Exfoliation of borophenes from silver substrates assisted by Li/Mg atoms—a density functional theory study
The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the...
Saved in:
Published in | Journal of Materials Chemistry C Vol. 7; no. 14; pp. 4043 - 4048 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry (RSC)
01.01.2019
Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the Ag(111) substrate into van der Waals-like interaction and help to separate them, making the exfoliation of borophenes from substrates much easier. It is also possible for Li/Mg atoms to intercalate below borophene from borophene edges to separate borophene from the substrate. The results obtained in this work may facilitate the exfoliation of borophenes from metal substrates in future experiments.
Li/Mg atom adsorption or intercalation makes the exfoliation of monolayer borophenes from silver substrates much easier. |
---|---|
AbstractList | The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the Ag(111) substrate into van der Waals-like interaction and help to separate them, making the exfoliation of borophenes from substrates much easier. It is also possible for Li/Mg atoms to intercalate below borophene from borophene edges to separate borophene from the substrate. The results obtained in this work may facilitate the exfoliation of borophenes from metal substrates in future experiments.
Li/Mg atom adsorption or intercalation makes the exfoliation of monolayer borophenes from silver substrates much easier. The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the Ag(111) substrate into van der Waals-like interaction and help to separate them, making the exfoliation of borophenes from substrates much easier. It is also possible for Li/Mg atoms to intercalate below borophene from borophene edges to separate borophene from the substrate. The results obtained in this work may facilitate the exfoliation of borophenes from metal substrates in future experiments. |
Author | Si-Dian Li Yuewen Mu Yingping Wang |
AuthorAffiliation | Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Shanxi University Institute of Molecular Science |
AuthorAffiliation_xml | – sequence: 0 name: Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province – sequence: 0 name: Shanxi University – sequence: 0 name: Institute of Molecular Science |
Author_xml | – sequence: 1 givenname: Yingping surname: Wang fullname: Wang, Yingping – sequence: 2 givenname: Yuewen surname: Mu fullname: Mu, Yuewen – sequence: 3 givenname: Si-Dian surname: Li fullname: Li, Si-Dian |
BackLink | https://cir.nii.ac.jp/crid/1870302167684929408$$DView record in CiNii |
BookMark | eNptkc9O7CAUxonRxL8b9yYkujKZ6wFKoUszGb03GeNm9g2loJhOGYEau_MhfML7JDIzRhPjBgjnd77D93GIdnvfG4ROCfwhwKorLZOGklfS7KADChwmgrNi9-tMy310EqNrgEsuOFT0AHWzV-s7p5LzPfYWNz741aPpTcQ2-CWOrnsxAcehiSmolK9VVojJtLgZ8dxd3T1glfwy_n97V7g1fXRpxHbo9VpRdTg9Gh9GHNPQjsdoz6oumpPP_QgtbmaL6d_J_P723_R6PtEFYWmihGVW0eyplAVtlAWhoKWaaUO0pkxIRhoGvG1KAoprYRoFshKmpIUtWnaEzreyq-CfBxNT_eSHkB8Ta0qBEc5KQjMFW0oHH2MwttYubXLIRl1XE6jXqdZTuZhuUp3llssfLavgliqMv8NnWzhE_cV9f1GuX2zrvXN59HolUgADSkqRjVe0KkCyDwJukGQ |
CitedBy_id | crossref_primary_10_1016_j_ensm_2020_11_004 crossref_primary_10_1021_acs_nanolett_9b04798 crossref_primary_10_1002_adfm_202407952 crossref_primary_10_1016_j_ijhydene_2024_05_067 crossref_primary_10_1021_acs_jpcc_9b11426 crossref_primary_10_1021_acsnano_9b08296 crossref_primary_10_1002_smll_202403656 crossref_primary_10_1021_acs_jpcc_0c09297 crossref_primary_10_1016_j_apsusc_2021_151994 crossref_primary_10_1016_j_cis_2022_102669 crossref_primary_10_1016_j_jcis_2023_02_066 crossref_primary_10_1021_acsami_2c17321 crossref_primary_10_1002_admi_202102088 crossref_primary_10_1016_j_jpowsour_2025_236567 crossref_primary_10_1039_D3CP05319A crossref_primary_10_1016_j_apsusc_2023_158702 crossref_primary_10_1021_acs_nanolett_9b04789 |
Cites_doi | 10.1021/nn506262c 10.1038/nchem.2491 10.1103/PhysRevB.85.205418 10.1103/PhysRevB.50.17953 10.1021/nn202910t 10.1002/anie.201505425 10.1002/anie.201207972 10.1126/science.aad1080 10.1103/PhysRevLett.107.156401 10.1103/PhysRevLett.108.155501 10.1103/PhysRevB.83.035406 10.1103/PhysRevB.54.11169 10.1021/acs.jpcc.5b04695 10.1038/nchem.1999 10.1103/PhysRevB.59.1758 10.1039/c1cp20439d 10.1002/anie.201101022 10.1088/1367-2630/18/7/073016 10.1021/acs.nanolett.6b00070 10.1073/pnas.0502848102 10.1021/nn403661h 10.1103/PhysRevB.59.8551 10.1063/1.1329672 10.1038/ncomms4113 10.1038/nature04233 10.1039/C7CS00261K 10.1103/PhysRevLett.77.3865 10.1021/jp049301b 10.1016/0927-0256(96)00008-0 10.1039/C6NR04186H 10.1016/j.apsusc.2010.06.009 10.1103/PhysRevLett.99.115501 10.1016/j.nanoen.2016.03.013 10.1021/nl1022139 10.1039/C6NR02871C 10.1021/nn2024557 10.1021/acs.nanolett.7b02518 10.1103/PhysRevB.82.205402 10.1039/C6CP03828J 10.1103/PhysRevB.13.5188 10.1016/j.surfrep.2011.10.001 10.1038/nature04235 10.1021/nl3004754 10.1063/1.1323224 10.1002/anie.201705459 10.1021/jp208747q 10.1021/nl903868w 10.1063/1.3653241 10.1063/1.4807383 10.1126/science.1102896 10.1021/nn501226z 10.1021/acs.nanolett.5b01041 10.1016/j.apsusc.2017.08.126 10.1021/acs.nanolett.6b03349 10.1039/b919260c 10.1038/nnano.2010.279 10.1002/adfm.201605059 10.1103/PhysRevLett.103.246804 10.1021/ja058330c |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | RYH AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/c8tc06598e |
DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 4048 |
ExternalDocumentID | 10_1039_C8TC06598E c8tc06598e |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA RYH SKA SKF SLH -JG AGSTE UCJ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c413t-a7f3fa21036842baf07a0d2c3ce1cc237831b305db610a5c7eba0897e624f4d3 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 01:53:24 EDT 2025 Tue Jul 01 02:08:53 EDT 2025 Thu Apr 24 22:49:10 EDT 2025 Tue Dec 17 21:00:10 EST 2024 Thu Jun 26 22:38:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c413t-a7f3fa21036842baf07a0d2c3ce1cc237831b305db610a5c7eba0897e624f4d3 |
Notes | 10.1039/c8tc06598e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0162-5091 0000-0001-5666-0591 |
PQID | 2203153612 |
PQPubID | 2047521 |
PageCount | 6 |
ParticipantIDs | nii_cinii_1870302167684929408 proquest_journals_2203153612 crossref_citationtrail_10_1039_C8TC06598E crossref_primary_10_1039_C8TC06598E rsc_primary_c8tc06598e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of Materials Chemistry C |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry (RSC) Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry (RSC) – name: Royal Society of Chemistry |
References | Splendiani (C8TC06598E-(cit10)/*[position()=1]) 2010; 10 Kern (C8TC06598E-(cit7)/*[position()=1]) 1999; 59 Zhai (C8TC06598E-(cit21)/*[position()=1]) 2014; 6 Wang (C8TC06598E-(cit57)/*[position()=1]) 2011; 50 Li (C8TC06598E-(cit58)/*[position()=1]) 2011; 115 Feng (C8TC06598E-(cit5)/*[position()=1]) 2013; 7 Liu (C8TC06598E-(cit24)/*[position()=1]) 2013; 52 Virojanadara (C8TC06598E-(cit41)/*[position()=1]) 2010; 82 Penev (C8TC06598E-(cit33)/*[position()=1]) 2016; 16 Zhang (C8TC06598E-(cit4)/*[position()=1]) 2005; 438 Novoselov (C8TC06598E-(cit2)/*[position()=1]) 2005; 438 Zhou (C8TC06598E-(cit17)/*[position()=1]) 2013; 138 Penev (C8TC06598E-(cit18)/*[position()=1]) 2012; 12 Henkelmana (C8TC06598E-(cit55)/*[position()=1]) 2000; 113 Zhang (C8TC06598E-(cit32)/*[position()=1]) 2017; 27 Sun (C8TC06598E-(cit46)/*[position()=1]) 2006; 128 Novoselov (C8TC06598E-(cit1)/*[position()=1]) 2004; 306 Novoselov (C8TC06598E-(cit3)/*[position()=1]) 2005; 102 Tang (C8TC06598E-(cit16)/*[position()=1]) 2007; 99 Galeev (C8TC06598E-(cit45)/*[position()=1]) 2011; 13 Rasuli (C8TC06598E-(cit44)/*[position()=1]) 2010; 256 Monkhorst (C8TC06598E-(cit53)/*[position()=1]) 1976; 13 Radisavljevic (C8TC06598E-(cit11)/*[position()=1]) 2011; 6 Liu (C8TC06598E-(cit20)/*[position()=1]) 2010; 20 Chen (C8TC06598E-(cit22)/*[position()=1]) 2015; 9 Kresse (C8TC06598E-(cit48)/*[position()=1]) 1996; 54 Mortazavi (C8TC06598E-(cit31)/*[position()=1]) 2016; 18 Zhang (C8TC06598E-(cit23)/*[position()=1]) 2015; 54 Yin (C8TC06598E-(cit14)/*[position()=1]) 2012; 6 Mu (C8TC06598E-(cit15)/*[position()=1]) 2015; 119 Riedl (C8TC06598E-(cit40)/*[position()=1]) 2009; 103 Kara (C8TC06598E-(cit12)/*[position()=1]) 2012; 67 Zhao (C8TC06598E-(cit36)/*[position()=1]) 2011; 83 Blöchl (C8TC06598E-(cit52)/*[position()=1]) 1994; 50 Jiang (C8TC06598E-(cit29)/*[position()=1]) 2016; 23 Shu (C8TC06598E-(cit56)/*[position()=1]) 2016; 8 Zhang (C8TC06598E-(cit28)/*[position()=1]) 2016; 8 Mannix (C8TC06598E-(cit26)/*[position()=1]) 2015; 350 Olsen (C8TC06598E-(cit39)/*[position()=1]) 2011; 107 Wang (C8TC06598E-(cit47)/*[position()=1]) 2018; 427 Zhang (C8TC06598E-(cit37)/*[position()=1]) 2016; 16 Vogt (C8TC06598E-(cit6)/*[position()=1]) 2012; 108 Wu (C8TC06598E-(cit9)/*[position()=1]) 2015; 15 Wong (C8TC06598E-(cit42)/*[position()=1]) 2011; 5 Ciuparu (C8TC06598E-(cit19)/*[position()=1]) 2004; 108 Kresse (C8TC06598E-(cit51)/*[position()=1]) 1999; 59 Henkelman (C8TC06598E-(cit54)/*[position()=1]) 2000; 113 Liu (C8TC06598E-(cit13)/*[position()=1]) 2014; 8 Zhang (C8TC06598E-(cit35)/*[position()=1]) 2017; 46 Zhang (C8TC06598E-(cit59)/*[position()=1]) 2017; 56 Song (C8TC06598E-(cit8)/*[position()=1]) 2010; 10 Liu (C8TC06598E-(cit38)/*[position()=1]) 2012; 85 Feng (C8TC06598E-(cit27)/*[position()=1]) 2016; 8 Huang (C8TC06598E-(cit43)/*[position()=1]) 2011; 99 Perdew (C8TC06598E-(cit50)/*[position()=1]) 1996; 77 Wang (C8TC06598E-(cit30)/*[position()=1]) 2016; 18 Ling (C8TC06598E-(cit34)/*[position()=1]) 2017; 17 Piazza (C8TC06598E-(cit25)/*[position()=1]) 2014; 5 Kresse (C8TC06598E-(cit49)/*[position()=1]) 1996; 6 |
References_xml | – volume: 9 start-page: 754 year: 2015 ident: C8TC06598E-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506262c – volume: 8 start-page: 563 year: 2016 ident: C8TC06598E-(cit27)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2491 – volume: 85 start-page: 205418 year: 2012 ident: C8TC06598E-(cit38)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.85.205418 – volume: 50 start-page: 17953 year: 1994 ident: C8TC06598E-(cit52)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 5 start-page: 7662 year: 2011 ident: C8TC06598E-(cit42)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202910t – volume: 54 start-page: 13022 year: 2015 ident: C8TC06598E-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505425 – volume: 52 start-page: 3156 year: 2013 ident: C8TC06598E-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201207972 – volume: 350 start-page: 1513 year: 2015 ident: C8TC06598E-(cit26)/*[position()=1] publication-title: Science doi: 10.1126/science.aad1080 – volume: 107 start-page: 156401 year: 2011 ident: C8TC06598E-(cit39)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.156401 – volume: 108 start-page: 155501 year: 2012 ident: C8TC06598E-(cit6)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.155501 – volume: 83 start-page: 035406 year: 2011 ident: C8TC06598E-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.035406 – volume: 54 start-page: 11169 year: 1996 ident: C8TC06598E-(cit48)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 119 start-page: 20911 year: 2015 ident: C8TC06598E-(cit15)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04695 – volume: 6 start-page: 727 year: 2014 ident: C8TC06598E-(cit21)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1999 – volume: 59 start-page: 1758 year: 1999 ident: C8TC06598E-(cit51)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 13 start-page: 11575 year: 2011 ident: C8TC06598E-(cit45)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20439d – volume: 50 start-page: 8041 year: 2011 ident: C8TC06598E-(cit57)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201101022 – volume: 18 start-page: 073016 year: 2016 ident: C8TC06598E-(cit30)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/18/7/073016 – volume: 16 start-page: 2522 year: 2016 ident: C8TC06598E-(cit33)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00070 – volume: 102 start-page: 10451 year: 2005 ident: C8TC06598E-(cit3)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0502848102 – volume: 7 start-page: 9049 year: 2013 ident: C8TC06598E-(cit5)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn403661h – volume: 59 start-page: 8551 year: 1999 ident: C8TC06598E-(cit7)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.8551 – volume: 113 start-page: 9901 year: 2000 ident: C8TC06598E-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 5 start-page: 3113 year: 2014 ident: C8TC06598E-(cit25)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4113 – volume: 438 start-page: 197 year: 2005 ident: C8TC06598E-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature04233 – volume: 46 start-page: 6746 year: 2017 ident: C8TC06598E-(cit35)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00261K – volume: 77 start-page: 3865 year: 1996 ident: C8TC06598E-(cit50)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 108 start-page: 3967 year: 2004 ident: C8TC06598E-(cit19)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp049301b – volume: 6 start-page: 15 year: 1996 ident: C8TC06598E-(cit49)/*[position()=1] publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 8 start-page: 15340 year: 2016 ident: C8TC06598E-(cit28)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR04186H – volume: 256 start-page: 7596 year: 2010 ident: C8TC06598E-(cit44)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.06.009 – volume: 99 start-page: 115501 year: 2007 ident: C8TC06598E-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.115501 – volume: 23 start-page: 97 year: 2016 ident: C8TC06598E-(cit29)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.03.013 – volume: 10 start-page: 3209 year: 2010 ident: C8TC06598E-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl1022139 – volume: 8 start-page: 16284 year: 2016 ident: C8TC06598E-(cit56)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR02871C – volume: 6 start-page: 74 year: 2012 ident: C8TC06598E-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn2024557 – volume: 17 start-page: 5133 year: 2017 ident: C8TC06598E-(cit34)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02518 – volume: 82 start-page: 205402 year: 2010 ident: C8TC06598E-(cit41)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.205402 – volume: 18 start-page: 27405 year: 2016 ident: C8TC06598E-(cit31)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03828J – volume: 13 start-page: 5188 year: 1976 ident: C8TC06598E-(cit53)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.13.5188 – volume: 67 start-page: 1 year: 2012 ident: C8TC06598E-(cit12)/*[position()=1] publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2011.10.001 – volume: 438 start-page: 201 year: 2005 ident: C8TC06598E-(cit4)/*[position()=1] publication-title: Nature doi: 10.1038/nature04235 – volume: 12 start-page: 2441 year: 2012 ident: C8TC06598E-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3004754 – volume: 113 start-page: 9978 year: 2000 ident: C8TC06598E-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 56 start-page: 15421 year: 2017 ident: C8TC06598E-(cit59)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705459 – volume: 115 start-page: 23992 year: 2011 ident: C8TC06598E-(cit58)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp208747q – volume: 10 start-page: 1271 year: 2010 ident: C8TC06598E-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 99 start-page: 163107 year: 2011 ident: C8TC06598E-(cit43)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3653241 – volume: 138 start-page: 204710 year: 2013 ident: C8TC06598E-(cit17)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4807383 – volume: 306 start-page: 666 year: 2004 ident: C8TC06598E-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1102896 – volume: 8 start-page: 4033 year: 2014 ident: C8TC06598E-(cit13)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 15 start-page: 3557 year: 2015 ident: C8TC06598E-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01041 – volume: 427 start-page: 1030 year: 2018 ident: C8TC06598E-(cit47)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.126 – volume: 16 start-page: 6622 year: 2016 ident: C8TC06598E-(cit37)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03349 – volume: 20 start-page: 2197 year: 2010 ident: C8TC06598E-(cit20)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b919260c – volume: 6 start-page: 147 year: 2011 ident: C8TC06598E-(cit11)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 27 start-page: 1605059 year: 2017 ident: C8TC06598E-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605059 – volume: 103 start-page: 246804 year: 2009 ident: C8TC06598E-(cit40)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.246804 – volume: 128 start-page: 9741 year: 2006 ident: C8TC06598E-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058330c |
SSID | ssib058575092 ssib019444212 ssj0000816869 |
Score | 2.314538 |
Snippet | The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory... |
SourceID | proquest crossref rsc nii |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4043 |
SubjectTerms | Adatoms Borophene Density functional theory Exfoliation Silver Substrates |
Title | Exfoliation of borophenes from silver substrates assisted by Li/Mg atoms—a density functional theory study |
URI | https://cir.nii.ac.jp/crid/1870302167684929408 https://www.proquest.com/docview/2203153612 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfaTkhwQDCY6NiQJbigKJtjJ41znErRQC0XijROVeI4U6TSVksqBic-BF-FL8Qn4T0nTjLWw-BitW7qxP39-t6z_f4Q8ioUGRgJ0chV6PjkhypxYdksXabwTEcmPNAY4Dz7MDr_5L-_CC56vV8dr6VtmZyo7zvjSv4HVegDXDFK9h-QbQaFDngN-EILCEN7J4wn19l6mTdGH8CJWQJAeFVRI0WObs9OAbLB5KAtHLCUEVZjdE7xxrNLB1bdXwrr8-DHToou7ejHCRrPeqObAP5OKtrb1iwYvtWMHWVLyJ044yoayH6CHo3rTdnkJ-iU4Em1kVjt9n4lgj6DYt1Y5WpoYXq3-msbwTY1_ggfc_eNZXq9iYFxU80mhpF1nAXMDQNeZ8Xu9tV7nbWwDruc9DuSF7MEdbQ4vJU7NQQTmGB1LOdjPFGWk1YP2rP_v9Rj47RojutFtGi_2yd7HFYnfED2zibzd9Nmc89UMzHlFJuJ2dS4IjptB7hhDPVXeX5jndO_skVojLEzf0Qe1rjSs4pyj0lPr_bJg07uyn1yz_gOq-IJWXZoSNcZbWlIkYa0oiFtaUgtDWnyjU7z09klNST8_eNnTGv60ZZ-tKIfNfR7SuZvJ_PxuVsX8XAV2EelG4eZyGIOE8cT3yTOWBizlCuhtKcUF6EUXgJKJ03AkI8DFeokZjIK9Yj7mZ-KAzJYrVf6GaEi0ZmXskipkfB1zCMviLlkWoGR7qcRG5LX9sdcqDrBPdZZWS5uIzckL5trN1Val51XHQMmMBi2nkTlyL0RHl3DosJnckiOLFqLWiwUC86xcIqAhxqSA0CwGV_JUplx9eGd7v6c3G__KkdkUF5t9TFYwGXyoubbH8ydsGc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exfoliation+of+borophenes+from+silver+substrates+assisted+by+Li%2FMg+atoms%E2%80%94a+density+functional+theory+study&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Wang%2C+Yingping&rft.au=Mu%2C+Yuewen&rft.au=Li%2C+Si-Dian&rft.date=2019-01-01&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=14&rft.spage=4043&rft.epage=4048&rft_id=info:doi/10.1039%2FC8TC06598E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TC06598E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |