Plant diversity increases with the strength of negative density dependence at the global scale

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we sh...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 356; no. 6345; pp. 1389 - 1392
Main Authors LaManna, Joseph A., Mangan, Scott A., Alonso, Alfonso, Bourg, Norman A., Brockelman, Warren Y., Bunyavejchewin, Sarayudh, Chang, Li-Wan, Chiang, Jyh-Min, Chuyong, George B., Clay, Keith, Condit, Richard, Cordell, Susan, Davies, Stuart J., Furniss, Tucker J., Giardina, Christian P., Gunatilleke, I. A. U. Nimal, Gunatilleke, C. V. Savitri, He, Fangliang, Howe, Robert W., Hubbell, Stephen P., Hsieh, Chang-Fu, Inman-Narahari, Faith M., Janík, David, Johnson, Daniel J., Kenfack, David, Korte, Lisa, Král, Kamil, Larson, Andrew J., Lutz, James A., McMahon, Sean M., McShea, William J., Memiaghe, Hervé R., Nathalang, Anuttara, Novotny, Vojtech, Ong, Perry S., Orwig, David A., Ostertag, Rebecca, Parker, Geoffrey G., Phillips, Richard P., Sack, Lawren, Sun, I-Fang, Tello, J. Sebastián, Thomas, Duncan W., Turner, Benjamin L., Díaz, Dilys M. Vela, Vrška, Tomáš, Weiblen, George D., Wolf, Amy, Yap, Sandra, Myers, Jonathan A.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 30.06.2017
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
AbstractList Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher species diversity in the tropics. LaManna et al. tested this hypothesis by comparing how tree species diversity changes with the intensity of local biotic interactions in tropical and temperate latitudes (see the Perspective by Comita). Stronger local specialized biotic interactions seem to prevent erosion of biodiversity in tropical forests, not only by limiting populations of common species, but also by strongly stabilizing populations of rare species, which tend to show higher CNDD in the tropics.Science, this issue p. 1389; see also p. 1328 Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher species diversity in the tropics. LaManna et al. tested this hypothesis by comparing how tree species diversity changes with the intensity of local biotic interactions in tropical and temperate latitudes (see the Perspective by Comita). Stronger local specialized biotic interactions seem to prevent erosion of biodiversity in tropical forests, not only by limiting populations of common species, but also by strongly stabilizing populations of rare species, which tend to show higher CNDD in the tropics. Science , this issue p. 1389 ; see also p. 1328 A global analysis of ~3000 species and ~2.4 million trees elucidates variations in tree species diversity between tropical and temperate latitudes. Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
Maintaining tree diversityNegative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher species diversity in the tropics. LaManna et al. tested this hypothesis by comparing how tree species diversity changes with the intensity of local biotic interactions in tropical and temperate latitudes (see the Perspective by Comita). Stronger local specialized biotic interactions seem to prevent erosion of biodiversity in tropical forests, not only by limiting populations of common species, but also by strongly stabilizing populations of rare species, which tend to show higher CNDD in the tropics.Science, this issue p. 1389; see also p. 1328 Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
Author Chang, Li-Wan
Nathalang, Anuttara
Gunatilleke, I. A. U. Nimal
Larson, Andrew J.
Díaz, Dilys M. Vela
Alonso, Alfonso
Hsieh, Chang-Fu
Wolf, Amy
Mangan, Scott A.
Inman-Narahari, Faith M.
Myers, Jonathan A.
Chiang, Jyh-Min
Memiaghe, Hervé R.
Korte, Lisa
Hubbell, Stephen P.
McShea, William J.
Novotny, Vojtech
Král, Kamil
Parker, Geoffrey G.
Bunyavejchewin, Sarayudh
Turner, Benjamin L.
LaManna, Joseph A.
Johnson, Daniel J.
Phillips, Richard P.
Cordell, Susan
Ostertag, Rebecca
Ong, Perry S.
Giardina, Christian P.
Sun, I-Fang
Chuyong, George B.
Condit, Richard
Kenfack, David
Janík, David
Howe, Robert W.
Davies, Stuart J.
Weiblen, George D.
Brockelman, Warren Y.
Vrška, Tomáš
Lutz, James A.
McMahon, Sean M.
Sack, Lawren
Tello, J. Sebastián
Yap, Sandra
Bourg, Norman A.
Gunatilleke, C. V. Savitri
He, Fangliang
Orwig, David A.
Thomas, Duncan W.
Furniss, Tucker J.
Clay, Keith
Author_xml – sequence: 1
  givenname: Joseph A.
  surname: LaManna
  fullname: LaManna, Joseph A.
– sequence: 2
  givenname: Scott A.
  surname: Mangan
  fullname: Mangan, Scott A.
– sequence: 3
  givenname: Alfonso
  surname: Alonso
  fullname: Alonso, Alfonso
– sequence: 4
  givenname: Norman A.
  surname: Bourg
  fullname: Bourg, Norman A.
– sequence: 5
  givenname: Warren Y.
  surname: Brockelman
  fullname: Brockelman, Warren Y.
– sequence: 6
  givenname: Sarayudh
  surname: Bunyavejchewin
  fullname: Bunyavejchewin, Sarayudh
– sequence: 7
  givenname: Li-Wan
  surname: Chang
  fullname: Chang, Li-Wan
– sequence: 8
  givenname: Jyh-Min
  surname: Chiang
  fullname: Chiang, Jyh-Min
– sequence: 9
  givenname: George B.
  surname: Chuyong
  fullname: Chuyong, George B.
– sequence: 10
  givenname: Keith
  surname: Clay
  fullname: Clay, Keith
– sequence: 11
  givenname: Richard
  surname: Condit
  fullname: Condit, Richard
– sequence: 12
  givenname: Susan
  surname: Cordell
  fullname: Cordell, Susan
– sequence: 13
  givenname: Stuart J.
  surname: Davies
  fullname: Davies, Stuart J.
– sequence: 14
  givenname: Tucker J.
  surname: Furniss
  fullname: Furniss, Tucker J.
– sequence: 15
  givenname: Christian P.
  surname: Giardina
  fullname: Giardina, Christian P.
– sequence: 16
  givenname: I. A. U. Nimal
  surname: Gunatilleke
  fullname: Gunatilleke, I. A. U. Nimal
– sequence: 17
  givenname: C. V. Savitri
  surname: Gunatilleke
  fullname: Gunatilleke, C. V. Savitri
– sequence: 18
  givenname: Fangliang
  surname: He
  fullname: He, Fangliang
– sequence: 19
  givenname: Robert W.
  surname: Howe
  fullname: Howe, Robert W.
– sequence: 20
  givenname: Stephen P.
  surname: Hubbell
  fullname: Hubbell, Stephen P.
– sequence: 21
  givenname: Chang-Fu
  surname: Hsieh
  fullname: Hsieh, Chang-Fu
– sequence: 22
  givenname: Faith M.
  surname: Inman-Narahari
  fullname: Inman-Narahari, Faith M.
– sequence: 23
  givenname: David
  surname: Janík
  fullname: Janík, David
– sequence: 24
  givenname: Daniel J.
  surname: Johnson
  fullname: Johnson, Daniel J.
– sequence: 25
  givenname: David
  surname: Kenfack
  fullname: Kenfack, David
– sequence: 26
  givenname: Lisa
  surname: Korte
  fullname: Korte, Lisa
– sequence: 27
  givenname: Kamil
  surname: Král
  fullname: Král, Kamil
– sequence: 28
  givenname: Andrew J.
  surname: Larson
  fullname: Larson, Andrew J.
– sequence: 29
  givenname: James A.
  surname: Lutz
  fullname: Lutz, James A.
– sequence: 30
  givenname: Sean M.
  surname: McMahon
  fullname: McMahon, Sean M.
– sequence: 31
  givenname: William J.
  surname: McShea
  fullname: McShea, William J.
– sequence: 32
  givenname: Hervé R.
  surname: Memiaghe
  fullname: Memiaghe, Hervé R.
– sequence: 33
  givenname: Anuttara
  surname: Nathalang
  fullname: Nathalang, Anuttara
– sequence: 34
  givenname: Vojtech
  surname: Novotny
  fullname: Novotny, Vojtech
– sequence: 35
  givenname: Perry S.
  surname: Ong
  fullname: Ong, Perry S.
– sequence: 36
  givenname: David A.
  surname: Orwig
  fullname: Orwig, David A.
– sequence: 37
  givenname: Rebecca
  surname: Ostertag
  fullname: Ostertag, Rebecca
– sequence: 38
  givenname: Geoffrey G.
  surname: Parker
  fullname: Parker, Geoffrey G.
– sequence: 39
  givenname: Richard P.
  surname: Phillips
  fullname: Phillips, Richard P.
– sequence: 40
  givenname: Lawren
  surname: Sack
  fullname: Sack, Lawren
– sequence: 41
  givenname: I-Fang
  surname: Sun
  fullname: Sun, I-Fang
– sequence: 42
  givenname: J. Sebastián
  surname: Tello
  fullname: Tello, J. Sebastián
– sequence: 43
  givenname: Duncan W.
  surname: Thomas
  fullname: Thomas, Duncan W.
– sequence: 44
  givenname: Benjamin L.
  surname: Turner
  fullname: Turner, Benjamin L.
– sequence: 45
  givenname: Dilys M. Vela
  surname: Díaz
  fullname: Díaz, Dilys M. Vela
– sequence: 46
  givenname: Tomáš
  surname: Vrška
  fullname: Vrška, Tomáš
– sequence: 47
  givenname: George D.
  surname: Weiblen
  fullname: Weiblen, George D.
– sequence: 48
  givenname: Amy
  surname: Wolf
  fullname: Wolf, Amy
– sequence: 49
  givenname: Sandra
  surname: Yap
  fullname: Yap, Sandra
– sequence: 50
  givenname: Jonathan A.
  surname: Myers
  fullname: Myers, Jonathan A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28663501$$D View this record in MEDLINE/PubMed
BookMark eNqN0c9LIzEUB_AgLmvVPXtSAl72Mm1-z-Qoou6C4B48O2Qyb2rKNKlJqvjfG211wYN4SkI-L7yX7z7a9cEDQkeUTCllapasA29hasxSqrrZQRNKtKw0I3wXTQjhqmpILffQfkoLQsqd5j_RHmuU4pLQCbr7Nxqfce8eISaXn7HzNoJJkPCTy_c43wNOOYKfl0MYsIe5yQXjHvyb72EFvn9tApv8xudj6MyIkzUjHKIfgxkT_NquB-j28uL2_E91fXP19_zsurKC8lyZ3oAZDG80LTtWgxqsqIUVsq9VY7no1NAZIVTf0YZRwqztqGV1IVoOih-g35tnVzE8rCHldumShbHMBmGdWqqZkowrRb5DZdMwRuU3aEGCK8kLPf1EF2EdfRm5qFpoXZf_Lupkq9bdEvp2Fd3SxOf2PY4CZhtgY0gpwvBBKGlfA2-3gbfbwEuF_FRhXS4JBZ-jceMXdcebukXKIf7vRHGtOdf8BS6YvBw
CitedBy_id crossref_primary_10_1111_ele_13996
crossref_primary_10_7717_peerj_17899
crossref_primary_10_1007_s11258_023_01381_7
crossref_primary_10_1007_s12080_020_00474_7
crossref_primary_10_1016_j_fecs_2023_100138
crossref_primary_10_1007_s00442_020_04788_5
crossref_primary_10_1002_ajb2_1596
crossref_primary_10_1111_1365_2745_13221
crossref_primary_10_1016_j_tree_2019_01_013
crossref_primary_10_1111_ele_13086
crossref_primary_10_1016_j_mbs_2023_109128
crossref_primary_10_1016_j_foreco_2018_04_055
crossref_primary_10_1111_ecog_03389
crossref_primary_10_1111_jvs_12990
crossref_primary_10_1126_science_aar3824
crossref_primary_10_1016_j_tree_2019_05_007
crossref_primary_10_1111_oik_07027
crossref_primary_10_1016_j_scitotenv_2020_140250
crossref_primary_10_1016_j_foreco_2021_119605
crossref_primary_10_1126_science_aar4685
crossref_primary_10_1111_1365_2745_13929
crossref_primary_10_1111_1365_2745_13806
crossref_primary_10_1086_707322
crossref_primary_10_1111_jvs_13056
crossref_primary_10_1111_1365_2745_13001
crossref_primary_10_3390_fire1010005
crossref_primary_10_1111_jvs_12645
crossref_primary_10_2139_ssrn_4073513
crossref_primary_10_1111_rec_14030
crossref_primary_10_1016_j_foreco_2024_122045
crossref_primary_10_1111_geb_13887
crossref_primary_10_1002_ecy_2220
crossref_primary_10_1002_ecy_3557
crossref_primary_10_1007_s00442_018_4080_z
crossref_primary_10_1111_jvs_12778
crossref_primary_10_1073_pnas_2113298119
crossref_primary_10_1111_ele_13278
crossref_primary_10_1111_cobi_14014
crossref_primary_10_1002_ece3_8478
crossref_primary_10_1111_ele_14364
crossref_primary_10_1126_science_aau1361
crossref_primary_10_1016_j_foreco_2020_118155
crossref_primary_10_1007_s00442_020_04725_6
crossref_primary_10_1002_ecy_3643
crossref_primary_10_1111_oik_06785
crossref_primary_10_1111_pce_15169
crossref_primary_10_1073_pnas_1813211116
crossref_primary_10_1038_nature24142
crossref_primary_10_7717_peerj_11587
crossref_primary_10_1111_brv_13061
crossref_primary_10_1111_ele_14019
crossref_primary_10_1111_ele_13846
crossref_primary_10_1038_s41467_025_56176_3
crossref_primary_10_1002_ecs2_3292
crossref_primary_10_1002_ecy_3774
crossref_primary_10_1186_s12870_018_1500_5
crossref_primary_10_1038_s41467_021_23236_3
crossref_primary_10_3390_f13010117
crossref_primary_10_1111_geb_12922
crossref_primary_10_1016_j_tree_2020_10_003
crossref_primary_10_1002_ece3_7169
crossref_primary_10_1016_j_fecs_2022_100033
crossref_primary_10_1111_1365_2745_13166
crossref_primary_10_1016_j_foreco_2018_02_004
crossref_primary_10_1016_j_foreco_2020_118722
crossref_primary_10_1038_s41467_021_20958_2
crossref_primary_10_1177_09596836211041730
crossref_primary_10_3389_fevo_2019_00216
crossref_primary_10_1016_j_cois_2019_01_008
crossref_primary_10_1038_s41559_023_02287_3
crossref_primary_10_1126_science_adg7021
crossref_primary_10_1016_j_fecs_2022_100044
crossref_primary_10_1038_s41586_024_07110_y
crossref_primary_10_1111_jbi_13753
crossref_primary_10_1111_jvs_12611
crossref_primary_10_1111_1365_2745_14485
crossref_primary_10_1038_s41598_018_29886_6
crossref_primary_10_1111_ele_13476
crossref_primary_10_1111_geb_12747
crossref_primary_10_1093_jpe_rtab009
crossref_primary_10_1007_s00442_020_04615_x
crossref_primary_10_1016_j_foreco_2022_120391
crossref_primary_10_1007_s11258_021_01173_x
crossref_primary_10_1111_ele_12940
crossref_primary_10_1111_nyas_14325
crossref_primary_10_3390_f12091192
crossref_primary_10_1002_ecy_2756
crossref_primary_10_1038_s41586_024_07118_4
crossref_primary_10_1002_ecy_3165
crossref_primary_10_1002_ecm_1397
crossref_primary_10_1002_ecy_3284
crossref_primary_10_1111_1365_2745_14391
crossref_primary_10_1111_oik_09974
crossref_primary_10_1002_ecs2_2956
crossref_primary_10_1016_j_jhazmat_2022_128704
crossref_primary_10_1111_nph_15431
crossref_primary_10_1073_pnas_2218499120
crossref_primary_10_1016_j_foreco_2019_117537
crossref_primary_10_1038_s41558_018_0347_y
crossref_primary_10_1016_j_foreco_2020_118184
crossref_primary_10_1111_oik_08509
crossref_primary_10_3390_f14091919
crossref_primary_10_1371_journal_pcbi_1008853
crossref_primary_10_1073_pnas_1901954116
crossref_primary_10_1126_science_aan6356
crossref_primary_10_1038_s41467_019_14140_y
crossref_primary_10_1038_s41598_023_44867_0
crossref_primary_10_1016_j_soilbio_2022_108762
crossref_primary_10_1002_ecy_4382
crossref_primary_10_1111_btp_12605
crossref_primary_10_1038_s41467_020_15335_4
crossref_primary_10_1038_s41559_018_0622_3
crossref_primary_10_1371_journal_pone_0245639
crossref_primary_10_1093_forestry_cpad043
crossref_primary_10_1111_mec_15736
crossref_primary_10_1111_ele_14424
crossref_primary_10_1002_ece3_7640
crossref_primary_10_1016_j_foreco_2018_05_052
crossref_primary_10_1007_s11356_021_16627_y
crossref_primary_10_1007_s10531_018_01692_6
crossref_primary_10_1016_j_biocon_2020_108631
crossref_primary_10_1002_ecy_2736
crossref_primary_10_1002_ecy_3147
crossref_primary_10_1016_j_foreco_2021_119459
crossref_primary_10_3389_fpls_2021_621064
crossref_primary_10_1111_gcb_70097
crossref_primary_10_1126_science_abb7020
crossref_primary_10_1007_s00442_017_3987_0
crossref_primary_10_1038_s41467_018_07535_w
crossref_primary_10_3389_fpls_2020_00784
crossref_primary_10_1002_ecy_2850
crossref_primary_10_1111_btp_12714
crossref_primary_10_1038_s41598_020_68108_w
crossref_primary_10_1111_ele_12925
crossref_primary_10_3390_jof9090949
crossref_primary_10_1016_j_foreco_2023_121177
crossref_primary_10_1111_1365_2745_13080
crossref_primary_10_3389_fpls_2022_978299
crossref_primary_10_1111_2041_210X_14022
crossref_primary_10_1126_science_aar2435
crossref_primary_10_1146_annurev_phyto_021320_010717
crossref_primary_10_1126_sciadv_aau4403
crossref_primary_10_3832_ifor4017_015
crossref_primary_10_1093_jpe_rtaa026
crossref_primary_10_1111_ele_13349
crossref_primary_10_12688_openreseurope_16004_1
crossref_primary_10_12688_openreseurope_16004_2
crossref_primary_10_1111_1365_2745_13639
crossref_primary_10_1002_ecy_2623
crossref_primary_10_1111_btp_13232
crossref_primary_10_1111_ecog_03684
crossref_primary_10_1186_s40663_020_0214_y
crossref_primary_10_3389_fevo_2021_697511
crossref_primary_10_3390_f16020377
crossref_primary_10_3390_f10020128
crossref_primary_10_1002_ecm_1508
crossref_primary_10_1002_ecy_3808
crossref_primary_10_1038_s41564_022_01200_1
crossref_primary_10_1007_s10980_020_01151_0
crossref_primary_10_1007_s11284_017_1523_7
crossref_primary_10_1007_s00442_020_04729_2
crossref_primary_10_1038_s41477_024_01695_y
crossref_primary_10_1111_aec_13249
crossref_primary_10_1111_2041_210X_13998
crossref_primary_10_1111_jbi_14477
crossref_primary_10_1016_j_oneear_2024_07_011
crossref_primary_10_1126_science_aar5245
crossref_primary_10_1002_ece3_9614
crossref_primary_10_1016_j_biocon_2020_108907
crossref_primary_10_3389_fevo_2017_00171
crossref_primary_10_3390_plants13141994
crossref_primary_10_1111_1365_2745_13413
crossref_primary_10_1016_j_foreco_2022_120339
crossref_primary_10_1002_ecy_3259
crossref_primary_10_1111_1365_2745_14189
crossref_primary_10_1016_j_foreco_2021_119802
crossref_primary_10_1111_1365_2745_13099
crossref_primary_10_1111_1365_2664_14093
crossref_primary_10_1111_ele_12915
crossref_primary_10_1038_s42003_023_05410_z
crossref_primary_10_1002_ecs2_3214
crossref_primary_10_1007_s00442_020_04596_x
crossref_primary_10_1111_1365_2435_13345
crossref_primary_10_1038_s41598_021_98025_5
crossref_primary_10_1098_rspb_2017_2210
crossref_primary_10_1016_j_jenvman_2024_120265
crossref_primary_10_1111_ele_14506
crossref_primary_10_1111_nph_19940
crossref_primary_10_1371_journal_pone_0316084
crossref_primary_10_1111_btp_12910
crossref_primary_10_1111_ele_13095
crossref_primary_10_1111_ele_13098
crossref_primary_10_1016_j_scitotenv_2023_162505
crossref_primary_10_1038_s41598_024_72374_3
crossref_primary_10_1002_ece3_4859
crossref_primary_10_1007_s10682_019_09975_2
crossref_primary_10_1002_ecs2_3322
crossref_primary_10_1111_nph_15107
crossref_primary_10_1111_nph_17409
crossref_primary_10_1007_s13595_021_01111_x
crossref_primary_10_1007_s00442_019_04376_2
crossref_primary_10_1016_j_tree_2018_03_003
crossref_primary_10_1016_j_tree_2022_09_008
crossref_primary_10_1098_rspb_2020_2352
crossref_primary_10_1002_ldr_5365
crossref_primary_10_1093_auk_ukaa049
crossref_primary_10_1002_ecy_4200
crossref_primary_10_1111_ecog_07167
crossref_primary_10_1111_ele_70095
crossref_primary_10_7554_eLife_67340
crossref_primary_10_1038_s41559_024_02579_2
crossref_primary_10_1086_714589
crossref_primary_10_3389_fevo_2021_633263
Cites_doi 10.1111/1365-2745.12553
10.1111/1365-2745.12232
10.1515/9781400840908
10.1371/journal.pone.0154988
10.1139/f54-039
10.1371/journal.pone.0036131
10.1111/gcb.12712
10.18637/jss.v022.i04
10.1046/j.1440-1703.2001.00445.x
10.1093/beheco/arn145
10.3759/tropics.8.45
10.1890/11-1087.1
10.1890/ES14-000159.1
10.1038/35005072
10.1126/science.1190772
10.1038/nature09273
10.1038/nature05884
10.1890/14-0157.1
10.1890/14-1780.1
10.1371/journal.pone.0082784
10.1016/j.foreco.2016.05.017
10.1371/journal.pone.0103268
10.2307/1310666
10.1111/j.1461-0248.2007.01020.x
10.1890/13-0010.1
10.1111/ele.12603
10.1371/journal.pone.0127260
10.1155/2012/467848
10.18637/jss.v067.i01
10.1086/664183
10.1098/rspb.2006.3660
10.1016/j.jml.2012.11.001
10.1890/0012-9615(2002)072[0057:FPMIPN]2.0.CO;2
10.1038/nature12911
10.1086/282687
10.1007/s12080-011-0119-z
10.1073/pnas.1523683113
10.1007/978-3-662-03664-8
10.1007/s10531-006-9065-2
10.1111/geb.12566
10.1073/pnas.1423042112
10.1111/j.1461-0248.2005.00741.x
10.1111/aec.12187
10.1038/35006630
10.1038/ncomms10017
10.1111/j.1365-2656.2006.01121.x
10.1073/pnas.1501070112
10.1111/j.1461-0248.2011.01612.x
10.1111/mec.13999
10.1086/284280
10.1111/1365-2745.12269
10.1126/science.1220269
10.1890/13-2098.1
10.1126/science.283.5401.554
10.1126/science.1117715
ContentType Journal Article
Copyright Copyright © 2017 by the American Association for the Advancement of Science
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright_xml – notice: Copyright © 2017 by the American Association for the Advancement of Science
– notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aam5678
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef

MEDLINE
Ecology Abstracts
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Geography
EISSN 1095-9203
EndPage 1392
ExternalDocumentID 28663501
10_1126_science_aam5678
26399339
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
AGFXO
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c413t-adaeafa3891dae27e6fc474c45d768c34b6fba446db182102ccb1c2774c95f63
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 18:25:40 EDT 2025
Fri Jul 11 08:04:27 EDT 2025
Thu Jul 10 18:31:35 EDT 2025
Fri Jul 25 10:41:38 EDT 2025
Thu Apr 03 07:10:03 EDT 2025
Tue Jul 01 00:37:29 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Sun Aug 24 12:10:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6345
Language English
License Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-adaeafa3891dae27e6fc474c45d768c34b6fba446db182102ccb1c2774c95f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6585-0722
0000-0002-8229-7973
0000-0003-1072-3344
0000-0002-2560-0710
0000-0002-7009-7202
0000-0001-6860-8432
0000-0002-6293-1551
0000-0001-7954-4761
0000-0003-4191-1495
0000-0001-8208-3388
0000-0003-4840-8921
0000-0002-5332-1305
0000-0002-7443-1992
0000-0001-7055-6491
0000-0002-1345-4138
0000-0002-1976-5041
0000-0002-3431-5073
0000-0001-7918-8023
0000-0002-4475-1856
0000-0002-8585-2143
0000-0002-4376-1737
0000-0002-8102-0200
0000-0001-8393-4981
0000-0002-1597-1921
0000-0001-7822-3560
0000-0002-8720-4887
0000-0002-3848-2119
0000-0001-8432-5184
0000-0003-3271-2945
PMID 28663501
PQID 1974997635
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_1926523660
proquest_miscellaneous_1925882215
proquest_miscellaneous_1915343653
proquest_journals_1974997635
pubmed_primary_28663501
crossref_primary_10_1126_science_aam5678
crossref_citationtrail_10_1126_science_aam5678
jstor_primary_26399339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170630
2017-06-30
PublicationDateYYYYMMDD 2017-06-30
PublicationDate_xml – month: 6
  year: 2017
  text: 20170630
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
Brockelman W. (e_1_3_3_63_2) 2011; 57
Bunyavejchewin S. (e_1_3_3_55_2) 2001; 49
e_1_3_3_6_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
28663453 - Science. 2017 Jun 30;356(6345):1328-1329
References_xml – ident: e_1_3_3_61_2
  doi: 10.1111/1365-2745.12553
– ident: e_1_3_3_13_2
  doi: 10.1111/1365-2745.12232
– ident: e_1_3_3_41_2
  doi: 10.1515/9781400840908
– ident: e_1_3_3_35_2
  doi: 10.1371/journal.pone.0154988
– ident: e_1_3_3_39_2
  doi: 10.1139/f54-039
– ident: e_1_3_3_73_2
  doi: 10.1371/journal.pone.0036131
– ident: e_1_3_3_34_2
  doi: 10.1111/gcb.12712
– ident: e_1_3_3_54_2
– ident: e_1_3_3_44_2
  doi: 10.18637/jss.v022.i04
– ident: e_1_3_3_27_2
  doi: 10.1046/j.1440-1703.2001.00445.x
– ident: e_1_3_3_45_2
  doi: 10.1093/beheco/arn145
– ident: e_1_3_3_56_2
  doi: 10.3759/tropics.8.45
– ident: e_1_3_3_19_2
  doi: 10.1890/11-1087.1
– ident: e_1_3_3_68_2
  doi: 10.1890/ES14-000159.1
– ident: e_1_3_3_37_2
– ident: e_1_3_3_67_2
– ident: e_1_3_3_9_2
  doi: 10.1038/35005072
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1190772
– ident: e_1_3_3_53_2
– ident: e_1_3_3_11_2
  doi: 10.1038/nature09273
– ident: e_1_3_3_30_2
  doi: 10.1038/nature05884
– ident: e_1_3_3_72_2
  doi: 10.1890/14-0157.1
– ident: e_1_3_3_25_2
  doi: 10.1890/14-1780.1
– ident: e_1_3_3_71_2
  doi: 10.1371/journal.pone.0082784
– ident: e_1_3_3_74_2
  doi: 10.1016/j.foreco.2016.05.017
– ident: e_1_3_3_60_2
  doi: 10.1371/journal.pone.0103268
– ident: e_1_3_3_49_2
  doi: 10.2307/1310666
– ident: e_1_3_3_2_2
  doi: 10.1111/j.1461-0248.2007.01020.x
– ident: e_1_3_3_65_2
  doi: 10.1890/13-0010.1
– ident: e_1_3_3_15_2
  doi: 10.1111/ele.12603
– ident: e_1_3_3_43_2
– ident: e_1_3_3_20_2
  doi: 10.1371/journal.pone.0127260
– ident: e_1_3_3_51_2
– ident: e_1_3_3_62_2
  doi: 10.1155/2012/467848
– ident: e_1_3_3_57_2
– ident: e_1_3_3_47_2
  doi: 10.18637/jss.v067.i01
– ident: e_1_3_3_17_2
  doi: 10.1086/664183
– ident: e_1_3_3_42_2
  doi: 10.1098/rspb.2006.3660
– ident: e_1_3_3_46_2
  doi: 10.1016/j.jml.2012.11.001
– ident: e_1_3_3_40_2
  doi: 10.1890/0012-9615(2002)072[0057:FPMIPN]2.0.CO;2
– ident: e_1_3_3_12_2
  doi: 10.1038/nature12911
– ident: e_1_3_3_3_2
  doi: 10.1086/282687
– ident: e_1_3_3_22_2
  doi: 10.1007/s12080-011-0119-z
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.1523683113
– ident: e_1_3_3_4_2
– ident: e_1_3_3_52_2
  doi: 10.1007/978-3-662-03664-8
– ident: e_1_3_3_59_2
  doi: 10.1007/s10531-006-9065-2
– ident: e_1_3_3_18_2
  doi: 10.1111/geb.12566
– ident: e_1_3_3_64_2
– ident: e_1_3_3_48_2
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.1423042112
– ident: e_1_3_3_58_2
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1461-0248.2005.00741.x
– ident: e_1_3_3_70_2
  doi: 10.1111/aec.12187
– ident: e_1_3_3_36_2
– volume: 49
  start-page: 89
  year: 2001
  ident: e_1_3_3_55_2
  article-title: Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand
  publication-title: Nat. Hist. Bull. Siam Soc.
– ident: e_1_3_3_5_2
  doi: 10.1038/35006630
– ident: e_1_3_3_24_2
  doi: 10.1038/ncomms10017
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1365-2656.2006.01121.x
– volume: 57
  start-page: 35
  year: 2011
  ident: e_1_3_3_63_2
  article-title: The Mo Singto forest dynamics plot, Khao Yai National Park, Thailand
  publication-title: Nat. Hist. Bull. Siam Soc.
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.1501070112
– ident: e_1_3_3_29_2
  doi: 10.1111/j.1461-0248.2011.01612.x
– ident: e_1_3_3_66_2
– ident: e_1_3_3_33_2
  doi: 10.1111/mec.13999
– ident: e_1_3_3_21_2
  doi: 10.1086/284280
– ident: e_1_3_3_23_2
  doi: 10.1111/1365-2745.12269
– ident: e_1_3_3_14_2
  doi: 10.1126/science.1220269
– ident: e_1_3_3_38_2
  doi: 10.1890/13-2098.1
– ident: e_1_3_3_50_2
  doi: 10.1126/science.283.5401.554
– ident: e_1_3_3_69_2
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1117715
– reference: 28663453 - Science. 2017 Jun 30;356(6345):1328-1329
SSID ssj0009593
Score 2.6234848
Snippet Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in...
Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher...
Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher...
Maintaining tree diversityNegative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1389
SubjectTerms Antibiosis
Biodiversity
Biological diversity
Density
Density dependence
Ecosystem
Erosion control
Forests
Geography
Herbivores
Latitude
Models, Biological
Natural enemies
Plant diversity
Plant species
Plants (botany)
Plants (organisms)
Populations
Rare species
Species diversity
Trees
Trees - classification
Trees - physiology
Tropical Climate
Tropical environments
Tropical forests
Tropics
Title Plant diversity increases with the strength of negative density dependence at the global scale
URI https://www.jstor.org/stable/26399339
https://www.ncbi.nlm.nih.gov/pubmed/28663501
https://www.proquest.com/docview/1974997635
https://www.proquest.com/docview/1915343653
https://www.proquest.com/docview/1925882215
https://www.proquest.com/docview/1926523660
Volume 356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdKJyQuiA0GgYGMxGEIpUpix02OHayaUBmXTuqJyHacCmmkiKYH-BR8ZN6LHTdF3TS4RK7zklp-v9jv-f0j5I3JRBZJUFNZNtYhF7EMFWw7YS6TqIT9Q-oM450_XYqLK_5xkS4Gg989r6VNo0b61964kv_hKvQBXzFK9h84618KHdAG_sIVOAzXO_EYKw4170rvWvG1RhlwbVzIGsqUGAtSL-EHOmyYpU3zXaLXOtB3FXAxaKCNaezyg6yBczs-Qt0SAPKot_H0OOudFSfWpaDzMHCP9Y4bZhLLMsut8WF7mAo3lu44tk0Y4W9MrmECXThOhU1_hgCTtHTWJ7RFTPpnGLF3uPPLboQVI5PILnVmT59bq5nNQu5AKRhPe4sv2lz37wq9OpZmJOW3VNi6Qbv5ty8_F9Or2ayYny_m98hBAopHMiQHk7MPZ9O_Ezn70bl0Ub1ArO4PdiQd6-x6sxrTijPzR-Sh00PoxILqkAxMfUTu28qkP4_IoePcmp66xORvH5MvLd6oxxv1eKOINwoAoB3e6KqiHd6owxvd4o3KpiW3eKMt3p6Q-fR8_v4idPU5Qg2iTxPKUhpZSbR0QysZG1FpPuaapyUosZpxJSolORelAi0WJFmtVaxhWrnO00qwYzKsV7V5RigotWWqMPljWnETq9yoSkWyKg1jWZlnARl1U1lol7seS6hcF60Om4jCzX3h5j4gp_6B7zZty82kxy1vPF3SCu0sD8hJx6zCffTrIoah5jlmcQzIa38blmS0s8narDZIA2IEZyJlt9EkKSi3IHDfSiPShAkRBeSpBct2kBmqClH8_A6jeEEebD-6EzJsfmzMSxClG_XKofsP_gPPeA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+diversity+increases+with+the+strength+of+negative+density+dependence+at+the+global+scale&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=LaManna%2C+Joseph+A&rft.au=Mangan%2C+Scott+A&rft.au=Alonso%2C+Alfonso&rft.au=Bourg%2C+Norman+A&rft.date=2017-06-30&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=356&rft.issue=6345&rft.spage=1389&rft_id=info:doi/10.1126%2Fscience.aam5678&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon