Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product

The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such syste...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 26; pp. 1476 - 1486
Main Authors Muzzi, Beatrice, Albino, Martin, Innocenti, Claudia, Petrecca, Michele, Cortigiani, Brunetto, Fernández, César de Julián, Bertoni, Giovanni, Fernandez-Pacheco, Rodrigo, Ibarra, Alfonso, Marquina, Clara, Ibarra, M. Ricardo, Sangregorio, Claudio
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron-cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m −3 by tuning the Co content in the metal precursor. Cobalt-based metal/metal ferrite nano-heterostructures with a high energy product were rationally synthesized through a one-pot thermal decomposition process.
AbstractList The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron-cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m −3 by tuning the Co content in the metal precursor. Cobalt-based metal/metal ferrite nano-heterostructures with a high energy product were rationally synthesized through a one-pot thermal decomposition process.
The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron–cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m −3 by tuning the Co content in the metal precursor.
The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron–cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m−3 by tuning the Co content in the metal precursor.
The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron-cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m-3 by tuning the Co content in the metal precursor.The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane. The obtained NHSs are characterized by the coexistence of Co metal and Co doped magnetite and are highly stable in an air atmosphere, thanks to the passivation of the metal with a very thin oxide layer. The investigation of the influence of the metal precursor composition (a mixed iron-cobalt oleate), of the ligands (oleic acid and sodium oleate) and of the reaction time on the chemical and structural characteristics of the final product, allowed us to rationalize the reaction pathway and to determine the role of each parameter. In particular, the use of sodium oleate is crucial to obtain a metal phase in the NHSs. In such a way, the one-pot approach proposed here allows the fine control of the synthesis, leading to the formation of stable, high performant, metal/ferrite NHSs with tailored magnetic properties. For instance, the room temperature maximum energy product was increased up to 19 kJ m-3 by tuning the Co content in the metal precursor.
Author Fernandez-Pacheco, Rodrigo
Marquina, Clara
Muzzi, Beatrice
Innocenti, Claudia
Ibarra, Alfonso
Sangregorio, Claudio
Cortigiani, Brunetto
Fernández, César de Julián
Petrecca, Michele
Bertoni, Giovanni
Ibarra, M. Ricardo
Albino, Martin
AuthorAffiliation ICCOM - CNR
Dpto. de Física de la Materia Condensada
University of Siena 1240
CNR - Istituto Nanoscienze
Universidad de Zaragoza
Laboratorio de Microscopias Avanzadas (LMA)
Dept. of Biotechnology
Chemistry and Pharmacy
Dept. of Chemistry "U. Schiff"
IMEM - CNR
Instituto de Nanociencia de Aragón (INA)
University of Florence and INSTM
Instituto de Ciencia de Materiales de Aragón (ICMA)
Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza
AuthorAffiliation_xml – name: Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza
– name: Dept. of Biotechnology
– name: Laboratorio de Microscopias Avanzadas (LMA)
– name: Chemistry and Pharmacy
– name: University of Siena 1240
– name: ICCOM - CNR
– name: Instituto de Ciencia de Materiales de Aragón (ICMA)
– name: IMEM - CNR
– name: Dpto. de Física de la Materia Condensada
– name: Universidad de Zaragoza
– name: Instituto de Nanociencia de Aragón (INA)
– name: Dept. of Chemistry "U. Schiff"
– name: CNR - Istituto Nanoscienze
– name: University of Florence and INSTM
Author_xml – sequence: 1
  givenname: Beatrice
  surname: Muzzi
  fullname: Muzzi, Beatrice
– sequence: 2
  givenname: Martin
  surname: Albino
  fullname: Albino, Martin
– sequence: 3
  givenname: Claudia
  surname: Innocenti
  fullname: Innocenti, Claudia
– sequence: 4
  givenname: Michele
  surname: Petrecca
  fullname: Petrecca, Michele
– sequence: 5
  givenname: Brunetto
  surname: Cortigiani
  fullname: Cortigiani, Brunetto
– sequence: 6
  givenname: César de Julián
  surname: Fernández
  fullname: Fernández, César de Julián
– sequence: 7
  givenname: Giovanni
  surname: Bertoni
  fullname: Bertoni, Giovanni
– sequence: 8
  givenname: Rodrigo
  surname: Fernandez-Pacheco
  fullname: Fernandez-Pacheco, Rodrigo
– sequence: 9
  givenname: Alfonso
  surname: Ibarra
  fullname: Ibarra, Alfonso
– sequence: 10
  givenname: Clara
  surname: Marquina
  fullname: Marquina, Clara
– sequence: 11
  givenname: M. Ricardo
  surname: Ibarra
  fullname: Ibarra, M. Ricardo
– sequence: 12
  givenname: Claudio
  surname: Sangregorio
  fullname: Sangregorio, Claudio
BookMark eNp9kUFr3DAQhUXYQjZJL7kHVHIJAaeSJcvrY9m2SSC0UJKzkaWxrcUruZKcZk_969VmQwJLyWlmNN-80fCO0Mw6CwidUnJFCas-a2I9oUzQ7gDNc8JJxliZz15zwQ_RUQgrQkTFBJujvw_Wy0cYjO1w7AGvQfXSmrDGrn1-SPrZ6CIOG5vKYMK2AU9bqgOs3DQOoPHSZY0MKbHSuqyHCN6F6CcVJw8B_zGxxxL3pusxWPDdBo_e6dQ-QR9aOQT4-BKP0f33b_fLm-zu5_Xt8stdpjhlMWuE1k2eV6poSLqOy5JXC1LSQgkqRdsueKvLgi20LkQOJW3aRV4WksmCASOaHaOLnWxa-3uCEOu1CQqGQVpwU6hzTktOeMWrhJ7voSs3eZs-l6iccs642FKXO0qlQ4OHth69WUu_qSmpt1bUX8mPX89WXCeY7MHKRBmNs9FLM_x_5NNuxAf1Kv3mbj3qNjFn7zHsH_Nho_k
CitedBy_id crossref_primary_10_1039_D5CP00305A
crossref_primary_10_1002_smtd_202300647
crossref_primary_10_1088_1361_6463_abd354
crossref_primary_10_1002_smll_202304152
crossref_primary_10_1155_2024_5571685
crossref_primary_10_1039_D0NA00967A
crossref_primary_10_1039_D3NR06299F
crossref_primary_10_3390_magnetochemistry7110146
crossref_primary_10_1016_j_actamat_2024_120491
Cites_doi 10.1103/PhysRevB.73.094406
10.1039/C6RA12072E
10.1021/cm502269s
10.1002/smll.201501382
10.2320/matertrans.M2012151
10.1051/anphys/192910120279
10.1039/C8NJ02177E
10.1002/pssa.2210960226
10.1002/chem.201702248
10.1039/c1cc13204k
10.1038/nature01208
10.1038/144327b0
10.1016/j.biomaterials.2014.04.063
10.1021/nl500904a
10.1103/PhysRevB.5.4709
10.1109/TMAG.2011.2157994
10.1021/acs.chemmater.6b00623
10.1021/jp982755m
10.1016/j.jmmm.2012.03.034
10.1063/1.1362333
10.1016/S0926-860X(03)00324-7
10.1109/20.102931
10.1016/j.ultramic.2008.01.004
10.1016/j.jmmm.2014.10.082
10.1039/C8CE00875B
10.1021/jp9051243
10.1021/ja0692478
10.1007/s10562-005-0002-x
10.1063/1.1392308
10.1016/j.ceramint.2016.01.044
10.1002/anie.200603148
10.1006/jcat.1999.2665
10.1002/aelm.201500365
10.1016/j.apsusc.2010.07.086
10.1016/j.jmmm.2007.02.040
10.1063/1.1984606
10.1021/jp300806j
10.1016/j.matlet.2009.12.036
10.1021/acs.chemmater.5b00944
10.1039/C5NR02969D
10.1021/acs.chemmater.5b01034
10.3390/nano8110881
10.1021/ja0708969
10.1111/jiec.12237
10.1063/1.4902351
10.1039/C4TC02889A
10.1021/acsnano.9b01281
10.1002/cmmi.1673
10.3762/bjnano.3.9
10.1002/adma.201002180
10.1021/ja074458d
10.1016/j.elspec.2015.02.006
10.1016/j.jmmm.2005.01.037
10.1016/j.apsusc.2014.02.006
10.1021/nn500454n
10.1103/PhysRev.102.1413
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr01361g
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1486
ExternalDocumentID 10_1039_D0NR01361G
d0nr01361g
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c413t-b6ddb229c5b03614a74980715c61a6ff84fd7538dd562e71bf8275a3a53e30d3
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 23:51:46 EDT 2025
Sun Jun 29 12:29:26 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 01:13:57 EDT 2025
Sat Jan 08 04:02:04 EST 2022
Wed Nov 11 00:27:44 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-b6ddb229c5b03614a74980715c61a6ff84fd7538dd562e71bf8275a3a53e30d3
Notes 10.1039/d0nr01361g
Electronic supplementary information (ESI) available: TEM images; XPS spectra; EELS elemental and quantification analysis; magnetic measurements; all experimental details about the synthesis performed to study the synthetic protocol; XRD patterns. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6813-780X
0000-0002-4895-0254
0000-0001-6424-9102
0000-0001-9151-7723
0000-0003-3705-4283
0000-0002-4599-3013
0000-0003-0602-492X
0000-0001-7438-0833
0000-0003-0681-8260
0000-0002-6671-2743
0000-0002-2655-3901
0000-0001-9766-5938
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2020/nr/d0nr01361g
PQID 2421443469
PQPubID 2047485
PageCount 11
ParticipantIDs crossref_primary_10_1039_D0NR01361G
proquest_miscellaneous_2417404949
rsc_primary_d0nr01361g
crossref_citationtrail_10_1039_D0NR01361G
proquest_journals_2421443469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-14
PublicationDateYYYYMMDD 2020-07-14
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-14
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sugimoto (D0NR01361G-(cit60)/*[position()=1]) 2001
Abellan (D0NR01361G-(cit36)/*[position()=1]) 1986; 96
Gutfleisch (D0NR01361G-(cit6)/*[position()=1]) 2011; 23
Zeng (D0NR01361G-(cit2)/*[position()=1]) 2002; 420
Bertoni (D0NR01361G-(cit30)/*[position()=1]) 2008; 108
Dobbrow (D0NR01361G-(cit45)/*[position()=1]) 2012; 3
Muro-Cruces (D0NR01361G-(cit57)/*[position()=1]) 2019; 13
Kneller (D0NR01361G-(cit3)/*[position()=1]) 1991; 27
Bao (D0NR01361G-(cit49)/*[position()=1]) 2007; 129
Verwey (D0NR01361G-(cit35)/*[position()=1]) 1939; 144
Luborsky (D0NR01361G-(cit42)/*[position()=1]) 1960; 31
Lottini (D0NR01361G-(cit50)/*[position()=1]) 2016; 28
Kovalenko (D0NR01361G-(cit51)/*[position()=1]) 2007; 129
Ghidini (D0NR01361G-(cit41)/*[position()=1]) 2007; 316
Leite (D0NR01361G-(cit43)/*[position()=1]) 2012; 324
Chen (D0NR01361G-(cit46)/*[position()=1]) 2015; 7
Wang (D0NR01361G-(cit55)/*[position()=1]) 2006; 107
Quesada (D0NR01361G-(cit26)/*[position()=1]) 2016; 2
Cotin (D0NR01361G-(cit27)/*[position()=1]) 2018; 8
Baaziz (D0NR01361G-(cit48)/*[position()=1]) 2014; 26
Chaubey (D0NR01361G-(cit16)/*[position()=1]) 2007; 129
Biesinger (D0NR01361G-(cit31)/*[position()=1]) 2010; 257
Pinna (D0NR01361G-(cit59)/*[position()=1]) 2008
Sort (D0NR01361G-(cit5)/*[position()=1]) 2001; 79
Zhou (D0NR01361G-(cit21)/*[position()=1]) 2014; 35
King (D0NR01361G-(cit8)/*[position()=1]) 2016; 50
Kemp (D0NR01361G-(cit58)/*[position()=1]) 2016; 6
Coey (D0NR01361G-(cit7)/*[position()=1]) 2010
Moya (D0NR01361G-(cit47)/*[position()=1]) 2015; 3
Zhao (D0NR01361G-(cit18)/*[position()=1]) 2010; 64
Jimenez-Villacorta (D0NR01361G-(cit4)/*[position()=1]) 2014
Kang (D0NR01361G-(cit54)/*[position()=1]) 2003; 251
Aslibeiki (D0NR01361G-(cit17)/*[position()=1]) 2016; 42
Jung (D0NR01361G-(cit23)/*[position()=1]) 2015; 11
Pugh (D0NR01361G-(cit38)/*[position()=1]) 2011; 47
Fantechi (D0NR01361G-(cit12)/*[position()=1]) 2015; 380
Wang (D0NR01361G-(cit52)/*[position()=1]) 2009
Meiklejohn (D0NR01361G-(cit1)/*[position()=1]) 1956; 102
Fantechi (D0NR01361G-(cit24)/*[position()=1]) 2014; 8
Baaziz (D0NR01361G-(cit28)/*[position()=1]) 2018; 20
Shirley (D0NR01361G-(cit29)/*[position()=1]) 1972; 5
Zhou (D0NR01361G-(cit53)/*[position()=1]) 2015; 27
Asti (D0NR01361G-(cit40)/*[position()=1]) 2006; 73
Wang (D0NR01361G-(cit32)/*[position()=1]) 2012; 53
Wilson (D0NR01361G-(cit33)/*[position()=1]) 2014; 303
Thormählen (D0NR01361G-(cit56)/*[position()=1]) 1999; 188
Fantechi (D0NR01361G-(cit13)/*[position()=1]) 2012; 116
Petit (D0NR01361G-(cit14)/*[position()=1]) 1999; 103
Quesada (D0NR01361G-(cit19)/*[position()=1]) 2014; 105
Park (D0NR01361G-(cit61)/*[position()=1]) 2007; 46
Aghavnian (D0NR01361G-(cit34)/*[position()=1]) 2016; 202
Nassar (D0NR01361G-(cit9)/*[position()=1]) 2015; 19
Wu (D0NR01361G-(cit22)/*[position()=1]) 2014; 14
López-Ortega (D0NR01361G-(cit11)/*[position()=1]) 2015; 27
Nakhjavan (D0NR01361G-(cit20)/*[position()=1]) 2011; 47
Orlando (D0NR01361G-(cit37)/*[position()=1]) 2016; 11
Kumar (D0NR01361G-(cit44)/*[position()=1]) 2018; 42
Puntes (D0NR01361G-(cit15)/*[position()=1]) 2001; 78
Ortega (D0NR01361G-(cit25)/*[position()=1]) 2017; 23
Bao (D0NR01361G-(cit39)/*[position()=1]) 2005; 293
Weiss (D0NR01361G-(cit10)/*[position()=1]) 1929; 10
References_xml – issn: 2016
  issue: 50
  end-page: 19-46
  publication-title: Handbook on the Physics and Chemistry of Rare Earths
  doi: King Eggert Gschneidner
– issn: 2010
  publication-title: Magnetism and Magnetic Materials
  doi: Coey
– issn: 2014
  end-page: 160-189
  publication-title: Nanomagnetism
  doi: Jimenez-Villacorta Lewis
– issn: 2001
  publication-title: Monodispersed Particles
  doi: Sugimoto
– issn: 2008
  publication-title: Advanced Wet-Chemical Synthetic Approaches to Inorganic Nanostructures
  doi: Pinna Kamaoui
– volume: 73
  start-page: 094406
  year: 2006
  ident: D0NR01361G-(cit40)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.73.094406
– volume: 6
  start-page: 77452
  year: 2016
  ident: D0NR01361G-(cit58)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA12072E
– volume: 26
  start-page: 5063
  year: 2014
  ident: D0NR01361G-(cit48)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm502269s
– volume: 11
  start-page: 4976
  year: 2015
  ident: D0NR01361G-(cit23)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201501382
– volume: 53
  start-page: 1586
  year: 2012
  ident: D0NR01361G-(cit32)/*[position()=1]
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2012151
– volume: 10
  start-page: 279
  year: 1929
  ident: D0NR01361G-(cit10)/*[position()=1]
  publication-title: Ann. Phys.
  doi: 10.1051/anphys/192910120279
– volume: 42
  start-page: 15793
  year: 2018
  ident: D0NR01361G-(cit44)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ02177E
– volume: 96
  start-page: 581
  year: 1986
  ident: D0NR01361G-(cit36)/*[position()=1]
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.2210960226
– volume: 23
  start-page: 12443
  year: 2017
  ident: D0NR01361G-(cit25)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201702248
– volume: 47
  start-page: 8898
  year: 2011
  ident: D0NR01361G-(cit20)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc13204k
– volume: 420
  start-page: 395
  year: 2002
  ident: D0NR01361G-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01208
– volume: 144
  start-page: 327
  year: 1939
  ident: D0NR01361G-(cit35)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/144327b0
– volume: 35
  start-page: 7470
  year: 2014
  ident: D0NR01361G-(cit21)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.04.063
– volume: 14
  start-page: 3395
  year: 2014
  ident: D0NR01361G-(cit22)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl500904a
– volume: 5
  start-page: 4709
  year: 1972
  ident: D0NR01361G-(cit29)/*[position()=1]
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.5.4709
– volume: 47
  start-page: 4100
  year: 2011
  ident: D0NR01361G-(cit38)/*[position()=1]
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2157994
– volume: 28
  start-page: 4214
  year: 2016
  ident: D0NR01361G-(cit50)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00623
– volume: 103
  start-page: 1805
  year: 1999
  ident: D0NR01361G-(cit14)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp982755m
– volume: 324
  start-page: 2711
  year: 2012
  ident: D0NR01361G-(cit43)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2012.03.034
– volume: 78
  start-page: 2187
  year: 2001
  ident: D0NR01361G-(cit15)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1362333
– volume-title: Nanomagnetism
  year: 2014
  ident: D0NR01361G-(cit4)/*[position()=1]
– volume: 251
  start-page: 143
  year: 2003
  ident: D0NR01361G-(cit54)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/S0926-860X(03)00324-7
– volume-title: Magnetism and Magnetic Materials
  year: 2010
  ident: D0NR01361G-(cit7)/*[position()=1]
– volume: 27
  start-page: 3588
  year: 1991
  ident: D0NR01361G-(cit3)/*[position()=1]
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.102931
– volume: 108
  start-page: 782
  year: 2008
  ident: D0NR01361G-(cit30)/*[position()=1]
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2008.01.004
– volume: 380
  start-page: 365
  year: 2015
  ident: D0NR01361G-(cit12)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.10.082
– volume: 20
  start-page: 7206
  year: 2018
  ident: D0NR01361G-(cit28)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C8CE00875B
– start-page: 15914
  year: 2009
  ident: D0NR01361G-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9051243
– volume: 129
  start-page: 6352
  year: 2007
  ident: D0NR01361G-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0692478
– volume: 107
  start-page: 223
  year: 2006
  ident: D0NR01361G-(cit55)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-005-0002-x
– volume: 79
  start-page: 1142
  year: 2001
  ident: D0NR01361G-(cit5)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1392308
– volume: 42
  start-page: 6413
  year: 2016
  ident: D0NR01361G-(cit17)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.01.044
– volume: 46
  start-page: 4630
  year: 2007
  ident: D0NR01361G-(cit61)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200603148
– volume: 188
  start-page: 300
  year: 1999
  ident: D0NR01361G-(cit56)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1006/jcat.1999.2665
– volume: 2
  start-page: 1500365
  year: 2016
  ident: D0NR01361G-(cit26)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500365
– volume: 257
  start-page: 887
  year: 2010
  ident: D0NR01361G-(cit31)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.07.086
– volume: 316
  start-page: 159
  year: 2007
  ident: D0NR01361G-(cit41)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2007.02.040
– volume: 31
  start-page: S68
  year: 1960
  ident: D0NR01361G-(cit42)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1984606
– volume: 116
  start-page: 8261
  year: 2012
  ident: D0NR01361G-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp300806j
– volume: 64
  start-page: 677
  year: 2010
  ident: D0NR01361G-(cit18)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.12.036
– volume: 27
  start-page: 3505
  year: 2015
  ident: D0NR01361G-(cit53)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00944
– volume: 7
  start-page: 14332
  year: 2015
  ident: D0NR01361G-(cit46)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR02969D
– volume: 50
  volume-title: Handbook on the Physics and Chemistry of Rare Earths
  year: 2016
  ident: D0NR01361G-(cit8)/*[position()=1]
– volume: 27
  start-page: 4048
  year: 2015
  ident: D0NR01361G-(cit11)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01034
– volume: 8
  start-page: 881
  year: 2018
  ident: D0NR01361G-(cit27)/*[position()=1]
  publication-title: Nanomaterials
  doi: 10.3390/nano8110881
– volume: 129
  start-page: 7214
  year: 2007
  ident: D0NR01361G-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0708969
– volume: 19
  start-page: 1044
  year: 2015
  ident: D0NR01361G-(cit9)/*[position()=1]
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.12237
– volume: 105
  start-page: 202405
  year: 2014
  ident: D0NR01361G-(cit19)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4902351
– volume: 3
  start-page: 4522
  year: 2015
  ident: D0NR01361G-(cit47)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02889A
– volume: 13
  start-page: 7716
  year: 2019
  ident: D0NR01361G-(cit57)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01281
– volume: 11
  start-page: 139
  year: 2016
  ident: D0NR01361G-(cit37)/*[position()=1]
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1002/cmmi.1673
– volume: 3
  start-page: 75
  year: 2012
  ident: D0NR01361G-(cit45)/*[position()=1]
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.3.9
– volume: 23
  start-page: 821
  year: 2011
  ident: D0NR01361G-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002180
– volume: 129
  start-page: 12374
  year: 2007
  ident: D0NR01361G-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074458d
– volume: 202
  start-page: 16
  year: 2016
  ident: D0NR01361G-(cit34)/*[position()=1]
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2015.02.006
– volume: 293
  start-page: 15
  year: 2005
  ident: D0NR01361G-(cit39)/*[position()=1]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2005.01.037
– volume-title: Monodispersed Particles
  year: 2001
  ident: D0NR01361G-(cit60)/*[position()=1]
– volume-title: Advanced Wet-Chemical Synthetic Approaches to Inorganic Nanostructures
  year: 2008
  ident: D0NR01361G-(cit59)/*[position()=1]
– volume: 303
  start-page: 6
  year: 2014
  ident: D0NR01361G-(cit33)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.02.006
– volume: 8
  start-page: 4705
  year: 2014
  ident: D0NR01361G-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn500454n
– volume: 102
  start-page: 1413
  year: 1956
  ident: D0NR01361G-(cit1)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.102.1413
SSID ssj0069363
Score 2.3670485
Snippet The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1476
SubjectTerms Decomposition reactions
Eels
Ferrites
Heterostructures
Magnetic measurement
Magnetic properties
Nanomaterials
Oleic acid
Physical properties
Precursors
Reaction time
Room temperature
Synthesis
System effectiveness
Thermal decomposition
Title Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product
URI https://www.proquest.com/docview/2421443469
https://www.proquest.com/docview/2417404949
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiFfFloKM4IJWKUnsvI5tgVYgekBb0VvkxE5BCnG0TSS0F8Q_ZyZx4lQKEnCJdv1Ioszn8Uwy8w0hrwIwGuJYebCQZOTwLBAOWBmu44rIB_s-TGKJicKfLsLzS_7hKrhaLH5Ns0ua7CjfzuaV_I9UoQ3kilmy_yDZ8aTQAL9BvnAECcPxr2R8WWHxoHLIePquMI0Xq16YD_-6Uk6tG6QlgL-GekT96JN9V7lu6xJf8GoH9zK5qkSlna8YH6N7WtkWfHGT_bZCXuOV6jMF654mdmrYgpbWNyBvG0rbbrddpMCJ6qoAWGiV4Ixrkyc0EH8jOKtKY6hoN-m0FK38JqzibjaIgiHQX5nrmNcV4JsiCSW3Ws3HEEbGeuryIzVti26rZX8CP3-qZD0ehZMNGxy6cHYzcBlyqUq32iAxnXdtt7wxENF27pA9HzwNUJV7xx9Pzr4M23mYsK4c33jfA8ctS97Y2betGuuq7GyGOjKdvbK-T-4ZR4Me96h5QBaqekjuTugnH5GfFj8U8EFH_FBddA0GP3TED3YM-KEGP3TAD53FD0X8UEERP7THDzX4eUzW79-tT88dU5DDycHWaZwslDLz_SQPMjB8PC4insRgowZ56ImwKGJeSHB_YynBqlaRlxWxHwWCiYAp5kq2T3YruPMnhEaim-1FIi-4cgPwmngRhxnPwb7MOF-S18PzTHNDVo81U8q0C5pgSfrWvfjcPfuzJXk5jq17ipbZUYeDWFKzhG9SjIfgnPEwWZIXYzcoWPxqJiqlWxwDTjuyKMGYfRDneA0r_SU5mO9Ia1kc_GnWU3LHLpBDsguCUc_Awm2y5waDvwHWMauC
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+mechanism+of+the+one-pot+synthesis+of+exchange+coupled+Co-based+nano-heterostructures+with+a+high+energy+product&rft.jtitle=Nanoscale&rft.au=Muzzi%2C+Beatrice&rft.au=Albino%2C+Martin&rft.au=Innocenti%2C+Claudia&rft.au=Petrecca%2C+Michele&rft.date=2020-07-14&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=26&rft.spage=1476&rft.epage=1486&rft_id=info:doi/10.1039%2Fd0nr01361g&rft.externalDocID=d0nr01361g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon