Lagrangian Partition Functions Subject to a Fixed Spatial Volume Constraint in the Lovelock Theory
We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 26; no. 4; p. 291 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein–Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity. |
---|---|
AbstractList | We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein–Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity. We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of corresponding to a zero effective cosmological constant indicates that the Bekenstein-Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity. We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein-Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity.We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper volume in the context of Lovelock gravity, generalizing the results for Einstein gravity. It is found that there are sphere saddle metrics for a partition function at a fixed spatial volume in Lovelock theory. Those stationary points take exactly the same forms as in Einstein gravity. The logarithm of Z corresponding to a zero effective cosmological constant indicates that the Bekenstein-Hawking entropy of the boundary area and that corresponding to a positive effective cosmological constant points to the Wald entropy of the boundary area. We also show the existence of zeroth-order phase transitions between different vacua, a phenomenon distinct from Einstein gravity. |
Audience | Academic |
Author | Lu, Mengqi Mann, Robert B. |
Author_xml | – sequence: 1 givenname: Mengqi orcidid: 0000-0002-5468-903X surname: Lu fullname: Lu, Mengqi – sequence: 2 givenname: Robert B. orcidid: 0000-0002-5859-2227 surname: Mann fullname: Mann, Robert B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38667845$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URD_gwB9AlrjAYYsdO3Z8rFYsVFoJpBau0cQZb71k7cVxKvrvcdh2VXHxjEaPX_udmXNyEmJAQt5ydimEYZ-wUkyyyvAX5IwzYxZSMHbyLD8l5-O4ZawSFVevyKlolNKNrM9It4ZNgrDxEOh3SNlnHwNdTcHOyUhvpm6LNtMcKdCV_4M9vdlD9jDQn3GYdkiXBcsJfMjUB5rvkK7jPQ7R_qK3dxjTw2vy0sEw4pvHeEF-rD7fLr8u1t--XC-v1gsrucgLK0znnOt0bxXD2tWMNXU5AE3XWKmh1lxBLxtwoipGrK6laqx2le2EY1JckOuDbh9h2-6T30F6aCP49l8hpk07G7QDtmDBOiOUU1ZKjgwsq3iv0LhK1o7zovXhoLVP8feEY253frQ4DBAwTmMrmNRGaN3M6Pv_0G2cUihOZ0o1ggmpCnV5oDZQ3vfBxdKz8gvocedtGafzpX5VRFmtmNHlwrtH2anbYX_08zS6Anw8ADbFcUzojghn7bwW7XEtxF-YZadY |
Cites_doi | 10.1088/1126-6708/2006/12/004 10.1103/PhysRevD.15.2752 10.1103/PhysRevD.7.2333 10.1238/Physica.Topical.117a00056 10.1007/JHEP02(2023)082 10.1007/JHEP07(2022)042 10.1088/1361-6382/ab5dfa 10.1016/0370-1573(86)90076-1 10.1023/A:1023785123428 10.1016/j.dark.2020.100770 10.1088/0264-9381/31/21/214002 10.1103/PhysRevD.48.R3427 10.1007/BF02345020 10.1103/PhysRevLett.130.221501 10.1088/1126-6708/2001/05/043 10.1103/PhysRevD.108.L041902 10.1007/JHEP07(2018)050 10.1007/JHEP04(2020)124 10.1142/S0217751X01003998 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.3390/e26040291 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_acacf936f6c441e0ac021d6e9f245f11 A793056097 38667845 10_3390_e26040291 |
Genre | Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council grantid: N/A |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PQGLB PMFND 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c413t-c39bfffb7dc60e5f50085500ae9b8c47a5716ad48af32232c75468c7f2cb3f043 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:26:18 EDT 2025 Thu Jul 10 18:33:15 EDT 2025 Fri Jul 25 12:03:48 EDT 2025 Tue Jun 10 21:08:44 EDT 2025 Mon Jul 21 06:08:25 EDT 2025 Tue Jul 01 01:58:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | de Sitter gravitational Hilbert space Lovelock gravity cosmological entropy |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-c39bfffb7dc60e5f50085500ae9b8c47a5716ad48af32232c75468c7f2cb3f043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5468-903X 0000-0002-5859-2227 |
OpenAccessLink | https://www.proquest.com/docview/3046830346?pq-origsite=%requestingapplication% |
PMID | 38667845 |
PQID | 3046830346 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acacf936f6c441e0ac021d6e9f245f11 proquest_miscellaneous_3047937781 proquest_journals_3046830346 gale_infotracacademiconefile_A793056097 pubmed_primary_38667845 crossref_primary_10_3390_e26040291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jacobson (ref_17) 2023; 130 ref_12 Banks (ref_6) 2001; 16 Casalino (ref_21) 2021; 31 Gibbons (ref_1) 1977; 15 Banks (ref_7) 2005; 117 Kastikainen (ref_19) 2020; 37 Diaz (ref_14) 2022; 8 Chandrasekaran (ref_11) 2023; 2 Bekenstein (ref_2) 1973; 7 Dong (ref_9) 2018; 7 Bianchi (ref_16) 2014; 31 Wald (ref_18) 1993; 48 Banihashemi (ref_10) 2022; 7 Balasubramanian (ref_4) 2001; 5 Jacobson (ref_15) 2003; 33 Hawking (ref_3) 1975; 43 ref_5 Zumino (ref_20) 1986; 137 Banks (ref_8) 2006; 12 Arias (ref_13) 2020; 4 Tavlayan (ref_22) 2023; 108 |
References_xml | – volume: 12 start-page: 004 year: 2006 ident: ref_8 article-title: Towards a quantum theory of de Sitter space publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2006/12/004 – volume: 15 start-page: 2752 year: 1977 ident: ref_1 article-title: Action Integrals and Partition Functions in Quantum Gravity publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2752 – volume: 7 start-page: 2333 year: 1973 ident: ref_2 article-title: Black holes and entropy publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.7.2333 – ident: ref_5 – volume: 117 start-page: 56 year: 2005 ident: ref_7 article-title: Holographic cosmology 3.0 publication-title: Phys. Scr. T doi: 10.1238/Physica.Topical.117a00056 – volume: 2 start-page: 082 year: 2023 ident: ref_11 article-title: An algebra of observables for de Sitter space publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2023)082 – volume: 7 start-page: 042 year: 2022 ident: ref_10 article-title: Thermodynamic ensembles with cosmological horizons publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2022)042 – ident: ref_12 – volume: 37 start-page: 025001 year: 2020 ident: ref_19 article-title: Quasi-local energy and ADM mass in pure Lovelock gravity publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab5dfa – volume: 137 start-page: 109 year: 1986 ident: ref_20 article-title: Gravity Theories in More Than Four-Dimensions publication-title: Phys. Rept. doi: 10.1016/0370-1573(86)90076-1 – volume: 33 start-page: 323 year: 2003 ident: ref_15 article-title: Horizon entropy publication-title: Found. Phys. doi: 10.1023/A:1023785123428 – volume: 31 start-page: 100770 year: 2021 ident: ref_21 article-title: Regularized Lovelock gravity publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2020.100770 – volume: 31 start-page: 214002 year: 2014 ident: ref_16 article-title: On the Architecture of Spacetime Geometry publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/31/21/214002 – volume: 48 start-page: R3427 year: 1993 ident: ref_18 article-title: Black hole entropy is the Noether charge publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.48.R3427 – volume: 43 start-page: 199 year: 1975 ident: ref_3 article-title: Particle Creation by Black Holes publication-title: Commun. Math. Phys. doi: 10.1007/BF02345020 – volume: 130 start-page: 221501 year: 2023 ident: ref_17 article-title: Partition Function for a Volume of Space publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.221501 – volume: 5 start-page: 043 year: 2001 ident: ref_4 article-title: Deconstructing de Sitter publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2001/05/043 – volume: 108 start-page: L041902 year: 2023 ident: ref_22 article-title: Partition function of a volume of space in a higher curvature theory publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.L041902 – volume: 7 start-page: 050 year: 2018 ident: ref_9 article-title: De Sitter Holography and Entanglement Entropy publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2018)050 – volume: 4 start-page: 124 year: 2020 ident: ref_13 article-title: Liouville description of conical defects in dS4, Gibbons-Hawking entropy as modular entropy, and dS3 holography publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2020)124 – volume: 8 start-page: 261 year: 2022 ident: ref_14 article-title: Logarithmic corrections, entanglement entropy, and UV cutoffs in de Sitter spacetime publication-title: J. High Energy Phys. – volume: 16 start-page: 910 year: 2001 ident: ref_6 article-title: Cosmological breaking of supersymmetry? publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X01003998 |
SSID | ssj0023216 |
Score | 2.3389356 |
Snippet | We evaluate here the quantum gravity partition function that counts the dimension of the Hilbert space of a simply connected spatial region of a fixed proper... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 291 |
SubjectTerms | Black holes Cosmological constant cosmological entropy de Sitter Entropy Euclidean space gravitational Hilbert space Hilbert space Lagrange multiplier Lovelock gravity Partitions (mathematics) Phase transitions Quantum gravity Spacetime |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQnrigVjyaFpBBSJyizfqdI1RdIQSIA1TcLNuxV6tK2YoGqT-_M3Z2RdsDF66JpUy-mfE3k4xnCDmDIDjyEHXdzWSqBWOxdroLtfaRgU0DweSRLLd36upRXD_Jp1ejvrAmrLQHLsBNXXAhtVwlFYC5Y-MCsFKnYpuYkKmc6gXOWydTY6rF2UyVPkIckvpphKgdEqV29hf75Cb9_2_F_wSYmWjmH8jOGCHSiyLZR7IV-13ib9wCWGUByqT3KDTiSedAStluKPg_flChw4o6Ol_-jh3FYcNgXPR73n8oTubM8yAGuuwphH30ZoX1QuEHLefz98jj_NvD16t6HI9QB2CeoQ689SklD9CqJsokc81Z07jYehOEdhJyIdcJ4xJ4LWdBS6FM0IkFz1Mj-D6Z9Ks-fiK07ZiXMpqOJezvpo0TLgSTOm8Sb2esIqdr2OzP0gXDQvaA2NoNthW5REA3C7Bxdb4A6rSjOu1b6qzIOarDonsBKLC6nBIAObFRlb2A_QRitqbVFTlca8yOfvfL4n9eA6wsVEVONrfBY_A3iOvj6iWvwaaA2sDDDoqmNzJzo4C9hfz8Hu_yhWwzCIFKnc8hmQzPL_EIQpjBH2dr_QODU-8o priority: 102 providerName: Directory of Open Access Journals |
Title | Lagrangian Partition Functions Subject to a Fixed Spatial Volume Constraint in the Lovelock Theory |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38667845 https://www.proquest.com/docview/3046830346 https://www.proquest.com/docview/3047937781 https://doaj.org/article/acacf936f6c441e0ac021d6e9f245f11 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNcumltKSPbdNFKYWeTGw9LPlUkhInlDSE0pS9CT2XELDTxIH-_M7IXpc2kIsPtpDFPL-RRjOEfAQQHLmPqgiVTIVgLBZWBV8oFxnINDiY3JLl23l9eim-ruRq2nC7m9IqNzYxG-rQe9wjP8ATPA32VtSfb34V2DUKT1enFhpbZAdMsIbga-fo-Pzi-xxycVbVYz0hDsH9QQT0DgFTU_3jhXKx_ocm-T-gmR1O-5w8m5AiPRxZ-4I8id0ucWd2Dd5lDUylF8h1pCttwTll-aFgB3BjhQ49tbS9-h0DxabDIGT0Z7ZDFDt05r4QA73qKMA_etZj3pC_puM9_Zfksj3-8eW0mNokFB480FB43riUkgMS12WUSebcs7K0sXHaC2UlxEQ2CG0TaC9nXkkgpVeJecdTKfgrst31XXxDaBOYkzLqwBLWeVPaCuu9TsHpxJuKLciHDdnMzVgNw0AUgbQ1M20X5AgJOg_AAtb5RX-7NpM-GOutTw2vU-0BkMXSegAboY5NYkKmCib5hOwwqGZAFBg93haAdWLBKnMIdgWwW9moBdnbcMxM-ndn_krLguzPn0Fz8DjEdrG_z2OwOKDS8LPXI6fnNXNdgxcX8u3jk78jTxmAnDGTZ49sD7f38T2AlMEtyZZuT5aTPC5zqA_Pk1X1B99K6hE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgXhtW8AgEKeoiR-xc0CoPMKWbisOLerN2I69qpCSPlIBf4rfyIyzCQIkbr0mlmPNfDPzTWzPEPIcSHDgPqisKWTMBGMhs6rxmXKBAaYhwKSWLPsH5fxIfDyWx2vk53gXBo9Vjj4xOeqm8_iPfBt38DT4W1G-Pj3LsGsU7q6OLTQGWOyFH98gZbt4tfsO9PuCsfr94dt5tuoqkHlw2H3meeVijA5WVOZBRpmOauW5DZXTXigrIYWwjdA2Atg580rCl72KzDsec8Fh3mvkuuC8QovS9YcpweOsKIfqRfAy3w6QK0B6VhV_xLzUGuDfAPAXrU3hrb5Nbq14Kd0ZgHSHrIX2LnELu4RYtgQI0U-IMdQirSEUJrRS8Dr4G4f2HbW0PvkeGootjgHS9HPyehT7gaYuFD09aSmQTbro8JSS_0qHqgD3yNGViO8-WW-7NjwktGqYkzLohkWsKqe0FdZ7HRunI68KNiPPRrGZ06H2hoGcBWVrJtnOyBsU6DQAy2WnB9350qysz1hvfax4GUsP9C_k1gO1acpQRSZkLGCSl6gOg0YNQoHRw90EWCeWxzI74MWAKeaVmpGtUWNmZe0X5jc2Z-Tp9BrsFDdfbBu6yzQGSxEqDR97MGh6WjPXJXAGITf-P_kTcmN-uL8wi92DvU1ykwG9Gs4QbZH1_vwyPAJ61LvHCZOUfLlqI_gFkFAi8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4oCJeCwUMAnGKNrHjODkg1NJGLV1WK0RRb8Zx7FWFlPSRCvhr_DpmnGQRIHHrdddyrJlvZr6JJzMAL5EEO2GdiupE-ijl3EVG1TZSleOIaQwwYSTLh0V2cJy-P5EnG_Bz_BaGyipHnxgcdd1aekc-oxu8HP1tms38UBax3Cvfnp1HNEGKblrHcRo9RI7cj2-Yvl2-OdxDXb_ivNz_9O4gGiYMRBaddxdZUVTe-wpPl8VOehnKtuLYuKLKbaqMxHTC1GluPAJfcKsknsIqz20lfJwK3PcGbCrMiuIJbO7uL5Yf1-me4EnW9zISoohnDjMHTNaK5I8IGAYF_BsO_iK5IdiVW3B7YKlsp4fVHdhwzV2o5maFkW2FgGJLQhzplJUYGAN2GfogeqnDupYZVp5-dzWjgccIcPY5-EBG00HDTIqOnTYMqSebt1SzZL-yvkfAPTi-FgHeh0nTNu4hsKLmlZQur7mnHnMqN6mxNvd1lXtRJHwKL0ax6bO-E4fGDIZkq9eyncIuCXS9gJpnhx_ai5UebFEba6wvROYzi2TQxcYi0akzV3ieSp_gJq9JHZpMHIWCq_svFfCc1CxL76BPQ94YF2oK26PG9GD7l_o3UqfwfP03Wi1dxZjGtVdhDTUmVDk-7EGv6fWZRZ4hg0jlo_9v_gxuogHo-eHi6DHc4si1-oKibZh0F1fuCXKlrno6gJLBl-u2g1_PmCiC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lagrangian+Partition+Functions+Subject+to+a+Fixed+Spatial+Volume+Constraint+in+the+Lovelock+Theory&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Lu%2C+Mengqi&rft.au=Mann%2C+Robert+B&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=26&rft.issue=4&rft.spage=291&rft_id=info:doi/10.3390%2Fe26040291&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |