A Design Method for an SVM-Based Humidity Sensor for Grain Storage
One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of p...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 9; p. 2854 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management. |
---|---|
AbstractList | One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R[sup.2] greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R[sup.2] values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management. One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management. One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management. One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management.One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality. However, currently available humidity sensors on the market fail to meet the demands of modern large-scale grain storage in China in terms of price, size, and ease of implementation. Therefore, this study aims to develop an economical, efficient, and easily deployable grain humidity sensor suitable for large-scale grain storage environments. Simultaneously, it constructs humidity calibration models applicable to three major grain crops: millet, rice, and wheat. Starting with the probe structure, this study analyzes the ideal probe structure for grain humidity sensors. Experimental validations are conducted using millet, rice, and wheat as experimental subjects to verify the accuracy of the sensor and humidity calibration models. The experimental results indicate that the optimal length of the probe under ideal conditions is 0.67 m. Humidity calibration models for millet, rice, and wheat are constructed using SVM models, with all three models achieving a correlation coefficient R2 greater than 0.9. The measured data and model-calculated data show a linear relationship, closely approximating y = x, with R2 values of all three fitted models above 0.9. In conclusion, this study provides reliable sensor technological support for humidity monitoring in large-scale grain storage and processing, with extensive applications in grain storage and grain safety management. |
Audience | Academic |
Author | Liu, Pingzeng Zhu, Ke Liu, Lining Song, Chengbao |
Author_xml | – sequence: 1 givenname: Lining surname: Liu fullname: Liu, Lining – sequence: 2 givenname: Chengbao surname: Song fullname: Song, Chengbao – sequence: 3 givenname: Ke surname: Zhu fullname: Zhu, Ke – sequence: 4 givenname: Pingzeng surname: Liu fullname: Liu, Pingzeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38732960$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1URD_gwB9AkbjAIcVfcezjtkBbqRWHAldrYo8XrzZxsZND_z3eblkh5IPt8TOPNXpPydGUJiTkLaPnQhj6qXBJDdedfEFOmOSy1ZzTo3_Ox-S0lA2lXAihX5FjoXvBjaIn5GLVfMYS11Nzh_Ov5JuQcgNTc__zrr2Agr65Xsbo4_zY3ONU6uMOuMoQKzOnDGt8TV4G2BZ887yfkR9fv3y_vG5vv13dXK5uWyeZmNtBGd97hUwFgAGHgBwVyM5gr5yR4CXTXg9cKycBnOk09E4prrFeVRDijNzsvT7Bxj7kOEJ-tAmifSqkvLaQ5-i2aB0HJTQFNwQlpddgOoGSQlCDGga9c33Yux5y-r1gme0Yi8PtFiZMS7GCdsIow3tT0ff_oZu05KlO-kRx1hnWV-p8T62h_h-nkOYMri6PY3Q1rhBrfVV9nTKMsdrw7lm7DCP6wzx_o6nAxz3gciolYzggjNpd7PYQu_gDFWCbRA |
Cites_doi | 10.1016/j.jclepro.2015.06.044 10.1520/GTJ20150056 10.1016/j.jspr.2015.03.001 10.3920/QAS2013.0285 10.1021/j100723a023 10.2136/vzj2015.09.0122 10.1016/0022-474X(71)90041-5 10.1109/JSEN.2021.3087414 10.1007/s10854-021-05538-w 10.3390/app9081654 10.1016/j.sna.2022.113662 10.1016/j.measurement.2021.110609 10.1016/j.compag.2018.12.011 10.1109/JSEN.2020.2989163 10.1007/s00779-016-0975-z 10.1109/JSEN.2021.3090367 10.1109/19.989904 10.3390/app11167655 10.1016/j.iot.2020.100187 10.3389/fmats.2023.1233136 10.1016/j.compag.2016.12.014 10.1088/0950-7671/43/1/306 10.1038/nclimate2437 10.3390/s17010208 10.13031/aea.12266 10.1109/ACCESS.2021.3108906 10.1016/j.measurement.2022.111301 10.1006/jaer.1996.0017 10.1021/acssuschemeng.3c03136 10.3390/agronomy12030591 10.1038/s41598-023-36817-7 10.1016/j.iot.2022.100570 10.1016/j.snb.2012.04.052 10.2991/icaset-17.2017.31 10.1109/JIOT.2018.2879579 10.1094/CCHEM-02-13-0021-R 10.13031/2013.29119 10.3390/s19081748 10.1016/j.iot.2023.100739 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s24092854 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c2a6380acbf644d8a953e40af6b6bb83 A793569111 38732960 10_3390_s24092854 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: the Key Research and Development Plan of Shandong Province grantid: 2022CXGC010609 – fundername: the Key Research and Development Plan of Shandong Province grantid: 2022TZXD0030 – fundername: the Special Funds for Centralized Guidance of Local Science and Technology Development grantid: YDZX2022073 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c413t-b69d7d6e16faabebfe2e6a459e76c94ad418d8b286c4aac958a7c6628e4aa6f33 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Fri Jul 11 05:50:45 EDT 2025 Sat Jul 26 00:04:27 EDT 2025 Tue Jun 10 21:07:36 EDT 2025 Wed Feb 19 02:04:55 EST 2025 Tue Jul 01 03:50:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | standing wave ratio (SWR) method humidity sensor moisture calibration models grain moisture |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c413t-b69d7d6e16faabebfe2e6a459e76c94ad418d8b286c4aac958a7c6628e4aa6f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3053215917?pq-origsite=%requestingapplication% |
PMID | 38732960 |
PQID | 3053215917 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c2a6380acbf644d8a953e40af6b6bb83 proquest_miscellaneous_3053969279 proquest_journals_3053215917 gale_infotracacademiconefile_A793569111 pubmed_primary_38732960 crossref_primary_10_3390_s24092854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhao (ref_16) 2020; 20 Yu (ref_30) 2021; 14 ref_50 Alshehri (ref_6) 2023; 22 Javanbakht (ref_41) 2021; 9 (ref_33) 1969; 73 ref_14 Lutz (ref_13) 2022; 188 Jiarasuwan (ref_37) 2021; 21 Navaneeth (ref_48) 2023; 11 Muangprathub (ref_3) 2019; 156 ref_19 Boursianis (ref_8) 2022; 18 ref_18 Singh (ref_38) 2014; 2 Thomas (ref_32) 1966; 43 Kim (ref_17) 2002; 51 Huan (ref_22) 2017; 21 Iezzoni (ref_39) 2016; 39 ref_29 Gaskin (ref_35) 1996; 63 Khan (ref_44) 2022; 343 ref_27 Khtaoui (ref_47) 2021; 32 Zhao (ref_36) 2016; 47 Lev (ref_28) 2017; 133 (ref_31) 1933; 140 Moreira (ref_2) 2022; 19 Raju (ref_11) 2021; 21 Cosh (ref_40) 2016; 15 Pixton (ref_15) 1971; 6 Manley (ref_20) 2013; 90 Kibar (ref_12) 2015; 62 Khan (ref_45) 2023; 13 Songara (ref_23) 2022; 197 Chen (ref_42) 2012; 169 Long (ref_4) 2016; 112 Armstrong (ref_26) 2017; 33 Thakur (ref_25) 2015; 7 ref_43 Sun (ref_49) 1999; 15 Casada (ref_24) 2009; 52 Lei (ref_21) 2020; 37 Khan (ref_46) 2023; 10 Hilhorst (ref_34) 1995; 411 Lipper (ref_1) 2014; 4 Uender (ref_5) 2022; 17 ref_9 Ahmed (ref_10) 2018; 5 Mobasshir (ref_7) 2020; 9 |
References_xml | – volume: 112 start-page: 9 year: 2016 ident: ref_4 article-title: Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France. Switzerland and Italy publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.06.044 – volume: 140 start-page: 359 year: 1933 ident: ref_31 article-title: The electrical properties of soils for alternating currents at radio frequencies publication-title: Proc. R. Soc. A – volume: 47 start-page: 310 year: 2016 ident: ref_36 article-title: Non-destructive measurement of plant stem water content based on standing wave ratio publication-title: Trans. CSAM – volume: 39 start-page: 169 year: 2016 ident: ref_39 article-title: Calibration of capacitance sensors for compacted silt in non-isothermal applications publication-title: Geotech. Test. J. doi: 10.1520/GTJ20150056 – volume: 62 start-page: 8 year: 2015 ident: ref_12 article-title: Influence of storage conditions on the quality properties of wheat varieties publication-title: J. Stored Prod. Res. doi: 10.1016/j.jspr.2015.03.001 – volume: 7 start-page: 201 year: 2015 ident: ref_25 article-title: Development of multi-grain capacitive sensor for determination of moisture content in grains publication-title: Qual. Assur. Saf. Crop doi: 10.3920/QAS2013.0285 – volume: 73 start-page: 616 year: 1969 ident: ref_33 article-title: Measurement of dielectrics in the time domain publication-title: J. Phys. Chem. doi: 10.1021/j100723a023 – volume: 15 start-page: 1 year: 2016 ident: ref_40 article-title: The soil moisture active passive Marena, Oklahoma, in situ sensor testbed (smap-moisst): Testbed design and evaluation of in situ sensors publication-title: Vadose Zone J. doi: 10.2136/vzj2015.09.0122 – volume: 6 start-page: 283 year: 1971 ident: ref_15 article-title: Moisture content/relative humidity equilibrium of some cereal grains at different temperatures publication-title: J. Stored Prod. Res. doi: 10.1016/0022-474X(71)90041-5 – volume: 21 start-page: 19436 year: 2021 ident: ref_37 article-title: A design method for a microwave-based moisture sensing system for granular materials in arbitrarily shaped containers publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3087414 – volume: 32 start-page: 8668 year: 2021 ident: ref_47 article-title: High-sensitivity moisture sensor based on natural hydroxyapatite publication-title: J. Mater. Sci.-Mater. doi: 10.1007/s10854-021-05538-w – ident: ref_19 doi: 10.3390/app9081654 – volume: 343 start-page: 113662 year: 2022 ident: ref_44 article-title: High-performance moisture sensor for multipurpose applications by recycling of potato peel bio-waste publication-title: Sens. Actuat A-Phys. doi: 10.1016/j.sna.2022.113662 – volume: 188 start-page: 110609 year: 2022 ident: ref_13 article-title: Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence publication-title: Measurement doi: 10.1016/j.measurement.2021.110609 – volume: 156 start-page: 467 year: 2019 ident: ref_3 article-title: IoT and agriculture data analysis for smart farm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.12.011 – volume: 20 start-page: 9226 year: 2020 ident: ref_16 article-title: Quasi-distributed fiber optic temperature and moisture sensor system for monitoring of grain storage in granaries publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2989163 – volume: 21 start-page: 67 year: 2017 ident: ref_22 article-title: The soil moisture sensor based on soil dielectric property publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-016-0975-z – volume: 21 start-page: 18773 year: 2021 ident: ref_11 article-title: Radar cross section-based chipless tag with built-in reference for relative humidity monitoring of packaged food commodities publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3090367 – volume: 51 start-page: 72 year: 2002 ident: ref_17 article-title: Measurement of grain moisture content using microwave attenuation at 10.5 GHz and moisture density publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.989904 – ident: ref_27 doi: 10.3390/app11167655 – volume: 14 start-page: 32 year: 2021 ident: ref_30 article-title: Review of research progress on soil moisture sensor technology publication-title: Int. J. Agric. Biol. Eng. – volume: 17 start-page: 2542 year: 2022 ident: ref_5 article-title: A mesh network case study for digital audio signal processing in Smart Farm publication-title: Internet Things – volume: 9 start-page: 2542 year: 2020 ident: ref_7 article-title: A smart farming concept based on smart embedded electronics, internet of things and wireless sensor network publication-title: Internet Things – volume: 18 start-page: 2542 year: 2022 ident: ref_8 article-title: Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review publication-title: Internet Things doi: 10.1016/j.iot.2020.100187 – volume: 10 start-page: 1233136 year: 2023 ident: ref_46 article-title: Characterization and performance evaluation of fully biocompatible gelatin-based moisture sensor for health and environmental monitoring publication-title: Front. Mater. doi: 10.3389/fmats.2023.1233136 – volume: 2 start-page: 589 year: 2014 ident: ref_38 article-title: Microstrip transmission line sensor for rice quality detection: An overview publication-title: Int. J. Eng. Res. Gen. Sci. – volume: 133 start-page: 22 year: 2017 ident: ref_28 article-title: Capacitive throughput sensor for plant materials–Effects of frequency and moisture content publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.12.014 – volume: 43 start-page: 21 year: 1966 ident: ref_32 article-title: In situ measurement of moisture in soil and similar substances by ‘fringe’ capacitance publication-title: J. Sci. Instrum. doi: 10.1088/0950-7671/43/1/306 – volume: 4 start-page: 1068 year: 2014 ident: ref_1 article-title: Climate-smart agriculture for food security publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2437 – ident: ref_43 doi: 10.3390/s17010208 – volume: 33 start-page: 619 year: 2017 ident: ref_26 article-title: Development and evaluation of a low-cost probe-type instrument to measure the equilibrium moisture content of grain publication-title: Appl. Eng. Agric. doi: 10.13031/aea.12266 – volume: 9 start-page: 120176 year: 2021 ident: ref_41 article-title: A Comprehensive Review of Portable Microwave Sensors for Grains and Mineral Materials Moisture Content Monitoring publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3108906 – ident: ref_18 – volume: 37 start-page: 109 year: 2020 ident: ref_21 article-title: Calibration Method of Capacitive Soil Moisture Sensor publication-title: Tnuaa – volume: 197 start-page: 111301 year: 2022 ident: ref_23 article-title: Calibration and comparison of various sensors for soil moisture measurement publication-title: Measurement doi: 10.1016/j.measurement.2022.111301 – volume: 63 start-page: 153 year: 1996 ident: ref_35 article-title: Measurement of soil water content using a simplified impedance measuring technique publication-title: J. Agric. Eng. Res. doi: 10.1006/jaer.1996.0017 – volume: 11 start-page: 12145 year: 2023 ident: ref_48 article-title: Transforming Medical Plastic Waste into High-Performance Triboelectric Nanogenerators for Sustainable Energy, Health Monitoring, and Sensing Applications publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c03136 – ident: ref_9 doi: 10.3390/agronomy12030591 – volume: 13 start-page: 10160 year: 2023 ident: ref_45 article-title: Chicken skin based Milli Watt range biocompatible triboelectric nanogenerator for biomechanical energy harvesting publication-title: Sci. Rep. doi: 10.1038/s41598-023-36817-7 – ident: ref_50 – volume: 15 start-page: 37 year: 1999 ident: ref_49 article-title: A kind of determinations of soil dielectric constant using the principle of standing-wave ratio publication-title: Trans. CSAE – volume: 19 start-page: 100570 year: 2022 ident: ref_2 article-title: AgroLens: A low-cost and green-friendly Smart Farm Architecture to support real-time leaf disease diagnostics publication-title: Internet Things doi: 10.1016/j.iot.2022.100570 – volume: 169 start-page: 167 year: 2012 ident: ref_42 article-title: Chitosan based fiber-optic Fabry–Perot moisture sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.04.052 – ident: ref_14 doi: 10.2991/icaset-17.2017.31 – volume: 5 start-page: 4890 year: 2018 ident: ref_10 article-title: Internet of Things (IoT) for smart precision agriculture and farming in rural areas publication-title: IEEE Internet Things doi: 10.1109/JIOT.2018.2879579 – volume: 90 start-page: 540 year: 2013 ident: ref_20 article-title: Prediction of Triticale Grain Quality Properties, Based on Both Chemical and Indirectly Measured Reference Methods, Using Near-Infrared Spectroscopy publication-title: Cereal Chem. doi: 10.1094/CCHEM-02-13-0021-R – volume: 52 start-page: 1785 year: 2009 ident: ref_24 article-title: Wheat moisture measurement with a fringing field capacitive sensor publication-title: Trans. ASABE doi: 10.13031/2013.29119 – ident: ref_29 doi: 10.3390/s19081748 – volume: 411 start-page: 401 year: 1995 ident: ref_34 article-title: Dielectric sensors used in environmental and construction engineering publication-title: OPL – volume: 22 start-page: 100739 year: 2023 ident: ref_6 article-title: Blockchain-assisted internet of things framework in smart livestock farming publication-title: Internet Things doi: 10.1016/j.iot.2023.100739 |
SSID | ssj0023338 |
Score | 2.4227 |
Snippet | One of the crucial factors in grain storage is appropriate moisture content, which plays a significant role in reducing storage losses and ensuring quality.... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2854 |
SubjectTerms | Accuracy Agricultural machinery Agriculture Backup software Calibration Costs Crop yields Farm equipment Farm produce Food security Food supply Grain grain moisture Humidity humidity sensor Methods Moisture absorption moisture calibration models Mold Moving & storage industry Rice Safety and security measures Sensors standing wave ratio (SWR) method Ventilation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hTnBA_QAaSitTIXGK2NjOxD7u0gKqtFwWEDdr_BGJS0Cw_P-Ok-wK2gOXHhNbkTNjz7wn228AjltKQWI0pQqJSt2iL6lCW7aR818yjWz7jfb5FV7e6N939d2rUl_5TNggDzwY7jRI4ikyoeBbTt3RkK1V0hPir6L3ptf55Jy3IlMj1VLMvAYdIcWk_vSZ85bNdwXfZJ9epP_fUPwXwOwTzfkH2BkRopgOI_sIG6n7BNuvdAM_w2wqfvYnL8S8LwAtGHkK6sTidl7OOC1FwV66jwywxYJpKjfmDhe5GoRYMMnmGLILN-e_rs8uy7EYQhk4zyxLjzY2EVOFLZFPvk0yIenapgaD1RR1ZaLx0mDQRMHWhpqAKE3iR2yV2oPN7qFLX0BY39Re1zooVNrU3hAmVTGS0Z69FiYF_FgZyT0OmheOuUK2pFtbsoBZNt-6Q5ap7l-w89zoPPee8wo4ycZ3eTEtnyjQeCeAx5llqdyUo0eNOR4XcLjyjxtX2bNTuawF47GqKeBo3czrI296UJceXoY-Fq1sbAH7g1_XY1amUZIp3MH_-JevsCUZ8AyHIQ9hc_n0kr4xYFn67_3c_AOU7Oep priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BucABlfdCQQYhcbKatb1-nKoEKBVSuISi3KzxY6teNiVJ_z_j3U1aisTRa2tlzXhmvvHjG4CPLeYodLJcxoxctTpwrLXjbaL4l60RbX_QPv-hz87V92WzHDfcNuO1yp1P7B11WsWyR34sSwkDir21Obn6zUvVqHK6OpbQuA8PCnVZudJlljcJl6T8a2ATkpTaH28oernyYvCvGNRT9f_rkO_AzD7cnB7C4xEnsumg2CdwL3dP4dH0Yj1yZWRq3eISfAazKfvS38Zg874oNCM0yrBji19zPqNQlRhp7jIR6GYLSl2pswz4VipEsAUl3uRXnsP56defn8_4WCCBR4o9Wx60SybpXOsWMeTQZpE1qsZlo6NTmFRtkw3C6qgQIwkITdRa2ExN3Ur5Ag66VZdfAXPBNEE1KkotlW2CRZ1lTehGBdJknFTwYScyfzXwYHjKH4pc_V6uFcyKMPcDCnV1_2G1vvCjJfgokGx-gjG0hMWSRdfIrCZIy0SHYGUFn4oqfDGw7Rojju8EaJ6FqspPyaM0uvjoCo522vKj5W38zTqp4P2-m2ymHIRgl1fXwxinnTCugpeDlvdzltZIQWnd6____A08FARvhquPR3CwXV_ntwRPtuFdvwb_AJkx4vk priority: 102 providerName: ProQuest |
Title | A Design Method for an SVM-Based Humidity Sensor for Grain Storage |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38732960 https://www.proquest.com/docview/3053215917 https://www.proquest.com/docview/3053969279 https://doaj.org/article/c2a6380acbf644d8a953e40af6b6bb83 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wKHFW8CS2UQEqdAYzt-HBBqYbsrpK4Qpai3aPwIQkLp0u1K8O8ZJ2nEAgcukRI7kjXj8fd9sj0D8LzG6LkKJhc-Yi5r5XIslM3rQPgXjeZ1u9E-P1dnS_l-Va72YFdjszfg5T-lXaontdx8e_nj-883FPCvk-Ikyf7qklDJppuA-3BIgKRTfM7lsJnAhWgLWqc7XTnh4bhLMHT912uw1Gbv_3uN_oN5tgg0uwVHPXVkk87Xt2EvNnfg5m8JBe_CdMLetUcy2LytDM2IkjJs2OLzPJ8SXgVG7vsaiHmzBelXakwdTlOZCLYg9U2Lyz1Yzk4-vT3L-yoJuScA2uZO2aCDioWqEV10deRRoSxt1MpbiUEWJhjHjfIS0dvSoPZKcRPpVdVC3IeDZt3Eh8Cs06WTpfRCCWlKZ1BFURDFkY7c6ccZPNsZqbrokmFUJCKSJavBkhlMk_mGDil_dfthvflS9eFQeY4U-GP0riZCFgzaUkQ5RporyjkjMniRjF8lv2836LG_LEDjTPmqqgktK6VKC3UGxzv_VLvZU4lU74KIWqEzeDo0U-Ck3RBs4vqq62OV5dpm8KDz6zBmYbTgpO0e_fcwHsMNTnSnOwp5DAfbzVV8QnRl60awr1eanmZ2OoLD6cn5h4-jVvqP2mn6C4-96h0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V5QAcEG8WChgE4mR11_Z67QNCCaWktOklLcrN-LUVl01JUiH-FL-R8T5SHhK3Hr22VtZ4Zr5v_JgBeFXb6JkMinIfLRW1dNQWUtM6IP5FVbG6PWifHsvJqfg0L-db8HN4C5OuVQ4-sXXUYeHTHvkuTyUMEHuL6t35N5qqRqXT1aGERqcWh_HHdwzZVm8P9nB9XzO2_-Hk_YT2VQWoR4e9pk7qUAUZC1lb66KrI4vSilLHSnotbBCFCsoxJb2w1utS2cpLyVTEpqzTBii6_GsIvHmyqGp-GeBxjPe67EWc63x3hWip0wvFPzCvLQ3wLwD8RWtbeNu_Dbd6XkpGnSLdga3Y3IWbo7Nln5sjYuu33IX3YDwie-3tDzJti1ATZL_ENmT2eUrHCI2BoKZ8DUjyyQxDZexMAz6mihRkhoE--rH7cHolonsA282iiY-AaFeVTpTCc8mFKp2yMvIC2ZRwqDk-z-DlIDJz3uXdMBivJLmajVwzGCdhbgakVNnth8XyzPSWZzyz6GNy612N3C8oq0seRW5RLaVzimfwJi2FSQa9Xlpv-3cJOM-UGsuM0IOVMmFCBjvDapne0lfmUi8zeLHpRhtNBy-2iYuLboyWmlU6g4fdKm_mzFXFGYaRj___8-dwfXIyPTJHB8eHT-AGQ2rVXbvcge318iI-RWq0ds9afSTw5aoN4BdKGiIP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VRUJwQLxZKGAQiNMqWdvrxwGhhBBaSiqkUJSb69dWXDYlSYX4a_w6xvtIeUjcevTaWlkz37zs8QzAi8pGT0VQOfPR5rwSLreF0HkV0P5FJWnVXLTPjsT-Mf-wKBc78LN_C5PSKnud2CjqsPTpjHzAUgsDtL2FHFRdWsSnyfTN2bc8dZBKN619O40WIofxx3cM39avDybI65eUTt99frufdx0Gco_Ke5M7oYMMIhaistZFV0UaheWljlJ4zW3ghQrKUSU8t9brUlnphaAq4lBU6TAU1f8VycoiyZhcXAR7DGO_tpIRY3o4WKPl1Om14h_2r2kT8K8x-MvFbUzd9Cbc6HxUMmpBdQt2Yn0bro9OV12djoij3-oY3oHxiEyaTBAyaxpSE_SEia3J_MssH6OZDARR8zWgw0_mGDbjZFrwPnWnIHMM-lGn3YXjSyHdPditl3V8AEQ7WTpecs8E46p0yorICvSsuEMU-WEGz3uSmbO2BofB2CXR1WzpmsE4EXO7IJXNbj4sV6emk0LjqUV9M7TeVegHBmV1ySIfWoSocE6xDF4lVpgk3JuV9bZ7o4D7TGWyzAi1WSmSfchgr-eW6aR-bS4wmsGz7TTKa7qEsXVcnrdrtNBU6gzut1ze7pkpySiGlA____OncBWhbz4eHB0-gmsUvaw2A3MPdjer8_gYvaSNe9LAkcDJZeP_F5ofJkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Design+Method+for+an+SVM-Based+Humidity+Sensor+for+Grain+Storage&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Lining&rft.au=Song%2C+Chengbao&rft.au=Zhu%2C+Ke&rft.au=Liu%2C+Pingzeng&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=9&rft_id=info:doi/10.3390%2Fs24092854&rft.externalDocID=A793569111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |