4π Non-Coplanar Liver SBRT: A Novel Delivery Technique
To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution...
Saved in:
Published in | International journal of radiation oncology, biology, physics Vol. 85; no. 5; pp. 1360 - 1366 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-3016 1879-355X 1879-355X |
DOI | 10.1016/j.ijrobp.2012.09.028 |
Cover
Loading…
Abstract | To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations.
Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans.
Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05).
This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans. |
---|---|
AbstractList | Purpose To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations. Methods and Materials Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans. Results Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving < 15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% ( P ≤.05). Conclusions This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans. To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations. Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans. Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05). This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans. To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations.PURPOSETo improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations.Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans.METHODS AND MATERIALSBeams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans.Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05).RESULTSCompared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05).This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans.CONCLUSIONSThis novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans. Purpose: To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations. Methods and Materials: Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans. Results: Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05). Conclusions: This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans. |
Author | Sheng, Ke Long, Troy Kupelian, Patrick Romeijn, Edwin Dong, Peng Lee, Percy Yang, Yingli Low, Daniel Ruan, Dan |
Author_xml | – sequence: 1 givenname: Peng surname: Dong fullname: Dong, Peng organization: Department of Radiation Oncology, University of California, Los Angeles, California – sequence: 2 givenname: Percy surname: Lee fullname: Lee, Percy organization: Department of Radiation Oncology, University of California, Los Angeles, California – sequence: 3 givenname: Dan surname: Ruan fullname: Ruan, Dan organization: Department of Radiation Oncology, University of California, Los Angeles, California – sequence: 4 givenname: Troy surname: Long fullname: Long, Troy organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan – sequence: 5 givenname: Edwin surname: Romeijn fullname: Romeijn, Edwin organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan – sequence: 6 givenname: Yingli surname: Yang fullname: Yang, Yingli organization: Department of Radiation Oncology, University of California, Los Angeles, California – sequence: 7 givenname: Daniel surname: Low fullname: Low, Daniel organization: Department of Radiation Oncology, University of California, Los Angeles, California – sequence: 8 givenname: Patrick surname: Kupelian fullname: Kupelian, Patrick organization: Department of Radiation Oncology, University of California, Los Angeles, California – sequence: 9 givenname: Ke surname: Sheng fullname: Sheng, Ke email: ksheng@mednet.ucla.edu organization: Department of Radiation Oncology, University of California, Los Angeles, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23154076$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22224433$$D View this record in Osti.gov |
BookMark | eNqVUl1rFDEUDVKx2-o_EBnwxZcZ8zmTKSLUbauFRcGu0Lcwk72LGWeTNZld2Lf-Q_-Sd5jqg1CKecklOefk3JN7Qo588EDIS0YLRln5titcF0O7LThlvKB1Qbl-QmZMV3UulLo9IjMqSpoLBB-Tk5Q6SiljlXxGjrlgStKqnJFK_rrLPgefz8O2b3wTs4XbQ8xuPnxdnmXneLWHPruAfjw9ZEuw3737uYPn5Om66RO8uN9Pybery-X8U7748vF6fr7IrWRiyBvQzbrlVLU1laVkLauqSotSawVCKok-uJYWaxCgpNItUxW39ZquQJcCxCl5PemGNDiTrBvQgQ3egx0MxyWlEIh6M6G2MaC5NJiNSxZ67AjCLhkmWM205FIj9NU9dNduYGW20W2aeDB_IkGAnAA2hpQirP9CGDVj8qYzU_JmTN7Q2mDySDv7h4Zem8EFP8TG9Y-R309kwCj3DuLYKXgLKxfHRlfB_a-A7Z13tul_wAFSF3bR4zcZZhJyzM04GeNgMI6VKG9R4N3DAo-__xuVssZb |
CitedBy_id | crossref_primary_10_1007_s10589_017_9919_4 crossref_primary_10_1118_1_4895981 crossref_primary_10_2147_TCRM_S328375 crossref_primary_10_1002_mp_13682 crossref_primary_10_1002_acm2_12324 crossref_primary_10_3390_cancers14040939 crossref_primary_10_1002_mp_13962 crossref_primary_10_1177_1533033818811150 crossref_primary_10_1016_j_ejor_2018_08_019 crossref_primary_10_1016_j_prro_2013_10_009 crossref_primary_10_1016_j_phro_2025_100698 crossref_primary_10_1088_2632_2153_abe528 crossref_primary_10_1118_1_4940353 crossref_primary_10_1118_1_4915286 crossref_primary_10_1002_acm2_12054 crossref_primary_10_1134_S0020441221060087 crossref_primary_10_1016_j_radonc_2024_110345 crossref_primary_10_1007_s13246_019_00737_6 crossref_primary_10_1109_TCYB_2017_2763682 crossref_primary_10_1016_j_ijrobp_2014_09_043 crossref_primary_10_1016_j_radonc_2017_09_036 crossref_primary_10_1186_s13014_019_1348_3 crossref_primary_10_1002_mp_15452 crossref_primary_10_1016_j_radphyschem_2021_109494 crossref_primary_10_4236_ijmpcero_2016_52014 crossref_primary_10_1002_mp_12338 crossref_primary_10_1002_mp_13037 crossref_primary_10_1259_bjr_20190226 crossref_primary_10_1002_mp_13700 crossref_primary_10_1007_s41365_021_00848_4 crossref_primary_10_1016_j_semradonc_2018_02_003 crossref_primary_10_1007_s00066_016_1013_9 crossref_primary_10_1120_jacmp_v16i6_5748 crossref_primary_10_1287_ijoc_2018_0841 crossref_primary_10_1007_s11548_016_1473_5 crossref_primary_10_1088_1361_6560_acf63f crossref_primary_10_3233_XST_210867 crossref_primary_10_1088_1361_6560_ace23f crossref_primary_10_1118_1_4868464 crossref_primary_10_1002_mp_14151 crossref_primary_10_1016_j_ijrobp_2014_07_043 crossref_primary_10_1088_1361_6560_ac840d crossref_primary_10_1002_mp_12529 crossref_primary_10_1088_1361_6560_aa6f92 crossref_primary_10_1088_1361_6560_ab63b8 crossref_primary_10_1016_j_ijrobp_2018_02_026 crossref_primary_10_1016_j_radonc_2016_07_014 crossref_primary_10_1016_j_ijrobp_2015_04_034 crossref_primary_10_1088_2057_1976_ac7c92 crossref_primary_10_1118_1_4919742 crossref_primary_10_1118_1_4954790 crossref_primary_10_1002_acm2_13280 crossref_primary_10_1007_s13246_021_01061_8 crossref_primary_10_1186_1748_717X_9_204 crossref_primary_10_3390_curroncol32020076 crossref_primary_10_1088_1361_6560_aaca17 crossref_primary_10_1002_acm2_12915 crossref_primary_10_1002_mp_16289 crossref_primary_10_1007_s11081_018_9409_2 crossref_primary_10_1117_1_JMI_4_1_015004 crossref_primary_10_1002_mp_12910 crossref_primary_10_1186_s13014_018_0997_y crossref_primary_10_1016_j_jmir_2015_06_005 crossref_primary_10_1118_1_4914863 crossref_primary_10_1016_j_radonc_2017_02_018 crossref_primary_10_1016_j_ejmp_2021_02_004 crossref_primary_10_1186_s13014_014_0239_x crossref_primary_10_1186_s13014_016_0761_0 crossref_primary_10_1002_mp_13085 crossref_primary_10_1002_mp_13086 crossref_primary_10_1088_1361_6560_ac58db crossref_primary_10_1016_j_meddos_2017_07_009 crossref_primary_10_1002_acm2_12920 crossref_primary_10_1016_j_ijrobp_2013_02_002 crossref_primary_10_1002_mp_16358 crossref_primary_10_1007_s13566_015_0220_9 crossref_primary_10_1186_s13014_015_0494_5 crossref_primary_10_1259_bjr_20180908 crossref_primary_10_3390_cancers13081910 crossref_primary_10_4103_jmp_JMP_2_19 crossref_primary_10_1002_acm2_14396 crossref_primary_10_1002_mp_12270 crossref_primary_10_1016_j_ijrobp_2018_01_048 crossref_primary_10_1118_1_4845055 crossref_primary_10_1088_1361_6560_aaa36d crossref_primary_10_3389_fonc_2021_717634 crossref_primary_10_1016_j_adro_2018_01_004 crossref_primary_10_1016_j_semradonc_2022_06_004 crossref_primary_10_1088_1361_6560_ab246f crossref_primary_10_3389_fonc_2021_617007 crossref_primary_10_1002_mp_13870 crossref_primary_10_1002_mp_13872 crossref_primary_10_1002_mp_13986 crossref_primary_10_1016_j_ijrobp_2013_12_029 crossref_primary_10_1088_1361_6560_aac704 crossref_primary_10_1002_acm2_12660 crossref_primary_10_4236_ijmpcero_2019_82008 crossref_primary_10_1016_j_radonc_2018_02_011 crossref_primary_10_1007_s11684_020_0761_1 crossref_primary_10_1002_mp_13381 crossref_primary_10_1088_1361_6560_aaa94f crossref_primary_10_1118_1_4932631 crossref_primary_10_1002_mp_13022 crossref_primary_10_1002_mp_14993 crossref_primary_10_1002_mp_16899 crossref_primary_10_1002_mp_13810 crossref_primary_10_1002_mp_13657 crossref_primary_10_1118_1_4963212 crossref_primary_10_1016_j_adro_2024_101570 crossref_primary_10_1016_j_prro_2018_07_001 crossref_primary_10_1088_1361_6560_ac4b37 crossref_primary_10_1088_1361_6560_ad75e1 crossref_primary_10_1118_1_4931415 crossref_primary_10_1088_1361_6560_ac2bb5 crossref_primary_10_1118_1_4870977 crossref_primary_10_1120_jacmp_v15i2_4682 crossref_primary_10_1002_mp_13651 crossref_primary_10_1002_mp_12833 crossref_primary_10_1017_S1460396916000595 crossref_primary_10_1177_15330338231170495 crossref_primary_10_1016_j_zemedi_2018_03_002 crossref_primary_10_1118_1_4886757 crossref_primary_10_1002_acm2_12164 crossref_primary_10_1134_S1063784221020158 crossref_primary_10_1186_s13014_017_0806_z crossref_primary_10_1186_s13014_019_1264_6 crossref_primary_10_1016_j_adro_2015_12_004 crossref_primary_10_1088_1361_6560_acec27 |
Cites_doi | 10.1016/j.ijrobp.2005.06.006 10.1186/1748-717X-6-76 10.1200/JCO.2008.19.6329 10.1016/j.ijrobp.2006.05.034 10.1016/j.ijrobp.2010.09.014 10.1016/j.ejca.2009.08.011 10.1080/028418602753669535 10.1118/1.599001 10.1007/s00384-010-1075-6 10.1137/040606612 10.1016/j.ijrobp.2005.01.002 10.1016/S0360-3016(02)02846-8 10.1088/0031-9155/52/2/012 10.1200/JCO.2001.19.1.164 10.1016/j.canrad.2005.09.007 10.1016/j.ijrobp.2009.05.005 10.1016/j.ijrobp.2004.06.007 10.1088/0031-9155/49/6/009 10.1002/cncr.25997 10.1016/j.radonc.2008.06.001 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
DOI | 10.1016/j.ijrobp.2012.09.028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-355X |
EndPage | 1366 |
ExternalDocumentID | 22224433 23154076 10_1016_j_ijrobp_2012_09_028 S036030161203636X 1_s2_0_S036030161203636X |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K .1- .FO 0R~ 1B1 1P~ 1RT 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 AAEDT AAEDW AAQFI AAQQT AAWTL AAXUO ABJNI ABLJU ABNEU ABOCM ABUDA ACGFS ACIUM ACVFH ADBBV ADCNI ADVLN AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AGCQF AHHHB AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BELOY DU5 EBS EFKBS EJD F5P FDB GBLVA HED HMO IHE J1W KOM LX3 M41 MO0 O9- OC~ OO- RNS ROL RPZ SDG SEL SES SSZ UV1 XH2 Z5R ~S- .55 .GJ 29J AALRI AAQXK ABEFU ABWVN ACRPL ADMUD ADNMO ADPAM AFCTW AFFNX AFJKZ AGRDE ASPBG AVWKF AZFZN EFJIC FEDTE FGOYB FIRID G-2 HMK HVGLF HX~ HZ~ NQ- R2- RIG SAE SEW UDS X7M XPP ZGI AAIAV AGZHU ALXNB ZA5 AAYWO AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7X8 ABPTK OTOTI |
ID | FETCH-LOGICAL-c413t-ae8afb205b904641b1777836885e3454315284ce34e3e5458b1572c9f0de863e3 |
ISSN | 0360-3016 1879-355X |
IngestDate | Fri May 19 00:35:21 EDT 2023 Mon Jul 21 11:24:38 EDT 2025 Thu Apr 03 07:09:23 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Tue Jul 01 01:48:41 EDT 2025 Fri Feb 23 02:32:35 EST 2024 Sun Feb 23 10:18:58 EST 2025 Tue Aug 26 20:10:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-ae8afb205b904641b1777836885e3454315284ce34e3e5458b1572c9f0de863e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 23154076 |
PQID | 1319184248 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_22224433 proquest_miscellaneous_1319184248 pubmed_primary_23154076 crossref_primary_10_1016_j_ijrobp_2012_09_028 crossref_citationtrail_10_1016_j_ijrobp_2012_09_028 elsevier_sciencedirect_doi_10_1016_j_ijrobp_2012_09_028 elsevier_clinicalkeyesjournals_1_s2_0_S036030161203636X elsevier_clinicalkey_doi_10_1016_j_ijrobp_2012_09_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | International journal of radiation oncology, biology, physics |
PublicationTitleAlternate | Int J Radiat Oncol Biol Phys |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Wagner, Buatti (bib20) 2004; 49 Schefter, Kavanagh, Timmerman (bib8) 2005; 62 de Pooter, Méndez Romero, Wunderink (bib11) 2008; 88 Wang, Zhang, Dong (bib15) 2004; 60 Bedford, Webb (bib13) 2007; 52 Romeijn, Ahuja, Dempsey (bib16) 2005; 15 Borasio, Gisabella, Billé (bib3) 2011; 26 Rusthoven, Kavanagh, Cardenes (bib2) 2009; 27 Mornex, Girard, Merle (bib5) 2005; 9 Holt, van Vliet-Vroegindeweij, Mans (bib9) 2011; 81 Pugachev, Boyer, Xing (bib12) 2000; 27 Herfarth, Debus, Lohr (bib19) 2001; 19 Chang, Swaminath, Kozak (bib4) 2011; 117 Wu, Yoo, Kirkpatrick (bib10) 2009; 75 Thieke, Bortfeld, Kufer (bib17) 2002; 41 Dawson, Normolle, Balter (bib7) 2002; 53 Wang, Zhang, Dong (bib14) 2005; 63 Dawood, Mahadevan, Goodman (bib1) 2009; 45 Kuo, Chiu, Shih (bib18) 2011; 6 Baisden, Reish, Sheng (bib6) 2006; 66 Baisden (10.1016/j.ijrobp.2012.09.028_bib6) 2006; 66 Thieke (10.1016/j.ijrobp.2012.09.028_bib17) 2002; 41 Wu (10.1016/j.ijrobp.2012.09.028_bib10) 2009; 75 Rusthoven (10.1016/j.ijrobp.2012.09.028_bib2) 2009; 27 Borasio (10.1016/j.ijrobp.2012.09.028_bib3) 2011; 26 Wang (10.1016/j.ijrobp.2012.09.028_bib15) 2004; 60 Romeijn (10.1016/j.ijrobp.2012.09.028_bib16) 2005; 15 Pugachev (10.1016/j.ijrobp.2012.09.028_bib12) 2000; 27 Herfarth (10.1016/j.ijrobp.2012.09.028_bib19) 2001; 19 Mornex (10.1016/j.ijrobp.2012.09.028_bib5) 2005; 9 Liu (10.1016/j.ijrobp.2012.09.028_bib20) 2004; 49 Wang (10.1016/j.ijrobp.2012.09.028_bib14) 2005; 63 Dawson (10.1016/j.ijrobp.2012.09.028_bib7) 2002; 53 Bedford (10.1016/j.ijrobp.2012.09.028_bib13) 2007; 52 Dawood (10.1016/j.ijrobp.2012.09.028_bib1) 2009; 45 Schefter (10.1016/j.ijrobp.2012.09.028_bib8) 2005; 62 de Pooter (10.1016/j.ijrobp.2012.09.028_bib11) 2008; 88 Kuo (10.1016/j.ijrobp.2012.09.028_bib18) 2011; 6 Chang (10.1016/j.ijrobp.2012.09.028_bib4) 2011; 117 Holt (10.1016/j.ijrobp.2012.09.028_bib9) 2011; 81 29893282 - Int J Radiat Oncol Biol Phys. 2018 Jul 1;101(3):741-742 |
References_xml | – volume: 53 start-page: 810 year: 2002 end-page: 821 ident: bib7 article-title: Analysis of radiation-induced liver disease using the Lyman NTCP model publication-title: Int J Radiat Oncol Biol Phys – volume: 27 start-page: 1572 year: 2009 end-page: 1578 ident: bib2 article-title: Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases publication-title: J Clin Oncol – volume: 15 start-page: 838 year: 2005 end-page: 862 ident: bib16 article-title: A column generation approach to radiation therapy treatment planning using aperture modulation publication-title: Siam J Optimiz – volume: 19 start-page: 164 year: 2001 end-page: 170 ident: bib19 article-title: Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial publication-title: J Clin Oncol – volume: 45 start-page: 2947 year: 2009 end-page: 2959 ident: bib1 article-title: Stereotactic body radiation therapy for liver metastases publication-title: Eur J Cancer – volume: 9 start-page: 470 year: 2005 end-page: 476 ident: bib5 article-title: Tolerance and efficacy of conformal radiotherapy for hepatocellular carcinoma in cirrhotic patients. Results of the French RTF1 phase II trial [article in French] publication-title: Cancer Radiother – volume: 26 start-page: 183 year: 2011 end-page: 190 ident: bib3 article-title: Role of surgical resection in colorectal lung metastases: Analysis of 137 patients publication-title: Int J Colorectal Dis – volume: 88 start-page: 376 year: 2008 end-page: 381 ident: bib11 article-title: Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis publication-title: Radiother Oncol – volume: 62 start-page: 1371 year: 2005 end-page: 1378 ident: bib8 article-title: A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases publication-title: Int J Radiat Oncol Biol Phys – volume: 75 start-page: 1596 year: 2009 end-page: 1604 ident: bib10 article-title: Volumetric arc intensity-modulated therapy for spine body radiotherapy: Comparison with static intensity-modulated treatment publication-title: Int J Radiat Oncol Biol Phys – volume: 41 start-page: 158 year: 2002 end-page: 161 ident: bib17 article-title: Characterization of dose distributions through the max and mean dose concept publication-title: Acta Oncologica – volume: 66 start-page: 620 year: 2006 end-page: 625 ident: bib6 article-title: Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis publication-title: Int J Radiat Oncol Biol Phys – volume: 27 start-page: 1238 year: 2000 end-page: 1245 ident: bib12 article-title: Beam orientation optimization in intensity-modulated radiation treatment planning publication-title: Med Phys – volume: 52 start-page: 479 year: 2007 end-page: 498 ident: bib13 article-title: Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy publication-title: Phys Med Biol – volume: 63 start-page: 594 year: 2005 end-page: 601 ident: bib14 article-title: Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma publication-title: Int J Radiat Oncol Biol Phys – volume: 49 start-page: 987 year: 2004 end-page: 996 ident: bib20 article-title: Geometrically based optimization for extracranial radiosurgery publication-title: Phys Med Biol – volume: 81 start-page: 1560 year: 2011 end-page: 1567 ident: bib9 article-title: Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: A comparison with intensity-modulated radiotherapy techniques publication-title: Int J Radiat Oncol Biol Phys – volume: 6 start-page: 76 year: 2011 ident: bib18 article-title: Volumetric intensity-modulated Arc (RapidArc) therapy for primary hepatocellular carcinoma: Comparison with intensity-modulated radiotherapy and 3-D conformal radiotherapy publication-title: Radiat Oncol – volume: 117 start-page: 4060 year: 2011 end-page: 4069 ident: bib4 article-title: Stereotactic body radiotherapy for colorectal liver metastases: A pooled analysis publication-title: Cancer – volume: 60 start-page: 1325 year: 2004 end-page: 1337 ident: bib15 article-title: Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy publication-title: Int J Radiat Oncol Biol Phys – volume: 63 start-page: 594 year: 2005 ident: 10.1016/j.ijrobp.2012.09.028_bib14 article-title: Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2005.06.006 – volume: 6 start-page: 76 year: 2011 ident: 10.1016/j.ijrobp.2012.09.028_bib18 article-title: Volumetric intensity-modulated Arc (RapidArc) therapy for primary hepatocellular carcinoma: Comparison with intensity-modulated radiotherapy and 3-D conformal radiotherapy publication-title: Radiat Oncol doi: 10.1186/1748-717X-6-76 – volume: 27 start-page: 1572 year: 2009 ident: 10.1016/j.ijrobp.2012.09.028_bib2 article-title: Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases publication-title: J Clin Oncol doi: 10.1200/JCO.2008.19.6329 – volume: 66 start-page: 620 year: 2006 ident: 10.1016/j.ijrobp.2012.09.028_bib6 article-title: Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.05.034 – volume: 81 start-page: 1560 year: 2011 ident: 10.1016/j.ijrobp.2012.09.028_bib9 article-title: Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: A comparison with intensity-modulated radiotherapy techniques publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.09.014 – volume: 45 start-page: 2947 year: 2009 ident: 10.1016/j.ijrobp.2012.09.028_bib1 article-title: Stereotactic body radiation therapy for liver metastases publication-title: Eur J Cancer doi: 10.1016/j.ejca.2009.08.011 – volume: 41 start-page: 158 year: 2002 ident: 10.1016/j.ijrobp.2012.09.028_bib17 article-title: Characterization of dose distributions through the max and mean dose concept publication-title: Acta Oncologica doi: 10.1080/028418602753669535 – volume: 27 start-page: 1238 year: 2000 ident: 10.1016/j.ijrobp.2012.09.028_bib12 article-title: Beam orientation optimization in intensity-modulated radiation treatment planning publication-title: Med Phys doi: 10.1118/1.599001 – volume: 26 start-page: 183 year: 2011 ident: 10.1016/j.ijrobp.2012.09.028_bib3 article-title: Role of surgical resection in colorectal lung metastases: Analysis of 137 patients publication-title: Int J Colorectal Dis doi: 10.1007/s00384-010-1075-6 – volume: 15 start-page: 838 year: 2005 ident: 10.1016/j.ijrobp.2012.09.028_bib16 article-title: A column generation approach to radiation therapy treatment planning using aperture modulation publication-title: Siam J Optimiz doi: 10.1137/040606612 – volume: 62 start-page: 1371 year: 2005 ident: 10.1016/j.ijrobp.2012.09.028_bib8 article-title: A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2005.01.002 – volume: 53 start-page: 810 year: 2002 ident: 10.1016/j.ijrobp.2012.09.028_bib7 article-title: Analysis of radiation-induced liver disease using the Lyman NTCP model publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(02)02846-8 – volume: 52 start-page: 479 year: 2007 ident: 10.1016/j.ijrobp.2012.09.028_bib13 article-title: Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/52/2/012 – volume: 19 start-page: 164 year: 2001 ident: 10.1016/j.ijrobp.2012.09.028_bib19 article-title: Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial publication-title: J Clin Oncol doi: 10.1200/JCO.2001.19.1.164 – volume: 9 start-page: 470 year: 2005 ident: 10.1016/j.ijrobp.2012.09.028_bib5 article-title: Tolerance and efficacy of conformal radiotherapy for hepatocellular carcinoma in cirrhotic patients. Results of the French RTF1 phase II trial [article in French] publication-title: Cancer Radiother doi: 10.1016/j.canrad.2005.09.007 – volume: 75 start-page: 1596 year: 2009 ident: 10.1016/j.ijrobp.2012.09.028_bib10 article-title: Volumetric arc intensity-modulated therapy for spine body radiotherapy: Comparison with static intensity-modulated treatment publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.05.005 – volume: 60 start-page: 1325 year: 2004 ident: 10.1016/j.ijrobp.2012.09.028_bib15 article-title: Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.06.007 – volume: 49 start-page: 987 year: 2004 ident: 10.1016/j.ijrobp.2012.09.028_bib20 article-title: Geometrically based optimization for extracranial radiosurgery publication-title: Phys Med Biol doi: 10.1088/0031-9155/49/6/009 – volume: 117 start-page: 4060 year: 2011 ident: 10.1016/j.ijrobp.2012.09.028_bib4 article-title: Stereotactic body radiotherapy for colorectal liver metastases: A pooled analysis publication-title: Cancer doi: 10.1002/cncr.25997 – volume: 88 start-page: 376 year: 2008 ident: 10.1016/j.ijrobp.2012.09.028_bib11 article-title: Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis publication-title: Radiother Oncol doi: 10.1016/j.radonc.2008.06.001 – reference: 29893282 - Int J Radiat Oncol Biol Phys. 2018 Jul 1;101(3):741-742 |
SSID | ssj0001174 |
Score | 2.4660661 |
Snippet | To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to... Purpose To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms... Purpose: To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms... |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1360 |
SubjectTerms | ALGORITHMS HEALTH HAZARDS Hematology, Oncology and Palliative Medicine Humans INTEGRAL DOSES Kidney - radiation effects KIDNEYS LINEAR ACCELERATORS LIVER Liver - diagnostic imaging Liver - radiation effects Liver Neoplasms - diagnostic imaging Liver Neoplasms - surgery OPTIMIZATION Organ Sparing Treatments - methods Organs at Risk - diagnostic imaging Organs at Risk - radiation effects Particle Accelerators - instrumentation PATIENTS Quality Improvement Radiation Injuries - prevention & control Radiography Radiology RADIOLOGY AND NUCLEAR MEDICINE Radiosurgery - methods Radiosurgery - standards RADIOTHERAPY Radiotherapy Dosage - standards Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Intensity-Modulated - methods SPINAL CORD Spinal Cord - radiation effects STOMACH Stomach - radiation effects |
Title | 4π Non-Coplanar Liver SBRT: A Novel Delivery Technique |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S036030161203636X https://www.clinicalkey.es/playcontent/1-s2.0-S036030161203636X https://dx.doi.org/10.1016/j.ijrobp.2012.09.028 https://www.ncbi.nlm.nih.gov/pubmed/23154076 https://www.proquest.com/docview/1319184248 https://www.osti.gov/biblio/22224433 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdZCmMvY_-brRserE_FwbYsW95blq2UlYaSpixvwlJkaAh2cZJC-zTYB9xX2l0kOw5NadcXYwufLUvnu9Pp7neEfJGTlIdcKTeApY4bRilzeaKVy3SUgjaiUq5qRp4MoqPz8OeYjVutP42opeVCdtXN1rySx8wqtMG8Ypbsf8xs_VBogHOYXzjCDMPxQXMc7vcP97l3MChyt19cztI8LWGVDd9xcPZtODJZ54PiSoNo0zNsvza-9AsTal2bpZt-wQaaRInQBcaozFWd2CLXOS7GM7KuTm8jfE-11YjrWJ9TXarafz9cGsfr90ZIkCUdlcV10xeBdSHCpi-iTpLZiOEEHQmi3vMt4rWRszxOXDB1xk1BbGr3WIZjDanqU1NzwGpouIy2Sn_jiJh2L6ZlIRGMFB29Sdez6eebuNpn2C_slo97sTQaPyE7Aaw1gjbZ6R0Pfx3XCt23YN7Vd1QZmKswwdvvusvCaRcgtO9eyKwMmtEL8tyuRJyeYauXpKXzV-TpiY21eE3i8O9vp8lZzoqzHOSsr07PWfGVU_GVU_PVG3J--GPUP3JtmQ1XgQWzcFPN00wGHpMJ7nP7CEiGuT2cM01DxEpgYMMoONdU4z6r9FkcqCTzJppHVNO3pJ0Xud4lTiY9nqWI9xPJkFOVJEzLLIsTNvGkYkmH0GpohLIY9FgKZSaqYMOpMAMqcECFlwgY0A5xa6pLg8Fyz_2sGnVR5ReDRhTAJvfQxdvo9Nz-dnPhizncLG6xTpPSWq7GIn3AO_eQLZAKQZsVRrcBGVjtYHdT2iGfK3YRIPdxMy_NdbGEroDu9HkYhPCId4aP6sGBNRviakbvH92tD-TZ-v_eI-1FudQfwfpeyE_27_gHORHUAA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4%CF%80+Non-Coplanar+Liver+SBRT%3A+A+Novel+Delivery+Technique&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Dong%2C+Peng&rft.au=Lee%2C+Percy&rft.au=Ruan%2C+Dan&rft.au=Long%2C+Troy&rft.date=2013-04-01&rft.pub=Elsevier+Inc&rft.issn=0360-3016&rft.eissn=1879-355X&rft.volume=85&rft.issue=5&rft.spage=1360&rft.epage=1366&rft_id=info:doi/10.1016%2Fj.ijrobp.2012.09.028&rft.externalDocID=S036030161203636X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03603016%2FS0360301613X00045%2Fcov150h.gif |