Conditions for neutral speciation via isolation by distance

The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic change...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 335; pp. 51 - 56
Main Authors Baptestini, Elizabeth M., de Aguiar, Marcus A.M., Bar-Yam, Yaneer
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 21.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations. •We extend the analytical results on speciation of hermaphroditic populations to sex-separated ones.•We provide detailed comparisons between the analytical and numerical results for both cases.•We show that the analytical formulas match the simulations.
AbstractList The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations.
The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations.The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations.
The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations. •We extend the analytical results on speciation of hermaphroditic populations to sex-separated ones.•We provide detailed comparisons between the analytical and numerical results for both cases.•We show that the analytical formulas match the simulations.
Author Bar-Yam, Yaneer
Baptestini, Elizabeth M.
de Aguiar, Marcus A.M.
Author_xml – sequence: 1
  givenname: Elizabeth M.
  surname: Baptestini
  fullname: Baptestini, Elizabeth M.
  organization: Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Unicamp, 13083-859 Campinas, SP, Brazil
– sequence: 2
  givenname: Marcus A.M.
  surname: de Aguiar
  fullname: de Aguiar, Marcus A.M.
  email: aguiar@ifi.unicamp.br
  organization: Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Unicamp, 13083-859 Campinas, SP, Brazil
– sequence: 3
  givenname: Yaneer
  surname: Bar-Yam
  fullname: Bar-Yam, Yaneer
  organization: New England Complex Systems Institute, Cambridge, MA 02142, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23791852$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFL5DAYhoO46Dj6Bzxoj17a_ZI0TYpeZFh1YWAP65xDmn6VDJ1mTDqC_97MVj14cCEkJDzvF3ifE3I4-AEJOadQUKDVz3WxHhtXMKC8gKoASg_IjEItciVKekhmAIzlgtb8mJzEuAaAuuTVETlmXNZUCTYj1ws_tG50fohZ50M24G4Mps_iFq0z-_fsxZnMRd9Pt-Y1a10czWDxlPzoTB_x7P2ck9Xdr8fFQ778c_97cbvMbUn5mDdKAjdljdh1pVLSUmY5CoOs6zhnzIKUJTSSNUYZxaEy0oraMp64FFV8Tq6mudvgn3cYR71x0WLfmwH9LmpaSQZCpO3_aMlqVUpOZUIv3tFds8FWb4PbmPCqP7pJAJsAG3yMAbtPhILeC9BrvReg9wI0VDoJSCH1JWTd-K-5VKvrv49eTtHOeG2egot69TcBInnjFU9rTm4mAlPbLw6DjtZhMtG6gHbUrXffffAGp5yoHw
CitedBy_id crossref_primary_10_1111_mec_17219
crossref_primary_10_1002_ece3_10344
crossref_primary_10_1111_geb_13604
crossref_primary_10_1016_j_physa_2024_130111
crossref_primary_10_1111_ecog_04937
crossref_primary_10_1007_s12080_024_00590_8
crossref_primary_10_1111_mec_13636
crossref_primary_10_1093_sysbio_syy049
crossref_primary_10_1016_j_physa_2014_11_030
crossref_primary_10_1111_jbi_14683
crossref_primary_10_1088_1751_8121_ac88a5
crossref_primary_10_1111_zsc_12522
crossref_primary_10_1103_PhysRevE_99_062225
crossref_primary_10_1111_evo_13121
crossref_primary_10_1016_j_physa_2018_05_150
crossref_primary_10_3390_parasitologia4040033
crossref_primary_10_1016_j_ympev_2020_106820
crossref_primary_10_1093_jhered_esu045
crossref_primary_10_1016_j_ympev_2021_107157
crossref_primary_10_1016_j_ympev_2018_10_031
Cites_doi 10.1146/annurev.ecolsys.39.110707.173552
10.1088/0305-4470/24/17/005
10.1098/rspb.2000.1382
10.1214/aoms/1177704967
10.1103/PhysRevE.84.031901
10.1002/bies.201000023
10.1093/genetics/28.2.114
10.1023/A:1013319217703
10.1007/s12080-012-0172-2
10.1038/nature08168
10.1017/S0305004100050088
10.1017/S0001867800045365
10.1016/j.jtbi.2007.06.010
10.1016/j.jtbi.2010.03.017
10.1371/journal.pcbi.1002414
10.1137/0134050
10.1016/S0022-5193(88)80026-2
10.1126/science.1105201
10.1073/pnas.1217034110
10.1016/j.jtbi.2005.08.041
10.1371/journal.pcbi.1000126
10.1111/j.1420-9101.2009.01833.x
10.1007/s12080-010-0076-y
10.1007/BF00171824
10.1038/35053059
10.1088/0305-4470/27/21/022
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2013 Elsevier Ltd. All rights reserved.
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jtbi.2013.06.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
EndPage 56
ExternalDocumentID 23791852
10_1016_j_jtbi_2013_06_011
US201500036336
S002251931300283X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLV
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
YQT
ZMT
ZU3
~02
~G-
.GJ
29L
3O-
53G
AALCJ
AAQXK
ABFNM
ABGRD
ABPIF
ABPTK
ABTAH
ADFGL
ADMUD
AETEA
AI.
ASPBG
AVWKF
AZFZN
CAG
COF
FA8
FBQ
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEW
UQL
VH1
WUQ
XPP
ZGI
ZXP
ZY4
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c413t-b8703a49eeff4887c12c3e5ae2ff3322c07740b72ba8a8306a7c59c2312c87083
IEDL.DBID .~1
ISSN 0022-5193
1095-8541
IngestDate Fri Jul 11 05:02:11 EDT 2025
Fri Jul 11 16:35:39 EDT 2025
Thu Apr 03 06:59:45 EDT 2025
Tue Jul 01 03:10:46 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Wed Dec 27 19:14:06 EST 2023
Fri Feb 23 02:28:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Isolation by distance
Assorative mating
Sex-separated model
Hermafroditic model
Neutral speciation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-b8703a49eeff4887c12c3e5ae2ff3322c07740b72ba8a8306a7c59c2312c87083
Notes http://dx.doi.org/10.1016/j.jtbi.2013.06.011
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S002251931300283X
PMID 23791852
PQID 1429847317
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1672055720
proquest_miscellaneous_1429847317
pubmed_primary_23791852
crossref_primary_10_1016_j_jtbi_2013_06_011
crossref_citationtrail_10_1016_j_jtbi_2013_06_011
fao_agris_US201500036336
elsevier_sciencedirect_doi_10_1016_j_jtbi_2013_06_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-21
PublicationDateYYYYMMDD 2013-10-21
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moran (bib29) 1971; 70
Ewens (bib9) 1979; vol. 9
Manzo, Peliti (bib25) 1994; 27
Gillespie (bib14) 2004
Watterson (bib33) 1961; 32
Hubbell (bib19) 2001
Fitzpatrick, Fordyce, Gavrilets (bib10) 2009; 22
Melian, Alonso, Allesina, Condit, Etienne (bib28) 2012; 8
Hoelzer, Drewes, Meier, Doursat (bib18) 2008; 4
Higgs, Derrida (bib17) 1992; 35
Irwin, Irwin, Price (bib21) 2001; 112–113
de Aguiar, Baranger, Baptestini, Kaufman, Bar-Yam (bib6) 2009; 460
Cannings (bib3) 1974; 6
Chinellato, D.D., de Aguiar, M.A.M., Epstein, I.R., Braha, D., Bar-Yam, Y., 2007. Dynamical Response of Networks Under External Perturbations: Exact Results.
de Aguiar, Bar-Yam (bib5) 2011; 84
Kopp (bib23) 2010; 32
Gavrilets (bib12) 2006; 239
Martins, A.B., de Aguiar, M.A.M., Bar-Yam, Y., 2013. Evolution and stability of ring species. Proc. Nat. Acad. Sci. USA 110.
Higgs, Derrida (bib16) 1991; 24
[nlin.SI].
Rosenzweig (bib30) 1995
Etienne, Haegeman (bib7) 2011; 4
Irwin, Bensch, Price (bib20) 2001; 409
Ashlock, Clare, von Königslöw, Ashlock (bib1) 2010; 264
Wake (bib31) 2009; 40
Lande, Kirkpatrick (bib24) 1988; 133
Wakeley (bib32) 2009
Gavrilets, Arnqvist, Friberg (bib13) 2000; 268
Mayr (bib27) 2001
Etienne, Alonso, McKane (bib8) 2007; 248
Gavrilets (bib11) 2004
Baptestini, de Aguiar, Bar-Yam (bib2) 2013
Irwin, Bensch, Irwin, Price (bib22) 2005; 307
Wright (bib34) 1943; 28
Gladstein (bib15) 1978; 34
Gladstein (10.1016/j.jtbi.2013.06.011_bib15) 1978; 34
Cannings (10.1016/j.jtbi.2013.06.011_bib3) 1974; 6
Moran (10.1016/j.jtbi.2013.06.011_bib29) 1971; 70
Baptestini (10.1016/j.jtbi.2013.06.011_bib2) 2013
Wake (10.1016/j.jtbi.2013.06.011_bib31) 2009; 40
Mayr (10.1016/j.jtbi.2013.06.011_bib27) 2001
Rosenzweig (10.1016/j.jtbi.2013.06.011_bib30) 1995
Hoelzer (10.1016/j.jtbi.2013.06.011_bib18) 2008; 4
Irwin (10.1016/j.jtbi.2013.06.011_bib20) 2001; 409
Etienne (10.1016/j.jtbi.2013.06.011_bib7) 2011; 4
Melian (10.1016/j.jtbi.2013.06.011_bib28) 2012; 8
de Aguiar (10.1016/j.jtbi.2013.06.011_bib5) 2011; 84
Wakeley (10.1016/j.jtbi.2013.06.011_bib32) 2009
Etienne (10.1016/j.jtbi.2013.06.011_bib8) 2007; 248
Irwin (10.1016/j.jtbi.2013.06.011_bib22) 2005; 307
Gavrilets (10.1016/j.jtbi.2013.06.011_bib13) 2000; 268
10.1016/j.jtbi.2013.06.011_bib26
Watterson (10.1016/j.jtbi.2013.06.011_bib33) 1961; 32
Ashlock (10.1016/j.jtbi.2013.06.011_bib1) 2010; 264
Wright (10.1016/j.jtbi.2013.06.011_bib34) 1943; 28
10.1016/j.jtbi.2013.06.011_bib4
Gillespie (10.1016/j.jtbi.2013.06.011_bib14) 2004
Kopp (10.1016/j.jtbi.2013.06.011_bib23) 2010; 32
Higgs (10.1016/j.jtbi.2013.06.011_bib17) 1992; 35
de Aguiar (10.1016/j.jtbi.2013.06.011_bib6) 2009; 460
Gavrilets (10.1016/j.jtbi.2013.06.011_bib12) 2006; 239
Ewens (10.1016/j.jtbi.2013.06.011_bib9) 1979; vol. 9
Irwin (10.1016/j.jtbi.2013.06.011_bib21) 2001; 112–113
Fitzpatrick (10.1016/j.jtbi.2013.06.011_bib10) 2009; 22
Lande (10.1016/j.jtbi.2013.06.011_bib24) 1988; 133
Higgs (10.1016/j.jtbi.2013.06.011_bib16) 1991; 24
Hubbell (10.1016/j.jtbi.2013.06.011_bib19) 2001
Manzo (10.1016/j.jtbi.2013.06.011_bib25) 1994; 27
Gavrilets (10.1016/j.jtbi.2013.06.011_bib11) 2004
References_xml – volume: 35
  start-page: 454
  year: 1992
  end-page: 465
  ident: bib17
  article-title: Genetic distance and species formation in evolving populations
  publication-title: J. Mol. Evol.
– volume: 112–113
  start-page: 223
  year: 2001
  end-page: 243
  ident: bib21
  article-title: Ring species as bridges between microevolution and speciation
  publication-title: Genetica
– year: 2009
  ident: bib32
  article-title: Coalescent Theory
– volume: 248
  start-page: 522
  year: 2007
  end-page: 536
  ident: bib8
  article-title: The zero-sum assumption in neutral biodiversity theory
  publication-title: J. Theor. Biol.
– volume: 6
  start-page: 260
  year: 1974
  end-page: 290
  ident: bib3
  article-title: The latent roots of certain Markov chains arising in genetics
  publication-title: Adv. Appl. Probab.
– volume: 70
  start-page: 441
  year: 1971
  end-page: 450
  ident: bib29
  article-title: Maximum-likelihood estimation in non-standard conditions
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 22
  start-page: 2342
  year: 2009
  end-page: 2347
  ident: bib10
  article-title: Pattern, process and geographic modes of speciation
  publication-title: J. Evol. Biol.
– volume: 28
  start-page: 114
  year: 1943
  end-page: 138
  ident: bib34
  article-title: Isolation by distance
  publication-title: Genetics
– year: 2004
  ident: bib14
  article-title: Population Genetics
– volume: 8
  start-page: e1002414
  year: 2012
  ident: bib28
  article-title: Does sex speed up evolutionary rate and increase biodiversity?
  publication-title: PLoS Comput. Biol.
– volume: 4
  start-page: e1000126
  year: 2008
  ident: bib18
  article-title: Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences
  publication-title: PLoS Comput. Biol.
– year: 2001
  ident: bib27
  article-title: What Evolution is. Basic Books
– reference: [nlin.SI].
– volume: 239
  start-page: 172
  year: 2006
  end-page: 182
  ident: bib12
  article-title: The Maynard Smith model of sympatric speciation
  publication-title: J. Theor. Biol.
– volume: vol. 9
  year: 1979
  ident: bib9
  publication-title: Mathematical Population Genetics I. Theoretical Introduction, Series
– year: 2004
  ident: bib11
  article-title: Fitness Landscapes and the Origin of Species
– volume: 307
  start-page: 414
  year: 2005
  end-page: 416
  ident: bib22
  article-title: Speciation by distance in a ring species
  publication-title: Science
– volume: 264
  start-page: 1202
  year: 2010
  end-page: 1213
  ident: bib1
  article-title: Evolution and instability in ring species complexes
  publication-title: J. Theor. Biol.
– volume: 409
  start-page: 333
  year: 2001
  end-page: 337
  ident: bib20
  article-title: Speciation in a ring
  publication-title: Nature
– volume: 34
  start-page: 630
  year: 1978
  end-page: 642
  ident: bib15
  article-title: The characteristic values and vectors for a class of stochastic matrices arising in genetics
  publication-title: SIAM J. Appl. Math.
– volume: 40
  start-page: 333
  year: 2009
  end-page: 352
  ident: bib31
  article-title: What salamanders have taught us about evolution
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 32
  start-page: 716
  year: 1961
  end-page: 729
  ident: bib33
  article-title: Markov chains with absorbing states
  publication-title: Ann. Math. Stat.
– volume: 268
  start-page: 531
  year: 2000
  end-page: 539
  ident: bib13
  article-title: The evolution of female mate choice by sexual conflict
  publication-title: Proc. R. Soc. B
– volume: 84
  start-page: 031901
  year: 2011
  ident: bib5
  article-title: Moran model as a dynamical process on networks and its implications for neutral speciation
  publication-title: Phys. Rev. E
– volume: 27
  start-page: 7079
  year: 1994
  ident: bib25
  article-title: Geographic speciation in the Derrida–Higgs model of species formation
  publication-title: J. Phys. A
– volume: 24
  start-page: L985
  year: 1991
  ident: bib16
  article-title: Stochastic models for species formation in evolving populations
  publication-title: J. Phys. A
– reference: Chinellato, D.D., de Aguiar, M.A.M., Epstein, I.R., Braha, D., Bar-Yam, Y., 2007. Dynamical Response of Networks Under External Perturbations: Exact Results.
– volume: 32
  start-page: 564
  year: 2010
  end-page: 570
  ident: bib23
  article-title: Speciation and the neutral theory of biodiversity
  publication-title: BioEssays
– volume: 4
  start-page: 87
  year: 2011
  end-page: 109
  ident: bib7
  article-title: The neutral theory of biodiversity with random fission speciation
  publication-title: Theor. Ecol.
– reference: Martins, A.B., de Aguiar, M.A.M., Bar-Yam, Y., 2013. Evolution and stability of ring species. Proc. Nat. Acad. Sci. USA 110.
– year: 2001
  ident: bib19
  article-title: The Unified Neutral Theory of Biodiversity and Biogeography
– year: 2013
  ident: bib2
  article-title: The role of sex separation in neutral speciation
  publication-title: J. Theor. Ecol.
– year: 1995
  ident: bib30
  article-title: Species Diversity in Space and Time
– volume: 133
  start-page: 85
  year: 1988
  end-page: 98
  ident: bib24
  article-title: Ecological speciation by sexual selection
  publication-title: J. Theor. Biol.
– volume: 460
  start-page: 384
  year: 2009
  end-page: 387
  ident: bib6
  article-title: Global patterns of speciation and diversity
  publication-title: Nature
– volume: 40
  start-page: 333
  year: 2009
  ident: 10.1016/j.jtbi.2013.06.011_bib31
  article-title: What salamanders have taught us about evolution
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.39.110707.173552
– volume: 24
  start-page: L985
  year: 1991
  ident: 10.1016/j.jtbi.2013.06.011_bib16
  article-title: Stochastic models for species formation in evolving populations
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/24/17/005
– volume: 268
  start-page: 531
  year: 2000
  ident: 10.1016/j.jtbi.2013.06.011_bib13
  article-title: The evolution of female mate choice by sexual conflict
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2000.1382
– volume: 32
  start-page: 716
  year: 1961
  ident: 10.1016/j.jtbi.2013.06.011_bib33
  article-title: Markov chains with absorbing states
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704967
– volume: 84
  start-page: 031901
  year: 2011
  ident: 10.1016/j.jtbi.2013.06.011_bib5
  article-title: Moran model as a dynamical process on networks and its implications for neutral speciation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.031901
– volume: 32
  start-page: 564
  year: 2010
  ident: 10.1016/j.jtbi.2013.06.011_bib23
  article-title: Speciation and the neutral theory of biodiversity
  publication-title: BioEssays
  doi: 10.1002/bies.201000023
– volume: 28
  start-page: 114
  year: 1943
  ident: 10.1016/j.jtbi.2013.06.011_bib34
  article-title: Isolation by distance
  publication-title: Genetics
  doi: 10.1093/genetics/28.2.114
– ident: 10.1016/j.jtbi.2013.06.011_bib4
– volume: 112–113
  start-page: 223
  year: 2001
  ident: 10.1016/j.jtbi.2013.06.011_bib21
  article-title: Ring species as bridges between microevolution and speciation
  publication-title: Genetica
  doi: 10.1023/A:1013319217703
– year: 2013
  ident: 10.1016/j.jtbi.2013.06.011_bib2
  article-title: The role of sex separation in neutral speciation
  publication-title: J. Theor. Ecol.
  doi: 10.1007/s12080-012-0172-2
– year: 2004
  ident: 10.1016/j.jtbi.2013.06.011_bib11
– volume: 460
  start-page: 384
  year: 2009
  ident: 10.1016/j.jtbi.2013.06.011_bib6
  article-title: Global patterns of speciation and diversity
  publication-title: Nature
  doi: 10.1038/nature08168
– volume: 70
  start-page: 441
  year: 1971
  ident: 10.1016/j.jtbi.2013.06.011_bib29
  article-title: Maximum-likelihood estimation in non-standard conditions
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100050088
– volume: 6
  start-page: 260
  year: 1974
  ident: 10.1016/j.jtbi.2013.06.011_bib3
  article-title: The latent roots of certain Markov chains arising in genetics
  publication-title: Adv. Appl. Probab.
  doi: 10.1017/S0001867800045365
– volume: 248
  start-page: 522
  year: 2007
  ident: 10.1016/j.jtbi.2013.06.011_bib8
  article-title: The zero-sum assumption in neutral biodiversity theory
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2007.06.010
– volume: 264
  start-page: 1202
  year: 2010
  ident: 10.1016/j.jtbi.2013.06.011_bib1
  article-title: Evolution and instability in ring species complexes
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.03.017
– year: 2004
  ident: 10.1016/j.jtbi.2013.06.011_bib14
– volume: 8
  start-page: e1002414
  year: 2012
  ident: 10.1016/j.jtbi.2013.06.011_bib28
  article-title: Does sex speed up evolutionary rate and increase biodiversity?
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002414
– volume: 34
  start-page: 630
  year: 1978
  ident: 10.1016/j.jtbi.2013.06.011_bib15
  article-title: The characteristic values and vectors for a class of stochastic matrices arising in genetics
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0134050
– year: 2009
  ident: 10.1016/j.jtbi.2013.06.011_bib32
– year: 2001
  ident: 10.1016/j.jtbi.2013.06.011_bib19
– volume: 133
  start-page: 85
  year: 1988
  ident: 10.1016/j.jtbi.2013.06.011_bib24
  article-title: Ecological speciation by sexual selection
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(88)80026-2
– volume: 307
  start-page: 414
  year: 2005
  ident: 10.1016/j.jtbi.2013.06.011_bib22
  article-title: Speciation by distance in a ring species
  publication-title: Science
  doi: 10.1126/science.1105201
– ident: 10.1016/j.jtbi.2013.06.011_bib26
  doi: 10.1073/pnas.1217034110
– volume: 239
  start-page: 172
  year: 2006
  ident: 10.1016/j.jtbi.2013.06.011_bib12
  article-title: The Maynard Smith model of sympatric speciation
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.08.041
– volume: 4
  start-page: e1000126
  year: 2008
  ident: 10.1016/j.jtbi.2013.06.011_bib18
  article-title: Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000126
– volume: 22
  start-page: 2342
  year: 2009
  ident: 10.1016/j.jtbi.2013.06.011_bib10
  article-title: Pattern, process and geographic modes of speciation
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2009.01833.x
– volume: 4
  start-page: 87
  year: 2011
  ident: 10.1016/j.jtbi.2013.06.011_bib7
  article-title: The neutral theory of biodiversity with random fission speciation
  publication-title: Theor. Ecol.
  doi: 10.1007/s12080-010-0076-y
– volume: 35
  start-page: 454
  year: 1992
  ident: 10.1016/j.jtbi.2013.06.011_bib17
  article-title: Genetic distance and species formation in evolving populations
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00171824
– year: 1995
  ident: 10.1016/j.jtbi.2013.06.011_bib30
– volume: 409
  start-page: 333
  year: 2001
  ident: 10.1016/j.jtbi.2013.06.011_bib20
  article-title: Speciation in a ring
  publication-title: Nature
  doi: 10.1038/35053059
– year: 2001
  ident: 10.1016/j.jtbi.2013.06.011_bib27
– volume: 27
  start-page: 7079
  year: 1994
  ident: 10.1016/j.jtbi.2013.06.011_bib25
  article-title: Geographic speciation in the Derrida–Higgs model of species formation
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/27/21/022
– volume: vol. 9
  year: 1979
  ident: 10.1016/j.jtbi.2013.06.011_bib9
SSID ssj0009436
Score 2.1950002
Snippet The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 51
SubjectTerms Assorative mating
Biological Evolution
Computer Simulation
evolution
females
Hermafroditic model
hermaphroditism
Isolation by distance
males
Models, Genetic
Neutral speciation
new species
population structure
reproductive isolation
Sex-separated model
Title Conditions for neutral speciation via isolation by distance
URI https://dx.doi.org/10.1016/j.jtbi.2013.06.011
https://www.ncbi.nlm.nih.gov/pubmed/23791852
https://www.proquest.com/docview/1429847317
https://www.proquest.com/docview/1672055720
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxsxFH5kIZBLSNPFTlszhd7CxKNlRjPkZEyDk5BcGoNvQlKlMqaMTW0Hcslv73uzuPQQH3qUkEB6essn6S0AX1NlcsdcEjsWeCxNMHGRSRabIEUePCtCHSh8_5BNpvJ2ls72YNzFwpBbZav7G51ea-u2Z9hSc7gsS4rx5RR2KehDBo3kjCLYpSIuv3z56-ZRyLpMYO21TqPbwJnGx2u-tiW5d4k6hydjrxmn_WAWr0PQ2hRdn8JJiyGjUbPMN7DnqzM4aqpKPr-Fq_GC_qGJnyKEpFHlN_ScEa3qUvPUHz2VJiqR65qWfY5-EIzEvb-D6fW3x_EkbmskxA7Nzzq2KG_CyML7EFAWlWPcCZ8az0MQKKwuQXyXWMWtyU2O9wOjXFo4RHXc4dRcvIeDalH5HkQueLxSIuLiNpc2U8bKxOPtKHUmLxSXfWAdcbRrE4hTHYtfuvMUm2siqCaCanKXY6wPF9s5yyZ9xs7RaUdz_Q8TaNTvO-f18IC0-Yl6UU-_c3rFoUQ7QmR9-NKdmkbBod8QU_nFZoV3Hl6gaUb8tGNMpjglKeNJHz40R77dBheqoMjz8_9c9Ec4phbZQc4-wcH698Z_RoCztoOagwdwOLq5mzz8AXtM9X4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BVQWXqqVQQh-4UjmhJevHvlT1UNGiUB6XEik3Yxu7WoQ2iCStcumf6h_szD6oeiAHJI7rtVfe8XjmG3seAB-SzOSOuzhyPIhImWCiIlU8MkHJPHhehDpQ-PQsHQzVt1EyWoI_XSwMuVW2sr-R6bW0blv6LTX7N2VJMb6Cwi4lXcigkhy1npXHfv4L7bbJp6MvuMi7Qhx-PT8YRG1pgcih1J5GFtlUGlV4HwKycOa4cNInxosQJPK4ixEWxTYT1uQmR1htMpcUDsGQcDg0l_jdZXiiUFxQ2YT93__8SgpV1yWs3eRpem2kTuNUdjW1JfmTyTppKOf3acPlYMb3Y95a9x0-h2ctaGWfG7q8gCVfrcPTpozl_CV8PBjTxTcxMEMMzCo_o_MTNqlr21M7-1kaViKbN092zi4JtyKxN2D4KJTbhJVqXPktYC54tGER4gmbK5tmxqrYozmWOJMXmVA94B1xtGszllPhjGvduaZdaSKoJoJq8s_jvAd7d2NumnwdC3snHc31f1ynUaEsHLeFC6TNDxTEevhd0LERZfaRMu3B-27VNO5Uun4xlR_PJmhkiQKxAAK2BX3STFBWNBH34FWz5He_IWRWUKj79gMnvQOrg_PTE31ydHb8GtboDSlhwd_AyvR25t8iupradzU3M7h47O3zF4woMCU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditions+for+neutral+speciation+via+isolation+by+distance&rft.jtitle=Journal+of+theoretical+biology&rft.au=Baptestini%2C+Elizabeth+M&rft.au=de+Aguiar%2C+Marcus+A+M&rft.au=Bar-Yam%2C+Yaneer&rft.date=2013-10-21&rft.eissn=1095-8541&rft.volume=335&rft.spage=51&rft_id=info:doi/10.1016%2Fj.jtbi.2013.06.011&rft_id=info%3Apmid%2F23791852&rft.externalDocID=23791852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon