The origins of light-independent magnetoreception in humans
The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emer...
Saved in:
Published in | Frontiers in human neuroscience Vol. 18; p. 1482872 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field—even in deep-sea environments—through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth’s formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection. |
---|---|
AbstractList | The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field—even in deep-sea environments—through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth’s formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection. The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field-even in deep-sea environments-through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth's formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field-even in deep-sea environments-through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth's formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection. |
Author | Hattori, Noriaki Takakusaki, Kaoru Nishijo, Hisao Kuroda, Satoshi Shibata, Takashi |
Author_xml | – sequence: 1 givenname: Takashi surname: Shibata fullname: Shibata, Takashi – sequence: 2 givenname: Noriaki surname: Hattori fullname: Hattori, Noriaki – sequence: 3 givenname: Hisao surname: Nishijo fullname: Nishijo, Hisao – sequence: 4 givenname: Satoshi surname: Kuroda fullname: Kuroda, Satoshi – sequence: 5 givenname: Kaoru surname: Takakusaki fullname: Takakusaki, Kaoru |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39677406$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UclqHDEQFcEh3vIDOYQ--tJjba0Fn4zJYjDkYp-FWirNyHRLE0lzyN-7xzMOIQdfqoriLVS9c3SScgKEvhC8Ykzp65A2u3lFMeUrwhVVkn5AZ0QI2g9EkJN_5lN0XuszxoKKgXxCp0wLKTkWZ-jmcQNdLnEdU-1y6Ka43rQ-Jg9bWEpq3WzXCVou4GDbYk5dTN3ia1O9RB-DnSp8PvYL9PT92-Pdz_7h14_7u9uH3nHCWj9qiomHQXOmrWAkaDeq4ANQZjGXQoQBU-ydHoUWnjsZpGSaah8GpwEcu0D3B12f7bPZljjb8sdkG83rIpe1saVFN4EB5TD1WIEEy0cr1bCcaeXgPPYEs3HRujpobUv-vYPazByrg2myCfKuGka4UANRRC7Qr0fobpzB_zV-e94CUAeAK7nWAsG42Oz-R63YOBmCzT4n85qT2edkjjktVPof9U39HdILMPCWjg |
CitedBy_id | crossref_primary_10_3389_fnins_2025_1497021 |
Cites_doi | 10.1140/epjs/s11734-022-00755-8 10.3390/cells9020439 10.1016/j.mehy.2021.110626 10.1016/j.cell.2023.08.027 10.1021/cb300323q 10.1093/nsr/nwz065 10.1038/s41467-020-14773-4 10.1038/s41598-018-29766-z 10.1111/1758-2229.12550 10.1098/rsos.181163 10.1038/s41559-024-02461-1 10.1038/ncomms1326 10.3389/fmicb.2023.1174899 10.1038/s41598-022-12460-6 10.1126/science.1064557 10.1242/jeb.199.5.1241 10.1002/jmri.28414 10.1038/nature.2012.10540 10.1038/srep23657 10.1371/journal.pgen.1007518 10.1103/PhysRevLett.127.101801 10.1038/nmicrobiol.2016.116 10.1073/pnas.2108655119 10.1016/0361-9230(90)9005 10.1007/0-387-30752-4_25 10.1038/s41467-018-03090-6 10.1016/j.tcb.2024.01.010 10.1038/s41522-022-00304-0 10.1007/s11062-008-9021-8 10.1002/cne.10579 10.1098/rsif.2009.0423.focus 10.1007/s00359-013-0865-z 10.1126/science.adh9978 10.1007/s00359-017-1167-7 10.1126/science.176.4030.62 10.1007/978-1-4614-1704-0_8 10.7554/eLife.40232 10.1097/01.wnr.0000227984.84927.a7 10.1007/s10867-024-09656-4 10.1242/jeb.55.2.371 10.1038/s41586-018-0782-y 10.1089/ast.2011.0667 10.1242/jeb.02573 10.1038/nature03077 10.1080/01490451.2018.1554013 10.1002/dvdy.24195 10.3390/min12111403 10.1159/000494050 10.1038/s41598-018-37839-2 10.1016/s0306-4522(96)00540-4 10.1016/j.ajp.2024.104036 10.1007/s10071-020-01431-x 10.1098/rsif.2004.0026 10.1038/37057 10.1063/1.2897947 10.1080/000164801316878872 10.1007/BF00623322 10.3389/fnbeh.2024.1384340 10.1016/j.cub.2019.09.048 10.1073/pnas.2109865118 10.1007/s00359-005-0627-7 10.1039/c7mt00116a 10.1016/j.gsf.2016.02.001 10.1038/s41586-023-06024-5 10.1016/j.cub.2018.11.032 10.1523/ENEURO.0483-18.2019 10.1128/AEM.01556-21 10.1212/WNL.0b013e3182886a76 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Shibata, Hattori, Nishijo, Kuroda and Takakusaki. |
Copyright_xml | – notice: Copyright © 2024 Shibata, Hattori, Nishijo, Kuroda and Takakusaki. |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.3389/fnhum.2024.1482872 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_e8c02d08e7ea4ba785740a75cd0d103b 39677406 10_3389_fnhum_2024_1482872 |
Genre | Journal Article Review |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM PQGLB RIG 7X8 PUEGO |
ID | FETCH-LOGICAL-c413t-b9201de59439a631f9cb8fdfe23a04766f5020dc9b696d4c7f773929df5c9eec3 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Sun Aug 24 03:58:43 EDT 2025 Mon Jul 21 05:34:53 EDT 2025 Tue Jul 01 02:43:20 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | magnetoreception electromagnetic induction iron magnetotactic bacteria geomagnetic field semicircular canals |
Language | English |
License | Copyright © 2024 Shibata, Hattori, Nishijo, Kuroda and Takakusaki. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-b9201de59439a631f9cb8fdfe23a04766f5020dc9b696d4c7f773929df5c9eec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/e8c02d08e7ea4ba785740a75cd0d103b |
PMID | 39677406 |
PQID | 3146851817 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8c02d08e7ea4ba785740a75cd0d103b proquest_miscellaneous_3146851817 pubmed_primary_39677406 crossref_citationtrail_10_3389_fnhum_2024_1482872 crossref_primary_10_3389_fnhum_2024_1482872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Chae (ref9) 2022; 12 Lundberg (ref34) 2015; 244 Najle (ref41) 2023; 186 Strbak (ref58) 2022; 12 Cressey (ref10) 2012 Nishimura (ref45) 2023; 381 Bashir (ref3) 2011; 2 Martinez-Banaclocha (ref36) 2020; 9 Fleissner (ref14) 2003; 458 Goswami (ref18) 2022; 8 Wade (ref63) 2021; 118 Carlo (ref8) 2016; 7 Bellinger (ref5) 2022; 119 Frey (ref15) 2012; 7 Wegner (ref66) 2006; 209 Fritzsch (ref16) 2014; 200 Elbers (ref12) 2017; 203 Gilder (ref17) 2018; 8 Myklatun (ref40) 2018; 9 Nemoto (ref43) 2019; 9 Stixrude (ref56) 2020; 11 Tarduno (ref61) 2023; 618 Bai (ref2) 2021; 127 Moody (ref38) 2024; 8 Weiss (ref68) 2016; 1 Liang (ref28) 2016; 6 Tachibana (ref59) 2024; 96 Takakusaki (ref60) 1997; 78 Higuchi (ref22) 2019; 565 Mielke (ref37) 2011; 11 Nimpf (ref44) 2019; 29 Arago (ref1) 1856 Semm (ref51) 1990; 25 Eigen (ref11) 1971; 58 Weiss (ref67) 2018; 14 Malkemper (ref35) 2019; 29 Beason (ref4) 1996; 199 Lin (ref29) 2020; 7 Harada (ref20) 2001; 121 Lin (ref30) 2017; 9 Shaw (ref53) 2018; 5 Puig (ref47) 2017; 9 Sato (ref49) 2021; 153 Kalmijn (ref25) 1971; 55 Mora (ref39) 2004; 432 Walker (ref64) 1997; 390 Parker (ref46) 2005; 2 Fleischmann (ref13) 2020; 23 He (ref21) 2023; 57 Köppl (ref27) 2018; 92 Wang (ref65) 2019; 6 Strbak (ref57) 2019; 36 Shibata (ref54) 2024; 18 Schneider (ref50) 2023; 232 Wiltschko (ref71) 2012; 739 Serna (ref52) 2024; 50 Sasaki (ref48) 2006; 17 Simmons (ref55) 2006 Wiltschko (ref69) 1972; 176 Jacquemyn (ref23) 2024; 34 Wiltschko (ref70) 2005; 191 Lohmann (ref33) 2001; 294 Cadiou (ref7) 2010; 7 Lipovsek (ref31) 2018; 7 Nakano (ref42) 2023; 14 Liu (ref32) 2021; 87 Verosub (ref62) 1989 Benarroch (ref6) 2013; 80 Johnsen (ref24) 2008; 61 Khorevin (ref26) 2008; 40 |
References_xml | – volume: 232 start-page: 269 year: 2023 ident: ref50 article-title: Over 50 years of behavioural evidence on the magnetic sense in animals: what has been learnt and how? publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-022-00755-8 – volume: 9 start-page: 439 year: 2020 ident: ref36 article-title: Astroglial Isopotentiality and calcium-associated biomagnetic field effects on cortical neuronal coupling publication-title: Cells doi: 10.3390/cells9020439 – volume: 153 start-page: 110626 year: 2021 ident: ref49 article-title: Why is the mesencephalic nucleus of the trigeminal nerve situated inside the brain? publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2021.110626 – volume: 186 start-page: 4676 year: 2023 ident: ref41 article-title: Stepwise emergence of the neuronal gene expression program in early animal evolution publication-title: Cell doi: 10.1016/j.cell.2023.08.027 – volume: 7 start-page: 1477 year: 2012 ident: ref15 article-title: The ubiquity of iron publication-title: ACS Chem. Biol. doi: 10.1021/cb300323q – volume: 7 start-page: 472 year: 2020 ident: ref29 article-title: On the origin of microbial magnetoreception publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz065 – volume: 11 start-page: 935 year: 2020 ident: ref56 article-title: A silicate dynamo in the early earth publication-title: Nat. Commun. doi: 10.1038/s41467-020-14773-4 – volume: 8 start-page: 11363 year: 2018 ident: ref17 article-title: Distribution of magnetic remanence carriers in the human brain publication-title: Sci. Rep. doi: 10.1038/s41598-018-29766-z – volume: 9 start-page: 345 year: 2017 ident: ref30 article-title: Diversity and ecology of and biomineralization by magnetotactic bacteria publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12550 – volume: 5 start-page: 181163 year: 2018 ident: ref53 article-title: Multi-modal imaging and analysis in the search for iron-based magnetoreceptors in the honeybee Apis mellifera publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.181163 – volume: 8 start-page: 1654 year: 2024 ident: ref38 article-title: The nature of the last universal common ancestor and its impact on the early earth system publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-024-02461-1 – volume: 2 start-page: 322 year: 2011 ident: ref3 article-title: The rice mitochondrial iron transporter is essential for plant growth publication-title: Nat. Commun. doi: 10.1038/ncomms1326 – volume: 14 start-page: 1174899 year: 2023 ident: ref42 article-title: Bullet-shaped magnetosomes and metagenomic-based magnetosome gene profiles in a deep-sea hydrothermal vent chimney publication-title: Front. Microbiol. doi: 10.3389/fmicb.2023.1174899 – volume: 12 start-page: 8997 year: 2022 ident: ref9 article-title: Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism publication-title: Sci. Rep. doi: 10.1038/s41598-022-12460-6 – volume: 294 start-page: 364 year: 2001 ident: ref33 article-title: Regional magnetic fields as navigational markers for sea turtles publication-title: Science doi: 10.1126/science.1064557 – volume: 199 start-page: 1241 year: 1996 ident: ref4 article-title: Does the avian ophthalmic nerve carry magnetic navigational information? publication-title: J. Exp. Biol. doi: 10.1242/jeb.199.5.1241 – volume: 57 start-page: 337 year: 2023 ident: ref21 article-title: Application of Neuromelanin MR imaging in Parkinson disease publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.28414 – year: 2012 ident: ref10 article-title: Pigeons may ‘hear’ magnetic fields publication-title: Nature doi: 10.1038/nature.2012.10540 – volume: 6 start-page: 23657 year: 2016 ident: ref28 article-title: Magnetic sensing through the abdomen of the honey bee publication-title: Sci. Rep. doi: 10.1038/srep23657 – volume: 14 start-page: e1007518 year: 2018 ident: ref67 article-title: The last universal common ancestor between ancient earth chemistry and the onset of genetics publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007518 – volume: 127 start-page: 101801 year: 2021 ident: ref2 article-title: Searching for magnetic monopoles with Earth’s magnetic field publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.101801 – volume: 1 start-page: 16116 year: 2016 ident: ref68 article-title: The physiology and habitat of the last universal common ancestor publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.116 – volume: 119 start-page: e2108655119 year: 2022 ident: ref5 article-title: Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2108655119 – volume: 25 start-page: 735 year: 1990 ident: ref51 article-title: Responses to small magnetic variations by the trigeminal system of the bobolink publication-title: Brain Res. Bull. doi: 10.1016/0361-9230(90)9005 – volume-title: Geophysics. Encyclopedia of earth science year: 1989 ident: ref62 article-title: Detrital remanent magnetism (DRM) doi: 10.1007/0-387-30752-4_25 – volume: 9 start-page: 802 year: 2018 ident: ref40 article-title: Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception publication-title: Nat. Commun. doi: 10.1038/s41467-018-03090-6 – volume: 34 start-page: 535 year: 2024 ident: ref23 article-title: Driving factors of neuronal ferroptosis publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2024.01.010 – volume: 8 start-page: 43 year: 2022 ident: ref18 article-title: Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications publication-title: NPJ Biofilms Microbio. doi: 10.1038/s41522-022-00304-0 – volume: 40 start-page: 142 year: 2008 ident: ref26 article-title: The lagena (the third otolith endorgan in vertebrates) publication-title: Neurophysiology doi: 10.1007/s11062-008-9021-8 – volume: 458 start-page: 350 year: 2003 ident: ref14 article-title: Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons publication-title: J. Comp. Neurol. doi: 10.1002/cne.10579 – volume: 7 start-page: S193 year: 2010 ident: ref7 article-title: Avian magnetite-based magnetoreception: a physiologist’s perspective publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0423.focus – volume: 200 start-page: 5 year: 2014 ident: ref16 article-title: Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies publication-title: J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. doi: 10.1007/s00359-013-0865-z – volume: 381 start-page: 1006 year: 2023 ident: ref45 article-title: Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane publication-title: Science (New York, N.Y.) doi: 10.1126/science.adh9978 – volume: 203 start-page: 591 year: 2017 ident: ref12 article-title: Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe) publication-title: J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. doi: 10.1007/s00359-017-1167-7 – volume: 176 start-page: 62 year: 1972 ident: ref69 article-title: Magnetic compass of European robins publication-title: Science (New York, N.Y.) doi: 10.1126/science.176.4030.62 – volume: 739 start-page: 126 year: 2012 ident: ref71 article-title: Magnetoreception publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4614-1704-0_8 – volume: 7 start-page: e40232 year: 2018 ident: ref31 article-title: Conserved and divergent development of brainstem vestibular and auditory nuclei publication-title: eLife doi: 10.7554/eLife.40232 – volume: 17 start-page: 1215 year: 2006 ident: ref48 article-title: Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease publication-title: Neuroreport doi: 10.1097/01.wnr.0000227984.84927.a7 – volume: 50 start-page: 215 year: 2024 ident: ref52 article-title: Magnetite in the abdomen and antennae of Apis mellifera honeybees publication-title: J. Biol. Phys. doi: 10.1007/s10867-024-09656-4 – volume: 55 start-page: 371 year: 1971 ident: ref25 article-title: The electric sense of sharks and rays publication-title: J. Exp. Biol. doi: 10.1242/jeb.55.2.371 – volume: 565 start-page: 347 year: 2019 ident: ref22 article-title: Inner ear development in cyclostomes and evolution of the vertebrate semicircular canals publication-title: Nature doi: 10.1038/s41586-018-0782-y – volume: 11 start-page: 933 year: 2011 ident: ref37 article-title: Iron-sulfide-bearing chimneys as potential catalytic energy traps at life’s emergence publication-title: Astrobiology doi: 10.1089/ast.2011.0667 – volume: 209 start-page: 4747 year: 2006 ident: ref66 article-title: Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal publication-title: J. Exp. Biol. doi: 10.1242/jeb.02573 – volume: 432 start-page: 508 year: 2004 ident: ref39 article-title: Magnetoreception and its trigeminal mediation in the homing pigeon publication-title: Nature doi: 10.1038/nature03077 – volume: 36 start-page: 278 year: 2019 ident: ref57 article-title: Archean iron-based metabolism analysis and the photoferrotrophy-driven hypothesis of microbial magnetotaxis origin publication-title: Geomicrobiology doi: 10.1080/01490451.2018.1554013 – volume: 244 start-page: 239 year: 2015 ident: ref34 article-title: Mechanisms of otoconia and otolith development publication-title: Dev. Dyn. doi: 10.1002/dvdy.24195 – volume: 12 start-page: 1403 year: 2022 ident: ref58 article-title: Magnetotactic Bacteria: from evolution to biomineralization and biomedical applications publication-title: Fortschr. Mineral. doi: 10.3390/min12111403 – volume: 92 start-page: 1 year: 2018 ident: ref27 article-title: Evolution of endolymph secretion and endolymphatic potential generation in the vertebrate inner ear publication-title: Brain Behav. Evol. doi: 10.1159/000494050 – volume: 9 start-page: 856 year: 2019 ident: ref43 article-title: Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri publication-title: Sci. Rep. doi: 10.1038/s41598-018-37839-2 – volume: 78 start-page: 771 year: 1997 ident: ref60 article-title: Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat publication-title: Neuroscience doi: 10.1016/s0306-4522(96)00540-4 – volume: 96 start-page: 104036 year: 2024 ident: ref59 article-title: Extremely low frequency, extremely low magnetic environment for depression: An open-label trial publication-title: Asian J. Psychiatr. doi: 10.1016/j.ajp.2024.104036 – volume: 23 start-page: 1051 year: 2020 ident: ref13 article-title: Magnetoreception in Hymenoptera: importance for navigation publication-title: Anim. Cogn. doi: 10.1007/s10071-020-01431-x – volume: 2 start-page: 1 year: 2005 ident: ref46 article-title: A geological history of reflecting optics publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2004.0026 – volume: 390 start-page: 371 year: 1997 ident: ref64 article-title: Structure and function of the vertebrate magnetic sense publication-title: Nature doi: 10.1038/37057 – volume: 61 start-page: 29 year: 2008 ident: ref24 article-title: Magnetoreception in animals publication-title: Phys. Today doi: 10.1063/1.2897947 – volume: 121 start-page: 590 year: 2001 ident: ref20 article-title: Magnetic materials in otoliths of bird and fish lagena and their function publication-title: Acta Otolaryngol. doi: 10.1080/000164801316878872 – start-page: 424 volume-title: Ceuvres Completes De Francois Arago year: 1856 ident: ref1 – volume: 58 start-page: 465 year: 1971 ident: ref11 article-title: Selforganization of matter and the evolution of biological macromolecules publication-title: Naturwissenschaften doi: 10.1007/BF00623322 – volume: 18 start-page: 1384340 year: 2024 ident: ref54 article-title: Evolutionary origin of alpha rhythms in vertebrates publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2024.1384340 – volume: 29 start-page: 4052 year: 2019 ident: ref44 article-title: A putative mechanism for Magnetoreception by electromagnetic induction in the pigeon inner ear publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.09.048 – volume: 118 start-page: e2109865118 year: 2021 ident: ref63 article-title: Temporal variation of planetary iron as a driver of evolution publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2109865118 – volume: 191 start-page: 675 year: 2005 ident: ref70 article-title: Magnetic orientation and magnetoreception in birds and other animals publication-title: J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. doi: 10.1007/s00359-005-0627-7 – volume: 9 start-page: 1483 year: 2017 ident: ref47 article-title: The elemental role of iron in DNA synthesis and repair publication-title: Metallomics doi: 10.1039/c7mt00116a – volume: 7 start-page: 865 year: 2016 ident: ref8 article-title: Why did life develop on the surface of the earth in the Cambrian? publication-title: Geosci. Front. doi: 10.1016/j.gsf.2016.02.001 – volume-title: Magnetoreception and Magnetosomes in Bacteria; microbiology monographs year: 2006 ident: ref55 article-title: Geobiology of Magnetotactic Bacteria – volume: 618 start-page: 531 year: 2023 ident: ref61 article-title: Hadaean to Palaeoarchaean stagnant-lid tectonics revealed by zircon magnetism publication-title: Nature doi: 10.1038/s41586-023-06024-5 – volume: 29 start-page: R14 year: 2019 ident: ref35 article-title: No evidence for a magnetite-based magnetoreceptor in the lagena of pigeons publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.11.032 – volume: 6 start-page: ENEURO.0483-18.2019 year: 2019 ident: ref65 article-title: Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain publication-title: eNeuro doi: 10.1523/ENEURO.0483-18.2019 – volume: 87 start-page: e0155621 year: 2021 ident: ref32 article-title: A novel Magnetotactic Alphaproteobacterium producing intracellular magnetite and calcium-bearing minerals publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01556-21 – volume: 80 start-page: 1148 year: 2013 ident: ref6 article-title: Pedunculopontine nucleus: functional organization and clinical implications publication-title: Neurology doi: 10.1212/WNL.0b013e3182886a76 |
SSID | ssj0062651 |
Score | 2.3751493 |
SecondaryResourceType | review_article |
Snippet | The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient... The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 1482872 |
SubjectTerms | electromagnetic induction geomagnetic field iron magnetoreception magnetotactic bacteria semicircular canals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQnnpBFEpZvuRKiAtKcRJ_xOJEEQghtSeQuFn-GAMSm626u4f-e8Z2dgUH6KXXKFGcN4nfm4n9hpAj51ADt9ZXkttUrdJQaQ6hCjFYjXSPrJLqHT9_yes7fnMv7l-1-kprwoo9cAHuFDrPmsA6UGC5s6oTijOrhA8s1Kx1afZFzlsmU2UORpUu6rJFBlMwfRr7x0Xadt7w78n3slPNGxrKbv3vS8xMNVcbZH3QiPS8jO0zWYN-k2yd95gfT_7SY5pXbeZy-BY5wzjT0t1qRqeRPmdjkKdVc9s5ndiHHjCzhmEBC33qae7MN_tC7q4uby-uq6EhQuWRa-aV00jXAYRGFWFlW0ftXRdDhKa1jCspo0D1F7x2UsvAvYpKJf0TovAawLfbZNRPe9gh1ItOtXUdk588Zzw6XmsItumACRBWjEm9xMf4wS08Na14Npg1JExNxtQkTM2A6ZicrK75XbwyPjz7R4J9dWbyuc4HMPpmiL75V_TH5NsyaAa_i_Szw_YwXcxMm_aUCdQvaky-lmiubtVqiaqXyd3_MYQ98ik9VinL7JPR_M8CDlCozN1hfidfACYt5UU priority: 102 providerName: Directory of Open Access Journals |
Title | The origins of light-independent magnetoreception in humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39677406 https://www.proquest.com/docview/3146851817 https://doaj.org/article/e8c02d08e7ea4ba785740a75cd0d103b |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA6iL30pVXvZVpcUSl_K2MxOLhNKKVq0UlBEXNi3kMuJFdbZuhfQf9-TzOxAQQt9GZghc-EkZ77vnCTnI-SDc8iBK-sLyW3KVmkoNIdQhBisRrhHVEn5jrNzeTrmPydiskHWckedARePhnZJT2o8nx7c3z18Q4f_miJOxNvPsfm1SpvKR_wgVbWsFf6StxCZVHLUM97PKiB3z3KMpZQYgCHVaTfRPPGMv4Aq1_N_moRmMDp5QZ53LJIett2-TTag2SG7hw1G0LcP9CPN6zpzwnyXfMGRQFv9qwWdRTrNpUNuevnbJb211w1g7A3dEhd609Cs3bd4ScYnx1ffT4tOMqHwiEbLwmkE9ABCI8-wsiqj9q6OIcKosowrKaNAfhi8dlLLwL2KSiWGFKLwGsBXr8hmM2vgDaFe1Koqy5gqznPGo-OlhmBHNTABwooBKdf2Mb6rJ55kLaYG44pkU5NtapJNTWfTAfnU3_O7rabxz9ZHyex9y1QJO1-Yza9N51gGas9GgdWgwHJnVS0UZ1YJH1goWeUG5P260wx6TpoOsQ3MVgtTpV1nAhmOGpDXbW_2r6q0RF7M5Nv_-uB35Fk6bTM0e2RzOV_BPnKWpRuSraPj84vLYY758fhjUg7z4PwDI0HqZg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origins+of+light-independent+magnetoreception+in+humans&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Shibata%2C+Takashi&rft.au=Hattori%2C+Noriaki&rft.au=Nishijo%2C+Hisao&rft.au=Kuroda%2C+Satoshi&rft.date=2024&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=18&rft_id=info:doi/10.3389%2Ffnhum.2024.1482872&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2024_1482872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |