4π Non-Coplanar Liver SBRT: A Novel Delivery Technique

To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 85; no. 5; pp. 1360 - 1366
Main Authors Dong, Peng, Lee, Percy, Ruan, Dan, Long, Troy, Romeijn, Edwin, Yang, Yingli, Low, Daniel, Kupelian, Patrick, Sheng, Ke
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2013
Subjects
Online AccessGet full text
ISSN0360-3016
1879-355X
1879-355X
DOI10.1016/j.ijrobp.2012.09.028

Cover

Loading…
Abstract To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations. Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans. Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05). This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans.
AbstractList Purpose To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations. Methods and Materials Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans. Results Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving < 15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% ( P ≤.05). Conclusions This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans.
To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations. Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans. Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05). This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans.
To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations.PURPOSETo improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations.Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans.METHODS AND MATERIALSBeams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans.Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05).RESULTSCompared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05).This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans.CONCLUSIONSThis novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans.
Purpose: To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to optimize non-coplanar beam orientations and fluences. The dose optimization is performed on a patient-specific deliverable beam geometry solution space, parameterized with patient and linear accelerator gantry orientations. Methods and Materials: Beams causing collision between the gantry and the couch or patient were eliminated by simulating all beam orientations using a precise computer assisted design model of the linear accelerator and a human subject. Integrated beam orientation and fluence map optimizations were performed on remaining beams using a greedy column generation method. Testing of the new method was performed on 10 liver SBRT cases previously treated with 50 to 60 Gy in 5 fractions using volumetric modulated arc therapy (VMAT). For each patient, both 14 and 22 non-coplanar fields were selected and optimized to meet the objective of ≥95% of the planning target volume (PTV) covered by 100% of the prescription dose. Doses to organs at risk, normal liver volumes receiving <15 Gy, integral dose, and 50% dose spillage volumes were compared against the delivered clinical VMAT plans. Results: Compared with the VMAT plans, the 4π plans yielded reduced 50% dose spillage volume and integral dose by 22% (range 10%-40%) and 19% (range 13%-26%), respectively. The mean normal liver volume receiving <15 Gy was increased by 51 cc (range 21-107 cc) with a 31% reduction of the mean normal liver dose. Mean doses to the left kidney and right kidney and maximum doses to the stomach and spinal cord were on average reduced by 70%, 51%, 67%, and 64% (P≤.05). Conclusions: This novel 4π non-coplanar radiation delivery technique significantly improved dose gradient, reduced high dose spillage, and improved organ at risk sparing compared with state of the art VMAT plans.
Author Sheng, Ke
Long, Troy
Kupelian, Patrick
Romeijn, Edwin
Dong, Peng
Lee, Percy
Yang, Yingli
Low, Daniel
Ruan, Dan
Author_xml – sequence: 1
  givenname: Peng
  surname: Dong
  fullname: Dong, Peng
  organization: Department of Radiation Oncology, University of California, Los Angeles, California
– sequence: 2
  givenname: Percy
  surname: Lee
  fullname: Lee, Percy
  organization: Department of Radiation Oncology, University of California, Los Angeles, California
– sequence: 3
  givenname: Dan
  surname: Ruan
  fullname: Ruan, Dan
  organization: Department of Radiation Oncology, University of California, Los Angeles, California
– sequence: 4
  givenname: Troy
  surname: Long
  fullname: Long, Troy
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan
– sequence: 5
  givenname: Edwin
  surname: Romeijn
  fullname: Romeijn, Edwin
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan
– sequence: 6
  givenname: Yingli
  surname: Yang
  fullname: Yang, Yingli
  organization: Department of Radiation Oncology, University of California, Los Angeles, California
– sequence: 7
  givenname: Daniel
  surname: Low
  fullname: Low, Daniel
  organization: Department of Radiation Oncology, University of California, Los Angeles, California
– sequence: 8
  givenname: Patrick
  surname: Kupelian
  fullname: Kupelian, Patrick
  organization: Department of Radiation Oncology, University of California, Los Angeles, California
– sequence: 9
  givenname: Ke
  surname: Sheng
  fullname: Sheng, Ke
  email: ksheng@mednet.ucla.edu
  organization: Department of Radiation Oncology, University of California, Los Angeles, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23154076$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22224433$$D View this record in Osti.gov
BookMark eNqVUl1rFDEUDVKx2-o_EBnwxZcZ8zmTKSLUbauFRcGu0Lcwk72LGWeTNZld2Lf-Q_-Sd5jqg1CKecklOefk3JN7Qo588EDIS0YLRln5titcF0O7LThlvKB1Qbl-QmZMV3UulLo9IjMqSpoLBB-Tk5Q6SiljlXxGjrlgStKqnJFK_rrLPgefz8O2b3wTs4XbQ8xuPnxdnmXneLWHPruAfjw9ZEuw3737uYPn5Om66RO8uN9Pybery-X8U7748vF6fr7IrWRiyBvQzbrlVLU1laVkLauqSotSawVCKok-uJYWaxCgpNItUxW39ZquQJcCxCl5PemGNDiTrBvQgQ3egx0MxyWlEIh6M6G2MaC5NJiNSxZ67AjCLhkmWM205FIj9NU9dNduYGW20W2aeDB_IkGAnAA2hpQirP9CGDVj8qYzU_JmTN7Q2mDySDv7h4Zem8EFP8TG9Y-R309kwCj3DuLYKXgLKxfHRlfB_a-A7Z13tul_wAFSF3bR4zcZZhJyzM04GeNgMI6VKG9R4N3DAo-__xuVssZb
CitedBy_id crossref_primary_10_1007_s10589_017_9919_4
crossref_primary_10_1118_1_4895981
crossref_primary_10_2147_TCRM_S328375
crossref_primary_10_1002_mp_13682
crossref_primary_10_1002_acm2_12324
crossref_primary_10_3390_cancers14040939
crossref_primary_10_1002_mp_13962
crossref_primary_10_1177_1533033818811150
crossref_primary_10_1016_j_ejor_2018_08_019
crossref_primary_10_1016_j_prro_2013_10_009
crossref_primary_10_1016_j_phro_2025_100698
crossref_primary_10_1088_2632_2153_abe528
crossref_primary_10_1118_1_4940353
crossref_primary_10_1118_1_4915286
crossref_primary_10_1002_acm2_12054
crossref_primary_10_1134_S0020441221060087
crossref_primary_10_1016_j_radonc_2024_110345
crossref_primary_10_1007_s13246_019_00737_6
crossref_primary_10_1109_TCYB_2017_2763682
crossref_primary_10_1016_j_ijrobp_2014_09_043
crossref_primary_10_1016_j_radonc_2017_09_036
crossref_primary_10_1186_s13014_019_1348_3
crossref_primary_10_1002_mp_15452
crossref_primary_10_1016_j_radphyschem_2021_109494
crossref_primary_10_4236_ijmpcero_2016_52014
crossref_primary_10_1002_mp_12338
crossref_primary_10_1002_mp_13037
crossref_primary_10_1259_bjr_20190226
crossref_primary_10_1002_mp_13700
crossref_primary_10_1007_s41365_021_00848_4
crossref_primary_10_1016_j_semradonc_2018_02_003
crossref_primary_10_1007_s00066_016_1013_9
crossref_primary_10_1120_jacmp_v16i6_5748
crossref_primary_10_1287_ijoc_2018_0841
crossref_primary_10_1007_s11548_016_1473_5
crossref_primary_10_1088_1361_6560_acf63f
crossref_primary_10_3233_XST_210867
crossref_primary_10_1088_1361_6560_ace23f
crossref_primary_10_1118_1_4868464
crossref_primary_10_1002_mp_14151
crossref_primary_10_1016_j_ijrobp_2014_07_043
crossref_primary_10_1088_1361_6560_ac840d
crossref_primary_10_1002_mp_12529
crossref_primary_10_1088_1361_6560_aa6f92
crossref_primary_10_1088_1361_6560_ab63b8
crossref_primary_10_1016_j_ijrobp_2018_02_026
crossref_primary_10_1016_j_radonc_2016_07_014
crossref_primary_10_1016_j_ijrobp_2015_04_034
crossref_primary_10_1088_2057_1976_ac7c92
crossref_primary_10_1118_1_4919742
crossref_primary_10_1118_1_4954790
crossref_primary_10_1002_acm2_13280
crossref_primary_10_1007_s13246_021_01061_8
crossref_primary_10_1186_1748_717X_9_204
crossref_primary_10_3390_curroncol32020076
crossref_primary_10_1088_1361_6560_aaca17
crossref_primary_10_1002_acm2_12915
crossref_primary_10_1002_mp_16289
crossref_primary_10_1007_s11081_018_9409_2
crossref_primary_10_1117_1_JMI_4_1_015004
crossref_primary_10_1002_mp_12910
crossref_primary_10_1186_s13014_018_0997_y
crossref_primary_10_1016_j_jmir_2015_06_005
crossref_primary_10_1118_1_4914863
crossref_primary_10_1016_j_radonc_2017_02_018
crossref_primary_10_1016_j_ejmp_2021_02_004
crossref_primary_10_1186_s13014_014_0239_x
crossref_primary_10_1186_s13014_016_0761_0
crossref_primary_10_1002_mp_13085
crossref_primary_10_1002_mp_13086
crossref_primary_10_1088_1361_6560_ac58db
crossref_primary_10_1016_j_meddos_2017_07_009
crossref_primary_10_1002_acm2_12920
crossref_primary_10_1016_j_ijrobp_2013_02_002
crossref_primary_10_1002_mp_16358
crossref_primary_10_1007_s13566_015_0220_9
crossref_primary_10_1186_s13014_015_0494_5
crossref_primary_10_1259_bjr_20180908
crossref_primary_10_3390_cancers13081910
crossref_primary_10_4103_jmp_JMP_2_19
crossref_primary_10_1002_acm2_14396
crossref_primary_10_1002_mp_12270
crossref_primary_10_1016_j_ijrobp_2018_01_048
crossref_primary_10_1118_1_4845055
crossref_primary_10_1088_1361_6560_aaa36d
crossref_primary_10_3389_fonc_2021_717634
crossref_primary_10_1016_j_adro_2018_01_004
crossref_primary_10_1016_j_semradonc_2022_06_004
crossref_primary_10_1088_1361_6560_ab246f
crossref_primary_10_3389_fonc_2021_617007
crossref_primary_10_1002_mp_13870
crossref_primary_10_1002_mp_13872
crossref_primary_10_1002_mp_13986
crossref_primary_10_1016_j_ijrobp_2013_12_029
crossref_primary_10_1088_1361_6560_aac704
crossref_primary_10_1002_acm2_12660
crossref_primary_10_4236_ijmpcero_2019_82008
crossref_primary_10_1016_j_radonc_2018_02_011
crossref_primary_10_1007_s11684_020_0761_1
crossref_primary_10_1002_mp_13381
crossref_primary_10_1088_1361_6560_aaa94f
crossref_primary_10_1118_1_4932631
crossref_primary_10_1002_mp_13022
crossref_primary_10_1002_mp_14993
crossref_primary_10_1002_mp_16899
crossref_primary_10_1002_mp_13810
crossref_primary_10_1002_mp_13657
crossref_primary_10_1118_1_4963212
crossref_primary_10_1016_j_adro_2024_101570
crossref_primary_10_1016_j_prro_2018_07_001
crossref_primary_10_1088_1361_6560_ac4b37
crossref_primary_10_1088_1361_6560_ad75e1
crossref_primary_10_1118_1_4931415
crossref_primary_10_1088_1361_6560_ac2bb5
crossref_primary_10_1118_1_4870977
crossref_primary_10_1120_jacmp_v15i2_4682
crossref_primary_10_1002_mp_13651
crossref_primary_10_1002_mp_12833
crossref_primary_10_1017_S1460396916000595
crossref_primary_10_1177_15330338231170495
crossref_primary_10_1016_j_zemedi_2018_03_002
crossref_primary_10_1118_1_4886757
crossref_primary_10_1002_acm2_12164
crossref_primary_10_1134_S1063784221020158
crossref_primary_10_1186_s13014_017_0806_z
crossref_primary_10_1186_s13014_019_1264_6
crossref_primary_10_1016_j_adro_2015_12_004
crossref_primary_10_1088_1361_6560_acec27
Cites_doi 10.1016/j.ijrobp.2005.06.006
10.1186/1748-717X-6-76
10.1200/JCO.2008.19.6329
10.1016/j.ijrobp.2006.05.034
10.1016/j.ijrobp.2010.09.014
10.1016/j.ejca.2009.08.011
10.1080/028418602753669535
10.1118/1.599001
10.1007/s00384-010-1075-6
10.1137/040606612
10.1016/j.ijrobp.2005.01.002
10.1016/S0360-3016(02)02846-8
10.1088/0031-9155/52/2/012
10.1200/JCO.2001.19.1.164
10.1016/j.canrad.2005.09.007
10.1016/j.ijrobp.2009.05.005
10.1016/j.ijrobp.2004.06.007
10.1088/0031-9155/49/6/009
10.1002/cncr.25997
10.1016/j.radonc.2008.06.001
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1016/j.ijrobp.2012.09.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-355X
EndPage 1366
ExternalDocumentID 22224433
23154076
10_1016_j_ijrobp_2012_09_028
S036030161203636X
1_s2_0_S036030161203636X
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
.1-
.FO
0R~
1B1
1P~
1RT
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
AAEDT
AAEDW
AAQFI
AAQQT
AAWTL
AAXUO
ABJNI
ABLJU
ABNEU
ABOCM
ABUDA
ACGFS
ACIUM
ACVFH
ADBBV
ADCNI
ADVLN
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AGCQF
AHHHB
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BELOY
DU5
EBS
EFKBS
EJD
F5P
FDB
GBLVA
HED
HMO
IHE
J1W
KOM
LX3
M41
MO0
O9-
OC~
OO-
RNS
ROL
RPZ
SDG
SEL
SES
SSZ
UV1
XH2
Z5R
~S-
.55
.GJ
29J
AALRI
AAQXK
ABEFU
ABWVN
ACRPL
ADMUD
ADNMO
ADPAM
AFCTW
AFFNX
AFJKZ
AGRDE
ASPBG
AVWKF
AZFZN
EFJIC
FEDTE
FGOYB
FIRID
G-2
HMK
HVGLF
HX~
HZ~
NQ-
R2-
RIG
SAE
SEW
UDS
X7M
XPP
ZGI
AAIAV
AGZHU
ALXNB
ZA5
AAYWO
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABPTK
OTOTI
ID FETCH-LOGICAL-c413t-ae8afb205b904641b1777836885e3454315284ce34e3e5458b1572c9f0de863e3
ISSN 0360-3016
1879-355X
IngestDate Fri May 19 00:35:21 EDT 2023
Mon Jul 21 11:24:38 EDT 2025
Thu Apr 03 07:09:23 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Tue Jul 01 01:48:41 EDT 2025
Fri Feb 23 02:32:35 EST 2024
Sun Feb 23 10:18:58 EST 2025
Tue Aug 26 20:10:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-ae8afb205b904641b1777836885e3454315284ce34e3e5458b1572c9f0de863e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 23154076
PQID 1319184248
PQPubID 23479
PageCount 7
ParticipantIDs osti_scitechconnect_22224433
proquest_miscellaneous_1319184248
pubmed_primary_23154076
crossref_primary_10_1016_j_ijrobp_2012_09_028
crossref_citationtrail_10_1016_j_ijrobp_2012_09_028
elsevier_sciencedirect_doi_10_1016_j_ijrobp_2012_09_028
elsevier_clinicalkeyesjournals_1_s2_0_S036030161203636X
elsevier_clinicalkey_doi_10_1016_j_ijrobp_2012_09_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle International journal of radiation oncology, biology, physics
PublicationTitleAlternate Int J Radiat Oncol Biol Phys
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Wagner, Buatti (bib20) 2004; 49
Schefter, Kavanagh, Timmerman (bib8) 2005; 62
de Pooter, Méndez Romero, Wunderink (bib11) 2008; 88
Wang, Zhang, Dong (bib15) 2004; 60
Bedford, Webb (bib13) 2007; 52
Romeijn, Ahuja, Dempsey (bib16) 2005; 15
Borasio, Gisabella, Billé (bib3) 2011; 26
Rusthoven, Kavanagh, Cardenes (bib2) 2009; 27
Mornex, Girard, Merle (bib5) 2005; 9
Holt, van Vliet-Vroegindeweij, Mans (bib9) 2011; 81
Pugachev, Boyer, Xing (bib12) 2000; 27
Herfarth, Debus, Lohr (bib19) 2001; 19
Chang, Swaminath, Kozak (bib4) 2011; 117
Wu, Yoo, Kirkpatrick (bib10) 2009; 75
Thieke, Bortfeld, Kufer (bib17) 2002; 41
Dawson, Normolle, Balter (bib7) 2002; 53
Wang, Zhang, Dong (bib14) 2005; 63
Dawood, Mahadevan, Goodman (bib1) 2009; 45
Kuo, Chiu, Shih (bib18) 2011; 6
Baisden, Reish, Sheng (bib6) 2006; 66
Baisden (10.1016/j.ijrobp.2012.09.028_bib6) 2006; 66
Thieke (10.1016/j.ijrobp.2012.09.028_bib17) 2002; 41
Wu (10.1016/j.ijrobp.2012.09.028_bib10) 2009; 75
Rusthoven (10.1016/j.ijrobp.2012.09.028_bib2) 2009; 27
Borasio (10.1016/j.ijrobp.2012.09.028_bib3) 2011; 26
Wang (10.1016/j.ijrobp.2012.09.028_bib15) 2004; 60
Romeijn (10.1016/j.ijrobp.2012.09.028_bib16) 2005; 15
Pugachev (10.1016/j.ijrobp.2012.09.028_bib12) 2000; 27
Herfarth (10.1016/j.ijrobp.2012.09.028_bib19) 2001; 19
Mornex (10.1016/j.ijrobp.2012.09.028_bib5) 2005; 9
Liu (10.1016/j.ijrobp.2012.09.028_bib20) 2004; 49
Wang (10.1016/j.ijrobp.2012.09.028_bib14) 2005; 63
Dawson (10.1016/j.ijrobp.2012.09.028_bib7) 2002; 53
Bedford (10.1016/j.ijrobp.2012.09.028_bib13) 2007; 52
Dawood (10.1016/j.ijrobp.2012.09.028_bib1) 2009; 45
Schefter (10.1016/j.ijrobp.2012.09.028_bib8) 2005; 62
de Pooter (10.1016/j.ijrobp.2012.09.028_bib11) 2008; 88
Kuo (10.1016/j.ijrobp.2012.09.028_bib18) 2011; 6
Chang (10.1016/j.ijrobp.2012.09.028_bib4) 2011; 117
Holt (10.1016/j.ijrobp.2012.09.028_bib9) 2011; 81
29893282 - Int J Radiat Oncol Biol Phys. 2018 Jul 1;101(3):741-742
References_xml – volume: 53
  start-page: 810
  year: 2002
  end-page: 821
  ident: bib7
  article-title: Analysis of radiation-induced liver disease using the Lyman NTCP model
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 27
  start-page: 1572
  year: 2009
  end-page: 1578
  ident: bib2
  article-title: Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases
  publication-title: J Clin Oncol
– volume: 15
  start-page: 838
  year: 2005
  end-page: 862
  ident: bib16
  article-title: A column generation approach to radiation therapy treatment planning using aperture modulation
  publication-title: Siam J Optimiz
– volume: 19
  start-page: 164
  year: 2001
  end-page: 170
  ident: bib19
  article-title: Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial
  publication-title: J Clin Oncol
– volume: 45
  start-page: 2947
  year: 2009
  end-page: 2959
  ident: bib1
  article-title: Stereotactic body radiation therapy for liver metastases
  publication-title: Eur J Cancer
– volume: 9
  start-page: 470
  year: 2005
  end-page: 476
  ident: bib5
  article-title: Tolerance and efficacy of conformal radiotherapy for hepatocellular carcinoma in cirrhotic patients. Results of the French RTF1 phase II trial [article in French]
  publication-title: Cancer Radiother
– volume: 26
  start-page: 183
  year: 2011
  end-page: 190
  ident: bib3
  article-title: Role of surgical resection in colorectal lung metastases: Analysis of 137 patients
  publication-title: Int J Colorectal Dis
– volume: 88
  start-page: 376
  year: 2008
  end-page: 381
  ident: bib11
  article-title: Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis
  publication-title: Radiother Oncol
– volume: 62
  start-page: 1371
  year: 2005
  end-page: 1378
  ident: bib8
  article-title: A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 75
  start-page: 1596
  year: 2009
  end-page: 1604
  ident: bib10
  article-title: Volumetric arc intensity-modulated therapy for spine body radiotherapy: Comparison with static intensity-modulated treatment
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 41
  start-page: 158
  year: 2002
  end-page: 161
  ident: bib17
  article-title: Characterization of dose distributions through the max and mean dose concept
  publication-title: Acta Oncologica
– volume: 66
  start-page: 620
  year: 2006
  end-page: 625
  ident: bib6
  article-title: Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 27
  start-page: 1238
  year: 2000
  end-page: 1245
  ident: bib12
  article-title: Beam orientation optimization in intensity-modulated radiation treatment planning
  publication-title: Med Phys
– volume: 52
  start-page: 479
  year: 2007
  end-page: 498
  ident: bib13
  article-title: Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy
  publication-title: Phys Med Biol
– volume: 63
  start-page: 594
  year: 2005
  end-page: 601
  ident: bib14
  article-title: Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 49
  start-page: 987
  year: 2004
  end-page: 996
  ident: bib20
  article-title: Geometrically based optimization for extracranial radiosurgery
  publication-title: Phys Med Biol
– volume: 81
  start-page: 1560
  year: 2011
  end-page: 1567
  ident: bib9
  article-title: Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: A comparison with intensity-modulated radiotherapy techniques
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 6
  start-page: 76
  year: 2011
  ident: bib18
  article-title: Volumetric intensity-modulated Arc (RapidArc) therapy for primary hepatocellular carcinoma: Comparison with intensity-modulated radiotherapy and 3-D conformal radiotherapy
  publication-title: Radiat Oncol
– volume: 117
  start-page: 4060
  year: 2011
  end-page: 4069
  ident: bib4
  article-title: Stereotactic body radiotherapy for colorectal liver metastases: A pooled analysis
  publication-title: Cancer
– volume: 60
  start-page: 1325
  year: 2004
  end-page: 1337
  ident: bib15
  article-title: Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 63
  start-page: 594
  year: 2005
  ident: 10.1016/j.ijrobp.2012.09.028_bib14
  article-title: Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2005.06.006
– volume: 6
  start-page: 76
  year: 2011
  ident: 10.1016/j.ijrobp.2012.09.028_bib18
  article-title: Volumetric intensity-modulated Arc (RapidArc) therapy for primary hepatocellular carcinoma: Comparison with intensity-modulated radiotherapy and 3-D conformal radiotherapy
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-6-76
– volume: 27
  start-page: 1572
  year: 2009
  ident: 10.1016/j.ijrobp.2012.09.028_bib2
  article-title: Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.19.6329
– volume: 66
  start-page: 620
  year: 2006
  ident: 10.1016/j.ijrobp.2012.09.028_bib6
  article-title: Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2006.05.034
– volume: 81
  start-page: 1560
  year: 2011
  ident: 10.1016/j.ijrobp.2012.09.028_bib9
  article-title: Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: A comparison with intensity-modulated radiotherapy techniques
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.09.014
– volume: 45
  start-page: 2947
  year: 2009
  ident: 10.1016/j.ijrobp.2012.09.028_bib1
  article-title: Stereotactic body radiation therapy for liver metastases
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2009.08.011
– volume: 41
  start-page: 158
  year: 2002
  ident: 10.1016/j.ijrobp.2012.09.028_bib17
  article-title: Characterization of dose distributions through the max and mean dose concept
  publication-title: Acta Oncologica
  doi: 10.1080/028418602753669535
– volume: 27
  start-page: 1238
  year: 2000
  ident: 10.1016/j.ijrobp.2012.09.028_bib12
  article-title: Beam orientation optimization in intensity-modulated radiation treatment planning
  publication-title: Med Phys
  doi: 10.1118/1.599001
– volume: 26
  start-page: 183
  year: 2011
  ident: 10.1016/j.ijrobp.2012.09.028_bib3
  article-title: Role of surgical resection in colorectal lung metastases: Analysis of 137 patients
  publication-title: Int J Colorectal Dis
  doi: 10.1007/s00384-010-1075-6
– volume: 15
  start-page: 838
  year: 2005
  ident: 10.1016/j.ijrobp.2012.09.028_bib16
  article-title: A column generation approach to radiation therapy treatment planning using aperture modulation
  publication-title: Siam J Optimiz
  doi: 10.1137/040606612
– volume: 62
  start-page: 1371
  year: 2005
  ident: 10.1016/j.ijrobp.2012.09.028_bib8
  article-title: A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2005.01.002
– volume: 53
  start-page: 810
  year: 2002
  ident: 10.1016/j.ijrobp.2012.09.028_bib7
  article-title: Analysis of radiation-induced liver disease using the Lyman NTCP model
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(02)02846-8
– volume: 52
  start-page: 479
  year: 2007
  ident: 10.1016/j.ijrobp.2012.09.028_bib13
  article-title: Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/52/2/012
– volume: 19
  start-page: 164
  year: 2001
  ident: 10.1016/j.ijrobp.2012.09.028_bib19
  article-title: Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2001.19.1.164
– volume: 9
  start-page: 470
  year: 2005
  ident: 10.1016/j.ijrobp.2012.09.028_bib5
  article-title: Tolerance and efficacy of conformal radiotherapy for hepatocellular carcinoma in cirrhotic patients. Results of the French RTF1 phase II trial [article in French]
  publication-title: Cancer Radiother
  doi: 10.1016/j.canrad.2005.09.007
– volume: 75
  start-page: 1596
  year: 2009
  ident: 10.1016/j.ijrobp.2012.09.028_bib10
  article-title: Volumetric arc intensity-modulated therapy for spine body radiotherapy: Comparison with static intensity-modulated treatment
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.05.005
– volume: 60
  start-page: 1325
  year: 2004
  ident: 10.1016/j.ijrobp.2012.09.028_bib15
  article-title: Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.06.007
– volume: 49
  start-page: 987
  year: 2004
  ident: 10.1016/j.ijrobp.2012.09.028_bib20
  article-title: Geometrically based optimization for extracranial radiosurgery
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/49/6/009
– volume: 117
  start-page: 4060
  year: 2011
  ident: 10.1016/j.ijrobp.2012.09.028_bib4
  article-title: Stereotactic body radiotherapy for colorectal liver metastases: A pooled analysis
  publication-title: Cancer
  doi: 10.1002/cncr.25997
– volume: 88
  start-page: 376
  year: 2008
  ident: 10.1016/j.ijrobp.2012.09.028_bib11
  article-title: Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2008.06.001
– reference: 29893282 - Int J Radiat Oncol Biol Phys. 2018 Jul 1;101(3):741-742
SSID ssj0001174
Score 2.4660661
Snippet To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms to...
Purpose To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms...
Purpose: To improve the quality of liver stereotactic body radiation therapy (SBRT) treatments, a novel 4π framework was developed with accompanying algorithms...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1360
SubjectTerms ALGORITHMS
HEALTH HAZARDS
Hematology, Oncology and Palliative Medicine
Humans
INTEGRAL DOSES
Kidney - radiation effects
KIDNEYS
LINEAR ACCELERATORS
LIVER
Liver - diagnostic imaging
Liver - radiation effects
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - surgery
OPTIMIZATION
Organ Sparing Treatments - methods
Organs at Risk - diagnostic imaging
Organs at Risk - radiation effects
Particle Accelerators - instrumentation
PATIENTS
Quality Improvement
Radiation Injuries - prevention & control
Radiography
Radiology
RADIOLOGY AND NUCLEAR MEDICINE
Radiosurgery - methods
Radiosurgery - standards
RADIOTHERAPY
Radiotherapy Dosage - standards
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Intensity-Modulated - methods
SPINAL CORD
Spinal Cord - radiation effects
STOMACH
Stomach - radiation effects
Title 4π Non-Coplanar Liver SBRT: A Novel Delivery Technique
URI https://www.clinicalkey.com/#!/content/1-s2.0-S036030161203636X
https://www.clinicalkey.es/playcontent/1-s2.0-S036030161203636X
https://dx.doi.org/10.1016/j.ijrobp.2012.09.028
https://www.ncbi.nlm.nih.gov/pubmed/23154076
https://www.proquest.com/docview/1319184248
https://www.osti.gov/biblio/22224433
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBdZCmMvY_-brRserE_FwbYsW95blq2UlYaSpixvwlJkaAh2cZJC-zTYB9xX2l0kOw5NadcXYwufLUvnu9Pp7neEfJGTlIdcKTeApY4bRilzeaKVy3SUgjaiUq5qRp4MoqPz8OeYjVutP42opeVCdtXN1rySx8wqtMG8Ypbsf8xs_VBogHOYXzjCDMPxQXMc7vcP97l3MChyt19cztI8LWGVDd9xcPZtODJZ54PiSoNo0zNsvza-9AsTal2bpZt-wQaaRInQBcaozFWd2CLXOS7GM7KuTm8jfE-11YjrWJ9TXarafz9cGsfr90ZIkCUdlcV10xeBdSHCpi-iTpLZiOEEHQmi3vMt4rWRszxOXDB1xk1BbGr3WIZjDanqU1NzwGpouIy2Sn_jiJh2L6ZlIRGMFB29Sdez6eebuNpn2C_slo97sTQaPyE7Aaw1gjbZ6R0Pfx3XCt23YN7Vd1QZmKswwdvvusvCaRcgtO9eyKwMmtEL8tyuRJyeYauXpKXzV-TpiY21eE3i8O9vp8lZzoqzHOSsr07PWfGVU_GVU_PVG3J--GPUP3JtmQ1XgQWzcFPN00wGHpMJ7nP7CEiGuT2cM01DxEpgYMMoONdU4z6r9FkcqCTzJppHVNO3pJ0Xud4lTiY9nqWI9xPJkFOVJEzLLIsTNvGkYkmH0GpohLIY9FgKZSaqYMOpMAMqcECFlwgY0A5xa6pLg8Fyz_2sGnVR5ReDRhTAJvfQxdvo9Nz-dnPhizncLG6xTpPSWq7GIn3AO_eQLZAKQZsVRrcBGVjtYHdT2iGfK3YRIPdxMy_NdbGEroDu9HkYhPCId4aP6sGBNRviakbvH92tD-TZ-v_eI-1FudQfwfpeyE_27_gHORHUAA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4%CF%80+Non-Coplanar+Liver+SBRT%3A+A+Novel+Delivery+Technique&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Dong%2C+Peng&rft.au=Lee%2C+Percy&rft.au=Ruan%2C+Dan&rft.au=Long%2C+Troy&rft.date=2013-04-01&rft.pub=Elsevier+Inc&rft.issn=0360-3016&rft.eissn=1879-355X&rft.volume=85&rft.issue=5&rft.spage=1360&rft.epage=1366&rft_id=info:doi/10.1016%2Fj.ijrobp.2012.09.028&rft.externalDocID=S036030161203636X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03603016%2FS0360301613X00045%2Fcov150h.gif