A Design Method for an SVM-Based Humidity Sensor for Grain Storage

One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of p...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 9; p. 2854
Main Authors Liu, Lining, Song, Chengbao, Zhu, Ke, Liu, Pingzeng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management.
AbstractList One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R[sup.2] greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R[sup.2] values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management.
One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management.
One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management.
One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management.One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management.
Audience Academic
Author Liu, Pingzeng
Zhu, Ke
Liu, Lining
Song, Chengbao
Author_xml – sequence: 1
  givenname: Lining
  surname: Liu
  fullname: Liu, Lining
– sequence: 2
  givenname: Chengbao
  surname: Song
  fullname: Song, Chengbao
– sequence: 3
  givenname: Ke
  surname: Zhu
  fullname: Zhu, Ke
– sequence: 4
  givenname: Pingzeng
  surname: Liu
  fullname: Liu, Pingzeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38732960$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1URD_gwB9AkbjAIcVfcezjtkBbqRWHAldrYo8XrzZxsZND_z3eblkh5IPt8TOPNXpPydGUJiTkLaPnQhj6qXBJDdedfEFOmOSy1ZzTo3_Ox-S0lA2lXAihX5FjoXvBjaIn5GLVfMYS11Nzh_Ov5JuQcgNTc__zrr2Agr65Xsbo4_zY3ONU6uMOuMoQKzOnDGt8TV4G2BZ887yfkR9fv3y_vG5vv13dXK5uWyeZmNtBGd97hUwFgAGHgBwVyM5gr5yR4CXTXg9cKycBnOk09E4prrFeVRDijNzsvT7Bxj7kOEJ-tAmifSqkvLaQ5-i2aB0HJTQFNwQlpddgOoGSQlCDGga9c33Yux5y-r1gme0Yi8PtFiZMS7GCdsIow3tT0ff_oZu05KlO-kRx1hnWV-p8T62h_h-nkOYMri6PY3Q1rhBrfVV9nTKMsdrw7lm7DCP6wzx_o6nAxz3gciolYzggjNpd7PYQu_gDFWCbRA
Cites_doi 10.1016/j.jclepro.2015.06.044
10.1520/GTJ20150056
10.1016/j.jspr.2015.03.001
10.3920/QAS2013.0285
10.1021/j100723a023
10.2136/vzj2015.09.0122
10.1016/0022-474X(71)90041-5
10.1109/JSEN.2021.3087414
10.1007/s10854-021-05538-w
10.3390/app9081654
10.1016/j.sna.2022.113662
10.1016/j.measurement.2021.110609
10.1016/j.compag.2018.12.011
10.1109/JSEN.2020.2989163
10.1007/s00779-016-0975-z
10.1109/JSEN.2021.3090367
10.1109/19.989904
10.3390/app11167655
10.1016/j.iot.2020.100187
10.3389/fmats.2023.1233136
10.1016/j.compag.2016.12.014
10.1088/0950-7671/43/1/306
10.1038/nclimate2437
10.3390/s17010208
10.13031/aea.12266
10.1109/ACCESS.2021.3108906
10.1016/j.measurement.2022.111301
10.1006/jaer.1996.0017
10.1021/acssuschemeng.3c03136
10.3390/agronomy12030591
10.1038/s41598-023-36817-7
10.1016/j.iot.2022.100570
10.1016/j.snb.2012.04.052
10.2991/icaset-17.2017.31
10.1109/JIOT.2018.2879579
10.1094/CCHEM-02-13-0021-R
10.13031/2013.29119
10.3390/s19081748
10.1016/j.iot.2023.100739
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s24092854
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c2a6380acbf644d8a953e40af6b6bb83
A793569111
38732960
10_3390_s24092854
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the Key Research and Development Plan of Shandong Province
  grantid: 2022CXGC010609
– fundername: the Key Research and Development Plan of Shandong Province
  grantid: 2022TZXD0030
– fundername: the Special Funds for Centralized Guidance of Local Science and Technology Development
  grantid: YDZX2022073
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c413t-b69d7d6e16faabebfe2e6a459e76c94ad418d8b286c4aac958a7c6628e4aa6f33
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:45 EDT 2025
Fri Jul 11 05:50:45 EDT 2025
Sat Jul 26 00:04:27 EDT 2025
Tue Jun 10 21:07:36 EDT 2025
Wed Feb 19 02:04:55 EST 2025
Tue Jul 01 03:50:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords standing wave ratio (SWR) method
humidity sensor
moisture calibration models
grain moisture
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-b69d7d6e16faabebfe2e6a459e76c94ad418d8b286c4aac958a7c6628e4aa6f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3053215917?pq-origsite=%requestingapplication%
PMID 38732960
PQID 3053215917
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c2a6380acbf644d8a953e40af6b6bb83
proquest_miscellaneous_3053969279
proquest_journals_3053215917
gale_infotracacademiconefile_A793569111
pubmed_primary_38732960
crossref_primary_10_3390_s24092854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhao (ref_16) 2020; 20
Yu (ref_30) 2021; 14
ref_50
Alshehri (ref_6) 2023; 22
Javanbakht (ref_41) 2021; 9
(ref_33) 1969; 73
ref_14
Lutz (ref_13) 2022; 188
Jiarasuwan (ref_37) 2021; 21
Navaneeth (ref_48) 2023; 11
Muangprathub (ref_3) 2019; 156
ref_19
Boursianis (ref_8) 2022; 18
ref_18
Singh (ref_38) 2014; 2
Thomas (ref_32) 1966; 43
Kim (ref_17) 2002; 51
Huan (ref_22) 2017; 21
Iezzoni (ref_39) 2016; 39
ref_29
Gaskin (ref_35) 1996; 63
Khan (ref_44) 2022; 343
ref_27
Khtaoui (ref_47) 2021; 32
Zhao (ref_36) 2016; 47
Lev (ref_28) 2017; 133
(ref_31) 1933; 140
Moreira (ref_2) 2022; 19
Raju (ref_11) 2021; 21
Cosh (ref_40) 2016; 15
Pixton (ref_15) 1971; 6
Manley (ref_20) 2013; 90
Kibar (ref_12) 2015; 62
Khan (ref_45) 2023; 13
Songara (ref_23) 2022; 197
Chen (ref_42) 2012; 169
Long (ref_4) 2016; 112
Armstrong (ref_26) 2017; 33
Thakur (ref_25) 2015; 7
ref_43
Sun (ref_49) 1999; 15
Casada (ref_24) 2009; 52
Lei (ref_21) 2020; 37
Khan (ref_46) 2023; 10
Hilhorst (ref_34) 1995; 411
Lipper (ref_1) 2014; 4
Uender (ref_5) 2022; 17
ref_9
Ahmed (ref_10) 2018; 5
Mobasshir (ref_7) 2020; 9
References_xml – volume: 112
  start-page: 9
  year: 2016
  ident: ref_4
  article-title: Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France. Switzerland and Italy
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.06.044
– volume: 140
  start-page: 359
  year: 1933
  ident: ref_31
  article-title: The electrical properties of soils for alternating currents at radio frequencies
  publication-title: Proc. R. Soc. A
– volume: 47
  start-page: 310
  year: 2016
  ident: ref_36
  article-title: Non-destructive measurement of plant stem water content based on standing wave ratio
  publication-title: Trans. CSAM
– volume: 39
  start-page: 169
  year: 2016
  ident: ref_39
  article-title: Calibration of capacitance sensors for compacted silt in non-isothermal applications
  publication-title: Geotech. Test. J.
  doi: 10.1520/GTJ20150056
– volume: 62
  start-page: 8
  year: 2015
  ident: ref_12
  article-title: Influence of storage conditions on the quality properties of wheat varieties
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/j.jspr.2015.03.001
– volume: 7
  start-page: 201
  year: 2015
  ident: ref_25
  article-title: Development of multi-grain capacitive sensor for determination of moisture content in grains
  publication-title: Qual. Assur. Saf. Crop
  doi: 10.3920/QAS2013.0285
– volume: 73
  start-page: 616
  year: 1969
  ident: ref_33
  article-title: Measurement of dielectrics in the time domain
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100723a023
– volume: 15
  start-page: 1
  year: 2016
  ident: ref_40
  article-title: The soil moisture active passive Marena, Oklahoma, in situ sensor testbed (smap-moisst): Testbed design and evaluation of in situ sensors
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2015.09.0122
– volume: 6
  start-page: 283
  year: 1971
  ident: ref_15
  article-title: Moisture content/relative humidity equilibrium of some cereal grains at different temperatures
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/0022-474X(71)90041-5
– volume: 21
  start-page: 19436
  year: 2021
  ident: ref_37
  article-title: A design method for a microwave-based moisture sensing system for granular materials in arbitrarily shaped containers
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3087414
– volume: 32
  start-page: 8668
  year: 2021
  ident: ref_47
  article-title: High-sensitivity moisture sensor based on natural hydroxyapatite
  publication-title: J. Mater. Sci.-Mater.
  doi: 10.1007/s10854-021-05538-w
– ident: ref_19
  doi: 10.3390/app9081654
– volume: 343
  start-page: 113662
  year: 2022
  ident: ref_44
  article-title: High-performance moisture sensor for multipurpose applications by recycling of potato peel bio-waste
  publication-title: Sens. Actuat A-Phys.
  doi: 10.1016/j.sna.2022.113662
– volume: 188
  start-page: 110609
  year: 2022
  ident: ref_13
  article-title: Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110609
– volume: 156
  start-page: 467
  year: 2019
  ident: ref_3
  article-title: IoT and agriculture data analysis for smart farm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.011
– volume: 20
  start-page: 9226
  year: 2020
  ident: ref_16
  article-title: Quasi-distributed fiber optic temperature and moisture sensor system for monitoring of grain storage in granaries
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2989163
– volume: 21
  start-page: 67
  year: 2017
  ident: ref_22
  article-title: The soil moisture sensor based on soil dielectric property
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-016-0975-z
– volume: 21
  start-page: 18773
  year: 2021
  ident: ref_11
  article-title: Radar cross section-based chipless tag with built-in reference for relative humidity monitoring of packaged food commodities
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3090367
– volume: 51
  start-page: 72
  year: 2002
  ident: ref_17
  article-title: Measurement of grain moisture content using microwave attenuation at 10.5 GHz and moisture density
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.989904
– ident: ref_27
  doi: 10.3390/app11167655
– volume: 14
  start-page: 32
  year: 2021
  ident: ref_30
  article-title: Review of research progress on soil moisture sensor technology
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 17
  start-page: 2542
  year: 2022
  ident: ref_5
  article-title: A mesh network case study for digital audio signal processing in Smart Farm
  publication-title: Internet Things
– volume: 9
  start-page: 2542
  year: 2020
  ident: ref_7
  article-title: A smart farming concept based on smart embedded electronics, internet of things and wireless sensor network
  publication-title: Internet Things
– volume: 18
  start-page: 2542
  year: 2022
  ident: ref_8
  article-title: Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review
  publication-title: Internet Things
  doi: 10.1016/j.iot.2020.100187
– volume: 10
  start-page: 1233136
  year: 2023
  ident: ref_46
  article-title: Characterization and performance evaluation of fully biocompatible gelatin-based moisture sensor for health and environmental monitoring
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2023.1233136
– volume: 2
  start-page: 589
  year: 2014
  ident: ref_38
  article-title: Microstrip transmission line sensor for rice quality detection: An overview
  publication-title: Int. J. Eng. Res. Gen. Sci.
– volume: 133
  start-page: 22
  year: 2017
  ident: ref_28
  article-title: Capacitive throughput sensor for plant materials–Effects of frequency and moisture content
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.12.014
– volume: 43
  start-page: 21
  year: 1966
  ident: ref_32
  article-title: In situ measurement of moisture in soil and similar substances by ‘fringe’ capacitance
  publication-title: J. Sci. Instrum.
  doi: 10.1088/0950-7671/43/1/306
– volume: 4
  start-page: 1068
  year: 2014
  ident: ref_1
  article-title: Climate-smart agriculture for food security
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2437
– ident: ref_43
  doi: 10.3390/s17010208
– volume: 33
  start-page: 619
  year: 2017
  ident: ref_26
  article-title: Development and evaluation of a low-cost probe-type instrument to measure the equilibrium moisture content of grain
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/aea.12266
– volume: 9
  start-page: 120176
  year: 2021
  ident: ref_41
  article-title: A Comprehensive Review of Portable Microwave Sensors for Grains and Mineral Materials Moisture Content Monitoring
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3108906
– ident: ref_18
– volume: 37
  start-page: 109
  year: 2020
  ident: ref_21
  article-title: Calibration Method of Capacitive Soil Moisture Sensor
  publication-title: Tnuaa
– volume: 197
  start-page: 111301
  year: 2022
  ident: ref_23
  article-title: Calibration and comparison of various sensors for soil moisture measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111301
– volume: 63
  start-page: 153
  year: 1996
  ident: ref_35
  article-title: Measurement of soil water content using a simplified impedance measuring technique
  publication-title: J. Agric. Eng. Res.
  doi: 10.1006/jaer.1996.0017
– volume: 11
  start-page: 12145
  year: 2023
  ident: ref_48
  article-title: Transforming Medical Plastic Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy, Health Monitoring, and Sensing Applications
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c03136
– ident: ref_9
  doi: 10.3390/agronomy12030591
– volume: 13
  start-page: 10160
  year: 2023
  ident: ref_45
  article-title: Chicken skin based Milli Watt range biocompatible triboelectric nanogenerator for biomechanical energy harvesting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36817-7
– ident: ref_50
– volume: 15
  start-page: 37
  year: 1999
  ident: ref_49
  article-title: A kind of determinations of soil dielectric constant using the principle of standing-wave ratio
  publication-title: Trans. CSAE
– volume: 19
  start-page: 100570
  year: 2022
  ident: ref_2
  article-title: AgroLens: A low-cost and green-friendly Smart Farm Architecture to support real-time leaf disease diagnostics
  publication-title: Internet Things
  doi: 10.1016/j.iot.2022.100570
– volume: 169
  start-page: 167
  year: 2012
  ident: ref_42
  article-title: Chitosan based fiber-optic Fabry–Perot moisture sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.04.052
– ident: ref_14
  doi: 10.2991/icaset-17.2017.31
– volume: 5
  start-page: 4890
  year: 2018
  ident: ref_10
  article-title: Internet of Things (IoT) for smart precision agriculture and farming in rural areas
  publication-title: IEEE Internet Things
  doi: 10.1109/JIOT.2018.2879579
– volume: 90
  start-page: 540
  year: 2013
  ident: ref_20
  article-title: Prediction of Triticale Grain Quality Properties, Based on Both Chemical and Indirectly Measured Reference Methods, Using Near-Infrared Spectroscopy
  publication-title: Cereal Chem.
  doi: 10.1094/CCHEM-02-13-0021-R
– volume: 52
  start-page: 1785
  year: 2009
  ident: ref_24
  article-title: Wheat moisture measurement with a fringing field capacitive sensor
  publication-title: Trans. ASABE
  doi: 10.13031/2013.29119
– ident: ref_29
  doi: 10.3390/s19081748
– volume: 411
  start-page: 401
  year: 1995
  ident: ref_34
  article-title: Dielectric sensors used in environmental and construction engineering
  publication-title: OPL
– volume: 22
  start-page: 100739
  year: 2023
  ident: ref_6
  article-title: Blockchain-assisted internet of things framework in smart livestock farming
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100739
SSID ssj0023338
Score 2.4227
Snippet One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality....
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2854
SubjectTerms Accuracy
Agricultural machinery
Agriculture
Backup software
Calibration
Costs
Crop yields
Farm equipment
Farm produce
Food security
Food supply
Grain
grain moisture
Humidity
humidity sensor
Methods
Moisture absorption
moisture calibration models
Mold
Moving & storage industry
Rice
Safety and security measures
Sensors
standing wave ratio (SWR) method
Ventilation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hTnBA_QAaSitTIXGK2NjOxD7u0gKqtFwWEDdr_BGJS0Cw_P-Ok-wK2gOXHhNbkTNjz7wn228AjltKQWI0pQqJSt2iL6lCW7aR818yjWz7jfb5FV7e6N939d2rUl_5TNggDzwY7jRI4ikyoeBbTt3RkK1V0hPir6L3ptf55Jy3IlMj1VLMvAYdIcWk_vSZ85bNdwXfZJ9epP_fUPwXwOwTzfkH2BkRopgOI_sIG6n7BNuvdAM_w2wqfvYnL8S8LwAtGHkK6sTidl7OOC1FwV66jwywxYJpKjfmDhe5GoRYMMnmGLILN-e_rs8uy7EYQhk4zyxLjzY2EVOFLZFPvk0yIenapgaD1RR1ZaLx0mDQRMHWhpqAKE3iR2yV2oPN7qFLX0BY39Re1zooVNrU3hAmVTGS0Z69FiYF_FgZyT0OmheOuUK2pFtbsoBZNt-6Q5ap7l-w89zoPPee8wo4ycZ3eTEtnyjQeCeAx5llqdyUo0eNOR4XcLjyjxtX2bNTuawF47GqKeBo3czrI296UJceXoY-Fq1sbAH7g1_XY1amUZIp3MH_-JevsCUZ8AyHIQ9hc_n0kr4xYFn67_3c_AOU7Oep
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BucABlfdCQQYhcbKatb1-nKoEKBVSuISi3KzxY6teNiVJ_z_j3U1aisTRa2tlzXhmvvHjG4CPLeYodLJcxoxctTpwrLXjbaL4l60RbX_QPv-hz87V92WzHDfcNuO1yp1P7B11WsWyR34sSwkDir21Obn6zUvVqHK6OpbQuA8PCnVZudJlljcJl6T8a2ATkpTaH28oernyYvCvGNRT9f_rkO_AzD7cnB7C4xEnsumg2CdwL3dP4dH0Yj1yZWRq3eISfAazKfvS38Zg874oNCM0yrBji19zPqNQlRhp7jIR6GYLSl2pswz4VipEsAUl3uRXnsP56defn8_4WCCBR4o9Wx60SybpXOsWMeTQZpE1qsZlo6NTmFRtkw3C6qgQIwkITdRa2ExN3Ur5Ag66VZdfAXPBNEE1KkotlW2CRZ1lTehGBdJknFTwYScyfzXwYHjKH4pc_V6uFcyKMPcDCnV1_2G1vvCjJfgokGx-gjG0hMWSRdfIrCZIy0SHYGUFn4oqfDGw7Rojju8EaJ6FqspPyaM0uvjoCo522vKj5W38zTqp4P2-m2ymHIRgl1fXwxinnTCugpeDlvdzltZIQWnd6____A08FARvhquPR3CwXV_ntwRPtuFdvwb_AJkx4vk
  priority: 102
  providerName: ProQuest
Title A Design Method for an SVM-Based Humidity Sensor for Grain Storage
URI https://www.ncbi.nlm.nih.gov/pubmed/38732960
https://www.proquest.com/docview/3053215917
https://www.proquest.com/docview/3053969279
https://doaj.org/article/c2a6380acbf644d8a953e40af6b6bb83
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wKHFW8CS2UQEqdAYzt-HBBqYbsrpK4Qpai3aPwIQkLp0u1K8O8ZJ2nEAgcukRI7kjXj8fd9sj0D8LzG6LkKJhc-Yi5r5XIslM3rQPgXjeZ1u9E-P1dnS_l-Va72YFdjszfg5T-lXaontdx8e_nj-883FPCvk-Ikyf7qklDJppuA-3BIgKRTfM7lsJnAhWgLWqc7XTnh4bhLMHT912uw1Gbv_3uN_oN5tgg0uwVHPXVkk87Xt2EvNnfg5m8JBe_CdMLetUcy2LytDM2IkjJs2OLzPJ8SXgVG7vsaiHmzBelXakwdTlOZCLYg9U2Lyz1Yzk4-vT3L-yoJuScA2uZO2aCDioWqEV10deRRoSxt1MpbiUEWJhjHjfIS0dvSoPZKcRPpVdVC3IeDZt3Eh8Cs06WTpfRCCWlKZ1BFURDFkY7c6ccZPNsZqbrokmFUJCKSJavBkhlMk_mGDil_dfthvflS9eFQeY4U-GP0riZCFgzaUkQ5RporyjkjMniRjF8lv2836LG_LEDjTPmqqgktK6VKC3UGxzv_VLvZU4lU74KIWqEzeDo0U-Ck3RBs4vqq62OV5dpm8KDz6zBmYbTgpO0e_fcwHsMNTnSnOwp5DAfbzVV8QnRl60awr1eanmZ2OoLD6cn5h4-jVvqP2mn6C4-96h0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V5QAcEG8WChgE4mR11_Z67QNCCaWktOklLcrN-LUVl01JUiH-FL-R8T5SHhK3Hr22VtZ4Zr5v_JgBeFXb6JkMinIfLRW1dNQWUtM6IP5FVbG6PWifHsvJqfg0L-db8HN4C5OuVQ4-sXXUYeHTHvkuTyUMEHuL6t35N5qqRqXT1aGERqcWh_HHdwzZVm8P9nB9XzO2_-Hk_YT2VQWoR4e9pk7qUAUZC1lb66KrI4vSilLHSnotbBCFCsoxJb2w1utS2cpLyVTEpqzTBii6_GsIvHmyqGp-GeBxjPe67EWc63x3hWip0wvFPzCvLQ3wLwD8RWtbeNu_Dbd6XkpGnSLdga3Y3IWbo7Nln5sjYuu33IX3YDwie-3tDzJti1ATZL_ENmT2eUrHCI2BoKZ8DUjyyQxDZexMAz6mihRkhoE--rH7cHolonsA282iiY-AaFeVTpTCc8mFKp2yMvIC2ZRwqDk-z-DlIDJz3uXdMBivJLmajVwzGCdhbgakVNnth8XyzPSWZzyz6GNy612N3C8oq0seRW5RLaVzimfwJi2FSQa9Xlpv-3cJOM-UGsuM0IOVMmFCBjvDapne0lfmUi8zeLHpRhtNBy-2iYuLboyWmlU6g4fdKm_mzFXFGYaRj___8-dwfXIyPTJHB8eHT-AGQ2rVXbvcge318iI-RWq0ds9afSTw5aoN4BdKGiIP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRUJwQLxZKGAQiNMqWdvrxwGhhBBaSiqkUJSb69dWXDYlSYX4a_w6xvtIeUjcevTaWlkz37zs8QzAi8pGT0VQOfPR5rwSLreF0HkV0P5FJWnVXLTPjsT-Mf-wKBc78LN_C5PSKnud2CjqsPTpjHzAUgsDtL2FHFRdWsSnyfTN2bc8dZBKN619O40WIofxx3cM39avDybI65eUTt99frufdx0Gco_Ke5M7oYMMIhaistZFV0UaheWljlJ4zW3ghQrKUSU8t9brUlnphaAq4lBU6TAU1f8VycoiyZhcXAR7DGO_tpIRY3o4WKPl1Om14h_2r2kT8K8x-MvFbUzd9Cbc6HxUMmpBdQt2Yn0bro9OV12djoij3-oY3oHxiEyaTBAyaxpSE_SEia3J_MssH6OZDARR8zWgw0_mGDbjZFrwPnWnIHMM-lGn3YXjSyHdPditl3V8AEQ7WTpecs8E46p0yorICvSsuEMU-WEGz3uSmbO2BofB2CXR1WzpmsE4EXO7IJXNbj4sV6emk0LjqUV9M7TeVegHBmV1ySIfWoSocE6xDF4lVpgk3JuV9bZ7o4D7TGWyzAi1WSmSfchgr-eW6aR-bS4wmsGz7TTKa7qEsXVcnrdrtNBU6gzut1ze7pkpySiGlA____OncBWhbz4eHB0-gmsUvaw2A3MPdjer8_gYvaSNe9LAkcDJZeP_F5ofJkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Design+Method+for+an+SVM-Based+Humidity+Sensor+for+Grain+Storage&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Lining&rft.au=Song%2C+Chengbao&rft.au=Zhu%2C+Ke&rft.au=Liu%2C+Pingzeng&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=9&rft_id=info:doi/10.3390%2Fs24092854&rft.externalDocID=A793569111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon