The origins of light-independent magnetoreception in humans

The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emer...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 18; p. 1482872
Main Authors Shibata, Takashi, Hattori, Noriaki, Nishijo, Hisao, Kuroda, Satoshi, Takakusaki, Kaoru
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field—even in deep-sea environments—through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth’s formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.
AbstractList The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field—even in deep-sea environments—through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth’s formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.
The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field-even in deep-sea environments-through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth's formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field-even in deep-sea environments-through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth's formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.
Author Hattori, Noriaki
Takakusaki, Kaoru
Nishijo, Hisao
Kuroda, Satoshi
Shibata, Takashi
Author_xml – sequence: 1
  givenname: Takashi
  surname: Shibata
  fullname: Shibata, Takashi
– sequence: 2
  givenname: Noriaki
  surname: Hattori
  fullname: Hattori, Noriaki
– sequence: 3
  givenname: Hisao
  surname: Nishijo
  fullname: Nishijo, Hisao
– sequence: 4
  givenname: Satoshi
  surname: Kuroda
  fullname: Kuroda, Satoshi
– sequence: 5
  givenname: Kaoru
  surname: Takakusaki
  fullname: Takakusaki, Kaoru
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39677406$$D View this record in MEDLINE/PubMed
BookMark eNp9UclqHDEQFcEh3vIDOYQ--tJjba0Fn4zJYjDkYp-FWirNyHRLE0lzyN-7xzMOIQdfqoriLVS9c3SScgKEvhC8Ykzp65A2u3lFMeUrwhVVkn5AZ0QI2g9EkJN_5lN0XuszxoKKgXxCp0wLKTkWZ-jmcQNdLnEdU-1y6Ka43rQ-Jg9bWEpq3WzXCVou4GDbYk5dTN3ia1O9RB-DnSp8PvYL9PT92-Pdz_7h14_7u9uH3nHCWj9qiomHQXOmrWAkaDeq4ANQZjGXQoQBU-ydHoUWnjsZpGSaah8GpwEcu0D3B12f7bPZljjb8sdkG83rIpe1saVFN4EB5TD1WIEEy0cr1bCcaeXgPPYEs3HRujpobUv-vYPazByrg2myCfKuGka4UANRRC7Qr0fobpzB_zV-e94CUAeAK7nWAsG42Oz-R63YOBmCzT4n85qT2edkjjktVPof9U39HdILMPCWjg
CitedBy_id crossref_primary_10_3389_fnins_2025_1497021
Cites_doi 10.1140/epjs/s11734-022-00755-8
10.3390/cells9020439
10.1016/j.mehy.2021.110626
10.1016/j.cell.2023.08.027
10.1021/cb300323q
10.1093/nsr/nwz065
10.1038/s41467-020-14773-4
10.1038/s41598-018-29766-z
10.1111/1758-2229.12550
10.1098/rsos.181163
10.1038/s41559-024-02461-1
10.1038/ncomms1326
10.3389/fmicb.2023.1174899
10.1038/s41598-022-12460-6
10.1126/science.1064557
10.1242/jeb.199.5.1241
10.1002/jmri.28414
10.1038/nature.2012.10540
10.1038/srep23657
10.1371/journal.pgen.1007518
10.1103/PhysRevLett.127.101801
10.1038/nmicrobiol.2016.116
10.1073/pnas.2108655119
10.1016/0361-9230(90)9005
10.1007/0-387-30752-4_25
10.1038/s41467-018-03090-6
10.1016/j.tcb.2024.01.010
10.1038/s41522-022-00304-0
10.1007/s11062-008-9021-8
10.1002/cne.10579
10.1098/rsif.2009.0423.focus
10.1007/s00359-013-0865-z
10.1126/science.adh9978
10.1007/s00359-017-1167-7
10.1126/science.176.4030.62
10.1007/978-1-4614-1704-0_8
10.7554/eLife.40232
10.1097/01.wnr.0000227984.84927.a7
10.1007/s10867-024-09656-4
10.1242/jeb.55.2.371
10.1038/s41586-018-0782-y
10.1089/ast.2011.0667
10.1242/jeb.02573
10.1038/nature03077
10.1080/01490451.2018.1554013
10.1002/dvdy.24195
10.3390/min12111403
10.1159/000494050
10.1038/s41598-018-37839-2
10.1016/s0306-4522(96)00540-4
10.1016/j.ajp.2024.104036
10.1007/s10071-020-01431-x
10.1098/rsif.2004.0026
10.1038/37057
10.1063/1.2897947
10.1080/000164801316878872
10.1007/BF00623322
10.3389/fnbeh.2024.1384340
10.1016/j.cub.2019.09.048
10.1073/pnas.2109865118
10.1007/s00359-005-0627-7
10.1039/c7mt00116a
10.1016/j.gsf.2016.02.001
10.1038/s41586-023-06024-5
10.1016/j.cub.2018.11.032
10.1523/ENEURO.0483-18.2019
10.1128/AEM.01556-21
10.1212/WNL.0b013e3182886a76
ContentType Journal Article
Copyright Copyright © 2024 Shibata, Hattori, Nishijo, Kuroda and Takakusaki.
Copyright_xml – notice: Copyright © 2024 Shibata, Hattori, Nishijo, Kuroda and Takakusaki.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3389/fnhum.2024.1482872
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_e8c02d08e7ea4ba785740a75cd0d103b
39677406
10_3389_fnhum_2024_1482872
Genre Journal Article
Review
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
7X8
PUEGO
ID FETCH-LOGICAL-c413t-b9201de59439a631f9cb8fdfe23a04766f5020dc9b696d4c7f773929df5c9eec3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:25:49 EDT 2025
Sun Aug 24 03:58:43 EDT 2025
Mon Jul 21 05:34:53 EDT 2025
Tue Jul 01 02:43:20 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords magnetoreception
electromagnetic induction
iron
magnetotactic bacteria
geomagnetic field
semicircular canals
Language English
License Copyright © 2024 Shibata, Hattori, Nishijo, Kuroda and Takakusaki.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-b9201de59439a631f9cb8fdfe23a04766f5020dc9b696d4c7f773929df5c9eec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/e8c02d08e7ea4ba785740a75cd0d103b
PMID 39677406
PQID 3146851817
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e8c02d08e7ea4ba785740a75cd0d103b
proquest_miscellaneous_3146851817
pubmed_primary_39677406
crossref_citationtrail_10_3389_fnhum_2024_1482872
crossref_primary_10_3389_fnhum_2024_1482872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Chae (ref9) 2022; 12
Lundberg (ref34) 2015; 244
Najle (ref41) 2023; 186
Strbak (ref58) 2022; 12
Cressey (ref10) 2012
Nishimura (ref45) 2023; 381
Bashir (ref3) 2011; 2
Martinez-Banaclocha (ref36) 2020; 9
Fleissner (ref14) 2003; 458
Goswami (ref18) 2022; 8
Wade (ref63) 2021; 118
Carlo (ref8) 2016; 7
Bellinger (ref5) 2022; 119
Frey (ref15) 2012; 7
Wegner (ref66) 2006; 209
Fritzsch (ref16) 2014; 200
Elbers (ref12) 2017; 203
Gilder (ref17) 2018; 8
Myklatun (ref40) 2018; 9
Nemoto (ref43) 2019; 9
Stixrude (ref56) 2020; 11
Tarduno (ref61) 2023; 618
Bai (ref2) 2021; 127
Moody (ref38) 2024; 8
Weiss (ref68) 2016; 1
Liang (ref28) 2016; 6
Tachibana (ref59) 2024; 96
Takakusaki (ref60) 1997; 78
Higuchi (ref22) 2019; 565
Mielke (ref37) 2011; 11
Nimpf (ref44) 2019; 29
Arago (ref1) 1856
Semm (ref51) 1990; 25
Eigen (ref11) 1971; 58
Weiss (ref67) 2018; 14
Malkemper (ref35) 2019; 29
Beason (ref4) 1996; 199
Lin (ref29) 2020; 7
Harada (ref20) 2001; 121
Lin (ref30) 2017; 9
Shaw (ref53) 2018; 5
Puig (ref47) 2017; 9
Sato (ref49) 2021; 153
Kalmijn (ref25) 1971; 55
Mora (ref39) 2004; 432
Walker (ref64) 1997; 390
Parker (ref46) 2005; 2
Fleischmann (ref13) 2020; 23
He (ref21) 2023; 57
Köppl (ref27) 2018; 92
Wang (ref65) 2019; 6
Strbak (ref57) 2019; 36
Shibata (ref54) 2024; 18
Schneider (ref50) 2023; 232
Wiltschko (ref71) 2012; 739
Serna (ref52) 2024; 50
Sasaki (ref48) 2006; 17
Simmons (ref55) 2006
Wiltschko (ref69) 1972; 176
Jacquemyn (ref23) 2024; 34
Wiltschko (ref70) 2005; 191
Lohmann (ref33) 2001; 294
Cadiou (ref7) 2010; 7
Lipovsek (ref31) 2018; 7
Nakano (ref42) 2023; 14
Liu (ref32) 2021; 87
Verosub (ref62) 1989
Benarroch (ref6) 2013; 80
Johnsen (ref24) 2008; 61
Khorevin (ref26) 2008; 40
References_xml – volume: 232
  start-page: 269
  year: 2023
  ident: ref50
  article-title: Over 50 years of behavioural evidence on the magnetic sense in animals: what has been learnt and how?
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-022-00755-8
– volume: 9
  start-page: 439
  year: 2020
  ident: ref36
  article-title: Astroglial Isopotentiality and calcium-associated biomagnetic field effects on cortical neuronal coupling
  publication-title: Cells
  doi: 10.3390/cells9020439
– volume: 153
  start-page: 110626
  year: 2021
  ident: ref49
  article-title: Why is the mesencephalic nucleus of the trigeminal nerve situated inside the brain?
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2021.110626
– volume: 186
  start-page: 4676
  year: 2023
  ident: ref41
  article-title: Stepwise emergence of the neuronal gene expression program in early animal evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2023.08.027
– volume: 7
  start-page: 1477
  year: 2012
  ident: ref15
  article-title: The ubiquity of iron
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb300323q
– volume: 7
  start-page: 472
  year: 2020
  ident: ref29
  article-title: On the origin of microbial magnetoreception
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz065
– volume: 11
  start-page: 935
  year: 2020
  ident: ref56
  article-title: A silicate dynamo in the early earth
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14773-4
– volume: 8
  start-page: 11363
  year: 2018
  ident: ref17
  article-title: Distribution of magnetic remanence carriers in the human brain
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29766-z
– volume: 9
  start-page: 345
  year: 2017
  ident: ref30
  article-title: Diversity and ecology of and biomineralization by magnetotactic bacteria
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12550
– volume: 5
  start-page: 181163
  year: 2018
  ident: ref53
  article-title: Multi-modal imaging and analysis in the search for iron-based magnetoreceptors in the honeybee Apis mellifera
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.181163
– volume: 8
  start-page: 1654
  year: 2024
  ident: ref38
  article-title: The nature of the last universal common ancestor and its impact on the early earth system
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-024-02461-1
– volume: 2
  start-page: 322
  year: 2011
  ident: ref3
  article-title: The rice mitochondrial iron transporter is essential for plant growth
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1326
– volume: 14
  start-page: 1174899
  year: 2023
  ident: ref42
  article-title: Bullet-shaped magnetosomes and metagenomic-based magnetosome gene profiles in a deep-sea hydrothermal vent chimney
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2023.1174899
– volume: 12
  start-page: 8997
  year: 2022
  ident: ref9
  article-title: Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12460-6
– volume: 294
  start-page: 364
  year: 2001
  ident: ref33
  article-title: Regional magnetic fields as navigational markers for sea turtles
  publication-title: Science
  doi: 10.1126/science.1064557
– volume: 199
  start-page: 1241
  year: 1996
  ident: ref4
  article-title: Does the avian ophthalmic nerve carry magnetic navigational information?
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.199.5.1241
– volume: 57
  start-page: 337
  year: 2023
  ident: ref21
  article-title: Application of Neuromelanin MR imaging in Parkinson disease
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.28414
– year: 2012
  ident: ref10
  article-title: Pigeons may ‘hear’ magnetic fields
  publication-title: Nature
  doi: 10.1038/nature.2012.10540
– volume: 6
  start-page: 23657
  year: 2016
  ident: ref28
  article-title: Magnetic sensing through the abdomen of the honey bee
  publication-title: Sci. Rep.
  doi: 10.1038/srep23657
– volume: 14
  start-page: e1007518
  year: 2018
  ident: ref67
  article-title: The last universal common ancestor between ancient earth chemistry and the onset of genetics
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007518
– volume: 127
  start-page: 101801
  year: 2021
  ident: ref2
  article-title: Searching for magnetic monopoles with Earth’s magnetic field
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.101801
– volume: 1
  start-page: 16116
  year: 2016
  ident: ref68
  article-title: The physiology and habitat of the last universal common ancestor
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.116
– volume: 119
  start-page: e2108655119
  year: 2022
  ident: ref5
  article-title: Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2108655119
– volume: 25
  start-page: 735
  year: 1990
  ident: ref51
  article-title: Responses to small magnetic variations by the trigeminal system of the bobolink
  publication-title: Brain Res. Bull.
  doi: 10.1016/0361-9230(90)9005
– volume-title: Geophysics. Encyclopedia of earth science
  year: 1989
  ident: ref62
  article-title: Detrital remanent magnetism (DRM)
  doi: 10.1007/0-387-30752-4_25
– volume: 9
  start-page: 802
  year: 2018
  ident: ref40
  article-title: Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03090-6
– volume: 34
  start-page: 535
  year: 2024
  ident: ref23
  article-title: Driving factors of neuronal ferroptosis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2024.01.010
– volume: 8
  start-page: 43
  year: 2022
  ident: ref18
  article-title: Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications
  publication-title: NPJ Biofilms Microbio.
  doi: 10.1038/s41522-022-00304-0
– volume: 40
  start-page: 142
  year: 2008
  ident: ref26
  article-title: The lagena (the third otolith endorgan in vertebrates)
  publication-title: Neurophysiology
  doi: 10.1007/s11062-008-9021-8
– volume: 458
  start-page: 350
  year: 2003
  ident: ref14
  article-title: Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10579
– volume: 7
  start-page: S193
  year: 2010
  ident: ref7
  article-title: Avian magnetite-based magnetoreception: a physiologist’s perspective
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0423.focus
– volume: 200
  start-page: 5
  year: 2014
  ident: ref16
  article-title: Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies
  publication-title: J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.
  doi: 10.1007/s00359-013-0865-z
– volume: 381
  start-page: 1006
  year: 2023
  ident: ref45
  article-title: Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.adh9978
– volume: 203
  start-page: 591
  year: 2017
  ident: ref12
  article-title: Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe)
  publication-title: J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.
  doi: 10.1007/s00359-017-1167-7
– volume: 176
  start-page: 62
  year: 1972
  ident: ref69
  article-title: Magnetic compass of European robins
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.176.4030.62
– volume: 739
  start-page: 126
  year: 2012
  ident: ref71
  article-title: Magnetoreception
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4614-1704-0_8
– volume: 7
  start-page: e40232
  year: 2018
  ident: ref31
  article-title: Conserved and divergent development of brainstem vestibular and auditory nuclei
  publication-title: eLife
  doi: 10.7554/eLife.40232
– volume: 17
  start-page: 1215
  year: 2006
  ident: ref48
  article-title: Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000227984.84927.a7
– volume: 50
  start-page: 215
  year: 2024
  ident: ref52
  article-title: Magnetite in the abdomen and antennae of Apis mellifera honeybees
  publication-title: J. Biol. Phys.
  doi: 10.1007/s10867-024-09656-4
– volume: 55
  start-page: 371
  year: 1971
  ident: ref25
  article-title: The electric sense of sharks and rays
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.55.2.371
– volume: 565
  start-page: 347
  year: 2019
  ident: ref22
  article-title: Inner ear development in cyclostomes and evolution of the vertebrate semicircular canals
  publication-title: Nature
  doi: 10.1038/s41586-018-0782-y
– volume: 11
  start-page: 933
  year: 2011
  ident: ref37
  article-title: Iron-sulfide-bearing chimneys as potential catalytic energy traps at life’s emergence
  publication-title: Astrobiology
  doi: 10.1089/ast.2011.0667
– volume: 209
  start-page: 4747
  year: 2006
  ident: ref66
  article-title: Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.02573
– volume: 432
  start-page: 508
  year: 2004
  ident: ref39
  article-title: Magnetoreception and its trigeminal mediation in the homing pigeon
  publication-title: Nature
  doi: 10.1038/nature03077
– volume: 36
  start-page: 278
  year: 2019
  ident: ref57
  article-title: Archean iron-based metabolism analysis and the photoferrotrophy-driven hypothesis of microbial magnetotaxis origin
  publication-title: Geomicrobiology
  doi: 10.1080/01490451.2018.1554013
– volume: 244
  start-page: 239
  year: 2015
  ident: ref34
  article-title: Mechanisms of otoconia and otolith development
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24195
– volume: 12
  start-page: 1403
  year: 2022
  ident: ref58
  article-title: Magnetotactic Bacteria: from evolution to biomineralization and biomedical applications
  publication-title: Fortschr. Mineral.
  doi: 10.3390/min12111403
– volume: 92
  start-page: 1
  year: 2018
  ident: ref27
  article-title: Evolution of endolymph secretion and endolymphatic potential generation in the vertebrate inner ear
  publication-title: Brain Behav. Evol.
  doi: 10.1159/000494050
– volume: 9
  start-page: 856
  year: 2019
  ident: ref43
  article-title: Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37839-2
– volume: 78
  start-page: 771
  year: 1997
  ident: ref60
  article-title: Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat
  publication-title: Neuroscience
  doi: 10.1016/s0306-4522(96)00540-4
– volume: 96
  start-page: 104036
  year: 2024
  ident: ref59
  article-title: Extremely low frequency, extremely low magnetic environment for depression: An open-label trial
  publication-title: Asian J. Psychiatr.
  doi: 10.1016/j.ajp.2024.104036
– volume: 23
  start-page: 1051
  year: 2020
  ident: ref13
  article-title: Magnetoreception in Hymenoptera: importance for navigation
  publication-title: Anim. Cogn.
  doi: 10.1007/s10071-020-01431-x
– volume: 2
  start-page: 1
  year: 2005
  ident: ref46
  article-title: A geological history of reflecting optics
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2004.0026
– volume: 390
  start-page: 371
  year: 1997
  ident: ref64
  article-title: Structure and function of the vertebrate magnetic sense
  publication-title: Nature
  doi: 10.1038/37057
– volume: 61
  start-page: 29
  year: 2008
  ident: ref24
  article-title: Magnetoreception in animals
  publication-title: Phys. Today
  doi: 10.1063/1.2897947
– volume: 121
  start-page: 590
  year: 2001
  ident: ref20
  article-title: Magnetic materials in otoliths of bird and fish lagena and their function
  publication-title: Acta Otolaryngol.
  doi: 10.1080/000164801316878872
– start-page: 424
  volume-title: Ceuvres Completes De Francois Arago
  year: 1856
  ident: ref1
– volume: 58
  start-page: 465
  year: 1971
  ident: ref11
  article-title: Selforganization of matter and the evolution of biological macromolecules
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00623322
– volume: 18
  start-page: 1384340
  year: 2024
  ident: ref54
  article-title: Evolutionary origin of alpha rhythms in vertebrates
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2024.1384340
– volume: 29
  start-page: 4052
  year: 2019
  ident: ref44
  article-title: A putative mechanism for Magnetoreception by electromagnetic induction in the pigeon inner ear
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.09.048
– volume: 118
  start-page: e2109865118
  year: 2021
  ident: ref63
  article-title: Temporal variation of planetary iron as a driver of evolution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2109865118
– volume: 191
  start-page: 675
  year: 2005
  ident: ref70
  article-title: Magnetic orientation and magnetoreception in birds and other animals
  publication-title: J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.
  doi: 10.1007/s00359-005-0627-7
– volume: 9
  start-page: 1483
  year: 2017
  ident: ref47
  article-title: The elemental role of iron in DNA synthesis and repair
  publication-title: Metallomics
  doi: 10.1039/c7mt00116a
– volume: 7
  start-page: 865
  year: 2016
  ident: ref8
  article-title: Why did life develop on the surface of the earth in the Cambrian?
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2016.02.001
– volume-title: Magnetoreception and Magnetosomes in Bacteria; microbiology monographs
  year: 2006
  ident: ref55
  article-title: Geobiology of Magnetotactic Bacteria
– volume: 618
  start-page: 531
  year: 2023
  ident: ref61
  article-title: Hadaean to Palaeoarchaean stagnant-lid tectonics revealed by zircon magnetism
  publication-title: Nature
  doi: 10.1038/s41586-023-06024-5
– volume: 29
  start-page: R14
  year: 2019
  ident: ref35
  article-title: No evidence for a magnetite-based magnetoreceptor in the lagena of pigeons
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.11.032
– volume: 6
  start-page: ENEURO.0483-18.2019
  year: 2019
  ident: ref65
  article-title: Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0483-18.2019
– volume: 87
  start-page: e0155621
  year: 2021
  ident: ref32
  article-title: A novel Magnetotactic Alphaproteobacterium producing intracellular magnetite and calcium-bearing minerals
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01556-21
– volume: 80
  start-page: 1148
  year: 2013
  ident: ref6
  article-title: Pedunculopontine nucleus: functional organization and clinical implications
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182886a76
SSID ssj0062651
Score 2.3751493
SecondaryResourceType review_article
Snippet The Earth’s abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient...
The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1482872
SubjectTerms electromagnetic induction
geomagnetic field
iron
magnetoreception
magnetotactic bacteria
semicircular canals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQnnpBFEpZvuRKiAtKcRJ_xOJEEQghtSeQuFn-GAMSm626u4f-e8Z2dgUH6KXXKFGcN4nfm4n9hpAj51ADt9ZXkttUrdJQaQ6hCjFYjXSPrJLqHT9_yes7fnMv7l-1-kprwoo9cAHuFDrPmsA6UGC5s6oTijOrhA8s1Kx1afZFzlsmU2UORpUu6rJFBlMwfRr7x0Xadt7w78n3slPNGxrKbv3vS8xMNVcbZH3QiPS8jO0zWYN-k2yd95gfT_7SY5pXbeZy-BY5wzjT0t1qRqeRPmdjkKdVc9s5ndiHHjCzhmEBC33qae7MN_tC7q4uby-uq6EhQuWRa-aV00jXAYRGFWFlW0ftXRdDhKa1jCspo0D1F7x2UsvAvYpKJf0TovAawLfbZNRPe9gh1ItOtXUdk588Zzw6XmsItumACRBWjEm9xMf4wS08Na14Npg1JExNxtQkTM2A6ZicrK75XbwyPjz7R4J9dWbyuc4HMPpmiL75V_TH5NsyaAa_i_Szw_YwXcxMm_aUCdQvaky-lmiubtVqiaqXyd3_MYQ98ik9VinL7JPR_M8CDlCozN1hfidfACYt5UU
  priority: 102
  providerName: Directory of Open Access Journals
Title The origins of light-independent magnetoreception in humans
URI https://www.ncbi.nlm.nih.gov/pubmed/39677406
https://www.proquest.com/docview/3146851817
https://doaj.org/article/e8c02d08e7ea4ba785740a75cd0d103b
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFA6iL30pVXvZVpcUSl_K2MxOLhNKKVq0UlBEXNi3kMuJFdbZuhfQf9-TzOxAQQt9GZghc-EkZ77vnCTnI-SDc8iBK-sLyW3KVmkoNIdQhBisRrhHVEn5jrNzeTrmPydiskHWckedARePhnZJT2o8nx7c3z18Q4f_miJOxNvPsfm1SpvKR_wgVbWsFf6StxCZVHLUM97PKiB3z3KMpZQYgCHVaTfRPPGMv4Aq1_N_moRmMDp5QZ53LJIett2-TTag2SG7hw1G0LcP9CPN6zpzwnyXfMGRQFv9qwWdRTrNpUNuevnbJb211w1g7A3dEhd609Cs3bd4ScYnx1ffT4tOMqHwiEbLwmkE9ABCI8-wsiqj9q6OIcKosowrKaNAfhi8dlLLwL2KSiWGFKLwGsBXr8hmM2vgDaFe1Koqy5gqznPGo-OlhmBHNTABwooBKdf2Mb6rJ55kLaYG44pkU5NtapJNTWfTAfnU3_O7rabxz9ZHyex9y1QJO1-Yza9N51gGas9GgdWgwHJnVS0UZ1YJH1goWeUG5P260wx6TpoOsQ3MVgtTpV1nAhmOGpDXbW_2r6q0RF7M5Nv_-uB35Fk6bTM0e2RzOV_BPnKWpRuSraPj84vLYY758fhjUg7z4PwDI0HqZg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origins+of+light-independent+magnetoreception+in+humans&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Shibata%2C+Takashi&rft.au=Hattori%2C+Noriaki&rft.au=Nishijo%2C+Hisao&rft.au=Kuroda%2C+Satoshi&rft.date=2024&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=18&rft_id=info:doi/10.3389%2Ffnhum.2024.1482872&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2024_1482872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon