Conditions for neutral speciation via isolation by distance
The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic change...
Saved in:
Published in | Journal of theoretical biology Vol. 335; pp. 51 - 56 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
21.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations.
•We extend the analytical results on speciation of hermaphroditic populations to sex-separated ones.•We provide detailed comparisons between the analytical and numerical results for both cases.•We show that the analytical formulas match the simulations. |
---|---|
AbstractList | The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations. The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations.The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations. The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009). A similar phenomenon may occur in the absence of barriers via isolation by distance if the population is distributed over large areas (de Aguiar et al., 2009; Etienne and Haegeman, 2011; Gavrilets et al., 2000). The first demonstration of this process was based on computer simulations employing agent-based models. Recently, analytical results were derived combining network theory, to model the spatial structure of the population, and an ansatz that accounts for the effect of forbidding mating between individuals that are too different genetically (de Aguiar and Bar-Yam, 2011). The main result obtained with this approach is an expression that indicates when speciation is possible as a function of the parameters describing the population. The aim of this work is to test this analytical result by comparing it with numerical simulations for a hermaphroditic population (de Aguiar et al., 2009) and for a population whose individuals are explicitly separated into males and females (Baptestini et al., 2013). We show that the analytical formula is indeed a very good overall description of the simulations and that the exponents describing dependence of the critical threshold of speciation with the parameters are in good agreement with the simulations. •We extend the analytical results on speciation of hermaphroditic populations to sex-separated ones.•We provide detailed comparisons between the analytical and numerical results for both cases.•We show that the analytical formulas match the simulations. |
Author | Bar-Yam, Yaneer Baptestini, Elizabeth M. de Aguiar, Marcus A.M. |
Author_xml | – sequence: 1 givenname: Elizabeth M. surname: Baptestini fullname: Baptestini, Elizabeth M. organization: Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Unicamp, 13083-859 Campinas, SP, Brazil – sequence: 2 givenname: Marcus A.M. surname: de Aguiar fullname: de Aguiar, Marcus A.M. email: aguiar@ifi.unicamp.br organization: Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Unicamp, 13083-859 Campinas, SP, Brazil – sequence: 3 givenname: Yaneer surname: Bar-Yam fullname: Bar-Yam, Yaneer organization: New England Complex Systems Institute, Cambridge, MA 02142, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23791852$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFL5DAYhoO46Dj6Bzxoj17a_ZI0TYpeZFh1YWAP65xDmn6VDJ1mTDqC_97MVj14cCEkJDzvF3ifE3I4-AEJOadQUKDVz3WxHhtXMKC8gKoASg_IjEItciVKekhmAIzlgtb8mJzEuAaAuuTVETlmXNZUCTYj1ws_tG50fohZ50M24G4Mps_iFq0z-_fsxZnMRd9Pt-Y1a10czWDxlPzoTB_x7P2ck9Xdr8fFQ778c_97cbvMbUn5mDdKAjdljdh1pVLSUmY5CoOs6zhnzIKUJTSSNUYZxaEy0oraMp64FFV8Tq6mudvgn3cYR71x0WLfmwH9LmpaSQZCpO3_aMlqVUpOZUIv3tFds8FWb4PbmPCqP7pJAJsAG3yMAbtPhILeC9BrvReg9wI0VDoJSCH1JWTd-K-5VKvrv49eTtHOeG2egot69TcBInnjFU9rTm4mAlPbLw6DjtZhMtG6gHbUrXffffAGp5yoHw |
CitedBy_id | crossref_primary_10_1111_mec_17219 crossref_primary_10_1002_ece3_10344 crossref_primary_10_1111_geb_13604 crossref_primary_10_1016_j_physa_2024_130111 crossref_primary_10_1111_ecog_04937 crossref_primary_10_1007_s12080_024_00590_8 crossref_primary_10_1111_mec_13636 crossref_primary_10_1093_sysbio_syy049 crossref_primary_10_1016_j_physa_2014_11_030 crossref_primary_10_1111_jbi_14683 crossref_primary_10_1088_1751_8121_ac88a5 crossref_primary_10_1111_zsc_12522 crossref_primary_10_1103_PhysRevE_99_062225 crossref_primary_10_1111_evo_13121 crossref_primary_10_1016_j_physa_2018_05_150 crossref_primary_10_3390_parasitologia4040033 crossref_primary_10_1016_j_ympev_2020_106820 crossref_primary_10_1093_jhered_esu045 crossref_primary_10_1016_j_ympev_2021_107157 crossref_primary_10_1016_j_ympev_2018_10_031 |
Cites_doi | 10.1146/annurev.ecolsys.39.110707.173552 10.1088/0305-4470/24/17/005 10.1098/rspb.2000.1382 10.1214/aoms/1177704967 10.1103/PhysRevE.84.031901 10.1002/bies.201000023 10.1093/genetics/28.2.114 10.1023/A:1013319217703 10.1007/s12080-012-0172-2 10.1038/nature08168 10.1017/S0305004100050088 10.1017/S0001867800045365 10.1016/j.jtbi.2007.06.010 10.1016/j.jtbi.2010.03.017 10.1371/journal.pcbi.1002414 10.1137/0134050 10.1016/S0022-5193(88)80026-2 10.1126/science.1105201 10.1073/pnas.1217034110 10.1016/j.jtbi.2005.08.041 10.1371/journal.pcbi.1000126 10.1111/j.1420-9101.2009.01833.x 10.1007/s12080-010-0076-y 10.1007/BF00171824 10.1038/35053059 10.1088/0305-4470/27/21/022 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2013 Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jtbi.2013.06.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8541 |
EndPage | 56 |
ExternalDocumentID | 23791852 10_1016_j_jtbi_2013_06_011 US201500036336 S002251931300283X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLV IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSZ T5K TN5 YQT ZMT ZU3 ~02 ~G- .GJ 29L 3O- 53G AALCJ AAQXK ABFNM ABGRD ABPIF ABPTK ABTAH ADFGL ADMUD AETEA AI. ASPBG AVWKF AZFZN CAG COF FA8 FBQ FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT R2- SEW UQL VH1 WUQ XPP ZGI ZXP ZY4 ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c413t-b8703a49eeff4887c12c3e5ae2ff3322c07740b72ba8a8306a7c59c2312c87083 |
IEDL.DBID | .~1 |
ISSN | 0022-5193 1095-8541 |
IngestDate | Fri Jul 11 05:02:11 EDT 2025 Fri Jul 11 16:35:39 EDT 2025 Thu Apr 03 06:59:45 EDT 2025 Tue Jul 01 03:10:46 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Wed Dec 27 19:14:06 EST 2023 Fri Feb 23 02:28:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Isolation by distance Assorative mating Sex-separated model Hermafroditic model Neutral speciation |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-b8703a49eeff4887c12c3e5ae2ff3322c07740b72ba8a8306a7c59c2312c87083 |
Notes | http://dx.doi.org/10.1016/j.jtbi.2013.06.011 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S002251931300283X |
PMID | 23791852 |
PQID | 1429847317 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1672055720 proquest_miscellaneous_1429847317 pubmed_primary_23791852 crossref_primary_10_1016_j_jtbi_2013_06_011 crossref_citationtrail_10_1016_j_jtbi_2013_06_011 fao_agris_US201500036336 elsevier_sciencedirect_doi_10_1016_j_jtbi_2013_06_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-21 |
PublicationDateYYYYMMDD | 2013-10-21 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of theoretical biology |
PublicationTitleAlternate | J Theor Biol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moran (bib29) 1971; 70 Ewens (bib9) 1979; vol. 9 Manzo, Peliti (bib25) 1994; 27 Gillespie (bib14) 2004 Watterson (bib33) 1961; 32 Hubbell (bib19) 2001 Fitzpatrick, Fordyce, Gavrilets (bib10) 2009; 22 Melian, Alonso, Allesina, Condit, Etienne (bib28) 2012; 8 Hoelzer, Drewes, Meier, Doursat (bib18) 2008; 4 Higgs, Derrida (bib17) 1992; 35 Irwin, Irwin, Price (bib21) 2001; 112–113 de Aguiar, Baranger, Baptestini, Kaufman, Bar-Yam (bib6) 2009; 460 Cannings (bib3) 1974; 6 Chinellato, D.D., de Aguiar, M.A.M., Epstein, I.R., Braha, D., Bar-Yam, Y., 2007. Dynamical Response of Networks Under External Perturbations: Exact Results. de Aguiar, Bar-Yam (bib5) 2011; 84 Kopp (bib23) 2010; 32 Gavrilets (bib12) 2006; 239 Martins, A.B., de Aguiar, M.A.M., Bar-Yam, Y., 2013. Evolution and stability of ring species. Proc. Nat. Acad. Sci. USA 110. Higgs, Derrida (bib16) 1991; 24 [nlin.SI]. Rosenzweig (bib30) 1995 Etienne, Haegeman (bib7) 2011; 4 Irwin, Bensch, Price (bib20) 2001; 409 Ashlock, Clare, von Königslöw, Ashlock (bib1) 2010; 264 Wake (bib31) 2009; 40 Lande, Kirkpatrick (bib24) 1988; 133 Wakeley (bib32) 2009 Gavrilets, Arnqvist, Friberg (bib13) 2000; 268 Mayr (bib27) 2001 Etienne, Alonso, McKane (bib8) 2007; 248 Gavrilets (bib11) 2004 Baptestini, de Aguiar, Bar-Yam (bib2) 2013 Irwin, Bensch, Irwin, Price (bib22) 2005; 307 Wright (bib34) 1943; 28 Gladstein (bib15) 1978; 34 Gladstein (10.1016/j.jtbi.2013.06.011_bib15) 1978; 34 Cannings (10.1016/j.jtbi.2013.06.011_bib3) 1974; 6 Moran (10.1016/j.jtbi.2013.06.011_bib29) 1971; 70 Baptestini (10.1016/j.jtbi.2013.06.011_bib2) 2013 Wake (10.1016/j.jtbi.2013.06.011_bib31) 2009; 40 Mayr (10.1016/j.jtbi.2013.06.011_bib27) 2001 Rosenzweig (10.1016/j.jtbi.2013.06.011_bib30) 1995 Hoelzer (10.1016/j.jtbi.2013.06.011_bib18) 2008; 4 Irwin (10.1016/j.jtbi.2013.06.011_bib20) 2001; 409 Etienne (10.1016/j.jtbi.2013.06.011_bib7) 2011; 4 Melian (10.1016/j.jtbi.2013.06.011_bib28) 2012; 8 de Aguiar (10.1016/j.jtbi.2013.06.011_bib5) 2011; 84 Wakeley (10.1016/j.jtbi.2013.06.011_bib32) 2009 Etienne (10.1016/j.jtbi.2013.06.011_bib8) 2007; 248 Irwin (10.1016/j.jtbi.2013.06.011_bib22) 2005; 307 Gavrilets (10.1016/j.jtbi.2013.06.011_bib13) 2000; 268 10.1016/j.jtbi.2013.06.011_bib26 Watterson (10.1016/j.jtbi.2013.06.011_bib33) 1961; 32 Ashlock (10.1016/j.jtbi.2013.06.011_bib1) 2010; 264 Wright (10.1016/j.jtbi.2013.06.011_bib34) 1943; 28 10.1016/j.jtbi.2013.06.011_bib4 Gillespie (10.1016/j.jtbi.2013.06.011_bib14) 2004 Kopp (10.1016/j.jtbi.2013.06.011_bib23) 2010; 32 Higgs (10.1016/j.jtbi.2013.06.011_bib17) 1992; 35 de Aguiar (10.1016/j.jtbi.2013.06.011_bib6) 2009; 460 Gavrilets (10.1016/j.jtbi.2013.06.011_bib12) 2006; 239 Ewens (10.1016/j.jtbi.2013.06.011_bib9) 1979; vol. 9 Irwin (10.1016/j.jtbi.2013.06.011_bib21) 2001; 112–113 Fitzpatrick (10.1016/j.jtbi.2013.06.011_bib10) 2009; 22 Lande (10.1016/j.jtbi.2013.06.011_bib24) 1988; 133 Higgs (10.1016/j.jtbi.2013.06.011_bib16) 1991; 24 Hubbell (10.1016/j.jtbi.2013.06.011_bib19) 2001 Manzo (10.1016/j.jtbi.2013.06.011_bib25) 1994; 27 Gavrilets (10.1016/j.jtbi.2013.06.011_bib11) 2004 |
References_xml | – volume: 35 start-page: 454 year: 1992 end-page: 465 ident: bib17 article-title: Genetic distance and species formation in evolving populations publication-title: J. Mol. Evol. – volume: 112–113 start-page: 223 year: 2001 end-page: 243 ident: bib21 article-title: Ring species as bridges between microevolution and speciation publication-title: Genetica – year: 2009 ident: bib32 article-title: Coalescent Theory – volume: 248 start-page: 522 year: 2007 end-page: 536 ident: bib8 article-title: The zero-sum assumption in neutral biodiversity theory publication-title: J. Theor. Biol. – volume: 6 start-page: 260 year: 1974 end-page: 290 ident: bib3 article-title: The latent roots of certain Markov chains arising in genetics publication-title: Adv. Appl. Probab. – volume: 70 start-page: 441 year: 1971 end-page: 450 ident: bib29 article-title: Maximum-likelihood estimation in non-standard conditions publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 22 start-page: 2342 year: 2009 end-page: 2347 ident: bib10 article-title: Pattern, process and geographic modes of speciation publication-title: J. Evol. Biol. – volume: 28 start-page: 114 year: 1943 end-page: 138 ident: bib34 article-title: Isolation by distance publication-title: Genetics – year: 2004 ident: bib14 article-title: Population Genetics – volume: 8 start-page: e1002414 year: 2012 ident: bib28 article-title: Does sex speed up evolutionary rate and increase biodiversity? publication-title: PLoS Comput. Biol. – volume: 4 start-page: e1000126 year: 2008 ident: bib18 article-title: Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences publication-title: PLoS Comput. Biol. – year: 2001 ident: bib27 article-title: What Evolution is. Basic Books – reference: [nlin.SI]. – volume: 239 start-page: 172 year: 2006 end-page: 182 ident: bib12 article-title: The Maynard Smith model of sympatric speciation publication-title: J. Theor. Biol. – volume: vol. 9 year: 1979 ident: bib9 publication-title: Mathematical Population Genetics I. Theoretical Introduction, Series – year: 2004 ident: bib11 article-title: Fitness Landscapes and the Origin of Species – volume: 307 start-page: 414 year: 2005 end-page: 416 ident: bib22 article-title: Speciation by distance in a ring species publication-title: Science – volume: 264 start-page: 1202 year: 2010 end-page: 1213 ident: bib1 article-title: Evolution and instability in ring species complexes publication-title: J. Theor. Biol. – volume: 409 start-page: 333 year: 2001 end-page: 337 ident: bib20 article-title: Speciation in a ring publication-title: Nature – volume: 34 start-page: 630 year: 1978 end-page: 642 ident: bib15 article-title: The characteristic values and vectors for a class of stochastic matrices arising in genetics publication-title: SIAM J. Appl. Math. – volume: 40 start-page: 333 year: 2009 end-page: 352 ident: bib31 article-title: What salamanders have taught us about evolution publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 32 start-page: 716 year: 1961 end-page: 729 ident: bib33 article-title: Markov chains with absorbing states publication-title: Ann. Math. Stat. – volume: 268 start-page: 531 year: 2000 end-page: 539 ident: bib13 article-title: The evolution of female mate choice by sexual conflict publication-title: Proc. R. Soc. B – volume: 84 start-page: 031901 year: 2011 ident: bib5 article-title: Moran model as a dynamical process on networks and its implications for neutral speciation publication-title: Phys. Rev. E – volume: 27 start-page: 7079 year: 1994 ident: bib25 article-title: Geographic speciation in the Derrida–Higgs model of species formation publication-title: J. Phys. A – volume: 24 start-page: L985 year: 1991 ident: bib16 article-title: Stochastic models for species formation in evolving populations publication-title: J. Phys. A – reference: Chinellato, D.D., de Aguiar, M.A.M., Epstein, I.R., Braha, D., Bar-Yam, Y., 2007. Dynamical Response of Networks Under External Perturbations: Exact Results. – volume: 32 start-page: 564 year: 2010 end-page: 570 ident: bib23 article-title: Speciation and the neutral theory of biodiversity publication-title: BioEssays – volume: 4 start-page: 87 year: 2011 end-page: 109 ident: bib7 article-title: The neutral theory of biodiversity with random fission speciation publication-title: Theor. Ecol. – reference: Martins, A.B., de Aguiar, M.A.M., Bar-Yam, Y., 2013. Evolution and stability of ring species. Proc. Nat. Acad. Sci. USA 110. – year: 2001 ident: bib19 article-title: The Unified Neutral Theory of Biodiversity and Biogeography – year: 2013 ident: bib2 article-title: The role of sex separation in neutral speciation publication-title: J. Theor. Ecol. – year: 1995 ident: bib30 article-title: Species Diversity in Space and Time – volume: 133 start-page: 85 year: 1988 end-page: 98 ident: bib24 article-title: Ecological speciation by sexual selection publication-title: J. Theor. Biol. – volume: 460 start-page: 384 year: 2009 end-page: 387 ident: bib6 article-title: Global patterns of speciation and diversity publication-title: Nature – volume: 40 start-page: 333 year: 2009 ident: 10.1016/j.jtbi.2013.06.011_bib31 article-title: What salamanders have taught us about evolution publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.39.110707.173552 – volume: 24 start-page: L985 year: 1991 ident: 10.1016/j.jtbi.2013.06.011_bib16 article-title: Stochastic models for species formation in evolving populations publication-title: J. Phys. A doi: 10.1088/0305-4470/24/17/005 – volume: 268 start-page: 531 year: 2000 ident: 10.1016/j.jtbi.2013.06.011_bib13 article-title: The evolution of female mate choice by sexual conflict publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2000.1382 – volume: 32 start-page: 716 year: 1961 ident: 10.1016/j.jtbi.2013.06.011_bib33 article-title: Markov chains with absorbing states publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704967 – volume: 84 start-page: 031901 year: 2011 ident: 10.1016/j.jtbi.2013.06.011_bib5 article-title: Moran model as a dynamical process on networks and its implications for neutral speciation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.031901 – volume: 32 start-page: 564 year: 2010 ident: 10.1016/j.jtbi.2013.06.011_bib23 article-title: Speciation and the neutral theory of biodiversity publication-title: BioEssays doi: 10.1002/bies.201000023 – volume: 28 start-page: 114 year: 1943 ident: 10.1016/j.jtbi.2013.06.011_bib34 article-title: Isolation by distance publication-title: Genetics doi: 10.1093/genetics/28.2.114 – ident: 10.1016/j.jtbi.2013.06.011_bib4 – volume: 112–113 start-page: 223 year: 2001 ident: 10.1016/j.jtbi.2013.06.011_bib21 article-title: Ring species as bridges between microevolution and speciation publication-title: Genetica doi: 10.1023/A:1013319217703 – year: 2013 ident: 10.1016/j.jtbi.2013.06.011_bib2 article-title: The role of sex separation in neutral speciation publication-title: J. Theor. Ecol. doi: 10.1007/s12080-012-0172-2 – year: 2004 ident: 10.1016/j.jtbi.2013.06.011_bib11 – volume: 460 start-page: 384 year: 2009 ident: 10.1016/j.jtbi.2013.06.011_bib6 article-title: Global patterns of speciation and diversity publication-title: Nature doi: 10.1038/nature08168 – volume: 70 start-page: 441 year: 1971 ident: 10.1016/j.jtbi.2013.06.011_bib29 article-title: Maximum-likelihood estimation in non-standard conditions publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100050088 – volume: 6 start-page: 260 year: 1974 ident: 10.1016/j.jtbi.2013.06.011_bib3 article-title: The latent roots of certain Markov chains arising in genetics publication-title: Adv. Appl. Probab. doi: 10.1017/S0001867800045365 – volume: 248 start-page: 522 year: 2007 ident: 10.1016/j.jtbi.2013.06.011_bib8 article-title: The zero-sum assumption in neutral biodiversity theory publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2007.06.010 – volume: 264 start-page: 1202 year: 2010 ident: 10.1016/j.jtbi.2013.06.011_bib1 article-title: Evolution and instability in ring species complexes publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.03.017 – year: 2004 ident: 10.1016/j.jtbi.2013.06.011_bib14 – volume: 8 start-page: e1002414 year: 2012 ident: 10.1016/j.jtbi.2013.06.011_bib28 article-title: Does sex speed up evolutionary rate and increase biodiversity? publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002414 – volume: 34 start-page: 630 year: 1978 ident: 10.1016/j.jtbi.2013.06.011_bib15 article-title: The characteristic values and vectors for a class of stochastic matrices arising in genetics publication-title: SIAM J. Appl. Math. doi: 10.1137/0134050 – year: 2009 ident: 10.1016/j.jtbi.2013.06.011_bib32 – year: 2001 ident: 10.1016/j.jtbi.2013.06.011_bib19 – volume: 133 start-page: 85 year: 1988 ident: 10.1016/j.jtbi.2013.06.011_bib24 article-title: Ecological speciation by sexual selection publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(88)80026-2 – volume: 307 start-page: 414 year: 2005 ident: 10.1016/j.jtbi.2013.06.011_bib22 article-title: Speciation by distance in a ring species publication-title: Science doi: 10.1126/science.1105201 – ident: 10.1016/j.jtbi.2013.06.011_bib26 doi: 10.1073/pnas.1217034110 – volume: 239 start-page: 172 year: 2006 ident: 10.1016/j.jtbi.2013.06.011_bib12 article-title: The Maynard Smith model of sympatric speciation publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2005.08.041 – volume: 4 start-page: e1000126 year: 2008 ident: 10.1016/j.jtbi.2013.06.011_bib18 article-title: Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000126 – volume: 22 start-page: 2342 year: 2009 ident: 10.1016/j.jtbi.2013.06.011_bib10 article-title: Pattern, process and geographic modes of speciation publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2009.01833.x – volume: 4 start-page: 87 year: 2011 ident: 10.1016/j.jtbi.2013.06.011_bib7 article-title: The neutral theory of biodiversity with random fission speciation publication-title: Theor. Ecol. doi: 10.1007/s12080-010-0076-y – volume: 35 start-page: 454 year: 1992 ident: 10.1016/j.jtbi.2013.06.011_bib17 article-title: Genetic distance and species formation in evolving populations publication-title: J. Mol. Evol. doi: 10.1007/BF00171824 – year: 1995 ident: 10.1016/j.jtbi.2013.06.011_bib30 – volume: 409 start-page: 333 year: 2001 ident: 10.1016/j.jtbi.2013.06.011_bib20 article-title: Speciation in a ring publication-title: Nature doi: 10.1038/35053059 – year: 2001 ident: 10.1016/j.jtbi.2013.06.011_bib27 – volume: 27 start-page: 7079 year: 1994 ident: 10.1016/j.jtbi.2013.06.011_bib25 article-title: Geographic speciation in the Derrida–Higgs model of species formation publication-title: J. Phys. A doi: 10.1088/0305-4470/27/21/022 – volume: vol. 9 year: 1979 ident: 10.1016/j.jtbi.2013.06.011_bib9 |
SSID | ssj0009436 |
Score | 2.1950002 |
Snippet | The branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 51 |
SubjectTerms | Assorative mating Biological Evolution Computer Simulation evolution females Hermafroditic model hermaphroditism Isolation by distance males Models, Genetic Neutral speciation new species population structure reproductive isolation Sex-separated model |
Title | Conditions for neutral speciation via isolation by distance |
URI | https://dx.doi.org/10.1016/j.jtbi.2013.06.011 https://www.ncbi.nlm.nih.gov/pubmed/23791852 https://www.proquest.com/docview/1429847317 https://www.proquest.com/docview/1672055720 |
Volume | 335 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxsxFH5kIZBLSNPFTlszhd7CxKNlRjPkZEyDk5BcGoNvQlKlMqaMTW0Hcslv73uzuPQQH3qUkEB6essn6S0AX1NlcsdcEjsWeCxNMHGRSRabIEUePCtCHSh8_5BNpvJ2ls72YNzFwpBbZav7G51ea-u2Z9hSc7gsS4rx5RR2KehDBo3kjCLYpSIuv3z56-ZRyLpMYO21TqPbwJnGx2u-tiW5d4k6hydjrxmn_WAWr0PQ2hRdn8JJiyGjUbPMN7DnqzM4aqpKPr-Fq_GC_qGJnyKEpFHlN_ScEa3qUvPUHz2VJiqR65qWfY5-EIzEvb-D6fW3x_EkbmskxA7Nzzq2KG_CyML7EFAWlWPcCZ8az0MQKKwuQXyXWMWtyU2O9wOjXFo4RHXc4dRcvIeDalH5HkQueLxSIuLiNpc2U8bKxOPtKHUmLxSXfWAdcbRrE4hTHYtfuvMUm2siqCaCanKXY6wPF9s5yyZ9xs7RaUdz_Q8TaNTvO-f18IC0-Yl6UU-_c3rFoUQ7QmR9-NKdmkbBod8QU_nFZoV3Hl6gaUb8tGNMpjglKeNJHz40R77dBheqoMjz8_9c9Ec4phbZQc4-wcH698Z_RoCztoOagwdwOLq5mzz8AXtM9X4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BVQWXqqVQQh-4UjmhJevHvlT1UNGiUB6XEik3Yxu7WoQ2iCStcumf6h_szD6oeiAHJI7rtVfe8XjmG3seAB-SzOSOuzhyPIhImWCiIlU8MkHJPHhehDpQ-PQsHQzVt1EyWoI_XSwMuVW2sr-R6bW0blv6LTX7N2VJMb6Cwi4lXcigkhy1npXHfv4L7bbJp6MvuMi7Qhx-PT8YRG1pgcih1J5GFtlUGlV4HwKycOa4cNInxosQJPK4ixEWxTYT1uQmR1htMpcUDsGQcDg0l_jdZXiiUFxQ2YT93__8SgpV1yWs3eRpem2kTuNUdjW1JfmTyTppKOf3acPlYMb3Y95a9x0-h2ctaGWfG7q8gCVfrcPTpozl_CV8PBjTxTcxMEMMzCo_o_MTNqlr21M7-1kaViKbN092zi4JtyKxN2D4KJTbhJVqXPktYC54tGER4gmbK5tmxqrYozmWOJMXmVA94B1xtGszllPhjGvduaZdaSKoJoJq8s_jvAd7d2NumnwdC3snHc31f1ynUaEsHLeFC6TNDxTEevhd0LERZfaRMu3B-27VNO5Uun4xlR_PJmhkiQKxAAK2BX3STFBWNBH34FWz5He_IWRWUKj79gMnvQOrg_PTE31ydHb8GtboDSlhwd_AyvR25t8iupradzU3M7h47O3zF4woMCU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditions+for+neutral+speciation+via+isolation+by+distance&rft.jtitle=Journal+of+theoretical+biology&rft.au=Baptestini%2C+Elizabeth+M&rft.au=de+Aguiar%2C+Marcus+A+M&rft.au=Bar-Yam%2C+Yaneer&rft.date=2013-10-21&rft.eissn=1095-8541&rft.volume=335&rft.spage=51&rft_id=info:doi/10.1016%2Fj.jtbi.2013.06.011&rft_id=info%3Apmid%2F23791852&rft.externalDocID=23791852 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon |