fullname: Halperin
– volume: 88
  start-page: 182509
  year: 2006
  ident: CR12
  article-title: Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2199473
  contributor:
    fullname: Tatara
– volume: 101
  start-page: 246807
  year: 2008
  ident: CR24
  article-title: Finite size effects on helical edge states in a quantum spin-Hall system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.246807
  contributor:
    fullname: Niu
– volume: 7
  start-page: 125
  year: 2008
  end-page: 129
  ident: CR14
  article-title: Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices
  publication-title: Nature Matter.
  doi: 10.1038/nmat2098
  contributor:
    fullname: Seki
– volume: 21
  start-page: 501
  year: 2006
  ident: BFnphys1655_CR20
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/21/4/015
  contributor:
    fullname: J Hinz
– volume: 100
  start-page: 056602
  year: 2008
  ident: BFnphys1655_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.056602
  contributor:
    fullname: W Yang
– volume: 72
  start-page: 155305
  year: 2005
  ident: BFnphys1655_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.155305
  contributor:
    fullname: EM Hankiewicz
– volume: 73
  start-page: 115339
  year: 2006
  ident: BFnphys1655_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.115339
  contributor:
    fullname: EM Hankiewicz
– volume: 318
  start-page: 766
  year: 2007
  ident: BFnphys1655_CR18
  publication-title: Science
  doi: 10.1126/science.1148047
  contributor:
    fullname: M König
– volume: 301
  start-page: 1348
  year: 2003
  ident: BFnphys1655_CR6
  publication-title: Science
  doi: 10.1126/science.1087128
  contributor:
    fullname: S Murakami
– volume: 35
  start-page: 459
  year: 1971
  ident: BFnphys1655_CR2
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(71)90196-4
  contributor:
    fullname: MI Dyakonov
– volume: 306
  start-page: 1910
  year: 2004
  ident: BFnphys1655_CR8
  publication-title: Science
  doi: 10.1126/science.1105514
  contributor:
    fullname: YK Kato
– volume: 101
  start-page: 246807
  year: 2008
  ident: BFnphys1655_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.246807
  contributor:
    fullname: B Zhou
– start-page: 49
  volume-title: Electron Transport in Nanosystems
  year: 2008
  ident: BFnphys1655_CR15
  contributor:
    fullname: K Weng
– volume: 325
  start-page: 294
  year: 2009
  ident: BFnphys1655_CR23
  publication-title: Science
  doi: 10.1126/science.1174736
  contributor:
    fullname: A Roth
– volume: 94
  start-page: 047204
  year: 2005
  ident: BFnphys1655_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.047204
  contributor:
    fullname: J Wunderlich
– volume: 7
  start-page: 125
  year: 2008
  ident: BFnphys1655_CR14
  publication-title: Nature Matter.
  doi: 10.1038/nmat2098
  contributor:
    fullname: T Seki
– volume-title: Handbook of Magnetism and Advanced Magnetic Materials
  year: 2007
  ident: BFnphys1655_CR5
  contributor:
    fullname: H-A Engel
– volume: 88
  start-page: 182509
  year: 2006
  ident: BFnphys1655_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2199473
  contributor:
    fullname: E Saitoh
– volume: 98
  start-page: 156601
  year: 2007
  ident: BFnphys1655_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.156601
  contributor:
    fullname: T Kimura
– volume: 442
  start-page: 176
  year: 2006
  ident: BFnphys1655_CR11
  publication-title: Nature
  doi: 10.1038/nature04937
  contributor:
    fullname: SO Valenzuela
– volume: 72
  start-page: 35321
  year: 2005
  ident: BFnphys1655_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.035321
  contributor:
    fullname: E Novik
– volume: 3
  start-page: 153
  year: 2007
  ident: BFnphys1655_CR1
  publication-title: Nature Phys.
  doi: 10.1038/nphys551
  contributor:
    fullname: DD Awschalom
– volume: 83
  start-page: 1834
  year: 1999
  ident: BFnphys1655_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1834
  contributor:
    fullname: JE Hirsch
– volume: 1
  start-page: 31
  year: 2005
  ident: BFnphys1655_CR10
  publication-title: Nature Phys.
  doi: 10.1038/nphys009
  contributor:
    fullname: V Sih
– volume: 70
  start-page: 241301
  year: 2004
  ident: BFnphys1655_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.241301
  contributor:
    fullname: EM Hankiewicz
– volume: 92
  start-page: 126603
  year: 2004
  ident: BFnphys1655_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.126603
  contributor:
    fullname: J Sinova
– volume: 95
  start-page: 046601
  year: 2005
  ident: BFnphys1655_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.046601
  contributor:
    fullname: BK Nikolić
– volume: 70
  start-page: 115328
  year: 2004
  ident: BFnphys1655_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.115328
  contributor:
    fullname: Y Gui
SSID ssj0042613
Score 2.4317899
Snippet In the spin Hall effect, a current passed through a spin–orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A...
In the spin Hall effect, a current passed through a spin-orbit coupled electron gas induces a spin accumulation of inverse sign on either side of the sample. A...
SourceID proquest
crossref
springer
nature
SourceType Aggregation Database
Publisher
StartPage 448
SubjectTerms Accumulation
Atomic
Cadmium
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Diffusion
Electric currents
Electrical measurement
Hall effect
Mathematical and Computational Physics
Mercury
Metals
Molecular
Nanocomposites
Nanomaterials
Nanostructure
Nanostructured materials
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum physics
Quantum wells
Semiconductors
Theoretical
Transport
Wells
Title Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures
URI http://dx.doi.org/10.1038/nphys1655
https://link.springer.com/article/10.1038/nphys1655
https://www.proquest.com/docview/365415319
https://search.proquest.com/docview/753645634
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_GRzOoL6WrY2bdY-yaabQ2SIbLC3kjSJDEY66fz_vfTLqeBbSz65JHe_y13uAO5QBCs_0aHDBLJAP9LKCZVijuerKAyk60qZO8jO2HThPy-DZembk5VulRVPzBm1TBN7R96jNmG13TD3mw_HJo2yxtUyg8Y-ND1UFPoNaI7Gs9e3ihVb9YAWLyIDHH1Aq9BCNOwZe3PgMvvEb0cg_QynWcDNXxbSXPBMjuGoRIxkWCzxCewpcwoHuedmkp3BS5UXlCD8JAjniODrdR5-mazMFvvEeiTbrAyZYgEpHDiI_X2fK2K4SYsYsjih7BwWk_H8YeqUKRKcBKXP1kkCxTljknMZJH6E-kVfcIQo9myGNuGelgMaSM_CrDDSnoyEcHVfexy_ReLSC2iY1KgWEE_IAYt8zrGJRRUiShAtSi1QzmnKdBtuKjrFmyISRpxbsGkY18RsQ6ugYF1lp6hT0TQuz0kW16vaBlKX4ga3VgtuVPqZxahPMUR51G_DbbUS3x38mcHlv8N04LAw_9trlCtoIH3VNaKKrejCfjh56kJzOHocTbrlTvoCgzTQsA
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMEF8dTKeETAtRpt2qw9IYQYBcZOm7RblTQJmjSlQx3_H6cvBkjcWuUpJ7E_x44NcIMiWAWZjlwmkAUGsVZupBRz_UDFUSg9T8rSQXbMkmnwMgtntW9OUbtVNjyxZNQyz-wdeZ_ahNV2w9wtP1ybNMoaV-sMGpuwFVAU1fah-PCpYcRWOaDVe8gQxx7QJrAQjfrG3ht4zD7wWxNHP4NpVmDzl320FDvDfdir8SK5rxb4ADaUOYTt0m8zK45g1GQFJQg-CYI5IvhiUQZfJnOzwj6xHimWc0MSLCCV-waxv-8TRQw3eRVBFidUHMN0-Dh5SNw6QYKboexZuVmoOGdMci7DLIhRu7gVHAGKPZmRTben5YCG0rcgK4q1L2MhPH2rfY7fIvPoCXRMblQXiC_kgMUB59jEYgoRZ4gVpRYo5TRl2oGrhk7psoqDkZb2axqlLTEd6FYUbKusFfUamqb1KSnSdk0dIG0pbm9rs-BG5Z9FitoUQ4xHAweum5X47uDPDE7_HeYSdpLJ2ygdPY9fe7BbOQLYC5Uz6CCt1Tnii5W4KHfRF4nZz-M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_FF_GRzfgT1tWxt2qx9Ej82po4xZIO9laRJZDDSSef_76Ufcyr41pI0DZfL3e9ylzuAW1TByk906DCBItCPtHJCpZjj-SoKA-m6UuYBsiM2mPovs2BWphTKyrDKSibmglqmiT0jb1NbsNoyTFuXURHjp_7d8sOxBaSso7WsprEN9a7PaKcG9YfeaPxWiWVrKtDidmSAM-nSKs0QDdvGniK4zF7321BOP1NrFtDzl7c0V0L9A9gv0SO5L5b7ELaUOYKdPIozyY5hWNUIJQhFCUI7IvhikadiJnOzwjGxH8mWc0MG2ECKYA5iX98nihhu0iKfLE4oO4Fpvzd5HDhluQQnQU20cpJAcc6Y5FwGiR-hrdERHOGK3aehLb6nZZcG0rOQK4y0JyMhXN3RHsdnkbj0FGomNaoBxBOyyyKfc_zEIgwRJYgcpRao8zRlugnXFZ3iZZEVI8692TSM18RsQqOg4LrLRlOromlc7pksXq9wE8i6FZndejC4UelnFqNtxRDxUb8JN9VKfA_wZwZn__7mCnaRheLh8-i1BXtFVIA9XTmHGpJaXSDYWInLko2-AKcM1YA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+ballistic+intrinsic+spin+Hall+effect+in+HgTe+nanostructures&rft.jtitle=Nature+physics&rft.au=Br%C3%BCne%2C+C&rft.au=Roth%2C+A&rft.au=Novik%2C+E+G&rft.au=K%C3%B6nig%2C+M&rft.date=2010-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=6&rft.issue=6&rft.spage=448&rft_id=info:doi/10.1038%2Fnphys1655&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2051234301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon