Lagrangian Partition Functions Subject to a Fixed Spatial Volume Constraint in the Lovelock Theory

We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 4; p. 291
Main Authors Lu, Mengqi, Mann, Robert B.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein–Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity.
AbstractList We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein–Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity.
We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of corresponding to a zero effective cosmological constant indicates that the Bekenstein-Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity.
We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein-Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity.We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein-Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity.
Audience Academic
Author Lu, Mengqi
Mann, Robert B.
Author_xml – sequence: 1
  givenname: Mengqi
  orcidid: 0000-0002-5468-903X
  surname: Lu
  fullname: Lu, Mengqi
– sequence: 2
  givenname: Robert B.
  orcidid: 0000-0002-5859-2227
  surname: Mann
  fullname: Mann, Robert B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38667845$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gwB9AlrjAYYsdO3Z8rFYsVFoJpBau0cQZb71k7cVxKvrvcdh2VXHxjEaPX_udmXNyEmJAQt5ydimEYZ-wUkyyyvAX5IwzYxZSMHbyLD8l5-O4ZawSFVevyKlolNKNrM9It4ZNgrDxEOh3SNlnHwNdTcHOyUhvpm6LNtMcKdCV_4M9vdlD9jDQn3GYdkiXBcsJfMjUB5rvkK7jPQ7R_qK3dxjTw2vy0sEw4pvHeEF-rD7fLr8u1t--XC-v1gsrucgLK0znnOt0bxXD2tWMNXU5AE3XWKmh1lxBLxtwoipGrK6laqx2le2EY1JckOuDbh9h2-6T30F6aCP49l8hpk07G7QDtmDBOiOUU1ZKjgwsq3iv0LhK1o7zovXhoLVP8feEY253frQ4DBAwTmMrmNRGaN3M6Pv_0G2cUihOZ0o1ggmpCnV5oDZQ3vfBxdKz8gvocedtGafzpX5VRFmtmNHlwrtH2anbYX_08zS6Anw8ADbFcUzojghn7bwW7XEtxF-YZadY
Cites_doi 10.1088/1126-6708/2006/12/004
10.1103/PhysRevD.15.2752
10.1103/PhysRevD.7.2333
10.1238/Physica.Topical.117a00056
10.1007/JHEP02(2023)082
10.1007/JHEP07(2022)042
10.1088/1361-6382/ab5dfa
10.1016/0370-1573(86)90076-1
10.1023/A:1023785123428
10.1016/j.dark.2020.100770
10.1088/0264-9381/31/21/214002
10.1103/PhysRevD.48.R3427
10.1007/BF02345020
10.1103/PhysRevLett.130.221501
10.1088/1126-6708/2001/05/043
10.1103/PhysRevD.108.L041902
10.1007/JHEP07(2018)050
10.1007/JHEP04(2020)124
10.1142/S0217751X01003998
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.3390/e26040291
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_acacf936f6c441e0ac021d6e9f245f11
A793056097
38667845
10_3390_e26040291
Genre Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council
  grantid: N/A
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
PMFND
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c413t-c39bfffb7dc60e5f50085500ae9b8c47a5716ad48af32232c75468c7f2cb3f043
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:26:18 EDT 2025
Thu Jul 10 18:33:15 EDT 2025
Fri Jul 25 12:03:48 EDT 2025
Tue Jun 10 21:08:44 EDT 2025
Mon Jul 21 06:08:25 EDT 2025
Tue Jul 01 01:58:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords de Sitter
gravitational Hilbert space
Lovelock gravity
cosmological entropy
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-c39bfffb7dc60e5f50085500ae9b8c47a5716ad48af32232c75468c7f2cb3f043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5468-903X
0000-0002-5859-2227
OpenAccessLink https://www.proquest.com/docview/3046830346?pq-origsite=%requestingapplication%
PMID 38667845
PQID 3046830346
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_acacf936f6c441e0ac021d6e9f245f11
proquest_miscellaneous_3047937781
proquest_journals_3046830346
gale_infotracacademiconefile_A793056097
pubmed_primary_38667845
crossref_primary_10_3390_e26040291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jacobson (ref_17) 2023; 130
ref_12
Banks (ref_6) 2001; 16
Casalino (ref_21) 2021; 31
Gibbons (ref_1) 1977; 15
Banks (ref_7) 2005; 117
Kastikainen (ref_19) 2020; 37
Diaz (ref_14) 2022; 8
Chandrasekaran (ref_11) 2023; 2
Bekenstein (ref_2) 1973; 7
Dong (ref_9) 2018; 7
Bianchi (ref_16) 2014; 31
Wald (ref_18) 1993; 48
Banihashemi (ref_10) 2022; 7
Balasubramanian (ref_4) 2001; 5
Jacobson (ref_15) 2003; 33
Hawking (ref_3) 1975; 43
ref_5
Zumino (ref_20) 1986; 137
Banks (ref_8) 2006; 12
Arias (ref_13) 2020; 4
Tavlayan (ref_22) 2023; 108
References_xml – volume: 12
  start-page: 004
  year: 2006
  ident: ref_8
  article-title: Towards a quantum theory of de Sitter space
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2006/12/004
– volume: 15
  start-page: 2752
  year: 1977
  ident: ref_1
  article-title: Action Integrals and Partition Functions in Quantum Gravity
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.2752
– volume: 7
  start-page: 2333
  year: 1973
  ident: ref_2
  article-title: Black holes and entropy
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.2333
– ident: ref_5
– volume: 117
  start-page: 56
  year: 2005
  ident: ref_7
  article-title: Holographic cosmology 3.0
  publication-title: Phys. Scr. T
  doi: 10.1238/Physica.Topical.117a00056
– volume: 2
  start-page: 082
  year: 2023
  ident: ref_11
  article-title: An algebra of observables for de Sitter space
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2023)082
– volume: 7
  start-page: 042
  year: 2022
  ident: ref_10
  article-title: Thermodynamic ensembles with cosmological horizons
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2022)042
– ident: ref_12
– volume: 37
  start-page: 025001
  year: 2020
  ident: ref_19
  article-title: Quasi-local energy and ADM mass in pure Lovelock gravity
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ab5dfa
– volume: 137
  start-page: 109
  year: 1986
  ident: ref_20
  article-title: Gravity Theories in More Than Four-Dimensions
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(86)90076-1
– volume: 33
  start-page: 323
  year: 2003
  ident: ref_15
  article-title: Horizon entropy
  publication-title: Found. Phys.
  doi: 10.1023/A:1023785123428
– volume: 31
  start-page: 100770
  year: 2021
  ident: ref_21
  article-title: Regularized Lovelock gravity
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100770
– volume: 31
  start-page: 214002
  year: 2014
  ident: ref_16
  article-title: On the Architecture of Spacetime Geometry
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/31/21/214002
– volume: 48
  start-page: R3427
  year: 1993
  ident: ref_18
  article-title: Black hole entropy is the Noether charge
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.48.R3427
– volume: 43
  start-page: 199
  year: 1975
  ident: ref_3
  article-title: Particle Creation by Black Holes
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02345020
– volume: 130
  start-page: 221501
  year: 2023
  ident: ref_17
  article-title: Partition Function for a Volume of Space
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.221501
– volume: 5
  start-page: 043
  year: 2001
  ident: ref_4
  article-title: Deconstructing de Sitter
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2001/05/043
– volume: 108
  start-page: L041902
  year: 2023
  ident: ref_22
  article-title: Partition function of a volume of space in a higher curvature theory
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.L041902
– volume: 7
  start-page: 050
  year: 2018
  ident: ref_9
  article-title: De Sitter Holography and Entanglement Entropy
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2018)050
– volume: 4
  start-page: 124
  year: 2020
  ident: ref_13
  article-title: Liouville description of conical defects in dS4, Gibbons-Hawking entropy as modular entropy, and dS3 holography
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2020)124
– volume: 8
  start-page: 261
  year: 2022
  ident: ref_14
  article-title: Logarithmic corrections, entanglement entropy, and UV cutoffs in de Sitter spacetime
  publication-title: J. High Energy Phys.
– volume: 16
  start-page: 910
  year: 2001
  ident: ref_6
  article-title: Cosmological breaking of supersymmetry?
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X01003998
SSID ssj0023216
Score 2.3389356
Snippet We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 291
SubjectTerms Black holes
Cosmological constant
cosmological entropy
de Sitter
Entropy
Euclidean space
gravitational Hilbert space
Hilbert space
Lagrange multiplier
Lovelock gravity
Partitions (mathematics)
Phase transitions
Quantum gravity
Spacetime
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQnrigVjyaFpBBSJyizfqdI1RdIQSIA1TcLNuxV6tK2YoGqT-_M3Z2RdsDF66JpUy-mfE3k4xnCDmDIDjyEHXdzWSqBWOxdroLtfaRgU0DweSRLLd36upRXD_Jp1ejvrAmrLQHLsBNXXAhtVwlFYC5Y-MCsFKnYpuYkKmc6gXOWydTY6rF2UyVPkIckvpphKgdEqV29hf75Cb9_2_F_wSYmWjmH8jOGCHSiyLZR7IV-13ib9wCWGUByqT3KDTiSedAStluKPg_flChw4o6Ol_-jh3FYcNgXPR73n8oTubM8yAGuuwphH30ZoX1QuEHLefz98jj_NvD16t6HI9QB2CeoQ689SklD9CqJsokc81Z07jYehOEdhJyIdcJ4xJ4LWdBS6FM0IkFz1Mj-D6Z9Ks-fiK07ZiXMpqOJezvpo0TLgSTOm8Sb2esIqdr2OzP0gXDQvaA2NoNthW5REA3C7Bxdb4A6rSjOu1b6qzIOarDonsBKLC6nBIAObFRlb2A_QRitqbVFTlca8yOfvfL4n9eA6wsVEVONrfBY_A3iOvj6iWvwaaA2sDDDoqmNzJzo4C9hfz8Hu_yhWwzCIFKnc8hmQzPL_EIQpjBH2dr_QODU-8o
  priority: 102
  providerName: Directory of Open Access Journals
Title Lagrangian Partition Functions Subject to a Fixed Spatial Volume Constraint in the Lovelock Theory
URI https://www.ncbi.nlm.nih.gov/pubmed/38667845
https://www.proquest.com/docview/3046830346
https://www.proquest.com/docview/3047937781
https://doaj.org/article/acacf936f6c441e0ac021d6e9f245f11
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNcumltKSPbdNFKYWeTGw9LPlUkhInlDSE0pS9CT2XELDTxIH-_M7IXpc2kIsPtpDFPL-RRjOEfAQQHLmPqgiVTIVgLBZWBV8oFxnINDiY3JLl23l9eim-ruRq2nC7m9IqNzYxG-rQe9wjP8ATPA32VtSfb34V2DUKT1enFhpbZAdMsIbga-fo-Pzi-xxycVbVYz0hDsH9QQT0DgFTU_3jhXKx_ocm-T-gmR1O-5w8m5AiPRxZ-4I8id0ucWd2Dd5lDUylF8h1pCttwTll-aFgB3BjhQ49tbS9-h0DxabDIGT0Z7ZDFDt05r4QA73qKMA_etZj3pC_puM9_Zfksj3-8eW0mNokFB480FB43riUkgMS12WUSebcs7K0sXHaC2UlxEQ2CG0TaC9nXkkgpVeJecdTKfgrst31XXxDaBOYkzLqwBLWeVPaCuu9TsHpxJuKLciHDdnMzVgNw0AUgbQ1M20X5AgJOg_AAtb5RX-7NpM-GOutTw2vU-0BkMXSegAboY5NYkKmCib5hOwwqGZAFBg93haAdWLBKnMIdgWwW9moBdnbcMxM-ndn_krLguzPn0Fz8DjEdrG_z2OwOKDS8LPXI6fnNXNdgxcX8u3jk78jTxmAnDGTZ49sD7f38T2AlMEtyZZuT5aTPC5zqA_Pk1X1B99K6hE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgXhtW8AgEKeoiR-xc0CoPMKWbisOLerN2I69qpCSPlIBf4rfyIyzCQIkbr0mlmPNfDPzTWzPEPIcSHDgPqisKWTMBGMhs6rxmXKBAaYhwKSWLPsH5fxIfDyWx2vk53gXBo9Vjj4xOeqm8_iPfBt38DT4W1G-Pj3LsGsU7q6OLTQGWOyFH98gZbt4tfsO9PuCsfr94dt5tuoqkHlw2H3meeVijA5WVOZBRpmOauW5DZXTXigrIYWwjdA2Atg580rCl72KzDsec8Fh3mvkuuC8QovS9YcpweOsKIfqRfAy3w6QK0B6VhV_xLzUGuDfAPAXrU3hrb5Nbq14Kd0ZgHSHrIX2LnELu4RYtgQI0U-IMdQirSEUJrRS8Dr4G4f2HbW0PvkeGootjgHS9HPyehT7gaYuFD09aSmQTbro8JSS_0qHqgD3yNGViO8-WW-7NjwktGqYkzLohkWsKqe0FdZ7HRunI68KNiPPRrGZ06H2hoGcBWVrJtnOyBsU6DQAy2WnB9350qysz1hvfax4GUsP9C_k1gO1acpQRSZkLGCSl6gOg0YNQoHRw90EWCeWxzI74MWAKeaVmpGtUWNmZe0X5jc2Z-Tp9BrsFDdfbBu6yzQGSxEqDR97MGh6WjPXJXAGITf-P_kTcmN-uL8wi92DvU1ykwG9Gs4QbZH1_vwyPAJ61LvHCZOUfLlqI_gFkFAi8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4oCJeCwUMAnGKNrHjODkg1NJGLV1WK0RRb8Zx7FWFlPSRCvhr_DpmnGQRIHHrdddyrJlvZr6JJzMAL5EEO2GdiupE-ijl3EVG1TZSleOIaQwwYSTLh0V2cJy-P5EnG_Bz_BaGyipHnxgcdd1aekc-oxu8HP1tms38UBax3Cvfnp1HNEGKblrHcRo9RI7cj2-Yvl2-OdxDXb_ivNz_9O4gGiYMRBaddxdZUVTe-wpPl8VOehnKtuLYuKLKbaqMxHTC1GluPAJfcKsknsIqz20lfJwK3PcGbCrMiuIJbO7uL5Yf1-me4EnW9zISoohnDjMHTNaK5I8IGAYF_BsO_iK5IdiVW3B7YKlsp4fVHdhwzV2o5maFkW2FgGJLQhzplJUYGAN2GfogeqnDupYZVp5-dzWjgccIcPY5-EBG00HDTIqOnTYMqSebt1SzZL-yvkfAPTi-FgHeh0nTNu4hsKLmlZQur7mnHnMqN6mxNvd1lXtRJHwKL0ax6bO-E4fGDIZkq9eyncIuCXS9gJpnhx_ai5UebFEba6wvROYzi2TQxcYi0akzV3ieSp_gJq9JHZpMHIWCq_svFfCc1CxL76BPQ94YF2oK26PG9GD7l_o3UqfwfP03Wi1dxZjGtVdhDTUmVDk-7EGv6fWZRZ4hg0jlo_9v_gxuogHo-eHi6DHc4si1-oKibZh0F1fuCXKlrno6gJLBl-u2g1_PmCiC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lagrangian+Partition+Functions+Subject+to+a+Fixed+Spatial+Volume+Constraint+in+the+Lovelock+Theory&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Lu%2C+Mengqi&rft.au=Mann%2C+Robert+B&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=26&rft.issue=4&rft.spage=291&rft_id=info:doi/10.3390%2Fe26040291&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon