Exfoliation of borophenes from silver substrates assisted by Li/Mg atoms—a density functional theory study

The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Materials Chemistry C Vol. 7; no. 14; pp. 4043 - 4048
Main Authors Wang, Yingping, Mu, Yuewen, Li, Si-Dian
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry (RSC) 01.01.2019
Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the Ag(111) substrate into van der Waals-like interaction and help to separate them, making the exfoliation of borophenes from substrates much easier. It is also possible for Li/Mg atoms to intercalate below borophene from borophene edges to separate borophene from the substrate. The results obtained in this work may facilitate the exfoliation of borophenes from metal substrates in future experiments. Li/Mg atom adsorption or intercalation makes the exfoliation of monolayer borophenes from silver substrates much easier.
AbstractList The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the Ag(111) substrate into van der Waals-like interaction and help to separate them, making the exfoliation of borophenes from substrates much easier. It is also possible for Li/Mg atoms to intercalate below borophene from borophene edges to separate borophene from the substrate. The results obtained in this work may facilitate the exfoliation of borophenes from metal substrates in future experiments. Li/Mg atom adsorption or intercalation makes the exfoliation of monolayer borophenes from silver substrates much easier.
The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory calculations performed herein indicate that Li/Mg adatoms evenly distributed on a borophene tend to transform the interaction between borophene and the Ag(111) substrate into van der Waals-like interaction and help to separate them, making the exfoliation of borophenes from substrates much easier. It is also possible for Li/Mg atoms to intercalate below borophene from borophene edges to separate borophene from the substrate. The results obtained in this work may facilitate the exfoliation of borophenes from metal substrates in future experiments.
Author Si-Dian Li
Yuewen Mu
Yingping Wang
AuthorAffiliation Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
Shanxi University
Institute of Molecular Science
AuthorAffiliation_xml – sequence: 0
  name: Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
– sequence: 0
  name: Shanxi University
– sequence: 0
  name: Institute of Molecular Science
Author_xml – sequence: 1
  givenname: Yingping
  surname: Wang
  fullname: Wang, Yingping
– sequence: 2
  givenname: Yuewen
  surname: Mu
  fullname: Mu, Yuewen
– sequence: 3
  givenname: Si-Dian
  surname: Li
  fullname: Li, Si-Dian
BackLink https://cir.nii.ac.jp/crid/1870302167684929408$$DView record in CiNii
BookMark eNptkc9O7CAUxonRxL8b9yYkujKZ6wFKoUszGb03GeNm9g2loJhOGYEau_MhfML7JDIzRhPjBgjnd77D93GIdnvfG4ROCfwhwKorLZOGklfS7KADChwmgrNi9-tMy310EqNrgEsuOFT0AHWzV-s7p5LzPfYWNz741aPpTcQ2-CWOrnsxAcehiSmolK9VVojJtLgZ8dxd3T1glfwy_n97V7g1fXRpxHbo9VpRdTg9Gh9GHNPQjsdoz6oumpPP_QgtbmaL6d_J_P723_R6PtEFYWmihGVW0eyplAVtlAWhoKWaaUO0pkxIRhoGvG1KAoprYRoFshKmpIUtWnaEzreyq-CfBxNT_eSHkB8Ta0qBEc5KQjMFW0oHH2MwttYubXLIRl1XE6jXqdZTuZhuUp3llssfLavgliqMv8NnWzhE_cV9f1GuX2zrvXN59HolUgADSkqRjVe0KkCyDwJukGQ
CitedBy_id crossref_primary_10_1016_j_ensm_2020_11_004
crossref_primary_10_1021_acs_nanolett_9b04798
crossref_primary_10_1002_adfm_202407952
crossref_primary_10_1016_j_ijhydene_2024_05_067
crossref_primary_10_1021_acs_jpcc_9b11426
crossref_primary_10_1021_acsnano_9b08296
crossref_primary_10_1002_smll_202403656
crossref_primary_10_1021_acs_jpcc_0c09297
crossref_primary_10_1016_j_apsusc_2021_151994
crossref_primary_10_1016_j_cis_2022_102669
crossref_primary_10_1016_j_jcis_2023_02_066
crossref_primary_10_1021_acsami_2c17321
crossref_primary_10_1002_admi_202102088
crossref_primary_10_1016_j_jpowsour_2025_236567
crossref_primary_10_1039_D3CP05319A
crossref_primary_10_1016_j_apsusc_2023_158702
crossref_primary_10_1021_acs_nanolett_9b04789
Cites_doi 10.1021/nn506262c
10.1038/nchem.2491
10.1103/PhysRevB.85.205418
10.1103/PhysRevB.50.17953
10.1021/nn202910t
10.1002/anie.201505425
10.1002/anie.201207972
10.1126/science.aad1080
10.1103/PhysRevLett.107.156401
10.1103/PhysRevLett.108.155501
10.1103/PhysRevB.83.035406
10.1103/PhysRevB.54.11169
10.1021/acs.jpcc.5b04695
10.1038/nchem.1999
10.1103/PhysRevB.59.1758
10.1039/c1cp20439d
10.1002/anie.201101022
10.1088/1367-2630/18/7/073016
10.1021/acs.nanolett.6b00070
10.1073/pnas.0502848102
10.1021/nn403661h
10.1103/PhysRevB.59.8551
10.1063/1.1329672
10.1038/ncomms4113
10.1038/nature04233
10.1039/C7CS00261K
10.1103/PhysRevLett.77.3865
10.1021/jp049301b
10.1016/0927-0256(96)00008-0
10.1039/C6NR04186H
10.1016/j.apsusc.2010.06.009
10.1103/PhysRevLett.99.115501
10.1016/j.nanoen.2016.03.013
10.1021/nl1022139
10.1039/C6NR02871C
10.1021/nn2024557
10.1021/acs.nanolett.7b02518
10.1103/PhysRevB.82.205402
10.1039/C6CP03828J
10.1103/PhysRevB.13.5188
10.1016/j.surfrep.2011.10.001
10.1038/nature04235
10.1021/nl3004754
10.1063/1.1323224
10.1002/anie.201705459
10.1021/jp208747q
10.1021/nl903868w
10.1063/1.3653241
10.1063/1.4807383
10.1126/science.1102896
10.1021/nn501226z
10.1021/acs.nanolett.5b01041
10.1016/j.apsusc.2017.08.126
10.1021/acs.nanolett.6b03349
10.1039/b919260c
10.1038/nnano.2010.279
10.1002/adfm.201605059
10.1103/PhysRevLett.103.246804
10.1021/ja058330c
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID RYH
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/c8tc06598e
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 4048
ExternalDocumentID 10_1039_C8TC06598E
c8tc06598e
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RYH
SKA
SKF
SLH
-JG
AGSTE
UCJ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c413t-a7f3fa21036842baf07a0d2c3ce1cc237831b305db610a5c7eba0897e624f4d3
ISSN 2050-7526
IngestDate Mon Jun 30 01:53:24 EDT 2025
Tue Jul 01 02:08:53 EDT 2025
Thu Apr 24 22:49:10 EDT 2025
Tue Dec 17 21:00:10 EST 2024
Thu Jun 26 22:38:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-a7f3fa21036842baf07a0d2c3ce1cc237831b305db610a5c7eba0897e624f4d3
Notes 10.1039/c8tc06598e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0162-5091
0000-0001-5666-0591
PQID 2203153612
PQPubID 2047521
PageCount 6
ParticipantIDs nii_cinii_1870302167684929408
proquest_journals_2203153612
crossref_citationtrail_10_1039_C8TC06598E
crossref_primary_10_1039_C8TC06598E
rsc_primary_c8tc06598e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of Materials Chemistry C
PublicationYear 2019
Publisher Royal Society of Chemistry (RSC)
Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry (RSC)
– name: Royal Society of Chemistry
References Splendiani (C8TC06598E-(cit10)/*[position()=1]) 2010; 10
Kern (C8TC06598E-(cit7)/*[position()=1]) 1999; 59
Zhai (C8TC06598E-(cit21)/*[position()=1]) 2014; 6
Wang (C8TC06598E-(cit57)/*[position()=1]) 2011; 50
Li (C8TC06598E-(cit58)/*[position()=1]) 2011; 115
Feng (C8TC06598E-(cit5)/*[position()=1]) 2013; 7
Liu (C8TC06598E-(cit24)/*[position()=1]) 2013; 52
Virojanadara (C8TC06598E-(cit41)/*[position()=1]) 2010; 82
Penev (C8TC06598E-(cit33)/*[position()=1]) 2016; 16
Zhang (C8TC06598E-(cit4)/*[position()=1]) 2005; 438
Novoselov (C8TC06598E-(cit2)/*[position()=1]) 2005; 438
Zhou (C8TC06598E-(cit17)/*[position()=1]) 2013; 138
Penev (C8TC06598E-(cit18)/*[position()=1]) 2012; 12
Henkelmana (C8TC06598E-(cit55)/*[position()=1]) 2000; 113
Zhang (C8TC06598E-(cit32)/*[position()=1]) 2017; 27
Sun (C8TC06598E-(cit46)/*[position()=1]) 2006; 128
Novoselov (C8TC06598E-(cit1)/*[position()=1]) 2004; 306
Novoselov (C8TC06598E-(cit3)/*[position()=1]) 2005; 102
Tang (C8TC06598E-(cit16)/*[position()=1]) 2007; 99
Galeev (C8TC06598E-(cit45)/*[position()=1]) 2011; 13
Rasuli (C8TC06598E-(cit44)/*[position()=1]) 2010; 256
Monkhorst (C8TC06598E-(cit53)/*[position()=1]) 1976; 13
Radisavljevic (C8TC06598E-(cit11)/*[position()=1]) 2011; 6
Liu (C8TC06598E-(cit20)/*[position()=1]) 2010; 20
Chen (C8TC06598E-(cit22)/*[position()=1]) 2015; 9
Kresse (C8TC06598E-(cit48)/*[position()=1]) 1996; 54
Mortazavi (C8TC06598E-(cit31)/*[position()=1]) 2016; 18
Zhang (C8TC06598E-(cit23)/*[position()=1]) 2015; 54
Yin (C8TC06598E-(cit14)/*[position()=1]) 2012; 6
Mu (C8TC06598E-(cit15)/*[position()=1]) 2015; 119
Riedl (C8TC06598E-(cit40)/*[position()=1]) 2009; 103
Kara (C8TC06598E-(cit12)/*[position()=1]) 2012; 67
Zhao (C8TC06598E-(cit36)/*[position()=1]) 2011; 83
Blöchl (C8TC06598E-(cit52)/*[position()=1]) 1994; 50
Jiang (C8TC06598E-(cit29)/*[position()=1]) 2016; 23
Shu (C8TC06598E-(cit56)/*[position()=1]) 2016; 8
Zhang (C8TC06598E-(cit28)/*[position()=1]) 2016; 8
Mannix (C8TC06598E-(cit26)/*[position()=1]) 2015; 350
Olsen (C8TC06598E-(cit39)/*[position()=1]) 2011; 107
Wang (C8TC06598E-(cit47)/*[position()=1]) 2018; 427
Zhang (C8TC06598E-(cit37)/*[position()=1]) 2016; 16
Vogt (C8TC06598E-(cit6)/*[position()=1]) 2012; 108
Wu (C8TC06598E-(cit9)/*[position()=1]) 2015; 15
Wong (C8TC06598E-(cit42)/*[position()=1]) 2011; 5
Ciuparu (C8TC06598E-(cit19)/*[position()=1]) 2004; 108
Kresse (C8TC06598E-(cit51)/*[position()=1]) 1999; 59
Henkelman (C8TC06598E-(cit54)/*[position()=1]) 2000; 113
Liu (C8TC06598E-(cit13)/*[position()=1]) 2014; 8
Zhang (C8TC06598E-(cit35)/*[position()=1]) 2017; 46
Zhang (C8TC06598E-(cit59)/*[position()=1]) 2017; 56
Song (C8TC06598E-(cit8)/*[position()=1]) 2010; 10
Liu (C8TC06598E-(cit38)/*[position()=1]) 2012; 85
Feng (C8TC06598E-(cit27)/*[position()=1]) 2016; 8
Huang (C8TC06598E-(cit43)/*[position()=1]) 2011; 99
Perdew (C8TC06598E-(cit50)/*[position()=1]) 1996; 77
Wang (C8TC06598E-(cit30)/*[position()=1]) 2016; 18
Ling (C8TC06598E-(cit34)/*[position()=1]) 2017; 17
Piazza (C8TC06598E-(cit25)/*[position()=1]) 2014; 5
Kresse (C8TC06598E-(cit49)/*[position()=1]) 1996; 6
References_xml – volume: 9
  start-page: 754
  year: 2015
  ident: C8TC06598E-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn506262c
– volume: 8
  start-page: 563
  year: 2016
  ident: C8TC06598E-(cit27)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2491
– volume: 85
  start-page: 205418
  year: 2012
  ident: C8TC06598E-(cit38)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.85.205418
– volume: 50
  start-page: 17953
  year: 1994
  ident: C8TC06598E-(cit52)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 5
  start-page: 7662
  year: 2011
  ident: C8TC06598E-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202910t
– volume: 54
  start-page: 13022
  year: 2015
  ident: C8TC06598E-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201505425
– volume: 52
  start-page: 3156
  year: 2013
  ident: C8TC06598E-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201207972
– volume: 350
  start-page: 1513
  year: 2015
  ident: C8TC06598E-(cit26)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad1080
– volume: 107
  start-page: 156401
  year: 2011
  ident: C8TC06598E-(cit39)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.156401
– volume: 108
  start-page: 155501
  year: 2012
  ident: C8TC06598E-(cit6)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.155501
– volume: 83
  start-page: 035406
  year: 2011
  ident: C8TC06598E-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.035406
– volume: 54
  start-page: 11169
  year: 1996
  ident: C8TC06598E-(cit48)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 119
  start-page: 20911
  year: 2015
  ident: C8TC06598E-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04695
– volume: 6
  start-page: 727
  year: 2014
  ident: C8TC06598E-(cit21)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1999
– volume: 59
  start-page: 1758
  year: 1999
  ident: C8TC06598E-(cit51)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 13
  start-page: 11575
  year: 2011
  ident: C8TC06598E-(cit45)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20439d
– volume: 50
  start-page: 8041
  year: 2011
  ident: C8TC06598E-(cit57)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101022
– volume: 18
  start-page: 073016
  year: 2016
  ident: C8TC06598E-(cit30)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/7/073016
– volume: 16
  start-page: 2522
  year: 2016
  ident: C8TC06598E-(cit33)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00070
– volume: 102
  start-page: 10451
  year: 2005
  ident: C8TC06598E-(cit3)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502848102
– volume: 7
  start-page: 9049
  year: 2013
  ident: C8TC06598E-(cit5)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn403661h
– volume: 59
  start-page: 8551
  year: 1999
  ident: C8TC06598E-(cit7)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.8551
– volume: 113
  start-page: 9901
  year: 2000
  ident: C8TC06598E-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 5
  start-page: 3113
  year: 2014
  ident: C8TC06598E-(cit25)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4113
– volume: 438
  start-page: 197
  year: 2005
  ident: C8TC06598E-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 46
  start-page: 6746
  year: 2017
  ident: C8TC06598E-(cit35)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00261K
– volume: 77
  start-page: 3865
  year: 1996
  ident: C8TC06598E-(cit50)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 108
  start-page: 3967
  year: 2004
  ident: C8TC06598E-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp049301b
– volume: 6
  start-page: 15
  year: 1996
  ident: C8TC06598E-(cit49)/*[position()=1]
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 8
  start-page: 15340
  year: 2016
  ident: C8TC06598E-(cit28)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR04186H
– volume: 256
  start-page: 7596
  year: 2010
  ident: C8TC06598E-(cit44)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.06.009
– volume: 99
  start-page: 115501
  year: 2007
  ident: C8TC06598E-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.115501
– volume: 23
  start-page: 97
  year: 2016
  ident: C8TC06598E-(cit29)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.03.013
– volume: 10
  start-page: 3209
  year: 2010
  ident: C8TC06598E-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl1022139
– volume: 8
  start-page: 16284
  year: 2016
  ident: C8TC06598E-(cit56)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR02871C
– volume: 6
  start-page: 74
  year: 2012
  ident: C8TC06598E-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn2024557
– volume: 17
  start-page: 5133
  year: 2017
  ident: C8TC06598E-(cit34)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02518
– volume: 82
  start-page: 205402
  year: 2010
  ident: C8TC06598E-(cit41)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.205402
– volume: 18
  start-page: 27405
  year: 2016
  ident: C8TC06598E-(cit31)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03828J
– volume: 13
  start-page: 5188
  year: 1976
  ident: C8TC06598E-(cit53)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.13.5188
– volume: 67
  start-page: 1
  year: 2012
  ident: C8TC06598E-(cit12)/*[position()=1]
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2011.10.001
– volume: 438
  start-page: 201
  year: 2005
  ident: C8TC06598E-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 12
  start-page: 2441
  year: 2012
  ident: C8TC06598E-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3004754
– volume: 113
  start-page: 9978
  year: 2000
  ident: C8TC06598E-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 56
  start-page: 15421
  year: 2017
  ident: C8TC06598E-(cit59)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705459
– volume: 115
  start-page: 23992
  year: 2011
  ident: C8TC06598E-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp208747q
– volume: 10
  start-page: 1271
  year: 2010
  ident: C8TC06598E-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 99
  start-page: 163107
  year: 2011
  ident: C8TC06598E-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3653241
– volume: 138
  start-page: 204710
  year: 2013
  ident: C8TC06598E-(cit17)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4807383
– volume: 306
  start-page: 666
  year: 2004
  ident: C8TC06598E-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 8
  start-page: 4033
  year: 2014
  ident: C8TC06598E-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501226z
– volume: 15
  start-page: 3557
  year: 2015
  ident: C8TC06598E-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01041
– volume: 427
  start-page: 1030
  year: 2018
  ident: C8TC06598E-(cit47)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.126
– volume: 16
  start-page: 6622
  year: 2016
  ident: C8TC06598E-(cit37)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03349
– volume: 20
  start-page: 2197
  year: 2010
  ident: C8TC06598E-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b919260c
– volume: 6
  start-page: 147
  year: 2011
  ident: C8TC06598E-(cit11)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 27
  start-page: 1605059
  year: 2017
  ident: C8TC06598E-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605059
– volume: 103
  start-page: 246804
  year: 2009
  ident: C8TC06598E-(cit40)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.246804
– volume: 128
  start-page: 9741
  year: 2006
  ident: C8TC06598E-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058330c
SSID ssib058575092
ssib019444212
ssj0000816869
Score 2.314538
Snippet The exfoliation of monolayer borophenes from substrates is deemed a prerequisite for their further applications. Detailed density functional theory...
SourceID proquest
crossref
rsc
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4043
SubjectTerms Adatoms
Borophene
Density functional theory
Exfoliation
Silver
Substrates
Title Exfoliation of borophenes from silver substrates assisted by Li/Mg atoms—a density functional theory study
URI https://cir.nii.ac.jp/crid/1870302167684929408
https://www.proquest.com/docview/2203153612
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfaTkhwQDCY6NiQJbigKJtjJ41znErRQC0XijROVeI4U6TSVksqBic-BF-FL8Qn4T0nTjLWw-BitW7qxP39-t6z_f4Q8ioUGRgJ0chV6PjkhypxYdksXabwTEcmPNAY4Dz7MDr_5L-_CC56vV8dr6VtmZyo7zvjSv4HVegDXDFK9h-QbQaFDngN-EILCEN7J4wn19l6mTdGH8CJWQJAeFVRI0WObs9OAbLB5KAtHLCUEVZjdE7xxrNLB1bdXwrr8-DHToou7ejHCRrPeqObAP5OKtrb1iwYvtWMHWVLyJ044yoayH6CHo3rTdnkJ-iU4Em1kVjt9n4lgj6DYt1Y5WpoYXq3-msbwTY1_ggfc_eNZXq9iYFxU80mhpF1nAXMDQNeZ8Xu9tV7nbWwDruc9DuSF7MEdbQ4vJU7NQQTmGB1LOdjPFGWk1YP2rP_v9Rj47RojutFtGi_2yd7HFYnfED2zibzd9Nmc89UMzHlFJuJ2dS4IjptB7hhDPVXeX5jndO_skVojLEzf0Qe1rjSs4pyj0lPr_bJg07uyn1yz_gOq-IJWXZoSNcZbWlIkYa0oiFtaUgtDWnyjU7z09klNST8_eNnTGv60ZZ-tKIfNfR7SuZvJ_PxuVsX8XAV2EelG4eZyGIOE8cT3yTOWBizlCuhtKcUF6EUXgJKJ03AkI8DFeokZjIK9Yj7mZ-KAzJYrVf6GaEi0ZmXskipkfB1zCMviLlkWoGR7qcRG5LX9sdcqDrBPdZZWS5uIzckL5trN1Val51XHQMmMBi2nkTlyL0RHl3DosJnckiOLFqLWiwUC86xcIqAhxqSA0CwGV_JUplx9eGd7v6c3G__KkdkUF5t9TFYwGXyoubbH8ydsGc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exfoliation+of+borophenes+from+silver+substrates+assisted+by+Li%2FMg+atoms%E2%80%94a+density+functional+theory+study&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Wang%2C+Yingping&rft.au=Mu%2C+Yuewen&rft.au=Li%2C+Si-Dian&rft.date=2019-01-01&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=14&rft.spage=4043&rft.epage=4048&rft_id=info:doi/10.1039%2FC8TC06598E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TC06598E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon