Plant diversity increases with the strength of negative density dependence at the global scale
Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we sh...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 356; no. 6345; pp. 1389 - 1392 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
30.06.2017
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities. |
---|---|
AbstractList | Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities. Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher species diversity in the tropics. LaManna et al. tested this hypothesis by comparing how tree species diversity changes with the intensity of local biotic interactions in tropical and temperate latitudes (see the Perspective by Comita). Stronger local specialized biotic interactions seem to prevent erosion of biodiversity in tropical forests, not only by limiting populations of common species, but also by strongly stabilizing populations of rare species, which tend to show higher CNDD in the tropics.Science, this issue p. 1389; see also p. 1328 Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities. Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher species diversity in the tropics. LaManna et al. tested this hypothesis by comparing how tree species diversity changes with the intensity of local biotic interactions in tropical and temperate latitudes (see the Perspective by Comita). Stronger local specialized biotic interactions seem to prevent erosion of biodiversity in tropical forests, not only by limiting populations of common species, but also by strongly stabilizing populations of rare species, which tend to show higher CNDD in the tropics. Science , this issue p. 1389 ; see also p. 1328 A global analysis of ~3000 species and ~2.4 million trees elucidates variations in tree species diversity between tropical and temperate latitudes. Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities. Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities. Maintaining tree diversityNegative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher species diversity in the tropics. LaManna et al. tested this hypothesis by comparing how tree species diversity changes with the intensity of local biotic interactions in tropical and temperate latitudes (see the Perspective by Comita). Stronger local specialized biotic interactions seem to prevent erosion of biodiversity in tropical forests, not only by limiting populations of common species, but also by strongly stabilizing populations of rare species, which tend to show higher CNDD in the tropics.Science, this issue p. 1389; see also p. 1328 Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities. |
Author | Chang, Li-Wan Nathalang, Anuttara Gunatilleke, I. A. U. Nimal Larson, Andrew J. Díaz, Dilys M. Vela Alonso, Alfonso Hsieh, Chang-Fu Wolf, Amy Mangan, Scott A. Inman-Narahari, Faith M. Myers, Jonathan A. Chiang, Jyh-Min Memiaghe, Hervé R. Korte, Lisa Hubbell, Stephen P. McShea, William J. Novotny, Vojtech Král, Kamil Parker, Geoffrey G. Bunyavejchewin, Sarayudh Turner, Benjamin L. LaManna, Joseph A. Johnson, Daniel J. Phillips, Richard P. Cordell, Susan Ostertag, Rebecca Ong, Perry S. Giardina, Christian P. Sun, I-Fang Chuyong, George B. Condit, Richard Kenfack, David Janík, David Howe, Robert W. Davies, Stuart J. Weiblen, George D. Brockelman, Warren Y. Vrška, Tomáš Lutz, James A. McMahon, Sean M. Sack, Lawren Tello, J. Sebastián Yap, Sandra Bourg, Norman A. Gunatilleke, C. V. Savitri He, Fangliang Orwig, David A. Thomas, Duncan W. Furniss, Tucker J. Clay, Keith |
Author_xml | – sequence: 1 givenname: Joseph A. surname: LaManna fullname: LaManna, Joseph A. – sequence: 2 givenname: Scott A. surname: Mangan fullname: Mangan, Scott A. – sequence: 3 givenname: Alfonso surname: Alonso fullname: Alonso, Alfonso – sequence: 4 givenname: Norman A. surname: Bourg fullname: Bourg, Norman A. – sequence: 5 givenname: Warren Y. surname: Brockelman fullname: Brockelman, Warren Y. – sequence: 6 givenname: Sarayudh surname: Bunyavejchewin fullname: Bunyavejchewin, Sarayudh – sequence: 7 givenname: Li-Wan surname: Chang fullname: Chang, Li-Wan – sequence: 8 givenname: Jyh-Min surname: Chiang fullname: Chiang, Jyh-Min – sequence: 9 givenname: George B. surname: Chuyong fullname: Chuyong, George B. – sequence: 10 givenname: Keith surname: Clay fullname: Clay, Keith – sequence: 11 givenname: Richard surname: Condit fullname: Condit, Richard – sequence: 12 givenname: Susan surname: Cordell fullname: Cordell, Susan – sequence: 13 givenname: Stuart J. surname: Davies fullname: Davies, Stuart J. – sequence: 14 givenname: Tucker J. surname: Furniss fullname: Furniss, Tucker J. – sequence: 15 givenname: Christian P. surname: Giardina fullname: Giardina, Christian P. – sequence: 16 givenname: I. A. U. Nimal surname: Gunatilleke fullname: Gunatilleke, I. A. U. Nimal – sequence: 17 givenname: C. V. Savitri surname: Gunatilleke fullname: Gunatilleke, C. V. Savitri – sequence: 18 givenname: Fangliang surname: He fullname: He, Fangliang – sequence: 19 givenname: Robert W. surname: Howe fullname: Howe, Robert W. – sequence: 20 givenname: Stephen P. surname: Hubbell fullname: Hubbell, Stephen P. – sequence: 21 givenname: Chang-Fu surname: Hsieh fullname: Hsieh, Chang-Fu – sequence: 22 givenname: Faith M. surname: Inman-Narahari fullname: Inman-Narahari, Faith M. – sequence: 23 givenname: David surname: Janík fullname: Janík, David – sequence: 24 givenname: Daniel J. surname: Johnson fullname: Johnson, Daniel J. – sequence: 25 givenname: David surname: Kenfack fullname: Kenfack, David – sequence: 26 givenname: Lisa surname: Korte fullname: Korte, Lisa – sequence: 27 givenname: Kamil surname: Král fullname: Král, Kamil – sequence: 28 givenname: Andrew J. surname: Larson fullname: Larson, Andrew J. – sequence: 29 givenname: James A. surname: Lutz fullname: Lutz, James A. – sequence: 30 givenname: Sean M. surname: McMahon fullname: McMahon, Sean M. – sequence: 31 givenname: William J. surname: McShea fullname: McShea, William J. – sequence: 32 givenname: Hervé R. surname: Memiaghe fullname: Memiaghe, Hervé R. – sequence: 33 givenname: Anuttara surname: Nathalang fullname: Nathalang, Anuttara – sequence: 34 givenname: Vojtech surname: Novotny fullname: Novotny, Vojtech – sequence: 35 givenname: Perry S. surname: Ong fullname: Ong, Perry S. – sequence: 36 givenname: David A. surname: Orwig fullname: Orwig, David A. – sequence: 37 givenname: Rebecca surname: Ostertag fullname: Ostertag, Rebecca – sequence: 38 givenname: Geoffrey G. surname: Parker fullname: Parker, Geoffrey G. – sequence: 39 givenname: Richard P. surname: Phillips fullname: Phillips, Richard P. – sequence: 40 givenname: Lawren surname: Sack fullname: Sack, Lawren – sequence: 41 givenname: I-Fang surname: Sun fullname: Sun, I-Fang – sequence: 42 givenname: J. Sebastián surname: Tello fullname: Tello, J. Sebastián – sequence: 43 givenname: Duncan W. surname: Thomas fullname: Thomas, Duncan W. – sequence: 44 givenname: Benjamin L. surname: Turner fullname: Turner, Benjamin L. – sequence: 45 givenname: Dilys M. Vela surname: Díaz fullname: Díaz, Dilys M. Vela – sequence: 46 givenname: Tomáš surname: Vrška fullname: Vrška, Tomáš – sequence: 47 givenname: George D. surname: Weiblen fullname: Weiblen, George D. – sequence: 48 givenname: Amy surname: Wolf fullname: Wolf, Amy – sequence: 49 givenname: Sandra surname: Yap fullname: Yap, Sandra – sequence: 50 givenname: Jonathan A. surname: Myers fullname: Myers, Jonathan A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28663501$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c9LIzEUB_AgLmvVPXtSAl72Mm1-z-Qoou6C4B48O2Qyb2rKNKlJqvjfG211wYN4SkI-L7yX7z7a9cEDQkeUTCllapasA29hasxSqrrZQRNKtKw0I3wXTQjhqmpILffQfkoLQsqd5j_RHmuU4pLQCbr7Nxqfce8eISaXn7HzNoJJkPCTy_c43wNOOYKfl0MYsIe5yQXjHvyb72EFvn9tApv8xudj6MyIkzUjHKIfgxkT_NquB-j28uL2_E91fXP19_zsurKC8lyZ3oAZDG80LTtWgxqsqIUVsq9VY7no1NAZIVTf0YZRwqztqGV1IVoOih-g35tnVzE8rCHldumShbHMBmGdWqqZkowrRb5DZdMwRuU3aEGCK8kLPf1EF2EdfRm5qFpoXZf_Lupkq9bdEvp2Fd3SxOf2PY4CZhtgY0gpwvBBKGlfA2-3gbfbwEuF_FRhXS4JBZ-jceMXdcebukXKIf7vRHGtOdf8BS6YvBw |
CitedBy_id | crossref_primary_10_1111_ele_13996 crossref_primary_10_7717_peerj_17899 crossref_primary_10_1007_s11258_023_01381_7 crossref_primary_10_1007_s12080_020_00474_7 crossref_primary_10_1016_j_fecs_2023_100138 crossref_primary_10_1007_s00442_020_04788_5 crossref_primary_10_1002_ajb2_1596 crossref_primary_10_1111_1365_2745_13221 crossref_primary_10_1016_j_tree_2019_01_013 crossref_primary_10_1111_ele_13086 crossref_primary_10_1016_j_mbs_2023_109128 crossref_primary_10_1016_j_foreco_2018_04_055 crossref_primary_10_1111_ecog_03389 crossref_primary_10_1111_jvs_12990 crossref_primary_10_1126_science_aar3824 crossref_primary_10_1016_j_tree_2019_05_007 crossref_primary_10_1111_oik_07027 crossref_primary_10_1016_j_scitotenv_2020_140250 crossref_primary_10_1016_j_foreco_2021_119605 crossref_primary_10_1126_science_aar4685 crossref_primary_10_1111_1365_2745_13929 crossref_primary_10_1111_1365_2745_13806 crossref_primary_10_1086_707322 crossref_primary_10_1111_jvs_13056 crossref_primary_10_1111_1365_2745_13001 crossref_primary_10_3390_fire1010005 crossref_primary_10_1111_jvs_12645 crossref_primary_10_2139_ssrn_4073513 crossref_primary_10_1111_rec_14030 crossref_primary_10_1016_j_foreco_2024_122045 crossref_primary_10_1111_geb_13887 crossref_primary_10_1002_ecy_2220 crossref_primary_10_1002_ecy_3557 crossref_primary_10_1007_s00442_018_4080_z crossref_primary_10_1111_jvs_12778 crossref_primary_10_1073_pnas_2113298119 crossref_primary_10_1111_ele_13278 crossref_primary_10_1111_cobi_14014 crossref_primary_10_1002_ece3_8478 crossref_primary_10_1111_ele_14364 crossref_primary_10_1126_science_aau1361 crossref_primary_10_1016_j_foreco_2020_118155 crossref_primary_10_1007_s00442_020_04725_6 crossref_primary_10_1002_ecy_3643 crossref_primary_10_1111_oik_06785 crossref_primary_10_1111_pce_15169 crossref_primary_10_1073_pnas_1813211116 crossref_primary_10_1038_nature24142 crossref_primary_10_7717_peerj_11587 crossref_primary_10_1111_brv_13061 crossref_primary_10_1111_ele_14019 crossref_primary_10_1111_ele_13846 crossref_primary_10_1038_s41467_025_56176_3 crossref_primary_10_1002_ecs2_3292 crossref_primary_10_1002_ecy_3774 crossref_primary_10_1186_s12870_018_1500_5 crossref_primary_10_1038_s41467_021_23236_3 crossref_primary_10_3390_f13010117 crossref_primary_10_1111_geb_12922 crossref_primary_10_1016_j_tree_2020_10_003 crossref_primary_10_1002_ece3_7169 crossref_primary_10_1016_j_fecs_2022_100033 crossref_primary_10_1111_1365_2745_13166 crossref_primary_10_1016_j_foreco_2018_02_004 crossref_primary_10_1016_j_foreco_2020_118722 crossref_primary_10_1038_s41467_021_20958_2 crossref_primary_10_1177_09596836211041730 crossref_primary_10_3389_fevo_2019_00216 crossref_primary_10_1016_j_cois_2019_01_008 crossref_primary_10_1038_s41559_023_02287_3 crossref_primary_10_1126_science_adg7021 crossref_primary_10_1016_j_fecs_2022_100044 crossref_primary_10_1038_s41586_024_07110_y crossref_primary_10_1111_jbi_13753 crossref_primary_10_1111_jvs_12611 crossref_primary_10_1111_1365_2745_14485 crossref_primary_10_1038_s41598_018_29886_6 crossref_primary_10_1111_ele_13476 crossref_primary_10_1111_geb_12747 crossref_primary_10_1093_jpe_rtab009 crossref_primary_10_1007_s00442_020_04615_x crossref_primary_10_1016_j_foreco_2022_120391 crossref_primary_10_1007_s11258_021_01173_x crossref_primary_10_1111_ele_12940 crossref_primary_10_1111_nyas_14325 crossref_primary_10_3390_f12091192 crossref_primary_10_1002_ecy_2756 crossref_primary_10_1038_s41586_024_07118_4 crossref_primary_10_1002_ecy_3165 crossref_primary_10_1002_ecm_1397 crossref_primary_10_1002_ecy_3284 crossref_primary_10_1111_1365_2745_14391 crossref_primary_10_1111_oik_09974 crossref_primary_10_1002_ecs2_2956 crossref_primary_10_1016_j_jhazmat_2022_128704 crossref_primary_10_1111_nph_15431 crossref_primary_10_1073_pnas_2218499120 crossref_primary_10_1016_j_foreco_2019_117537 crossref_primary_10_1038_s41558_018_0347_y crossref_primary_10_1016_j_foreco_2020_118184 crossref_primary_10_1111_oik_08509 crossref_primary_10_3390_f14091919 crossref_primary_10_1371_journal_pcbi_1008853 crossref_primary_10_1073_pnas_1901954116 crossref_primary_10_1126_science_aan6356 crossref_primary_10_1038_s41467_019_14140_y crossref_primary_10_1038_s41598_023_44867_0 crossref_primary_10_1016_j_soilbio_2022_108762 crossref_primary_10_1002_ecy_4382 crossref_primary_10_1111_btp_12605 crossref_primary_10_1038_s41467_020_15335_4 crossref_primary_10_1038_s41559_018_0622_3 crossref_primary_10_1371_journal_pone_0245639 crossref_primary_10_1093_forestry_cpad043 crossref_primary_10_1111_mec_15736 crossref_primary_10_1111_ele_14424 crossref_primary_10_1002_ece3_7640 crossref_primary_10_1016_j_foreco_2018_05_052 crossref_primary_10_1007_s11356_021_16627_y crossref_primary_10_1007_s10531_018_01692_6 crossref_primary_10_1016_j_biocon_2020_108631 crossref_primary_10_1002_ecy_2736 crossref_primary_10_1002_ecy_3147 crossref_primary_10_1016_j_foreco_2021_119459 crossref_primary_10_3389_fpls_2021_621064 crossref_primary_10_1111_gcb_70097 crossref_primary_10_1126_science_abb7020 crossref_primary_10_1007_s00442_017_3987_0 crossref_primary_10_1038_s41467_018_07535_w crossref_primary_10_3389_fpls_2020_00784 crossref_primary_10_1002_ecy_2850 crossref_primary_10_1111_btp_12714 crossref_primary_10_1038_s41598_020_68108_w crossref_primary_10_1111_ele_12925 crossref_primary_10_3390_jof9090949 crossref_primary_10_1016_j_foreco_2023_121177 crossref_primary_10_1111_1365_2745_13080 crossref_primary_10_3389_fpls_2022_978299 crossref_primary_10_1111_2041_210X_14022 crossref_primary_10_1126_science_aar2435 crossref_primary_10_1146_annurev_phyto_021320_010717 crossref_primary_10_1126_sciadv_aau4403 crossref_primary_10_3832_ifor4017_015 crossref_primary_10_1093_jpe_rtaa026 crossref_primary_10_1111_ele_13349 crossref_primary_10_12688_openreseurope_16004_1 crossref_primary_10_12688_openreseurope_16004_2 crossref_primary_10_1111_1365_2745_13639 crossref_primary_10_1002_ecy_2623 crossref_primary_10_1111_btp_13232 crossref_primary_10_1111_ecog_03684 crossref_primary_10_1186_s40663_020_0214_y crossref_primary_10_3389_fevo_2021_697511 crossref_primary_10_3390_f16020377 crossref_primary_10_3390_f10020128 crossref_primary_10_1002_ecm_1508 crossref_primary_10_1002_ecy_3808 crossref_primary_10_1038_s41564_022_01200_1 crossref_primary_10_1007_s10980_020_01151_0 crossref_primary_10_1007_s11284_017_1523_7 crossref_primary_10_1007_s00442_020_04729_2 crossref_primary_10_1038_s41477_024_01695_y crossref_primary_10_1111_aec_13249 crossref_primary_10_1111_2041_210X_13998 crossref_primary_10_1111_jbi_14477 crossref_primary_10_1016_j_oneear_2024_07_011 crossref_primary_10_1126_science_aar5245 crossref_primary_10_1002_ece3_9614 crossref_primary_10_1016_j_biocon_2020_108907 crossref_primary_10_3389_fevo_2017_00171 crossref_primary_10_3390_plants13141994 crossref_primary_10_1111_1365_2745_13413 crossref_primary_10_1016_j_foreco_2022_120339 crossref_primary_10_1002_ecy_3259 crossref_primary_10_1111_1365_2745_14189 crossref_primary_10_1016_j_foreco_2021_119802 crossref_primary_10_1111_1365_2745_13099 crossref_primary_10_1111_1365_2664_14093 crossref_primary_10_1111_ele_12915 crossref_primary_10_1038_s42003_023_05410_z crossref_primary_10_1002_ecs2_3214 crossref_primary_10_1007_s00442_020_04596_x crossref_primary_10_1111_1365_2435_13345 crossref_primary_10_1038_s41598_021_98025_5 crossref_primary_10_1098_rspb_2017_2210 crossref_primary_10_1016_j_jenvman_2024_120265 crossref_primary_10_1111_ele_14506 crossref_primary_10_1111_nph_19940 crossref_primary_10_1371_journal_pone_0316084 crossref_primary_10_1111_btp_12910 crossref_primary_10_1111_ele_13095 crossref_primary_10_1111_ele_13098 crossref_primary_10_1016_j_scitotenv_2023_162505 crossref_primary_10_1038_s41598_024_72374_3 crossref_primary_10_1002_ece3_4859 crossref_primary_10_1007_s10682_019_09975_2 crossref_primary_10_1002_ecs2_3322 crossref_primary_10_1111_nph_15107 crossref_primary_10_1111_nph_17409 crossref_primary_10_1007_s13595_021_01111_x crossref_primary_10_1007_s00442_019_04376_2 crossref_primary_10_1016_j_tree_2018_03_003 crossref_primary_10_1016_j_tree_2022_09_008 crossref_primary_10_1098_rspb_2020_2352 crossref_primary_10_1002_ldr_5365 crossref_primary_10_1093_auk_ukaa049 crossref_primary_10_1002_ecy_4200 crossref_primary_10_1111_ecog_07167 crossref_primary_10_1111_ele_70095 crossref_primary_10_7554_eLife_67340 crossref_primary_10_1038_s41559_024_02579_2 crossref_primary_10_1086_714589 crossref_primary_10_3389_fevo_2021_633263 |
Cites_doi | 10.1111/1365-2745.12553 10.1111/1365-2745.12232 10.1515/9781400840908 10.1371/journal.pone.0154988 10.1139/f54-039 10.1371/journal.pone.0036131 10.1111/gcb.12712 10.18637/jss.v022.i04 10.1046/j.1440-1703.2001.00445.x 10.1093/beheco/arn145 10.3759/tropics.8.45 10.1890/11-1087.1 10.1890/ES14-000159.1 10.1038/35005072 10.1126/science.1190772 10.1038/nature09273 10.1038/nature05884 10.1890/14-0157.1 10.1890/14-1780.1 10.1371/journal.pone.0082784 10.1016/j.foreco.2016.05.017 10.1371/journal.pone.0103268 10.2307/1310666 10.1111/j.1461-0248.2007.01020.x 10.1890/13-0010.1 10.1111/ele.12603 10.1371/journal.pone.0127260 10.1155/2012/467848 10.18637/jss.v067.i01 10.1086/664183 10.1098/rspb.2006.3660 10.1016/j.jml.2012.11.001 10.1890/0012-9615(2002)072[0057:FPMIPN]2.0.CO;2 10.1038/nature12911 10.1086/282687 10.1007/s12080-011-0119-z 10.1073/pnas.1523683113 10.1007/978-3-662-03664-8 10.1007/s10531-006-9065-2 10.1111/geb.12566 10.1073/pnas.1423042112 10.1111/j.1461-0248.2005.00741.x 10.1111/aec.12187 10.1038/35006630 10.1038/ncomms10017 10.1111/j.1365-2656.2006.01121.x 10.1073/pnas.1501070112 10.1111/j.1461-0248.2011.01612.x 10.1111/mec.13999 10.1086/284280 10.1111/1365-2745.12269 10.1126/science.1220269 10.1890/13-2098.1 10.1126/science.283.5401.554 10.1126/science.1117715 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by the American Association for the Advancement of Science Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
Copyright_xml | – notice: Copyright © 2017 by the American Association for the Advancement of Science – notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aam5678 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE Ecology Abstracts Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Geography |
EISSN | 1095-9203 |
EndPage | 1392 |
ExternalDocumentID | 28663501 10_1126_science_aam5678 26399339 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AADHG AAIKC AAMNW AANCE AAWTO ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX AGFXO ALIPV CITATION CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c413t-adaeafa3891dae27e6fc474c45d768c34b6fba446db182102ccb1c2774c95f63 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 18:25:40 EDT 2025 Fri Jul 11 08:04:27 EDT 2025 Thu Jul 10 18:31:35 EDT 2025 Fri Jul 25 10:41:38 EDT 2025 Thu Apr 03 07:10:03 EDT 2025 Tue Jul 01 00:37:29 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Sun Aug 24 12:10:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6345 |
Language | English |
License | Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-adaeafa3891dae27e6fc474c45d768c34b6fba446db182102ccb1c2774c95f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6585-0722 0000-0002-8229-7973 0000-0003-1072-3344 0000-0002-2560-0710 0000-0002-7009-7202 0000-0001-6860-8432 0000-0002-6293-1551 0000-0001-7954-4761 0000-0003-4191-1495 0000-0001-8208-3388 0000-0003-4840-8921 0000-0002-5332-1305 0000-0002-7443-1992 0000-0001-7055-6491 0000-0002-1345-4138 0000-0002-1976-5041 0000-0002-3431-5073 0000-0001-7918-8023 0000-0002-4475-1856 0000-0002-8585-2143 0000-0002-4376-1737 0000-0002-8102-0200 0000-0001-8393-4981 0000-0002-1597-1921 0000-0001-7822-3560 0000-0002-8720-4887 0000-0002-3848-2119 0000-0001-8432-5184 0000-0003-3271-2945 |
PMID | 28663501 |
PQID | 1974997635 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1926523660 proquest_miscellaneous_1925882215 proquest_miscellaneous_1915343653 proquest_journals_1974997635 pubmed_primary_28663501 crossref_primary_10_1126_science_aam5678 crossref_citationtrail_10_1126_science_aam5678 jstor_primary_26399339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170630 2017-06-30 |
PublicationDateYYYYMMDD | 2017-06-30 |
PublicationDate_xml | – month: 6 year: 2017 text: 20170630 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2017 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_3_50_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 Brockelman W. (e_1_3_3_63_2) 2011; 57 Bunyavejchewin S. (e_1_3_3_55_2) 2001; 49 e_1_3_3_6_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 28663453 - Science. 2017 Jun 30;356(6345):1328-1329 |
References_xml | – ident: e_1_3_3_61_2 doi: 10.1111/1365-2745.12553 – ident: e_1_3_3_13_2 doi: 10.1111/1365-2745.12232 – ident: e_1_3_3_41_2 doi: 10.1515/9781400840908 – ident: e_1_3_3_35_2 doi: 10.1371/journal.pone.0154988 – ident: e_1_3_3_39_2 doi: 10.1139/f54-039 – ident: e_1_3_3_73_2 doi: 10.1371/journal.pone.0036131 – ident: e_1_3_3_34_2 doi: 10.1111/gcb.12712 – ident: e_1_3_3_54_2 – ident: e_1_3_3_44_2 doi: 10.18637/jss.v022.i04 – ident: e_1_3_3_27_2 doi: 10.1046/j.1440-1703.2001.00445.x – ident: e_1_3_3_45_2 doi: 10.1093/beheco/arn145 – ident: e_1_3_3_56_2 doi: 10.3759/tropics.8.45 – ident: e_1_3_3_19_2 doi: 10.1890/11-1087.1 – ident: e_1_3_3_68_2 doi: 10.1890/ES14-000159.1 – ident: e_1_3_3_37_2 – ident: e_1_3_3_67_2 – ident: e_1_3_3_9_2 doi: 10.1038/35005072 – ident: e_1_3_3_10_2 doi: 10.1126/science.1190772 – ident: e_1_3_3_53_2 – ident: e_1_3_3_11_2 doi: 10.1038/nature09273 – ident: e_1_3_3_30_2 doi: 10.1038/nature05884 – ident: e_1_3_3_72_2 doi: 10.1890/14-0157.1 – ident: e_1_3_3_25_2 doi: 10.1890/14-1780.1 – ident: e_1_3_3_71_2 doi: 10.1371/journal.pone.0082784 – ident: e_1_3_3_74_2 doi: 10.1016/j.foreco.2016.05.017 – ident: e_1_3_3_60_2 doi: 10.1371/journal.pone.0103268 – ident: e_1_3_3_49_2 doi: 10.2307/1310666 – ident: e_1_3_3_2_2 doi: 10.1111/j.1461-0248.2007.01020.x – ident: e_1_3_3_65_2 doi: 10.1890/13-0010.1 – ident: e_1_3_3_15_2 doi: 10.1111/ele.12603 – ident: e_1_3_3_43_2 – ident: e_1_3_3_20_2 doi: 10.1371/journal.pone.0127260 – ident: e_1_3_3_51_2 – ident: e_1_3_3_62_2 doi: 10.1155/2012/467848 – ident: e_1_3_3_57_2 – ident: e_1_3_3_47_2 doi: 10.18637/jss.v067.i01 – ident: e_1_3_3_17_2 doi: 10.1086/664183 – ident: e_1_3_3_42_2 doi: 10.1098/rspb.2006.3660 – ident: e_1_3_3_46_2 doi: 10.1016/j.jml.2012.11.001 – ident: e_1_3_3_40_2 doi: 10.1890/0012-9615(2002)072[0057:FPMIPN]2.0.CO;2 – ident: e_1_3_3_12_2 doi: 10.1038/nature12911 – ident: e_1_3_3_3_2 doi: 10.1086/282687 – ident: e_1_3_3_22_2 doi: 10.1007/s12080-011-0119-z – ident: e_1_3_3_16_2 doi: 10.1073/pnas.1523683113 – ident: e_1_3_3_4_2 – ident: e_1_3_3_52_2 doi: 10.1007/978-3-662-03664-8 – ident: e_1_3_3_59_2 doi: 10.1007/s10531-006-9065-2 – ident: e_1_3_3_18_2 doi: 10.1111/geb.12566 – ident: e_1_3_3_64_2 – ident: e_1_3_3_48_2 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.1423042112 – ident: e_1_3_3_58_2 – ident: e_1_3_3_32_2 doi: 10.1111/j.1461-0248.2005.00741.x – ident: e_1_3_3_70_2 doi: 10.1111/aec.12187 – ident: e_1_3_3_36_2 – volume: 49 start-page: 89 year: 2001 ident: e_1_3_3_55_2 article-title: Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand publication-title: Nat. Hist. Bull. Siam Soc. – ident: e_1_3_3_5_2 doi: 10.1038/35006630 – ident: e_1_3_3_24_2 doi: 10.1038/ncomms10017 – ident: e_1_3_3_28_2 doi: 10.1111/j.1365-2656.2006.01121.x – volume: 57 start-page: 35 year: 2011 ident: e_1_3_3_63_2 article-title: The Mo Singto forest dynamics plot, Khao Yai National Park, Thailand publication-title: Nat. Hist. Bull. Siam Soc. – ident: e_1_3_3_7_2 doi: 10.1073/pnas.1501070112 – ident: e_1_3_3_29_2 doi: 10.1111/j.1461-0248.2011.01612.x – ident: e_1_3_3_66_2 – ident: e_1_3_3_33_2 doi: 10.1111/mec.13999 – ident: e_1_3_3_21_2 doi: 10.1086/284280 – ident: e_1_3_3_23_2 doi: 10.1111/1365-2745.12269 – ident: e_1_3_3_14_2 doi: 10.1126/science.1220269 – ident: e_1_3_3_38_2 doi: 10.1890/13-2098.1 – ident: e_1_3_3_50_2 doi: 10.1126/science.283.5401.554 – ident: e_1_3_3_69_2 – ident: e_1_3_3_6_2 doi: 10.1126/science.1117715 – reference: 28663453 - Science. 2017 Jun 30;356(6345):1328-1329 |
SSID | ssj0009593 |
Score | 2.6234848 |
Snippet | Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in... Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher... Negative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is thought to maintain higher... Maintaining tree diversityNegative interaction among plant species is known as conspecific negative density dependence (CNDD). This ecological pattern is... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1389 |
SubjectTerms | Antibiosis Biodiversity Biological diversity Density Density dependence Ecosystem Erosion control Forests Geography Herbivores Latitude Models, Biological Natural enemies Plant diversity Plant species Plants (botany) Plants (organisms) Populations Rare species Species diversity Trees Trees - classification Trees - physiology Tropical Climate Tropical environments Tropical forests Tropics |
Title | Plant diversity increases with the strength of negative density dependence at the global scale |
URI | https://www.jstor.org/stable/26399339 https://www.ncbi.nlm.nih.gov/pubmed/28663501 https://www.proquest.com/docview/1974997635 https://www.proquest.com/docview/1915343653 https://www.proquest.com/docview/1925882215 https://www.proquest.com/docview/1926523660 |
Volume | 356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdKJyQuiA0GgYGMxGEIpUpix02OHayaUBmXTuqJyHacCmmkiKYH-BR8ZN6LHTdF3TS4RK7zklp-v9jv-f0j5I3JRBZJUFNZNtYhF7EMFWw7YS6TqIT9Q-oM450_XYqLK_5xkS4Gg989r6VNo0b61964kv_hKvQBXzFK9h84618KHdAG_sIVOAzXO_EYKw4170rvWvG1RhlwbVzIGsqUGAtSL-EHOmyYpU3zXaLXOtB3FXAxaKCNaezyg6yBczs-Qt0SAPKot_H0OOudFSfWpaDzMHCP9Y4bZhLLMsut8WF7mAo3lu44tk0Y4W9MrmECXThOhU1_hgCTtHTWJ7RFTPpnGLF3uPPLboQVI5PILnVmT59bq5nNQu5AKRhPe4sv2lz37wq9OpZmJOW3VNi6Qbv5ty8_F9Or2ayYny_m98hBAopHMiQHk7MPZ9O_Ezn70bl0Ub1ArO4PdiQd6-x6sxrTijPzR-Sh00PoxILqkAxMfUTu28qkP4_IoePcmp66xORvH5MvLd6oxxv1eKOINwoAoB3e6KqiHd6owxvd4o3KpiW3eKMt3p6Q-fR8_v4idPU5Qg2iTxPKUhpZSbR0QysZG1FpPuaapyUosZpxJSolORelAi0WJFmtVaxhWrnO00qwYzKsV7V5RigotWWqMPljWnETq9yoSkWyKg1jWZlnARl1U1lol7seS6hcF60Om4jCzX3h5j4gp_6B7zZty82kxy1vPF3SCu0sD8hJx6zCffTrIoah5jlmcQzIa38blmS0s8narDZIA2IEZyJlt9EkKSi3IHDfSiPShAkRBeSpBct2kBmqClH8_A6jeEEebD-6EzJsfmzMSxClG_XKofsP_gPPeA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+diversity+increases+with+the+strength+of+negative+density+dependence+at+the+global+scale&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=LaManna%2C+Joseph+A&rft.au=Mangan%2C+Scott+A&rft.au=Alonso%2C+Alfonso&rft.au=Bourg%2C+Norman+A&rft.date=2017-06-30&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=356&rft.issue=6345&rft.spage=1389&rft_id=info:doi/10.1126%2Fscience.aam5678&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |